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ABSTRACT
Semi-supervised learning combines supervised and unsupervised learning approaches
to learn predictive models from both labeled and unlabeled data. It is most appropriate
for problems where labeled examples are difficult to obtain but unlabeled examples
are readily available (e.g., drug repurposing). Semi-supervised predictive clustering
trees (SSL-PCTs) are a prominent method for semi-supervised learning that achieves
good performance on various predictive modeling tasks, including structured output
prediction tasks. The main issue, however, is that the learning time scales quadratically
with the number of features. In contrast to axis-parallel trees, which only use individual
features to split the data, oblique predictive clustering trees (SPYCTs) use linear
combinations of features. This makes the splits more flexible and expressive and often
leads to better predictive performance. With a carefully designed criterion function,
we can use efficient optimization techniques to learn oblique splits. In this paper,
we propose semi-supervised oblique predictive clustering trees (SSL-SPYCTs). We
adjust the split learning to take unlabeled examples into account while remaining
efficient. Themain advantage over SSL-PCTs is that the proposedmethod scales linearly
with the number of features. The experimental evaluation confirms the theoretical
computational advantage and shows that SSL-SPYCTs often outperform SSL-PCTs
and supervised PCTs both in single-tree setting and ensemble settings. We also show
that SSL-SPYCTs are better at producing meaningful feature importance scores than
supervised SPYCTs when the amount of labeled data is limited.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning
Keywords Semi-supervised learning, Oblique decision trees, Predictive clustering trees, Struc-
tured output prediction

INTRODUCTION
The most common tasks in machine learning are supervised and unsupervised learning. In
supervised learning, we are presented with a set of examples described with their properties
(i.e., descriptive variables or features) as well as with a target property (i.e., output variables,
target variables, or labels). The goal of a supervised learning method is to learn a mapping
from the descriptive values to the output values that generalizes well to examples that were
not used for learning. In unsupervised learning, on the other hand, no output values are
provided for the examples. Instead, unsupervised methods aim to extract some underlying
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structure of the examples (e.g., discover clusters of similar examples, learn low dimensional
representations, etc.).

Semi-supervised learning combines these two approaches (Chapelle, Schölkopf & Zien,
2006). We are presented with a set of examples, where a (smaller) part of them are
associated with output values (labeled examples), and a (larger) part of them are not
(unlabeled examples). Semi-supervised methods learn a mapping from examples to the
output values (like supervisedmethods), but also include unlabeled examples in the learning
process (like unsupervised methods). The semi-supervised approach is typically used when
learning examples are too scarce for supervised methods to learn a model that generalizes
well, and, at the same time, unlabeled examples are relatively easy to obtain. This often
happens in problems from life sciences, where the process of labeling the examples requires
wet-lab experiments that are time-consuming and expensive. For example, consider the
problem of discovering a new drug for a certain disease. Testing the effects of compounds
on the progression of the disease requires screening experiments, so labeling the examples
(compounds) is expensive. On the other hand, millions of unlabeled compounds are
present and described in online databases. Ideally, a semi-supervised method can use a
handful of labeled compounds, combine them with the unlabeled compounds, and learn
a model that can predict the effect of a compound on the disease progression, to facilitate
the discovery of a novel drug.

The most common approaches to semi-supervised learning are wrapper methods (Van
Engelen & Hoos, 2020), such as self-training (Kang, Kim & Cho, 2016), where a model
iteratively labels the unlabeled examples and includes these pseudo-labels in the learning
set in the next iteration. Alternatively, in co-training (Zhou & Li, 2007) there are twomodels
that iteratively label the data for each other. Typically, these two models are different or
at least learn on different views of the data. Among the intrinsically semi-supervised
methods (Van Engelen & Hoos, 2020), semi-supervised predictive clustering trees (Levatić,
2017) are a prominent method. They can be used to solve a variety of predictive tasks,
includingmulti-target regression and (hierarchical)multi-label classification (Levatić, 2017;
Levatić et al., 2017; Levatić et al., 2018; Levati et al., 2020). They achieve good predictive
performance and, as a bonus, the learned models can be interpreted, either by inspecting
the learned trees or calculating feature importances from ensembles of trees (Petkovi,
Deroski & Kocev, 2020). However, the method scales poorly with data dimensionality—the
model learning can take a very long time on datasets with many features or targets.

Standard decision/regression trees (Breiman et al., 1984) split data based on the features
in a way that minimizes the impurity of the target in the resulting clusters (e.g., variance
for regression, entropy for classification). In the end nodes (leaves), predictions for the
target are made. Predictive clustering trees (Blockeel, Raedt & Ramon, 1998; Blockeel et al.,
2002) (PCTs) generalize standard trees by differentiating between three types of attributes:
features, clustering attributes, and targets. Features are used to divide the examples; these
are the attributes encountered in the split nodes. Clustering attributes are used to calculate
the heuristic that guides the search of the best split at a given node, and targets are
predicted in the leaves. The role of the targets in standard trees is therefore split between
the clustering attributes and targets in PCTs. In theory, the clustering attributes can be
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selected independently of the features and the targets. However, the learned tree should
make accurate predictions for the targets, so minimizing the impurity of the clustering
attributes should help minimize the impurity of the targets. This attribute differentiation
gives PCTs a lot of flexibility. They have been used for predicting various structured
outputs (Kocev et al., 2013), including multi-target regression, multi-label classification,
and hierarchical multi-label classification. Embeddings of the targets have been used as
clustering attributes in order to reduce the time complexity of tree learning (Stepišnik &
Kocev, 2020a). Semi-supervised PCTs use both targets and features as clustering attributes.
This makes leaves homogeneous in both the input and the output space, which allows
unlabeled examples to influence the learning process.

PCTs use individual features to split the data, which means the split hyperplanes in the
input spaces are axis-parallel. SPYCTs (Stepišnik & Kocev, 2020b; Stepinik & Kocev, 2020)
are a redesign of standard PCTs and use linear combinations of features to achieve oblique
splits of the data—the split hyperplanes are arbitrary. The potential advantage of oblique
splits compared to axis-parallel splits is presented in Fig. 1. SPYCTs offer state-of-the-art
predictive performance, scale better with the number of clustering attributes, and can
exploit sparse data to speed up computation.

In this paper, we propose SPYCTs for semi-supervised learning. We follow the same
semi-supervised approach that regular PCTs do, which includes features in the heuristic
function for evaluating the quality of a split. This makes the improved scaling of SPYCTs
over PCTs especially beneficial, which is the main motivation for our proposal. We modify
the oblique split learning objective functions of SPYCTs to account for missing target
values. We evaluate the proposed approach on multiple benchmark datasets for different
predictive modeling tasks.

In the remainder of the paper, we first describe the proposed semi-supervised methods
and present the experimental setting for their evaluation. Next, we present and discuss the
results of our experiments and, finally, conclude the paper by providing several take-home
messages.

METHOD DESCRIPTION
In this section, we present our proposal for semi-supervised learning of SPYCTs (SSL-
SPYCTs). We start by introducing the notation used in the manuscript. Let X l

∈RL×D and
Xu
∈RU×D be the matrices containing the D features of the L labeled and U unlabeled

examples, respectively. Let Y ∈RL×T be the matrix containing the T targets associated with
the L labeled examples. And let X = [(X l)T (Xu)T ]T ∈R(L+U )×D be the matrix combining
the features of both labeled and unlabeled examples. Finally, let p∈RD+T be the vector of
clustering weights, used to put different priorities to different clustering attributes (features
and targets) when learning a split.
There are two variants of SPYCTs that learn the split hyperplanes in different ways.
1. The SVM variant first groups the examples into two clusters based on the clustering

attributes using k-means clustering, then learns a linear SVM on the features with
cluster indicators as targets to approximate this split.
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Figure 1 A toy dataset (A) with drawn decision boundaries learned by the axis-parallel (red, dashed)
and oblique (blue, solid) decision trees (B, C).

Full-size DOI: 10.7717/peerjcs.506/fig-1

2. The gradient variant uses a fuzzy membership indicator to define a differentiable
objective function which measures the impurity on both sides of the split hyperplane.
The hyperplane is then optimized with gradient descent to minimize the impurity.
The basis of the semi-supervised approach is to use both features and targets as clustering

attributes, so that unlabeled examples influence the learning process through the heuristic
score calculation, despite the missing target values. For the SVM variant, this means that
examples are clustered based on both target and feature values. For the gradient variant, the
split is optimized to minimize the impurity of both features and targets on each side of the
hyperplane. The overview of the SSL-SPYCT learning algorithm is presented in Algorithm
1. The weights w ∈RD and bias b∈R define the split hyperplane, and they are obtained
differently for each SPYCT variant as follows.

Algorithm 1 Learning a SSL-SPYCT: The inputs are features Xl ∈ RL×D and Xu ∈ RU×D

of labeled and unlabeled examples, targets Y ∈RL×T of the labeled examples, and a vector
c ∈RD+T of clustering weights.
1: procedure grow_tree(Xl , Xu, Y , c)
2: w,b = get_split_hyperplane(Xl , Xu, Y , c)
3: score = Xw+b
4: rows1 = {i | scorei> 0}
5: rows2 = {i | scorei≤ 0}
6: if acceptable_split(rows1, rows2) then
7: left_subtree = grow_tree(Xl[rows1], Xu[rows1], Y [rows1], c)
8: right_subtree = grow_tree(Xl[rows2], Xu[rows2], Y [rows2], c)
9: return Node(w , b, left_subtree, right_subtree)
10: else
11: return Leaf(prototype(Y ))
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SVM variant The first step is to cluster examples into two groups using k-means clustering.
The initial centroids are selected randomly from the labeled examples. Since
the clustering is performed based on both features and targets, the cluster
centroids consist of feature and target parts, i.e.,

c0=
[
X l
i,: Yi,:

]
∈RD+T , c1=

[
X l
j,: Yj,:

]
∈RD+T .

Next, we calculate the Euclidean distance to the two centroids for each of
the examples. For unlabeled examples, we only calculate the distance to the
feature part of the centroids (cx0 and cx1 ):

d(i,j)=
D∑

k=1

pk(Xj,k− c ik)
2
+α

T∑
k=1

pD+k(Yj,k− c iD+k)
2,

where i∈ {0,1} is the cluster indicator, 1≤ j ≤ L+U is the example index,
and α= 1 if the example is labeled (i.e., j ≤ L) and α= 0 if it is unlabeled.
The examples are split into two clusters according to the closer centroid.
In the case of ties in the distance, the examples are assigned (uniformly)
randomly to a cluster.

Let s∈ {0,1}L+U be the vector indicating the cluster membership. The new
centroids are then the means of the examples assigned to each cluster. The
means of the target parts of the centroids are calculated only using the
labeled examples, i.e.,

c ij =
∑L+U

k=1 I[sk = i]Xk,j∑L+U
k=1 I[sk = i]

, if 1≤ j ≤D,

c ij =
∑L

k=1I[sk = i]Yk,j−D∑L
k=1I[sk = i]

, if D< j ≤D+T .

This procedure is repeated for a specified number of iterations. After the
final clusters are determined, a linear SVM is used to approximate this split
based on the features. Specifically, the following optimization problem is
solved:

min
w,b
||w||1+C

L+U∑
k=1

max(0,1− sk(Xk,: ·w+b))2,

where parameter C ∈R determines the strength of regularization.
Gradient
variant

We start with randomly initialized weights (w) and bias (b) and calculate
the fuzzy membership vector s= σ (Xw+b)∈ [0,1]L+U . The value si tells
us how much the corresponding example belongs to the ‘‘positive’’ group,
whereas the value 1−si tells us howmuch it belongs to the ‘‘negative’’ group.
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To calculate the impurity of a group, we calculate the weighted variance for
every feature and every target. For the targets, only labeled examples are
used in the calculation. Weighted variance of a vector v ∈Rn with weights
a∈Rn is defined as

var(v,a)=
∑n

i ai(vi−mean(v,a))2

A
=mean(v2,a)−mean(v,a)2,

where A=
∑n

i ai is the sum of weights and mean(v,a)= 1
A
∑n

i aivi is the
weighted mean of v . The impurity of the positive group is then calculated
as

imp(s,p)=
D∑

k=1

pkvar(X:,k,s)+
T∑

k=1

pD+kvar(Y:,k,s).

To get the impurity of the negative group imp(1− s,p), we simply swap the
fuzzy membership weights with 1− s. The split fitness function we wish to
optimize is then

f (w,b)= S · imp(s,p)+ (L+U −S) · imp(1− s,p),

where s= σ (Xw+b) and S=
∑

isi. The terms S and L+U−S represent the
sizes of the positive and negative subsets and are added to guide the split
search towards balanced splits. The final optimization problem for learning
the split hyperplane is

min
w,b
||w|| 1

2
+Cf (w,b),

whereC again controls the strength of regularization. The objective function
is differentiable, and we can efficiently solve the problem using the Adam
(Kingma & Ba, 2014) gradient descent optimization method.

The clustering weights are uniform for the targets for tasks of binary classification,
multi-class classification, multi-label classification, regression, and multi-target regression.
For hierarchical multi-label classification, the weights for target labels positioned lower
in the hierarchy are smaller. This gives more importance to labels higher in the hierarchy
when splitting the examples.

Features and clustering attributes are standardized to mean 0 and standard deviation 1
prior to learning each split. For the features, this is done to make split learning more stable.
For the clustering attributes, this is performed before the application of the clustering
weights, so that only clustering weights control the relative influences of the different
clustering attributes on the objective function.

We also implement a parameter ω that determines the degree of supervision. The
clustering weights, corresponding to features (pi for 1≤ i≤D), are scaled so that their sum
is 1−ω, and clustering weights, corresponding to targets (pi for D< i≤D+T , are scaled
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so that their sum is ω. This enables us to determine the relative importance of features and
targets when splitting the data. With the borderline values selected for ω (0 or 1), we get the
extreme behavior in terms of the amount of supervision. Setting the value of ω to 0 means
that the target impurity is ignored and tree construction is effectively unsupervised, i.e.,
without supervision. Alternatively, setting the value of ω to 1 means that feature impurity is
ignored when learning splits, hence, the unlabeled examples do not affect the split selection.
The tree construction in this case is fully supervised.

The splitting of the examples (i.e., the tree construction) stops when at least one of the
following stopping criteria is reached. We can specify the minimum number of examples
required in leaf nodes (at least one labeled example is always required otherwise predictions
cannot be made). We can also require a split to reduce the impurity by a specified amount
or specify the maximum depth of the tree.

After the splitting stops, a leaf node is created. The prototype of the targets of the
remaining examples is calculated and it is stored for use as the prediction for the examples
reaching that leaf. Since the targets in SOP are represented as tuples/vectors, the prototypes
are calculated as column-wise mean values of the targets (Y ). They can be used directly
as predictions (in regression problems) or used to calculate the majority class (in binary
and multi-class classification), or used to predict all labels with the mean above a certain
threshold (in hierarchical and flat multi-label classification).

The time complexity of learning a split in standard PCTs isO(DN logN+NDK ) (Kocev et
al., 2013), whereK is the number of clustering attributes. For the SVM and gradient variant
of SPYCTs, the time complexities are O(N (IcK + IoD)) and O(NIo(D+K )), respectively
(Stepinik & Kocev, 2020), where Io is the number of w,b optimization iterations and Ic is
the number of clustering iterations (SVM variant). When learning SSL variants (SSL-PCTs
and SSL-SPYCTs), clustering attributes consist of both features and targets, therefore
K =D+T . This means that SSL-PCTs scale quadratically with the number of features,
whereas both variants of SSL-SPYCTs scale linearly. SSL-SPYCTs are therefore much more
computationally efficient, and can additionally take advantage of sparse data by performing
calculations with sparse matrices. Our implementation of the proposed method is freely
licensed and available for use and download at https://gitlab.com/TStepi/spyct.

EXPERIMENTAL DESIGN
We evaluated our approach on 30 benchmark dataset for different predictive modeling
tasks: binary classification (BC), multiclass classification (MCC), multi-label classification
(MLC), and hierarchical multi-label classification (HMLC), single-target regression (STR)
and multi-target regression (MTR). The datasets are freely available and were obtained
from the following repositories: openml (https://www.openml.org), mulan (http://mulan.
sourceforge.net/datasets.html), dtai-cs (https://dtai.cs.kuleuven.be/clus/hmc-ens/) and
kt-ijs (http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification). The
selected datasets have diverse properties in terms of application domains, number of
examples, number of features, and number of targets. Their properties and sources are
presented in Table 1.
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Table 1 Details of the benchmark datasets used for the evaluation. The task column shows the predic-
tive modeling task applicable to the datasets (BC is binary classification, MCC is multi-class classification,
MLC is multi-label classification, HMLC is hierarchical multi-label classification, STR is single-target re-
gression, MTR is multi-target regression), N is the number of examples, D is the number of features, and
T is the number of targets (for MCC, it is the number of classes).

dataset source task N D T

bioresponse openml BC 3751 1776 1
mushroom openml BC 8124 22 1
phoneme openml BC 5404 5 1
spambase openml BC 4601 57 1
speeddating openml BC 8378 120 1
cardiotocography openml MCC 2126 35 10
gesture openml MCC 9873 32 5
isolet openml MCC 7797 617 26
mfeat-pixel openml MCC 2000 240 10
plants-texture openml MCC 1599 64 100
bibtex mulan MLC 7395 1836 159
birds mulan MLC 645 260 19
bookmarks mulan MLC 87856 2150 208
delicious mulan MLC 16105 500 983
scene mulan MLC 2407 294 6
ara_interpro_GO dtai-cs HMLC 11763 2815 630
diatoms kt-ijs HMLC 3119 371 398
enron kt-ijs HMLC 1648 1001 56
imclef07d kt-ijs HMLC 11006 80 46
yeast_seq_FUN dtai-cs HMLC 3932 478 594
cpmp-2015 openml STR 2108 23 1
pol openml STR 15000 48 1
qsar-197 openml STR 1243 1024 1
qsar-12261 openml STR 1842 1024 1
satellite_image openml STR 6435 36 1
atp1d mulan MTR 337 411 6
enb mulan MTR 768 8 2
oes97 mulan MTR 334 263 16
rf2 mulan MTR 9125 576 8
scm1d mulan MTR 9803 280 16

We focus on the comparison of our proposed SSL-SPYCT method with the original
supervised method SPYCT and the semi-supervised learning of axis-parallel PCTs: the
SSL-PCT (Levatić, 2017). These two baselines are the most related supervised and semi-
supervised methods of the proposed approach, respectively. For completeness, we also
include supervised PCTs in the comparison. Note that SPYCTs and PCTs are the only
available methods able to address all of the structured output prediction tasks in a uniform
manner. We evaluate the methods in single tree setting and in bagging ensembles (Breiman,
1996) of 50 trees.
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For SPYCTs we use the same configuration as it was used in Stepinik & Kocev (2020c).
Tree depth is not limited, leaves only need to have 1 (labeled) example, and splits
are accepted if they reduce impurity by at least 5% in at least one of the subsets.
The maximum number of optimization iterations is set to 100 for both variants, and
the SVM variant uses at most 10 clustering iterations. The strength of regularization
(C) is set to 10. For the gradient variant, the Adam optimizer uses parameters
β1 = 0.9, β2 = 0.999, and ε = 10−8. These are the default values from the PyTorch
(https://pytorch.org/docs/1.1.0/_modules/torch/optim/adam.html) library.

For semi-supervised methods, we select the ω parameter with 3-fold internal cross-
validation on the training set. We select the best value from the set {0,0.25,0.5,0.75,1}.
We investigate the influence of the number of labeled examples L on the performance
of the semi-supervised methods. We set L to the following numbers of available labeled
examples: {25,50,100,250,500}. We evaluate the methods with a slightly modified 10-fold
cross-validation corresponding to inductive evaluation setting. First, a dataset is divided
into 10 folds. One fold is used as the test set. From the other 9 folds, L examples are
randomly selected as labeled examples, and the rest are used as unlabeled examples. This
process is repeated 10 times so that each fold is used once as the test set. On the two MTR
datasets that have fewer than 500 examples (atp1d and oes97) experiments with L= 500
are not performed.

To measure the predictive performance of the methods on STR and MTR datasets, we
use the coefficient of determination

R2(y,ŷ)= 1−
∑

i(yi− ŷi)
2∑

i(yi− ȳ)2
,

where y is the vector of true target values, ȳ is their mean, and ŷ is the vector of predicted
values. For MTR problems, we calculate the mean of R2 scores per target. For BIN and
MCC tasks, we use F1 score, macro averaged in the MCC case.

Methods solving MLC and HMLC tasks typically return a score for each label and
each example, a higher score meaning that an example is more likely to have that label.
Let y ∈ {0,1}n×l be the matrix of label indicators and ŷ ∈Rn×l the matrix of label scores
returned by a method. We measured the performance of methods with weighted label
ranking average precision

LRAP(y,ŷ)=
1
n

n−1∑
i=0

∑
j:yij=1

wj

Wi

Lij
Rij
,

where Lij = |{k : yik = 1∧ ŷik ≥ ŷij}| is the number of real labels assigned to example i that
the method ranked higher than label j, Rij = |{k : ŷik ≥ ŷij}| is the number of all labels
ranked higher than label j, wj is the weight we put to label j and Wi is the sum of weights
of all labels assigned to example i. For the MLC datasets, we put equal weights to all labels,
whereas, for the HMLC datasets, we weighted each label with 0.75d , with d being the depth
of the label in the hierarchy (Kocev et al., 2013). For hierarchies that are directed acyclic
graphs, the depth of a node is calculated as the average depth of its parent nodes plus one.
The same weights are also used as the clustering weights for the targets for all methods.
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RESULTS AND DISCUSSION
Predictive performance comparison
We first present the results obtained on the rf2 dataset in Fig. 2. Here, the semi-supervised
approach outperforms supervised learning for both SPYCT variants. This is the case in
both single-tree and ensemble settings and for all considered numbers of labeled examples.
These results demonstrate the potential of the proposed SSL methods.

For a high-level comparison of the predictive performance of the proposed SSL
methods and the baselines, we use average ranking diagrams (Demsar, 2006). The results
are presented in Fig. 3. The first observation is that SSL-SPYCT-GRAD achieves the best
rank for all numbers of labeled examples in both single tree and ensemble settings. The
only exception are single trees with 25 labeled examples, where it has the second-best rank,
just slightly behind SSL-SPYCT-SVM. Additionally, SSL-SPYCT-SVM also ranks better
than both its supervised variant and SSL-PCT for all values of L and both single tree and
ensemble settings. For standard PCTs, the semi-supervised version performed better than
the supervised version in a single tree setting with very few labeled examples (L= 25,50),
otherwise, their performances were similar. This is consistent with the previous studies
(Levatić et al., 2017; Levatić et al., 2018; Levati et al., 2020).

Next, we dig deeper into the comparison of SSL-SPYCT variants to the supervised
SPYCTs and SSL-PCTs. We performed pairwise comparisons among the competing pairs
with sign tests (Demsar, 2006) on the number of wins. An algorithm ‘‘wins’’ on a dataset if
its performance, averaged over the 10 cross-validation folds, is better than the performance
of its competitor. The maximum number of wins is therefore 30 (28 for L= 500). Tables 2
and 3 present the results for single tree and ensemble settings, respectively.

The results show that in the single tree setting, SSL-SPYCTs tend to perform better than
their supervised counterparts, though the difference is rarely statistically significant. When
used in ensembles, the improvement of the SSL-SPYCT-SVM variant over its supervised
counterpart is small. With the gradient variant, the improvement is greater, except for
the largest number of labeled examples. Compared to SSL-PCTs, the improvements are
generally greater. This holds for both single trees and especially ensembles, where the
differences are almost always statistically significant. As the average ranking diagrams in
Fig. 3 already suggested, the gradient variant is especially successful.

Overall, the results also show that SPYCTs are a more difficult baseline to beat than
SSL-PCTs. This is especially true in ensembles, where the studies of SSL-PCTs show that
the improvement over supervised PCT ensembles is negligible (Levatić et al., 2017; Levatić
et al., 2018; Levati et al., 2020). On the other hand, our results show SSL-SPYCT-GRAD can
improve even the ensemble performance. Another important observation is that supervised
variants never significantly outperform the SSL variants. This confirms that dynamically
selecting the ω parameter prevents scenarios where unlabeled examples are detrimental to
the predictive performance and supervised learning works better.
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Figure 2 Comparison of supervised and semi-supervised variants of SPYCT-SVM and SPYCT-GRAD
methods (A & C, B &D) in both single tree and ensemble settings (A-B, C-D) on the rf2 dataset with dif-
ferent numbers of labeled examples (L).

Full-size DOI: 10.7717/peerjcs.506/fig-2

Learning time comparison
To compare the learning times of the proposed SSL methods and SSL-PCTs, we selected
one large dataset for each predictive task. We focused on the large datasets where the
differences highlight the scalability of the methods with respect to the numbers of features
and targets. We compare learning times of tree ensembles, as they also serve as a (more
reliable) comparison for learning times of single trees. Fig. 4 shows the learning times
on the selected datasets. The results confirm our theoretical analysis and show that the
proposed SSL-SPYCTs are learned significantly faster than SSL-PCTs. The differences are
especially large on datasets with many features and/or targets (e.g., ara_interpro_GO). The
learning times are most similar on the gesture dataset, which has only 32 features, so the
theoretical advantage of SSL-SPYCTs is less accentuated. Notwithstanding, the proposed
methods are faster also on this dataset.
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Figure 3 Average ranking diagrams comparing the predictive performance of the proposed SSL-
SPYCT-SVM (A, C, E, G, I) and SSL-SPYCT-GRAD (B, D, F, H, J) methods and the baselines with
different numbers of labeled examples.

Full-size DOI: 10.7717/peerjcs.506/fig-3
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Table 2 Comparison of the proposed SSL-SPYCTmethods to their supervised counterparts and SSL-
PCTs in single tree setting in terms of number of wins. Bolded values indicate that the sign test Dem-
sar06 showed significant difference in performance at α= 0.05.

#wins L= 25 L= 50 L= 100 L= 250 L= 500

1-SSL-SPYCT-GRAD 20 19 21 19 14
vs. 1-SPYCT-GRAD
1-SSL-SPYCT-SVM 20 18 18 17 20
vs. 1-SPYCT-SVM
1-SSL-SPYCT-GRAD 21 18 22 18 20
vs. 1-PCT-SSL
1-SSL-SPYCT-SVM 22 18 18 19 16
vs. 1-PCT-SSL

Table 3 Comparison of the proposed SSL-SPYCTmethods to their supervised counterparts and SSL-
PCTs in ensemble setting in terms of number of wins. Bolded values indicate that the sign test Demsar06
showed significant difference in performance at α= 0.05.

#wins L= 25 L= 50 L= 100 L= 250 L= 500

50-SSL-SPYCT-GRAD 24 19 19 20 14
vs. 50-SPYCT-GRAD
50-SSL-SPYCT-SVM 16 16 19 15 16
vs. 50-SPYCT-SVM
50-SSL-SPYCT-GRAD 25 22 22 21 21
vs. 50-SSL-PCT
50-SSL-SPYCT-SVM 23 21 22 21 15
vs. 50-SSL-PCT

Investigating the ω parameter
The ω parameter controls the amount of influence of the unlabeled examples on the
learning process. Fig. 5 shows the distributions of the ω values selected with the internal 3-
fold cross-validation.We can see that the selected values varied greatly, sometimes different
values were chosen even for different folds of the same dataset. This confirms the need to
determine ω with internal cross-validation for each dataset separately. Additionally, we
notice that largerω values tend to be selected with more labeled examples and by ensembles
compared to single trees. With larger numbers of labeled examples, it makes sense that the
model can rely more heavily on the labeled part of the data and unlabeled examples are not
as beneficial. For ensembles, this indicates that they can extract more useful information
from few labeled examples compared to single trees. Whereas this seems clear for larger
datasets, bootstrapping on few examples is not obviously beneficial. The fact that ensembles
tend to select larger ω values (especially the SVM variant) also explains why the differences
in predictive performance between supervised and semi-supervised variants are smaller
in ensembles compared to single trees. We also investigated whether the selected ω values
were influenced by the predictive modeling task (regression vs. classification, single target
vs. multiple targets), but we found no noticeable differences between the ω distributions.
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Figure 4 Comparison of learning times of the SSL algorithms on a selection of large benchmark
datasets.

Full-size DOI: 10.7717/peerjcs.506/fig-4

Investigating feature importances
We can extract feature importance scores from learned SPYCT trees (Stepinik & Kocev,
2020). The importances are calculated based on absolute values of weights assigned to
individual features in all the split nodes in a tree (or ensemble of trees). For a single oblique
PCT, they are calculated as follows:

imp(T )=
∑

s∈T

sn
N

sw
‖sw‖1

,

where s iterates over split nodes in tree T , sw is the weight vector defining the split
hyperplane, sn is the number of learning examples that were present in the node and N is
the total number of learning examples. The contributions of each node to the final feature
importance scores are weighted according to the number of examples that were used to
learn the split. This puts more emphasis on weights higher in the tree, which affect more
examples. To get feature importance scores of an ensemble, we simply average feature
importances of individual trees in the ensemble.

These scores tell us how much the model relies on individual features and can also
be used to identify important features for a given task. We investigated if SSL-SPYCTs
are more successful at identifying important features compared to supervised SPYCTs in
problems with limited labeled data. To do this, we followed the setup from Stepinik &
Kocev (2020c) and added random features (noise) to the datasets. For each original feature,
we added a random one so that the total number of features was doubled. The values of the
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Figure 5 (A-D) Distributions of the selected ω parameters for different number of labeled examples.
Full-size DOI: 10.7717/peerjcs.506/fig-5

added features were independently sampled from a standard normal distribution. Then we
learned SPYCTs and SSL-SPYCTs and compared the extracted feature importances.

Figure 6 presents the results on the qsar-197 dataset. For convenience, we also show the
predictive performances of SPYCT and SSL-SPYCT methods. A good feature importance
scoring would put the scores of random features (orange) to zero, whereas some real
features (blue) would have noticeably higher scores. Low scores of many real features are
not concerning, as datasets often include features that are not very useful for predicting the
target. This example shows that SSL-SPYCTs can be better at identifying useful features
than supervised SPYCTs. The difference here is greater with the gradient variant, especially
with 50-250 labeled examples. This is also reflected in the predictive performance of the
methods.

In general, the quality of feature importance scores obtained from amodel was correlated
with the model’s predictive performance. This is expected and means that the conclusions
here are similar. In terms of feature importance scores, SSL-SPYCTs are often similar to
supervised SPYCTs, but there are several examples (e.g., Fig. 6) where they are significantly
better and worth the extra effort.
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Figure 6 Comparison of feature importance scores of real and random features (scaled to [0,1] inter-
val) for the qsar-197 dataset with different numbers of labeled examples. (A, C, E) The SPYCT-SVM
method, (B, D, F) the SPYCT-GRAD method. (A, B) Importance scores obtained with the supervised
method, (C, D) the importance scores obtained with the unsupervised method, and (E, F) the predictive
performance of both supervised and semi-supervised methods.
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CONCLUSION
In this paper, we propose semi-supervised learning of oblique predictive clustering trees.
We follow the approach of standard semi-supervised predictive clustering trees and adapt
both SVM and gradient variants of SPYCTs and make them capable of learning from
unlabeled examples. The main motivation for the proposed methods was the improved
computational scaling of SPYCTs compared to PCTs which is highlighted in the proposed
SSL approach, where features are also taken into account when evaluating the splits.

We experimentally evaluated the proposed methods on 30 benchmark datasets for
various predictivemodeling tasks in both single tree and ensemble settings. The experiments
confirmed the substantial theoretical computational advantage the proposed SSL-SPYCT
methods have over standard SSL-PCTs. The results also showed that the proposed methods
often achieve better predictive performance than both supervised SPYCTs and SSL-PCTs.
The performance edge was preserved even in ensemble settings, where SSL-PCTs typically
did not outperform supervised PCTs. Finally, we demonstrated that SSL-SPYCTs can be
significantly better at obtaining meaningful feature importance scores.

The main drawback of SSL-SPYCTs (which is shared with SSL-PCTs) is the requirement
to determine theω parameter dynamically with internal cross-validation. This increases the
learning time compared to supervised learning but prevents occasions where introducing
unlabeled examples into the learning process hurts the predictive performance. We
investigated the selected values for ω and found that higher values tend to be selected when
there is more labeled data available, and by ensembles compared to single trees. But the
selected values were still very varied, which confirms the need for dynamic selection of ω.

For future work, we plan to investigate SPYCTs in boosting ensembles for both
supervised and semi-supervised learning. Variants of gradient boosting (Friedman, 2001)
have proven especially successful in many applications recently. We will also try improving
the interpretability of the learned models with Shapley additive explanations (SHAP,
Lundberg et al. (2020)). Because our method is tree-based we might be able to calculate
the Shapley values efficiently, similarly to how they are calculated for axis-parallel tree
methods.
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Data Availability
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Datasets from openml are available at the following links:
bioresponse - https://www.openml.org/d/4134
mushroom - https://www.openml.org/d/24
phoneme - https://www.openml.org/d/1489
spambase - https://www.openml.org/d/44
speeddating - https://www.openml.org/d/40536
cardiotocography - https://www.openml.org/d/1466
gesture - https://www.openml.org/d/4538
isolet - https://www.openml.org/d/300
mfeat-pixel - https://www.openml.org/d/40979
plants-texture - https://www.openml.org/d/1493
cpmp-2015 - https://www.openml.org/d/41700
pol - https://www.openml.org/d/201
qsar-197 - https://www.openml.org/d/3153
qsar-12261 - https://www.openml.org/d/3262
satellite_image - https://www.openml.org/d/294
MLC datasets are available from Mulan (below the table with their properties):
http://mulan.sourceforge.net/datasets-mlc.html. They can be identified by their names

(bibtex, birds, bookmarks, delicious, scene).
MTR datasets from Mulan are all available in a single archive here:
http://mulan.sourceforge.net/datasets-mtr.html. Individual datasets (atp1d, enb, oes97,

rf2, scm1d) can be identified by their names in the archive.
HMLC datasets are available at:
- https://dtai.cs.kuleuven.be/clus/hmc-ens/ one can find the datasets yeast_seq_FUN

(labeled as D1) and ara_interpro_GO (labeled as D17).
- http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification one can

find the datasets imclef07d, diatoms, and enron. They can be identified by their names.
The implementation of the proposed method is also freely available at Gitlab:
https://gitlab.com/TStepi/spyct.
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