
Submitted 17 November 2020
Accepted 1 April 2021
Published 24 May 2021

Corresponding author
Gul Tokdemir, gtokdemir@gmail.com

Academic editor
Luca Ardito

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.503

Copyright
2021 Ozcan et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A user task design notation for improved
software design
Eda Ozcan1, Damla Topalli2, Gul Tokdemir3 and Nergiz Ercil Cagiltay4

1Vakifbank, Ankara, Turkey
2Computer Engineering Department, Atilim University, Ankara, Turkey
3Computer Engineering Department, Cankaya University, Ankara, Turkey
4 Software Engineering Department, Atilim University, Ankara, Turkey

ABSTRACT
System design is recognized as one of the most critical components of a software system
that bridges system requirements and coding. System design also has a significant
impact on testing and maintenance activities, and on further improvements during the
lifespan of the software system. Software design should reflect all necessary components
of the requirements in a clear and understandable manner by all stakeholders of the
software system. To distinguish system elements, separation of concerns in software
design is suggested. In this respect, identification of the user tasks, i.e., the tasks that
need to be performed by the user, is not currently reflected explicitly in system design
documents. Ourmain assumption in this study is that software quality can be improved
significantly by clearly identifying the user tasks from those that need to be performed
by the computer system itself. Additionally, what we propose has the potential to better
reflect the user requirements and main objectives of the system on the software design
and thereby to improve software quality. The main aim of this study is to introduce a
novel notation for software developers in the frame of UML Activity Diagram (UML-
AD) that enables designers to identify the user tasks and define them separately from
the system tasks. For this purpose, an extension of UML-AD, named UML-ADE
(UML-Activity Diagram Extended) was proposed. Afterwards, it was implemented in
a serious game case for which the specification of user tasks is extremely important.
Finally, its effectiveness was analyzed and compared to UML-AD experimentally with
72 participants. The defect detection performance of the participants on both diagrams
with two real-life serious game scenarios was evaluated. Results show a higher level of
understandability for those usingUML-ADE, which in turnmay indicate a better design
and higher software quality. The results encourage researchers to develop specific design
representations dedicated to task design to improve system quality and to conduct
further evaluations of the impact of these design on each of the above mentioned
potential benefits for the software systems.

Subjects Human–Computer Interaction, Software Engineering
Keywords UML-Activity diagram, Software quality, Software design, Player task notation, Defect
detection performance

INTRODUCTION
Over the last decade, software engineers have recognized the importance of system design
that represents both functional and non-functional system requirements. Information

How to cite this article Ozcan E, Topalli D, Tokdemir G, Cagiltay NE. 2021. A user task design notation for improved software design.
PeerJ Comput. Sci. 7:e503 http://doi.org/10.7717/peerj-cs.503

https://peerj.com/computer-science
mailto:gtokdemir@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.503

related to software design is one of the critical determiners of the lifespan of a system
(Booch et al., 2008). System design acts like a bridge between requirements and coding and
hence, the improvements in the design processes may offer several advantages in terms
of effectiveness of system development activities such as traceability, complexity, and
evolution (Rumbaugh et al., 1991). Clear design representation supports the enumeration
and description of programmers’ concerns about the system. Here, ‘concerns’ refers to the
domain elements in a software system that can be recognized based on features, aspects,
roles, and viewpoints (Kiczales et al., 1997; Reid Turner et al., 1999). Separation of concerns
is a concept that refers to modularizing the system elements that can be identified based
on purpose, goal, or scope (Daga, De Cesare & Lycett, 2006). Focusing designers’ interest
on a single concern supports the handling of complexity in a software system. Separation
of concerns simplifies comprehension by decoupling the complex system. Hence, the
various concerns need to be handled in ‘isolation’ of each other (Goderis, 2008). The
technique of separating concerns provide a deconstruction that can separate overlapping
concerns, which supports reuse and perception (Daga, De Cesare & Lycett, 2006). One
of the concerns that needs to be identified during the system requirements studies, and
to be reflected in the software design, is the user tasks. The identification of user tasks
in various software systems is critical. For instance, it has been reported that in agile
user-centered design process, the specialists encounter difficulty in building links between
user tasks and application features (Lee et al., 2010). Measuring human performance and
the success and failure scenarios for a specific task can also be considered a critical concern
for serious-game design process. That is why representing the player-task design for serious
games is important to better motivate users and provide appropriate enforcement (Lim &
Reeves, 2010). It has been reported that in use case diagrams it is not possible to represent
functions that are not initiated by a user like notifications or events given by a system (Iqbal
et al., 2020). Similarly, system related behavior or events cannot be represented in UML-AD
diagrams. Therefore, there is a need for a specific notation in system initiated events. In SG,
user interacts with the system to play the game and, system and user behaviours need to
be distinguished during design phase. This is not possible with UML-AD. However, in the
literature there are few studies such as (Lee et al., 2010; Memmel, Gundelsweiler & Reiterer,
2007) that consider the identification of user tasks. In addition, the current software design
tools’ ability to identify and represent the user tasks in the software design is limited.
Accordingly, in this study, the effectiveness of explicitly identifying and representing user
task in the software design document is researched. In other words, we intend to analyze
participants’ defect detection performance on software design diagrams that are prepared
using UML-ADE. By identifying the user tasks explicitly, the intention is to increase the
level of understandability, which may also improve the rate of defect detection at a very
early stage. Finally, by providing more explicit design documentation, it is expected that
software quality will be improved and that development costs will be lowered.

BACKGROUND
Detecting the defects as early as possible during the software life cycle is an important
and critical task. According to Boehm & Basili (2005), 40–50% of the development effort

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.503

is spent on fixing defects that could have been detected (and presumably fixed) earlier
in the development process (Boehm & Basili, 2005). Studies also show that it is possible
to increase the rates of error detection in the early stages of the software life-cycle by
using model-based approaches (Alur & Chandrashekharapuram, 2007; Kof, 2007; Kof et al.,
2010). As it offers a clear view of multiple aspects of system design, the conceptual model
of software systems is important. The conceptual model also acts as a communication tool
for the stakeholders of the development process.

Need for the representation of system tasks in the conceptual model
Themain assumption of this study is that, by explicitly designing system requirements in the
conceptual models, their levels of understandability and the error detection processes could
be improved. For instance, for some specific software like serious games, there is a need
for representing the system tasks and user tasks separately and explicitly. These so-called
serious games are designed not only for pure entertainment but also for serious purposes
such as training, scientific research, or advertising (Michael & Chen, 2005). In contrast to
the studies that show advantages of serious games, others report several challenges of them
(Bellotti, Berta & De Gloria, 2010; Fernández-Manjón et al., 2015). As there are limited
implementations of serious games in the educational environments, their socio-cultural,
educational, and technological challenges need to be analyzed deeply (Fernández-Manjón
et al., 2015). To face these challenges, the earlier studies also suggest new design approaches
and tools that considered a variety of user types for more effective serious-game design
(Bellotti, Berta & De Gloria, 2010). As earlier studies report, serious games should provide
testing and progress tracking to evaluate how much a user has learned from playing
and architectures that reflect elements of personalization and experience specific to the
user (Michael & Chen, 2005; Bellotti, Berta & De Gloria, 2010). It is also reported that
participants, rules and procedures, and success and failure are key components of any
purposeful human activity (Abt, 1987). Additionally, besides the main components of a
game like story and art, a serious game also involves pedagogy that supports elements of fun
(Zyda, 2005). Hence, a serious game can be considered a computer-based challenge that
aims to improve training through entertainment (Zyda, 2005). All these constraints address
the identification of player tasks explicitly, which may have an impact on the assessment
of the user performance, and on the feedback mechanism by the software, which in turn
affects the user experience and user interfaces of the software product. Serious games are
non-simple systems and hence their design requires special attention (Barral et al., 2020).

UML-AD as a conceptual design tool for serious games
In order to address these challenges of the serious games, several studies explored using
Unified Modeling Language (UML). For instance, for generally modeling the expert
reasoning in serious games, (Barral et al., 2020) have proposed an UML profile library.
As UML is a very well-known and highly popular modeling language, several researches
explored its extensions to adopt it into different contexts or purposes. Many UML-based
representations have been studied which address specific requirements of various domains.
AODML (Vyas, Vishwakarma & Jha, 2017) is proposed as a modeling language for aspect-
oriented programming domain that provides capability of specification of aspects in

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.503

the design and implementation phases. Secure-UML (Lodderstedt, Basin & Doser, 2002)
incorporates the access control infrastructures in the design. For medical image processing,
StarUML is proposed that captures annotations of medical images Ayadi, Bouslimi &
Akaichi, 2013). IoTsec is another example that includes a notation for model security in
IoT systems (Robles-Ramirez, Escamilla-Ambrosio & Tryfonas, 2017). Similarly, Agent UML
enables description of agent behavior (Bauer, Müller & Odell, 2001). Additionally, UML
is extended to include some other artifacts such as model checking (Shu, Wang & Wang,
2017), model merging (Farias et al., 2019). Currently, UML is the most popular conceptual
modeling language (Mohagheghi, Dehlen & Neple, 2009; Torchiano et al., 2013) and offers
a communication platform for software engineers to define, build, visualize a software
system (Booch, Rumbaugh & Jacobson, 2005). It provides various diagrams for static and
dynamic behaviors of a software system. As a standardized modeling language used for
software design tasks, UML is a powerful tool that benefits not only software developers
but also other stakeholders (Cooper, Nasr & Longstreet, 2014). In order to better design the
games in general and game theory modeling (Noreen & Saxena, 2017) in particular, and
in order to better validate and review system requirements inspection, many researchers
reported benefits of the Unified Modelling Language Activity Diagrams (UML-AD)
(Dobing & Parsons, 2006; Muñoz, Mazón & Trujillo, 2010; Bolloju & Sun, 2012). UML-AD
describes the dynamic characteristics of a system. It represents system behavior through
the flow between system activities. In addition, UML-AD is a popular and powerful design
tool to represent task flow design in serious game environments (Ismailović et al., 2012;
Buendía-García et al., 2013; De Lope & Medina-Medina, 2016; Callaghan et al., 2018).

Representation of system tasks in UML-AD
To identify and to separate the system tasks from the user tasks inUML-AD representations,
swimlanes can be used. In the UML-AD, these tasks are all represented by the same action
notation. As reported in earlier studies, some effort is still required to better implement this
notation into the software development life cycle (France et al., 1998). Accordingly, in this
study, an extension to the UML-AD representation (named as UML-ADE notation) has
been proposed and its impact on the understandability of the software design is evaluated
experimentally for a serious game case.

MATERIALS & METHODS
Based on the objectives set forth in this paper, a graphical notation for user tasks is proposed
to distinguish user and system tasks. Accordingly, double-circled action representation
for the UML-ADE is proposed. In other words, in the UML-ADE model, the standard
UML-AD action notation is used to represent the system tasks, while double circled action
notation is used to represent the user tasks (Fig. 1).

To evaluate the proposed UML-ADE representation, two scenarios for a game-like
surgical simulation environment were prepared. Each scenario was prepared in two
versions, one using UML-AD and the other, UML-ADE. Additionally, five defects were
seeded into each diagram and two group of participants were asked to detect these defects
according to the description document of the scenarios.

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 4/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.503

Figure 1 Player task notations (A) UML-AD. (B) UML-ADE. Figure shows the notations used for com-
puter and user tasks.

Full-size DOI: 10.7717/peerjcs.503/fig-1

Figure 2 Research procedure of the study. Research method is explained.
Full-size DOI: 10.7717/peerjcs.503/fig-2

Research procedure
This study was organized as a between-subjects empirical design. As explained in the
Fig. 2, one week prior to the study, the participants were provided the user requirements
documents prepared for each scenario. In this way, they had the opportunity to examine
the contents and understand the main system requirements.

For the experimental study, the participants were randomly divided into two groups. The
first group received the UML-AD representations for scenario-1 (See Fig. 3) and scenario-2
(See Fig. 4) which included five defects seeded-in, and the explanation document for
UML-AD notation.

Similarly, the second group was provided the UML-ADE representations for scenario-1
(See Fig. 5) and scenario-2 (See Fig. 6) with the same five defects embedded in them
and the explanation document for UML-ADE notation. During the experimental study
with randomly divided groups, participants were asked to examine the UML diagrams
according to the requirements document and to find the defects. They were informed
about the number of defects and were given 50 min. to find them. Once the defects were

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 5/20

https://peerj.com
https://doi.org/10.7717/peerjcs.503/fig-1
https://doi.org/10.7717/peerjcs.503/fig-2
http://dx.doi.org/10.7717/peerj-cs.503

Figure 3 UML-ADmodel with defects for Scenario-1. Figure shows the defect distribution in Scenario 1
using UML-AD.

Full-size DOI: 10.7717/peerjcs.503/fig-3

found, the subject recorded them on theWeb-based Defect Report Form. In order to better
measure and compare each participant’s performance at defect detection, PPi (Formula 2)
and the difficulty levels of the defects DFi (Formula 1) values were also calculated [30]. For
the purpose of answering the research questions proposed in this paper, the data collected
through the experimental study was analyzed both descriptively and statistically.

The research questions proposed in this study are:
RQ1: Can participants detect more defects in UML-ADE than in UML-AD?
RQ2: Are the defects seeded in UML-ADE easier to detect than in UML-AD?

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 6/20

https://peerj.com
https://doi.org/10.7717/peerjcs.503/fig-3
http://dx.doi.org/10.7717/peerj-cs.503

Figure 4 UML-ADmodel with defects for Scenario-2. Figure shows the defect distribution in Scenario 2
using UML-AD.

Full-size DOI: 10.7717/peerjcs.503/fig-4

RQ3: Do participants perform better on defect detection performance with UML-ADE
than with UML-AD?
RQ4: Are the participants’ performance sensitivities higher with UML-ADE than with
UML-AD?

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 7/20

https://peerj.com
https://doi.org/10.7717/peerjcs.503/fig-4
http://dx.doi.org/10.7717/peerj-cs.503

Figure 5 UML-ADEmodel with defects for Scenario-1. Figure shows the defect distribution in Sce-
nario1 using UML-ADE.

Full-size DOI: 10.7717/peerjcs.503/fig-5

Figure 6 UML-ADEmodel with defects for Scenario-2. Figure shows the defect distribution in Scenario
2 using UML-ADE.

Full-size DOI: 10.7717/peerjcs.503/fig-6

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 8/20

https://peerj.com
https://doi.org/10.7717/peerjcs.503/fig-5
https://doi.org/10.7717/peerjcs.503/fig-6
http://dx.doi.org/10.7717/peerj-cs.503

Instruments
The study is conducted in the participants’ native language, Turkish. Several instruments
were prepared. These include the user requirements document of the scenarios, conceptual
datamodel diagrams represented in the UML-AD andUML-ADEmodels for each scenario,
Web-based Defects Report Form, questionnaires, notation explanation documents, and
experimental study diagrams.

For this study, two scenarios were used which were developed for endoneurosurgery
training programs (Cagiltay et al., 2019). Each scenario includes some user tasks intended
to improve certain endoscopic surgical skills like depth perception, left–right hand
coordination and eye-hand coordination in a 3D simulated environment. The users
were asked to perform each task in a given time period. Besides the classical user interface,
a gamification interface was applied to these scenarios. In this concern, the user score was
shown in the interface with the parameters that were used for the calculation of the score
for each task such as the duration of time spent on performing the task, the accuracy of
the task (if it was performed successfully in a given time period or not), and the error rates
indicating the number of wrong movements or unnecessary touches to the environment.
Additionally, a sound feedback from the system was given for each successfully performed
task. For each scenario, a user requirement document was prepared. The design diagrams
of the scenarios were prepared with the notations UML-AD (Figs. 3 and 5, respectively)
and UML-ADE (Figs. 4 and 6, respectively) representations and several defects as listed in
Table 1 were seeded into these diagrams. In order to collect the necessary data to better
understand the participants’ performance during the experimental study, a custom ‘Defect
Report System’ software was developed. This web-based application recorded detailed
information about the participant’s demographics, the scenario being studied, and the
participants’ defect detection process. Each time the participant detects a defect, they were
asked to record it in the Defect Report Form. In this way, measures such as the order in
which the participant spotted a defect and the time it took to find defects were recorded
(for each detected defect of two scenarios).

Finally, a questionnaire was also prepared and applied to better understand the
participants’ feedback and opinions on the diagrams. As the participants were not expected
to be familiar with the UML-AD notation, the explanations for both versions of these
notations were also provided to the participants. Therefore, two notation explanation
documents were also prepared. The material used for the experiment can be accessed from
Supplemental Information.

Participants
Seventy-two volunteers participated in the experimental study. These participants were
senior-year students at the Departments of Computer Engineering, Software Engineering
and Information Systems Engineering. Information regarding gender and the number of
participants is given in Table 2. The participants were briefed about the procedure and
their consent was obtained before the experiment.

Since the scenarios were distributed randomly to the participants, there is an uneven
number of participants in Scenario-1 and Scenario-2 for both males and females.

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 9/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.503#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.503

Table 1 Conceptual model defects seeded into scenarios.Descriptions for the defects seeded in the
models.

Code Type Description

Scenario-1
D1 Wrong Action State Written action state is wrong. In this scenario, there is no

partial time.
D2 Wrong Action State Written action state is wrong. In this scenario, the user must

drag away the sphere to the outside.
D3 Wrong Transition If the user does not drag away the sphere to the outside, the

total time must be controlled.
D4 Wrong Transition If the user drags the sphere to the box, the reviewer receives a

point.
D5 Irrelevant Final state There cannot be a final state. Scenario time should be

controlled.

Scenario-2
D1 Missing Transition Transition arrow must not be null. If there is a transition arrow,

the condition must be defined. It also must in the ‘‘No’’ mode.
D2 Wrong Action State The user must not remove the sphere with a left haptic. The

user must remove the sphere with a right haptic.
D3 Wrong Action State Besides the partial time of the box to be found, there must be a

partial time for removing sphere.
D4 Missing Transition If there is a transition arrow, condition must be defined. It also

must be in ‘‘No’’ mode.
D5 Wrong Action State The partial time for the sphere to be removed must be reset.

Table 2 Participants.Number of Participants in each scenario.

Scenario

I II Total

Female 8 9 17
Male 27 28 55
Total 35 37 72

Accordingly, for Scenario-1 there were 35 participants, and for Scenario-2 there were
37 participants.

Experimental study diagrams
For the experimental study, five defects for each scenario were seeded in both UML-AD and
UML-ADE representations. The originals of these diagrams are in Turkish; for clarity, the
English versions are provided below. The lists of the defects were seeded in each scenario
as given in the Table 1.

For the experimental study, these defects were seeded in the UML-AD and UML-ADE
versions of each scenario (See Figs. 3–6 respectively). As shown in the figures, Scenario-2
is more complex compared to Scenario-1.

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 10/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.503

Measures
To analyze the defect detection experiment results, twomeasures proposed byCagiltay et al.
(2013)were used: Defect DetectionDifficulty Level (DF) andDefect Detection Performance
of a participant (PP). These measures are summarized below.
(1) DEFECT DIFFICULTY LEVEL (DF) MEASURE

In this measure, the DF value is calculated based on the average duration spent by all
participants to detect the specified defect (Dj), the score gained from the defect detection
order (Oj), Success rate of detecting defect j (Sj- Number of people who detected defect
j/Total number of participants) and the number of people who detected the specified defect
(Dj) (Cagiltay et al., 2013).

DFj =
Dj •Oj

Sj
. (1)

(2) PARTICIPANT PERFORMANCE (PP) MEASURE
In thismeasure, the defect detection performance of each participant i (PP i) is calculated.

To do so, the defect detection difficulty level value of each defect (DF j) value is used where
n is the total number of defects detected by participant i, and s is the total number of defects
seeded in the UML-AD &UML-ADE (Cagiltay et al., 2013).

PPi=

∑n
j=1DFj∑s
k=1DFk

. (2)

This study is conducted as a part of Endoscopic Surgery Education (ECE) Project
which is supported by The Scientific and Technological Research Council of Turkey
(TUBITAK). The project number is 112K287 and Ethics Committee Report number
is B.30.2.ATL.00.04.14/12-016. As the ethical committee approval is mandatory for
TUBITAK, Atilim University Human Research Ethical Committee approved documents
were submitted to TUBITAK. The ethical committee report covers informed consent form,
and the samples of the data collection tools.

RESULTS
In this section, the results obtained are analyzed for each research question.

Results on number of detected defects (RQ1)
In order to answer RQ1, the number of defects detected by each participant was analyzed.
Hence, an independent sample t -test was conducted to evaluate the hypothesis. It was
found that those who worked on UML-ADE representation of Scenario-1 detected more
defects than those working on UML-AD representation of the same scenario. The test was
significant, t (70)= 2.63 and p= 0.011. The group working on UML-ADE detected more
defects (M = 3.19, SD = 1.49) compared to the other group working with UML-AD (
M = 2.26, SD = 1.52). Figure 7A shows the distribution of both groups.

Similarly, an independent sample t -test was conducted to evaluate the hypothesis that
the participants who worked on the UML-ADE representation of Scenario-2 detected
more defects than those who worked on the UML-AD representation of the same scenario.

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.503

Figure 7 Detected defects distribution (A) Scenario-1. (B) Scenario-2. The figure shows the detected
defect distribution in the experiment.

Full-size DOI: 10.7717/peerjcs.503/fig-7

Table 3 Defect difficulty levels. The calculated defect difficulty levels for each scenario.

Defect
code

Scenario-1 Scenario-2

AD ADE AD ADE

D1 2,812 1,221 733 439
D2 1,728 1,313 3,049 1,728
D3 1,085 768 1,836 968
D4 1,647 941 1,202 1,374
D5 1,922 841 6,880 2,998
Average 1,839 1,017 2,740 1,501

The test was significant, t (70)= 2.35 and p= 0.022. Participants working on UML-ADE
(M = 2.77, SD= 1.49) detected more defects than those working on UML-AD (M = 2.00,
SD = 1.21). Figure 7B shows the distribution of both groups.

Results for recognized difficulty levels of the defects (RQ2)
For the second research question, the difficulty levels of each defect was calculated by DFj
[30]. Table 3 illustrates the values of these calculated defect difficulty levels for Scenarios 1
and 2. It should be noted that all recognized difficulty levels for both scenarios are lower
in the UML-ADE version than in the UML-AD except for the Scenario-2 in defect 4 (D4).
Even these values are close (see Table 3, 1,374 and 1,202 respectively) compared to the
differences in other defects on both scenarios; further analysis is required to determine the
cause of this situation. However, as seen in Table 3, the average recognized difficulty level
value for the defects seeded in the UML-AD of Scenario-1 (1,839) is higher than that of
UML-ADE (1,017). Similar averages are achieved for the Scenario-2 on UML-AD (2,740)
and on UML-ADE (1,501). These results indicate that it was more difficult to find the

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 12/20

https://peerj.com
https://doi.org/10.7717/peerjcs.503/fig-7
http://dx.doi.org/10.7717/peerj-cs.503

Table 4 Questionnaire responses.Questionnaire Responses for each notation.

Questionnaire item Notation

UML-ADE UML-AD

‘‘I think the diagram given to us is easy to understand.’’ 3.79 3.07
‘‘How complicated is the given the diagram, evaluate the complexity
of the given diagram from 1 to 5. (1: very easy, 5: very difficult)

2.47 2.77

‘‘I think I understand the system very well by looking at the given
diagram.’’

3.79 3.37

same seeded defects in the UML-AD version than in the UML-ADE version. In the same
way, the defects seeded in UML-ADE (average 1,501) were identified more easily when
compared to the ones seeded in UML-AD version (average 2,740). Because of the limited
number of defects, a statistical analysis was not conducted for this data. The results of
the questionnaire data also supported this result. The averages of participants’ responses
for the three items of the questionnaire are summarized in Table 4, according to which
the participants found the UML-ADE representations easier to understand (3.79) than
UML-AD (3.07).

Similarly, their estimates on the level of understanding of the game that is represented
with the UML-ADE notations is higher (3.79) than that of UML-AD (3.37). Their responses
likewise confirmed the complexity of the representations in UML-AD to be higher (2.77)
than that of UML-ADE (2.47) (Table 4).

Results about participants’ defect detection performance (RQ3)
Each participant’s defect detection performance (PP j) was calculated [30] to analyze the
performance of participants of two groups. An independent sample t -test was conducted
to evaluate the hypothesis that the participants’ performance in detecting defects on
UML-ADE version is better than that on the UML-AD version for Scenario-1. The test was
significant, t (70)= 2.77, p= 0.007. Participants working on UML-ADE performed better
(M = .62, SD = .30) than the participants working on UML-AD (M = .42, SD = .30).
Figure 8A shows the distribution of both groups.

Similarly, an independent sample t -test was conducted to evaluate the hypothesis that
the participants’ performance in defect detection on UML-ADE is higher than it is on
UML-AD for Scenario-2. The test was significant, t (70)= 2.76, p= 0.007. It was found
that the participants working on UML-ADE performed better (M = .49, SD = .32) than
those working on UML-AD (M = .29, SD= .27). Figure 8B shows the distribution of both
groups.

Results about Reviewers’ performance sensitivity (RQ4)
The True Positive (TP) and False Negative (FN) values for the detected defects were
also calculated to better understand the performance of the participants. TP indicates the
correctly-identified defects by each participant while the FN value indicates the incorrectly-
rejected defects by each participant. Accordingly, the true positive rate, which is also called
the ‘Sensitivity Measure’, which indicates how well a participant can detect a defect, is also

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 13/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.503

Figure 8 Defect detection performance distribution (A) Scenario-1. (B) Scenario-2. The figure shows
the participants’ defect detection performance in the experiment.

Full-size DOI: 10.7717/peerjcs.503/fig-8

calculated using the following formula (Peng, Wang & Wang, 2012).

Sensitivity =
TP

TP+FN
(3)

An independent sample t -test was conducted to evaluate the hypothesis that the
sensitivity value for the participants working on the UML-ADE version of the system
design is higher than for the participants who worked on the UML-AD version. The test
was significant, t (42)= 2.26, p= 0.26. The sensitivity value for the participants whoworked
on the UML-ADE version (M = 0.69, SD = 0.30), on average, is higher than that of the
participants who worked on the UML-AD version (M = 0.57, SD= 0.33). In other words,
the probability of the defect detection rate of the participants working on the UML-ADE
version is significantly higher than that of the ones working on UML-AD.

DISCUSSION
This study hypothesizes that identification and separation of user tasks and computer
system tasks improves the level of understandability of the software design. Accordingly,
in this study, the importance of tasks during the software design process that identifies and
differentiates between the user tasks and the computer system is highlighted.

In general, the findings of this study are summarized in Table 5, where the mean score
of the number of detected defects for Scenario-1 (2.26 for UML-AD, 3.19 for UML-ADE)
is higher than that of Scenario-2 (2.00 for UML-AD, 2.77 for UML-ADE).

It can be also observed that the recognized defect difficulty levels for Scenario-2 (UML-
AD: 2,740, UML-ADE: 1,501) are higher than those of Scenario-1 (UML-AD: 1,839,
UML-ADE: 1,017) for both UML representations. Parallel to this result, the recognized
difficulty level of the defects in Scenario-2 (2,740 for UML-AD, 1,501 for UML-ADE) is

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 14/20

https://peerj.com
https://doi.org/10.7717/peerjcs.503/fig-8
http://dx.doi.org/10.7717/peerj-cs.503

Table 5 Summary of the results. Results of the experimental study is depicted.

Notation Scenario

I II

Number of detected defects AD 2.26 2.00
ADE 3.19 2.77

Defect detection performance AD 0.42 0.29
ADE 0.62 0.49

Recognized defect difficulty levels AD 1,839 2,740
ADE 1,017 1,501

higher than that of Scenario-1 (1,839 for UML-AD, 1,501 for UML-ADE). As reported
earlier, this is because Scenario-2 was designed to be more complicated than Scenario-1.
Hence, as expected, as the scenario becomes more complicated, the recognized defect
difficulty level values increase and the participants’ performance drops, which can also be
considered an indicator for validating the results of the study.

Another important result of this study is that the performance for the UML-ADE
representations of both scenarios is higher than that of UML-AD representations of both
scenarios, indicating that UML-ADE notation improves the understandability level of
the representation. All these results show that by identifying the user tasks explicitly
and representing them in the design documents in an integrated manner, UML-ADE
representation potentially improves the software design quality.

According to our research questions, findings can be summarized as follows:

• Participants working on the UML-ADE model can detect more defects; therefore,
understandability of UML-ADE is better with respect to UML-AD.
• The difficulty level of identifying defects in UML-ADE is lower than that of UML-AD.
• The participants’ performance in Scenario-1 is higher than in Scenario-2.
• Participants’ sensitivity values for those who work on the UML-ADE version is higher
than the values for those who work on UML-AD version.

To use UML-ADE notation for a given system, designers need to identify user tasks and
system tasks according to the system requirements provided. For the user tasks, double
circles and for system tasks, a single circle (as shown in Fig. 1) could be used to represent
and distinguish these two types of tasks. These tasks can be connected through flows as
described in the requirements, which explicitly show relationship of each activity clearly.
This approach represents different user tasks as an integrated manner, whereas swimlanes
are employed to show separation of different user tasks for each user in the original
UML-AD. This allows the separation of tasks into distinct swimlanes, creating an extra
cognitive load which may cause the user’s attention to be split (Cierniak, Scheiter & Gerjets,
2009) and hence lower the comprehension of the software design.

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 15/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.503

CONCLUSIONS
As a result of this study, it can be concluded that, for the design purposes of a software
systems in general, and for serious game software specifically, when the proposed UML-
ADE representations are used, defect detection performance and hence system quality can
be improved. It can further be concluded that the understandability level of the UML-ADE
notation is higher for representing the task flow in system design. In this way, the early
detection of defects during the design phase of software development, in turn, improves
the quality of the software product and reduces development costs. Besides, the results of
this study indicate that the identification of the user task in the design document has a
potential to improve the quality of the software design. This may improve software testing
and maintenance processes, the functionality, feedback mechanisms, user-experience
and human–computer interaction capabilities of the systems, all of which to be further
researched.

These results encourage researchers to develop specific design representations dedicated
to task design. Additionally, the potential impact of specific design representations on
different software products, where identification of user task has an importance, also needs
to be further researched. Finally, additional solutions to identify and differentiate the tasks
of the users with different roles in the software systems may also be explored.

ACKNOWLEDGEMENTS
The scenarios used in the study were developed for endo-neurosurgery education project
(ECE: Tübitak 1001, Project No: 112K287). The authors would like to thank the ECE
project team for the use of their game scenarios and the Hacettepe University Medical
School for their contributions in forming specific requirements for the development of the
scenarios.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests. EdaOzcan is employed by Vakifbank.

Author Contributions
• Eda Ozcan, Damla Topalli, Gul Tokdemir, and Nergiz Ercil Cagiltay conceived and
designed the experiments, performed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 16/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.503

This study is conducted as a part of Endoscopic Surgery Education (ECE) Project
which is supported by The Scientific and Technological Research Council of Turkey
(TUBITAK). The project number is 112K287 and Ethics Committee Report number
is B.30.2.ATL.00.04.14/12-016. As the ethical committee approval is mandatory for
TUBITAK, Atilim University Human Research Ethical Committee approved documents
were submitted to TUBITAK.

The ethical committee report covers informed consent form, and the samples of the
data collection tools.

Data Availability
The following information was supplied regarding data availability:

Raw measurements and calculations performed for the experiment are available in the
Supplementary Files

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.503#supplemental-information.

REFERENCES
Abt CC. 1987. Serious games. Lanham: University press of America.
Alur R, Chandrashekharapuram A. 2007. Dispatch sequences for embedded control

models. Journal of Computer and System Sciences 73:156–170
DOI 10.1016/j.jcss.2006.04.003.

Ayadi MG, Bouslimi R, Akaichi J. 2013. Extending UML for conceptual modeling of
annotation of medical images. ArXiv preprint. arXiv:1307.0937.

Barral LV, Pinet F, Tacnet JM, Jousselme AL. 2020. Combining UML profiles to design
serious games dedicated to trace information in decision processes. International
Journal of Information System Modeling and Design 11:27
DOI 10.4018/IJISMD.2020040101.

Bauer B, Müller JP, Odell J. 2001. Agent UML: a formalism for specifying multiagent
software systems. Journal of Software Engineering and Knowledge Engineering
11:207–230 DOI 10.1007/3-540-44564-1_6.

Bellotti F, Berta R, De Gloria A. 2010. Designing effective serious games: opportunities
and challenges for research. International Journal of Emerging Technologies in
Learning 5:22–35 DOI 10.3991/ijet.v5s3.1500.

Boehm B, Basili V. 2005. Software Defect Reduction Top-10 List. In: Founda-
tions of empirical software engineering. New York: Springer Berlin Heidelberg
DOI 10.1007/3-540-27662-9_26.

Bolloju N, Sun SXY. 2012. Benefits of supplementing use case narratives with activity
diagrams - an exploratory study. Journal of Systems and Software 85:2182–2191
DOI 10.1016/j.jss.2012.04.076.

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 17/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.503#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.503#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.503#supplemental-information
http://dx.doi.org/10.1016/j.jcss.2006.04.003
http://arXiv.org/abs/1307.0937
http://dx.doi.org/10.4018/IJISMD.2020040101
http://dx.doi.org/10.1007/3-540-44564-1_6
http://dx.doi.org/10.3991/ijet.v5s3.1500
http://dx.doi.org/10.1007/3-540-27662-9_26
http://dx.doi.org/10.1016/j.jss.2012.04.076
http://dx.doi.org/10.7717/peerj-cs.503

Booch G, Maksimchuk RA, Engle MW, Young BJ, Conallen J, Houston KA. 2008.
Object-oriented analysis and design with applications. ACM SIGSOFT software
engineering notes 33:29–30.

Booch G, Rumbaugh J, Jacobson I. 2005. The unified modeling language user guide.
Second edition. Redwood City: Addison-Wesley Professional.

Buendía-García F, García-Martínez S, Navarrete-Ibañez EM, Cervelló-Donderis MJ.
2013. Designing serious games for getting transferable skills in training settings.
Interaction Design and Architecture(s) 19:47–62.

Cagiltay NE, Ozcelik E, Isikay I, Hanalioglu S, Suslu AE, Yucel T, Berker M. 2019. The
effect of training, used-hand, and experience on endoscopic surgery skills in an
educational computer-based simulation environment (ECE) for endoneurosurgery
training. Surgical Innovation 86:2184–2195 DOI 10.1177/1553350619861563.

Cagiltay NE, Tokdemir G, Kilic O, Topalli D. 2013. Performing and analyzing non-
formal inspections of entity relationship diagram (ERD). Journal of Systems and
Software 86 DOI 10.1016/j.jss.2013.03.106.

CallaghanM,McShane N, Eguíluz AG, Savin-BadenM. 2018. Extending the activity
theory based model for serious games design in engineering to integrate analytics.
International Journal of Engineering Pedagogy 8:109–126 DOI 10.3991/ijep.v8i1.8087.

Cierniak G, Scheiter K, Gerjets P. 2009. Explaining the split-attention effect: is the re-
duction of extraneous cognitive load accompanied by an increase in germane cogni-
tive load? Computers in Human Behavior 25:315–324 DOI 10.1016/j.chb.2008.12.020.

Cooper KML, Nasr ES, Longstreet CS. 2014. In: Towards model-driven requirements
engineering for serious educational games: informal, semi-formal, and formal models.
In International Working Conference on Requirements Engineering: Foundation for
Software Quality, 17–22 DOI 10.1007/978-3-319-05843-6_2.

Daga A, De Cesare S, Lycett M. 2006. Separation of concerns: techniques, issues and im-
plications. Journal of Intelligent Systems 15:153–176 DOI 10.1515/JISYS.2006.15.1-4.153.

De Lope RP, Medina-Medina N. 2016. Using UML to model educational games. In: 2016
8th international conference on games and virtual worlds for serious applications, VS-
Games 2016. DOI 10.1109/VS-GAMES.2016.7590373.

Dobing B, Parsons J. 2006.How UML is used. Communications of the ACM 49:109–113
DOI 10.1145/1125944.1125949.

Farias K, De Oliveira TC, Gonçales LJ, Bischoff V. 2019. UML2Merge: a UML extension
for model merging. IET Software 13:575–586 DOI 10.1049/iet-sen.2018.5104.

Fernández-Manjón B, Moreno-Ger P, Martinez-Ortiz I, Freire M. 2015. Challenges
of serious games. EAI Endorsed Transactions on Game-Based Learning 15(6):e4
DOI 10.4108/eai.5-11-2015.150611.

France R, Evans A, Lano K, Rumpe B. 1998. The UML as a formal modeling notation.
Computer Standards and Interfaces 19:325–334 DOI 10.1016/S0920-5489(98)00020-8.

Goderis S. 2008. On the separation of user interface concerns: A Programmer’s Perspec-
tive on the Modularisation of User Interface Code. Brussels: Brussels University
Press.

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 18/20

https://peerj.com
http://dx.doi.org/10.1177/1553350619861563
http://dx.doi.org/10.1016/j.jss.2013.03.106
http://dx.doi.org/10.3991/ijep.v8i1.8087
http://dx.doi.org/10.1016/j.chb.2008.12.020
http://dx.doi.org/10.1007/978-3-319-05843-6_2
http://dx.doi.org/10.1515/JISYS.2006.15.1-4.153
http://dx.doi.org/10.1109/VS-GAMES.2016.7590373
http://dx.doi.org/10.1145/1125944.1125949
http://dx.doi.org/10.1049/iet-sen.2018.5104
http://dx.doi.org/10.4108/eai.5-11-2015.150611
http://dx.doi.org/10.1016/S0920-5489(98)00020-8
http://dx.doi.org/10.7717/peerj-cs.503

Iqbal S, Al-Azzoni I, Allen G, Khan HU. 2020. Extending UML use case diagrams
to represent non-interactive functional requirements. E-Informatica Software
Engineering Journal 14:97–115 DOI 10.37190/E-INF200104.

Ismailović D, Haladjian J, Köhler B, Pagano D, Brügge B. 2012. Adaptive serious game
development. In: 2012 2nd international workshop on games and software engineering:
realizing user engagement with game engineering techniques, GAS 2012 - proceedings.
DOI 10.1109/GAS.2012.6225922.

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier JM, Irwin J.
1997. Aspect-oriented programming. In: European conference on object-oriented
programming. 220–242.

Kof L. 2007. Scenarios: identifying missing objects and actions by means of computa-
tional linguistics. In: Proceedings - 15th IEEE international requirements engineering
conference, RE 2007. Piscataway: IEEE, DOI 10.1109/RE.2007.54.

Kof L, Gacitua R, Rouncefield M, Sawyer P. 2010. Ontology and model alignment as
a means for requirements validation. In: Proceedings - 2010 IEEE 4th international
conference on semantic computing, ICSC 2010. DOI 10.1109/ICSC.2010.95.

Lee SH, Ko IY, Kang S, Lee DH. 2010. A usability-pattern-based requirements-
analysis method to bridge the gap between user tasks and application features.
In: Proceedings - international computer software and applications conference.
DOI 10.1109/COMPSAC.2010.39.

Lim S, Reeves B. 2010. Computer agents versus avatars: responses to interactive game
characters controlled by a computer or other player. International Journal of Human
Computer Studies 68:57–68 DOI 10.1016/j.ijhcs.2009.09.008.

Lodderstedt T, Basin D, Doser J. 2002. SecureUML: A UML-based modeling language
for model-driven security. In: International Conference on the Unified Modeling
Language. 426–441 DOI 10.1007/3-540-45800-x_33.

Memmel T, Gundelsweiler F, Reiterer H. 2007. Agile human-centered software engi-
neering. In: People and computers XXI HCI. But not as we know it - proceedings of HCI
2007: the 21st British HCI group annual conference. DOI 10.14236/ewic/hci2007.17.

Michael DR, Chen SL. 2005. Serious games: games that educate, train, and inform. Boston:
Thomson Course Technology DOI 10.1016/j.infsof.2009.04.004.

Mohagheghi P, Dehlen V, Neple T. 2009. Definitions and approaches to model quality in
model-based software development—a review of literature. Information and Software
Technology.

Muñoz L, Mazón JN, Trujillo J. 2010. A family of experiments to validate measures
for UML activity diagrams of ETL processes in data warehouses. Information and
Software Technology 52:1188–1203 DOI 10.1016/j.infsof.2010.06.003.

Noreen S, Saxena N. 2017. A review on game-theoretic incentive mechanisms for
mobile data offloading in heterogeneous networks. IETE Technical Review 34:15–26
DOI 10.1080/02564602.2017.1396936.

Peng Y,Wang G,Wang H. 2012. User preferences based software defect detection
algorithms selection using MCDM. Information Sciences 191:3–13
DOI 10.1016/j.ins.2010.04.019.

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 19/20

https://peerj.com
http://dx.doi.org/10.37190/E-INF200104
http://dx.doi.org/10.1109/GAS.2012.6225922
http://dx.doi.org/10.1109/RE.2007.54
http://dx.doi.org/10.1109/ICSC.2010.95
http://dx.doi.org/10.1109/COMPSAC.2010.39
http://dx.doi.org/10.1016/j.ijhcs.2009.09.008
http://dx.doi.org/10.1007/3-540-45800-x_33
http://dx.doi.org/10.14236/ewic/hci2007.17
http://dx.doi.org/10.1016/j.infsof.2009.04.004
http://dx.doi.org/10.1016/j.infsof.2010.06.003
http://dx.doi.org/10.1080/02564602.2017.1396936
http://dx.doi.org/10.1016/j.ins.2010.04.019
http://dx.doi.org/10.7717/peerj-cs.503

Robles-Ramirez DA, Escamilla-Ambrosio PJ, Tryfonas T. 2017. IoTsec: uML extension
for internet of things systems security modelling. In: Proceedings - 2017 International
conference on mechatronics, electronics, and automotive engineering, ICMEAE 2017.
DOI 10.1109/ICMEAE.2017.20.

Rumbaugh J, BlahaM, PremerlaniW, Eddi F, LorensenW. 1991.Object-oriented
modeling and design. London: Prentice Hall.

Shu X,WangM,Wang X. 2017. Extending UML for model checking. In: International
Workshop on Structured Object-Oriented Formal Language and Method. 88–107
DOI 10.1007/978-3-319-90104-6_6.

TorchianoM, Tomassetti F, Ricca F, Tiso A, Reggio G. 2013. Relevance, ben-
efits, and problems of software modelling and model driven techniques - a
survey in the Italian industry. Journal of Systems and Software 86:2110–2126
DOI 10.1016/j.jss.2013.03.084.

Reid Turner C, Fuggetta A, Lavazza L, Wolf AL. 1999. A conceptual basis for feature en-
gineering. Journal of Systems and Software 49:3–15 DOI 10.1016/S0164-1212(99)00062.

Vyas V, Vishwakarma RG, Jha CK. 2017.Modeling aspects with AODML: extended
UML approach for AOD. IJ Engineering and Manufacturing 2:11–22.

ZydaM. 2005. From visual simulation to virtual reality to games. Computer 38:25–32
DOI 10.1109/MC.2005.297.

Ozcan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.503 20/20

https://peerj.com
http://dx.doi.org/10.1109/ICMEAE.2017.20
http://dx.doi.org/10.1007/978-3-319-90104-6_6
http://dx.doi.org/10.1016/j.jss.2013.03.084
http://dx.doi.org/10.1016/S0164-1212(99)00062
http://dx.doi.org/10.1109/MC.2005.297
http://dx.doi.org/10.7717/peerj-cs.503

