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extraction in computer vision and machine learning. It is often observed that the last fully
connected (FC) layers of convolutional neural network possess higher discrimination power
as compared to the convolutional and maxpooling layers whose goal is to preserve local
and low-level information of the input image and down sample it to avoid overfitting.
Inspired from the functionality of local binary pattern (LBP) operator, this paper proposes
to induce discrimination into the mid layers of convolutional neural network by introducing
a discriminatively boosted alternative to pooling (DBAP) layer that has shown to serve as a
favourable replacement of early maxpooling layer in a convolutional neural network (CNN).
A thorough research of the related works show that the proposed change in the neural
architecture is novel and has not been proposed before to bring enhanced discrimination
and feature visualisation power achieved from the mid layer features. The empirical results
reveal that the introduction of DBAP layer in popular neural architectures such as AlexNet
and LeNet produces competitive classification results in comparison to their baseline
models as well as other ultra-deep models on several benchmark data sets. In addition,
better visualisation of intermediate features can allow one to seek understanding and
interpretation of black box behaviour of convolutional neural networks, used widely by the
research community.
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ABSTRACT9

Deep neural networks have been widely explored and utilised as a useful tool for feature extraction in computer

vision and machine learning. It is often observed that the last fully connected (FC) layers of convolutional neural

network possess higher discrimination power as compared to the convolutional and maxpooling layers whose goal

is to preserve local and low-level information of the input image and down sample it to avoid overfitting. Inspired

from the functionality of local binary pattern (LBP) operator, this paper proposes to induce discrimination into the mid

layers of convolutional neural network by introducing a discriminatively boosted alternative to pooling (DBAP) layer

that has shown to serve as a favourable replacement of early maxpooling layer in a convolutional neural network

(CNN). A thorough research of the related works show that the proposed change in the neural architecture is novel

and has not been proposed before to bring enhanced discrimination and feature visualisation power achieved from

the mid layer features. The empirical results reveal that the introduction of DBAP layer in popular neural architectures

such as AlexNet and LeNet produces competitive classification results in comparison to their baseline models as well

as other ultra-deep models on several benchmark data sets. In addition, better visualisation of intermediate features

can allow one to seek understanding and interpretation of black box behaviour of convolutional neural networks,

used widely by the research community.
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1 INTRODUCTION24

Deep learning architectures such as convolutional neural networks, recurrent neural networks and deep25

belief networks have been applied to a wide range of applications in domains such as natural language pro-26

cessing, speech recognition, computer vision, and bioinformatics, where they have produced outstanding27

results approximately the same and in some scenarios better than the humans (He et al., 2015; Silver et al.,28

2016; LeCun et al., 1990; Szegedy et al., 2015; Girshick et al., 2014; Hinton et al., 2012; Yu et al., 2018;29

Zhang et al., 2016; Masumoto et al., 2019; Le and Nguyen, 2019; Le, 2019; Do et al., 2020). Among these30

deep models, convolutional neural network (CNN) is the most popular choice for automatically learning31

visually discriminative features memorised by the fully connected layers. The interest of researchers in32

CNN triggered when Krizhevsky et al. (Krizhevsky et al., 2012) showed record beating performance33

on ImageNet 2012 object classification data set with their CNN (AlexNet), achieving an error rate of34

16.4% in comparison to 26.1% error shown by the runner up. Ever since then, various variants of deep35

convolutional models such as Visual Geometry Group (VGG)-VD (Very Deep) model (Simonyan and36

Zisserman, 2014), GoogLeNet/Inception (Szegedy et al., 2015) and ResNet (He et al., 2016) have been37

introduced, increasing the depth of the models from 8 layers in AlexNet to 152 layers in ResNet. These38

models have not just progressed in depth but also their intricacy of connectivity, type of activation function39

and the training algorithm that prevents the diminishing gradient issue observed during training through40

back propagation in ultra deep models.41

Keeping in account the success of deep neural models, many researchers have treated CNN as a black42

box feature extractor where end-to-end learning framework is utilised to draw discriminative features43

from the last fully connected (FC) layers. The last fully connected layers are successfully utilised to44

extract global image descriptors as they possess rich high level semantic information that can effectively45
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distinguish the object of interest from the background (Sharif Razavian et al., 2014). In contrast, the46

intermediate layers of CNN are popular for extracting spatial and local characteristics of images which are47

important to extract expressive regions of objects, yet cannot serve very well as a global image descriptor.48

To get improved performance on different classification tasks, most of the researchers have focused on49

increasing the depth of the convolutional neural model and varied the network’s training strategy and50

activation functions (Bengio et al., 2013a; LeCun et al., 2015). We observe that designing and training51

such an ultra-deep architecture for global feature extraction is: (i) Expensive in terms of computation, (ii)52

results in model size large in terms of disk space utilisation and memory usage, (iii) prone to overfitting53

when the data set size is limited, and (iv) requires a large amount of labelled training data when fine tuning54

the model for new application domains. On account of these challenges, we take an introspective approach55

to understand the functionality and behaviour of the intermediate layers, in particular the convolutional56

and pooling layers of CNN, and propose a novel technique to improve their representational power along57

with increasing the discrimination performance of the model without going deeper with additional hidden58

layers. Visualisation of features allows one to functionally understand and interpret the behaviour of59

deep model’s internal layers in connection to its progressive depth and output (Raghu et al., 2017; Poole60

et al., 2016). Visualising the representational capacity of deep models has been a topic of recent interest61

to express general priors about the world that can help one identify the stimuli causing a certain output62

and ultimately design learning machines that can solve different AI tasks (Bengio et al., 2013b; Zeiler63

and Fergus, 2013; Mordvintsev et al., 2015; Raghu et al., 2017; Santos and Abel, 2019). The topic has64

grabbed interest of the research community so much so that dedicated workshops in leading conferences65

like NIPS and CVPR are arranged to discuss the works under this theme. We have therefore laid our focus66

on developing a technique that can transform features from model’s intermediate layers into a visually67

powerful tool for introspective analysis, as well as act as discriminative off the shelf feature extractor for68

image classification with simple and sophisticated machine learning classifiers. Our empirical results69

reveal that with the proposed technique, intermediate layers close to the input layer could also be made70

more competent for feature visualisation and discrimination tasks.71

The main contributions of this work are outlined as follows: (1) Improving the classification perfor-72

mance of classical CNN architectures: LeNet and AlexNet on benchmark data sets without increasing73

their depth (hidden layers), (2) Improving the visualisation power of features learned by the intermediate74

layers of CNN, (3) Introducing discriminatively boosted alternative to pooling (DBAP) layer in the CNN75

architectures, that can serve independently as an efficient feature extractor for classification when used76

with classifiers such as k-nearest neigbour (k−NN) and support vector machines (SVM). The pretrained77

CNN with DBAP layer offers features that could be deployed in resource constrained environments where78

ultra-deep models could not be stored, retrieved and trained.79

The remaining paper is structured as follows: Section 2 discusses the related research work carried80

out in the area of computer vision. Section 3 provides preliminary information required to understand the81

details of proposed methodology discussed in Section 4. Section 5 discusses the benchmark data sets,82

implementation details and evaluates the results of conducted experiments. We conclude this work in83

Section 6 with a discussion on the future work intended to further improve and extend this research in84

future. There is also a supplementary section (Section 7) that holds additional results to provide in depth85

analysis of the proposed change in convolutional neural models.86

2 RELATED WORK87

There has been a recent surge of interest in understanding and visualising the intermediate layers of deep88

models for interpretability and explainability, leading to the development of more stable and reliable89

machine learning systems (Zeiler and Fergus, 2014; Ren et al., 2019; Bau et al., 2019; Hazard et al.,90

2019; Gagne et al., 2019; Hohman et al., 2018). The visualisation techniques allow the researchers and91

practitioners understand what features are being learned by the deep model at each stage. Visualisation92

diagnostics may also serve as an important debugging tool to improve a model’s performance, make93

comparisons and select optimal model parameters for the task at hand. This often requires monitoring94

the model during the training phase, identifying misclassified examples and then testing the model on a95

handful of well-known data instances to observe performance. Generally, the following parameters of96

deep model are visualised either during or after the training phase: (1) Weights on the neural connections97

(Smilkov et al., 2017), (2) convolutional filters (Zeiler and Fergus, 2014; Yosinski et al., 2015) (3) neuron98

activations in response to a single or group of instances (Goodfellow et al., 2016; Yosinski et al., 2015),99
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(4) gradients for the measurement and distribution of train error (D. Cashman and Chang, 2017), and100

(5) model metrics such as loss and accuracy computed at each epoch. This work focuses on improving101

the visualisation power of deep neural models in addition to enhancing their discrimination ability as a102

classifier and feature extractor.103

The fully connected (FC) layers of deep convolutional neural network have often been utilised to104

extract features due to their higher discriminative ability and semantic representation of image concepts105

that makes them a powerful global descriptor (Simonyan and Zisserman, 2014; He et al., 2016). The106

FC features have demonstrated their advantage over VLAD (Vector of Locally Aggregated Descriptors)107

and Fisher vector descriptors and are known to be invariant to illumination and rotation to some extent,108

however they lack the description of local patterns captured by the convolutional layers. To address109

this limitation, some researchers have proposed to utilise the intermediate layers of deep models to110

improve their performance on various tasks (Cimpoi et al., 2015; Babenko and Lempitsky, 2015; Liu111

et al., 2017b; Yue-Hei Ng et al., 2015; Liu et al., 2015). For instance, Ng et al. (Ng et al., 2015)112

aggregated convolutional layer activations using vector of locally aggregated descriptors (VLAD) and113

achieved competitive performance on image retrieval task. Tolias et al. (Tolias et al., 2015) max pooled114

the activations of the last convolutional layer to represent each image patch and achieved compelling115

performance for object retrieval. Lie et al. (Liu et al., 2017a) built a powerful image representation using116

activations from two consecutive convolutional layers to recognise images. Kumar et al. (Kumar et al.,117

2009, 2012) introduced the use of Volterra theory for the first time to learn discriminative convolution118

filters (DCF) from the pixel features on gray-level images.119

In addition to the convolutional layers, researchers have also explored the use of various types of120

pooling functions from simple ones such as max, average, and stochastic pooling to complex ones, like121

spatial pyramid pooling network (SPP-Net), which allows the convolutional neural model to take images122

of variable scales using spatial pyramid aggregation scheme (He et al., 2014). The pooling layers have123

traditionally been utilised in CNN to avoid overfitting by reducing the size of the detected features by a124

factor of two. However, the fact that they lose spatial information and keep no track of the relationship125

between the features extracted by the convolutional layers, makes them less appealing and strongly126

criticised by front end researchers like Geoffrey Hinton. In order to avoid the limitations of pooling127

operations, it is suggested to use dynamic routing (routing-by-agreement) scheme, in replacement of the128

max-pooling operation and name this newly proposed model as Capsule Network (Sabour et al., 2017).129

Springenberg et al. (Springenberg et al., 2014) also proposed to discard the pooling layer in favour130

of architecture that only consists of repeated convolutional layers. In order to reduce the size of the131

representation, he suggested using larger stride in convolutional layer once in a while. Discarding pooling132

layers has also been found important in training good generative models, such as variational autoencoders133

(VAEs) or generative adversarial networks (GANs) (Yu et al., 2017). From these moves, it seems likely134

that the future architectures will feature very few to no pooling layers.135

Keeping in view these recent trends of research to improve deep models as classifiers, we hereby136

take inspiration from the characteristics of local binary pattern (LBP) operator, known widely for its137

simplicity and discriminative power to improve the representational power of CNN’s intermediate layers138

and utilise it for gaining better discrimination performance on image classification task. Similar work has139

been carried out by Xu et al. (Juefei et al., 2017), who proposed an efficient non-linear approximation140

of convolutional layers in the convolutional neural network. Their proposed model namely local binary141

convolutional neural networks (LBCNN) (Juefei et al., 2017) utilises a hybrid combination of fixed sparse142

and learnable weights and local binary patterns (LBP). In contrast, this work deploys dense weights and143

resides on regularisation techniques like dropout and batch normalisation to avoid overfitting issues.144

3 PRELIMINARIES145

3.1 Local Binary Patterns146

Local binary pattern (LBP) is a non-parametric approach that extracts local features of images by compar-147

ing the intensity of each center pixel in a patch with adjacent pixels in its defined neighbourhood (Ojala148

et al., 1994). If the neighbours have intensity greater than the center pixel, they are assigned the value of149

1, otherwise 0. LBP has traditionally worked well with window patches of size 3×3, 5×5 and 7×7, etc,150

scanned through the image in an overlapping fashion. This bit string is read sequentially in a specified151

order and is mapped to a decimal number (using base 2) as the feature value assigned to the central pixel.152

These aggregate feature values represent the local texture in the image. The parameters and configurations153
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of LBP could be tweaked by customising the window size, base, pivot (pixel treated as physical center of154

the patch) and ordering (clockwise/ anticlockwise encoding).155

Figure 1. Classical CNN architectures: LeNet (LeCun et al., 1998) and AlexNet (Krizhevsky et al., 2012)

used to outperform the state of the art image classification results on MNIST and ImageNet data sets.

Figure 2. Graphical abstract of DBAP layer embedded in classical convolutional neural network models

for boosting discrimination performance and feature visualisation power.

3.2 Convolutional Neural Networks (CNN)156

Convolutional neural network (CNN) is a multi-layered feed forward artificial neural network consisting157

of neurons in different layers to detect high level features from visual patterns automatically. Unlike158

the traditional feature extraction approaches where the features are hand engineered, CNN draws the159

features automatically by retaining their temporal and spatial information. The classical architecture of160

CNN consists of the following layers: (a) Input layer, (b) Convolutional layer, (c) Pooling layer, (d) Fully161

Connected/Dense layer and (e) Output layer. Except for the input and output layers, the remaining layers162

change their order and count giving rise to various types of neural architectures.163

Ever since the successful exhibit of CNN for large scale image classification and retrieval (Krizhevsky164

et al., 2012), various architectures of CNN have been proposed that alter the hidden layers’ order, count,165

types of activation functions and learning algorithm to improve the model’s discrimination performance166

and retrieval speed. We have chosen two popular architectures: LeNet and AlexNet to showcase the167
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efficacy of the proposed approach on benchmark data sets. LeNet is the pioneering neural network168

proposed by Yann LeCun consisting of 7 layers (5 hidden), and is known to work very well for recognising169

digits and zip codes (LeCun et al., 1998). AlexNet, named after Alex Krizhevsky (Krizhevsky et al.,170

2012), is a groundbreaking CNN consisting of five convolutional and three fully connected layers showing171

outstanding performance on large scale image recognition data set. The two architectures are demonstrated172

in Figure 1. The gradient of CNN’s cost function is computed through backpropagation algorithm and the173

model parameters are updated through stochastic gradient descent (SGD) learning algorithm.174

4 METHODOLOGY175

Algorithm 1 Discriminatively Boosted Alternative to Pooling (DBAP) Layer in CNN.

Input: Input Image, X ( j)={x
( j)
i }d

i=1; Filter Size, F; Stride, S; Number of Neighbours, P; Index of Neighbour, p;

Kernel, K.

Output: DBAP features, 1×d

1: while not converge do

2: for Each Image do

3: Mean normalise the incoming image pixels X ( j) and store them in X
( j)
norm.

4: Compute the convolutional features from normalised image X
( j)
norm by convolving kernel K.

5: Apply activation function on convolved features to map them in non-linear space.

6: Forward propagate the non-linear result of activation function to DBAP layer.

7: Partition the received image into overlapping blocks of equal size using the stride, S and filter size, F .

8: Compute the LBP for each block using formula:

9: LBPR,P = ∑
P−1
p=0 s(gp −gc).2

p,

where s(gp −gc) = 1 if gp ≥ gc, 0 otherwise.

% Here gp and gc denote the gray values of the central pixel and its neighbours.

10: Concatenate all the feature blocks represented by DBAP layer and forward pass the learned features in

vectorised form to the next layer in CNN.

11: Continue forward pass and perform backpropagation to learn model parameters.

12: end for

13: end while

In order to enhance the discrimination power and representation capability of intermediate layers in176

CNN, we reformulate its architecture by introducing a discriminatively boosted alternative to pooling177

(DBAP) layer embedded at early stage of feature learning. Figure 1 demonstrates how LeNet and AlexNet178

models stack convolutional and pooling layers to learn local spatial features. We first preprocess each179

input image by performing standardization approach. The goal of standardization is to bring all the180

features at the same scale so that each feature is treated equally important and none dominates the other181

during features learning. Each image pixel x
( j)
i is standardized by computing the mean, µi and standard182

deviation, σi of each feature i in an image j by utilising the following formula:183

x
( j)
i =

x
( j)
i −µi

σi

(1)

Standardizing input data is a common approach used in neural networks and machine learning in184

general, to learn parameters, optimise and converge the models faster (Xiang and Li, 2017). After doing185

standardization, the d dimensional features are passed to the convolutional layer to capture the local186

features of the image. This result is next passed to the activation function to map the learned features187

in a non-linear space. Conventionally, the CNN architecture forward propagates the result of activation188

functions to a pooling layer that uses 2×2 filter window to down sample the features detected in non-linear189

space. The proposed framework replaces the first pooling layer of CNN with an alternative layer named190

as discriminatively boosted alternative to pooling (DBAP) layer. See Figure 2 for illustration of the191

proposed changes in the CNN architecture. The DBAP layer takes its inspiration from local binary pattern192

(LBP) operator that acts as a powerful descriptor to summarise the characteristics of local structures193

in an image. The layer processes the features received from the previous layer by following the steps194
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outlined in Algorithm 1. A 3×3 window with replicated boundary pixel padding is deployed to capture195

the local features of the image. Each pixel in the image is treated as a pivot (center pixel) to replace196

its intensity in connection to the intensity of pixels in its surrounding defined by the filter window. For197

each image patch, the neighbouring pixel values acquire the value 1 if their magnitude is equivalent or198

greater than the magnitude of the centre pixel. The magnitude is taken as 0 otherwise. For the example199

demonstrated in Figure 2, the resulting LBP value for the center pixel is 11000111, equivalent to 227 in200

decimal number system. We move the filter one stride forward to compute LBP feature for each pixel in201

the image. For the given filter size, the DBAP layer computes 8-bit binary values for all the image pixels202

and converts them into their decimal equivalent. These values are totally based on the properties of the203

pixels in relationship to their neighbours. Our proposed DBAP layer is non-parametric and extracts more204

discriminative and visually powerful features as compared to the maxpooling layer used in benchmark205

CNN architectures. After processing the data through DBAP layer, it is forward propagated to the next206

layers in each architecture (LeNet and AlexNet) and treated in a conventional manner. In LeNet, this207

information passes on to the following layers in sequence: Convolutional, Pooling, Fully Connected, Fully208

Connected, and Fully Connected layers, whereas in AlexNet, the flow of information after DBAP takes209

the following route in sequence: Convolutional, Pooling, Convolutional, Convolutional, Convolutional,210

Pooling, Fully Connected, Fully Connected, Fully Connected layers. We discuss the implementation211

details regarding CNN model’s training and testing in Section 5.212

Figure 3. Train and test accuracy curves of LeNet with DBAP layer are demonstrated on state-of-the-art

benchmark data sets. The softmax activation function is used to enable LeNet for classification task.

5 EXPERIMENTS AND RESULTS213

5.1 Data Sets Used214

We have evaluated the efficacy of the proposed approach on different benchmark data sets with baseline215

convolutional neural networks and their other very deep counterparts such as GoogleNet (Szegedy et al.,216

2015), LBCNN (Juefei et al., 2017) and MobileNet (Howard et al., 2017). There are four standard data sets217

used in this paper: MNIST, SVHN, FASHION-MNIST and CIFAR-10. These are benchmark computer218

vision data sets that are well understood and highly used by the researchers to provide basis for any219

improvement in the proposed learning algorithm or neural architecture. Their popularity has won them a220
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Figure 4. Train and test accuracy curves of AlexNet with DBAP layer are demonstrated on

state-of-the-art benchmark data sets. The softmax activation function is used to enable AlexNet for

classification task.

regular place in many deep learning frameworks such as Keras, TensorFlow and Torch. Consequently,221

their off the shelf use is constantly on the rise, more than PASCAL VOC and ImageNet data sets till date 1
222

The Modified National Institute of Standards and Technology (MNIST) data set (LeCun et al., 1989)223

consists of 60,000 training and 10,000 test images of hand written digits with a resolution of 28× 28224

pixels. The database contains grayscale images of digits 0 to 9. Despite the success of deep models with225

large scale data sets, MNIST enjoys the title of most widely used test bed in deep learning, surpassing226

CIFAR 10 (Krizhevsky and Hinton, 2009) and ImageNet (Deng et al., 2009) in its popularity via Google227

trends2. We have therefore selected this data set to benchmark the results of our proposed approach with228

state of the art comparative methods.229

The FASHION-MNIST (F-MNIST) data set (Xiao et al., 2017) comprises of 28×28 grayscale images230

of 70,000 fashion products belonging to 10 different categories: TShirt/Top, Trouser, Pullover, Dress,231

Coat, Sandals, Shirt, Sneaker, Bag, Ankle boot. Similar to MNIST, the training set of FASHION-MNIST232

also comprises of 60,000 train images and 10,000 test set images.233

The Street View House Numbers (SVHN) (Netzer et al., 2011) is a real world image data set consisting234

of digits in natural scenes of street houses. The digits 0 to 9 offer a multi-class classification problem with235

spatial resolution of 32×32 pixels. The data distribution consists of 73,257 train digits and 26,032 test236

digits for performance evaluation. These images show vast intra-class variations and include complex237

photometric distortions making the recognition problem a challenge just as in a general-purpose object238

recognition or natural scene understanding system.239

The CIFAR-10 data set (Krizhevsky et al., 2014) contains 60,000 color images from 10 different240

classes: Trucks, cats, cars, horses, airplanes, ships, dogs, birds, deer and frogs. The images have spatial241

dimension of 32×32 pixels. The data set consists of 5 training batches with each batch comprising of242

10,000 train images. The test batch contains 10,000 images with 1000 randomly-selected images from243

each class.244

1https://trends.google.com/trends/explore?date=all&q=mnist,%2Fg%2F11gfhw_78y,SVHN,%2Fg%

2F11hz37p042,Imagenet
2https://trends.google.com/trends/explore?date=all&q=mnist,CIFAR,ImageNet
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5.2 Tools Used and Computational Requirements of the Proposed Model245

The proposed neural model with DBAP layer was trained on Google Colab’s (col, 2019) Tesla K-246

80 graphics processing unit (GPU) using Keras (Chollet et al., 2015) and TensorFlow deep learning247

frameworks implemented in Python. Colab is a cloud based service that allows researchers to develop deep248

learning applications with free GPU support. The system used had Intel(R) Xeon(R) 2.3GHz processor249

with two cores and 16GB of RAM. To achieve results in optimal time, it is recommended to run the deep250

learning framework on premium GPU cards with at least 8GB of RAM.251

Figure 5. Visualising the response of neurons in the MaxPool layer and DBAP layer present in baseline

LeNet and LeNet with DBAP layer respectively. With 6 filters/kernels deployed in the first MaxPool layer

of LeNet, one can observe that the visualisations of DBAP layer demonstrate more meaningful

information about the input image as compared to the MaxPool layer.

5.3 Evaluation Metrics Used for Monitoring Classification Performance252

The evaluation metrics used to monitor the quality of classification framework are accuracy, precision,253

recall, F1-score, and, area under the curve (AUC). These are standard model evaluation metrics used254

in research to carry out investigation and perform analysis (Le, 2019; Do et al., 2020). Accuracy is not255

regarded as a good measure of judging model’s performance when the class distribution is imbalanced,256

i.e. when the number of samples between two or more classes vary significantly. Such imbalance can257

affect the traditional classifiers as well as the deep models, commonly resulting in poor performances258

over the minority classes. Since, class instances of all the data sets used in this work are not balanced (in259

specific SVHN), we have demonstrated precision, recall, F-1 score, and receiver operating characteristics260

(in addition to accuracy to judge the performance of the proposed features and classifiers.)261
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Figure 6. Visualising the response of neurons in MaxPool layer and DBAP layer with baseline AlexNet

and AlexNet with DBAP layer respectively. AlexNet uses 96 filters/kernels of size 3×3. in the first

MaxPool layer and one can see that DBAP layer retains most of the input image’s information as

compared to the MaxPool layer.

.

5.4 Visual Diagnostics Used to Evaluate Feature Information Quality262

In order to understand how the input image is transformed by each intermediate layer of CNN, the263

activations of neurons in pooling layer and DBAP layer are visualised. The feature maps are visualised264

in three dimensions: Width, height and depth (channels). Since each channel encodes independent265

information, one appropriate way to visualise these features is to plot 2D images of each channel266

separately. Given our existing knowledge of deep neural models, the initial layers act as edge detectors267

and retain most of the information of the input image. As we go higher, the activations become increasingly268

abstract and less interpretable visually. The sparsity of activations increases with the depth of the layer, i.e.269

more and more filters would go blank and the pattern encoded in the image could not be seen. We thus270

expect that the activation filters of DBAP layer should be more interpretable and semantically meaningful271

given the input image, model is observing.272

5.5 Implementation Details for Model Training273

In this section, we discuss how the choice of different hyper-parameters such as kernel’s filter size, batch274

size, learning rate, epochs and optimisation algorithm is made to train the CNN models for each specific275

data set on board. To decide on this, we first divide our data set into three different subsets: Train set,276

cross validated set and test set. For the selected benchmark data sets discussed in Section 5.1, the train and277

test set segregation exists already. The cross validated set is obtained by splitting the train data randomly278

in 80:20 ratio, reserving 20% of the data points for the validation purpose and 80% of the train instances279
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for the training objective. When deciding optimal values of epochs, learning rate, batch size, filter size280

and optimiser, 80% of these train instances are used to train both the neural models and their performance281

is judged on the 20% validation set examples. Once optimal values of these parameters are decided, the282

entire train set is used to train both the neural models and their performance is assessed on the available283

test sets. The train time of the proposed CNN models varies within this wall clock range [2.5, 3 hours],284

when run on Google Colab.285

In order to assess if the model is overfitting with the chosen set of parameters or hyper-parameters,286

the performance is compared on train and validation sets in Figure 3 and 4. If the model behaves very287

well on the train set but fails to classify examples from the validation set by a huge margin, it means that288

it is overfitting and shall not perform well on unseen test examples. Some of the ways in which model289

overfitting could be avoided are: Cross-validation, usage of more train data, early stopping, regularisation290

and removal of features. We have regularised the models which were overfitting with the help of the291

validation set.292

5.5.1 Impact of Learning Rate and Epochs on Model Training293

The training of CNN depends largely on the learning rate and number of epochs used to learn the294

parameters. The learning rate hyperparameter controls the speed at which the model learns. For small295

learning rate, large number of epochs are required to train the model, whereas for large learning rate,296

small number of epochs are needed to navigate in the parameter space of the neural model. A learning rate297

that is too large can cause the model to converge too quick to a sub-optimal solution, whereas a learning298

rate that is too small can cause the learning process to become very slow. Therefore, it is advised to299

choose a value that is neither too large nor too small. Its value typically ranges between 0 and 1. We have300

configured the best value for learning rate using grid search method. Grid search involves picking values301

approximately on a logarithmic scale within the set range:{10−4,10−3,10−2,10−1,100}, and observes302

the validation loss while keeping the value of epochs fixed. We confined the value of epochs to 50 and303

observed the impact of changing learning rate on the validation set. Figures 3 and 4 demonstrate the304

accuracy of LeNet and AlexNet models, when the learning rate was fixed at 0.01 and the model was run305

for 50 epochs. Since the validation error is lowest when η = 0.01, and the gap between the train and306

validation error is not significantly large, the model does not tend to overfit and 0.01 turns out to be the307

most suitable value for learning rate.308

5.5.2 Impact of Batch Size on Model Training309

Batch size is also an important hyperparameter that impacts a model’s performance. Table 1 shows the310

best batch size for each data set when learning rate and epochs are fixed at 0.01 and 50 respectively using311

the AlexNet architecture. A similar comparison was also performed for LeNet architecture and best312

batch sizes for MNIST, Fashion-MNIST, SVHN and CIFAR-10 were chosen as 128, 128, 128 and 256313

respectively.314

Table 1. Overall Accuracy of the Proposed System on the Validation Set Using Different Batch Sizes.

Data Sets
Batch Sizes

64 128 256

MNIST 99.1 % 98.6 % 99.5 %

FASHION-MNIST 90.8 % 90.2 % 91.8 %

SVHN 94.4 % 92.5 % 93.1 %

CIFAR-10 78.3 % 78.8 % 80.6 %

5.5.3 Impact of Optimisers315

In order to update the parameters of convolutional neural network, different popular optimisers such as316

stochastic gradient decent (SGD), adam (Kingma and Ba, 2014) and ADADELTA (Zeiler, 2012), were317

tested and evaluated on the validated set. Table 2 highlights the accuracy of AlexNet with DBAP layer318

when different types of optimisers were used. We observe that for MNIST data set, Adadelta optimiser319

shows the best results, whereas for FASHION-MNIST, SVHN and CIFAR-10 data sets, SGD optimiser320

outperforms the remaining optimisation algorithms. A similar analysis was also performed for LeNet321

with DBAP layer and best optimisers were selected accordingly.322

10/19PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54285:1:2:CHECK 19 Mar 2021)

Manuscript to be reviewedComputer Science



Table 2. Overall Accuracy of the Proposed System on the Validation Set Using Different Types of

Optimisers for Training AlexNet.

Data Sets
Optimisers

SGD Adam AdaDelta

MNIST 98.1 % 98.6 % 99.5 %

FASHION-MNIST 91.5 % 90.6 % 90.1 %

SVHN 93.2 % 92.1 % 91.7 %

CIFAR-10 78.2 % 78.1 % 77.6 %

5.5.4 Impact of LBP Filter Size on CNN323

We have also assessed different kernel sizes used in DBAP layer to capture local features of images that324

add to the discriminative ability of neural models. Table 3 shows that 3×3 window gives best accuracy325

on the validation set in comparison to larger size filters on all the data sets.

Table 3. Classification Accuracy on the Validation Set of Four Benchmark Data Sets with Varying Filter

Size in DBAP Layer of AlexNet.

Data Sets
Window Size

3×3 5×5 7×7

MNIST 99.5% 97.1% 96.1%

F-MNIST 91.8% 88.9% 88.2%

SVHN 94.4% 93.2% 91.5%

CIFAR-10 80.6% 74.5% 76.2%

326

Table 4. Classification accuracy yielded by LeNet and AlexNet (in %) after incorporation of DBAP layer.

The classifier used is softmax by both the models. One can observe that the results are better than those

achieved by the baseline models and competitive to the discrimination results of other popular deep

models.

Data Sets Baseline LeNet Baseline AlexNet LBP Features LBP Features MobileNet GoogLeNet LBCNN

LeNet with DBAP AlexNet with DBAP with k-NN with SVM (Howard et al., 2017) (Szegedy et al., 2015) (Juefei et al., 2017)

MNIST 99.0 % 99.1% 99.2 % 99.5% 88.7% 83.7% 94.59 % 97.98% 99.51%

F-MNIST 89.8 % 91.0% 90.5 % 91.5% 78.3 % 73.5% - 93.5 % -

SVHN 86.7 % 88.3% 87.3 % 94.4% 29.6% 25.9% 90.8% 92.3% 94.50%

CIFAR-10 72.3 % 74.8% 73.7 % 80.6% 28.3% 27.6% 65.6 % 76.5% 92.99%

Table 5. Accuracy of SVM classifier on DBAP features derived from pre-trained LeNet with DBAP layer.

The DBAP features show better classification results than the MaxPool features in LeNet. The fully

connected (FC) layers of LeNet with DBAP also tend to show better discrimination ability as compared to

FC layer features extracted from regular LeNet on all benchmark data sets.

Data Sets MaxPool Layer DBAP Layer FC Layer from FC Layer from LeNet

(Layer 2) (Layer 2) LeNet (Layer 7) with DBAP (Layer 7)

MNIST 98.1% (C=100) 98.3% (C=100) 98.4% (C=100) 99.0% (C= 1)

F-MNIST 88.6% (C=100) 89.0% (C=100) 90.4% (C=100) 91.3% (C=100)

SVHN 81.2% (C= 10) 82.0% (C= 10) 83.9% (C= 10) 86.8% (C=100)

CIFAR-10 52.1% (C= 10) 52.9% (C=100) 57.4% (C= 10) 65.3% (C= 10)

5.6 Model Testing327

After fine tuning the neural models with optimal parameters and hyperparameters, we next compute the328

classification performance of the proposed model on unseen test examples of each standard data set.329
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Table 6. Accuracy of SVM classifier on DBAP features derived from pre-trained AlexNet with DBAP

layer. The classification results are better than the results obtained by MaxPool features derived from a

regular AlexNet. The inclusion of DBAP layer also shows better FC features from the model giving better

classification results in comparison to the FC features from regular AlexNet model.

Data Sets MaxPool Layer DBAP Layer FC Layer from FC Layer from AlexNet

(Layer 2) (Layer 2) AlexNet (Layer 11) with DBAP (Layer 11)

MNIST 95.1% (C=100) 98.0% (C=100) 99.1% (C=100) 99.2% (C=0.01)

F-MNIST 89.8% (C=1) 90.4% (C=1) 90.9% (C=100) 91.4% (C=1)

SVHN 80.1% (C=1) 80.2% (C=100) 89.0% (C=1) 94.5% (C=10)

CIFAR-10 60.3% (C=100) 63.3% (C=100) 80.3% (C=100) 84.3% (C=100)

Table 7. Accuracy of k-NN classifier on DBAP features derived from pre-trained LeNet with DBAP layer.

The results achieved are better than the ones obtained by MaxPool layer in a regular LeNet. The inclusion

of DBAP layer also improves the FC features for discrimination task.

Data Sets MaxPool Layer DBAP Layer FC Layer FC Layer from LeNet

(Layer 2) (Layer 2) from LeNet (Layer7) with DBAP (Layer 7)

MNIST 97.4% (k=2) 97.7% (k=2) 98.8% (k=2) 99.0% (k=2)

F-MNIST 77.6% (k=2) 78.2% (k=2) 84.6% (k=2) 91.2% (k=16)

SVHN 77.2% (k=32) 78.6% (k=32) 85.9% (k=2) 86.6% (k=8)

CIFAR-10 56.0% (k=2) 59.7% (k=9) 63.8% (k=4) 65.0% (k=27)

Table 8. Accuracy of k-NN classifier on DBAP features derived from pre-trained AlexNet with DBAP

layer. The classification results achieved are better than those obtained by MaxPool features derived from

regular AlexNet. The inclusion of DBAP layer also improves the discrimination quality of FC features in

AlexNet with DBAP layer.

Data Sets MaxPool Layer DBAP Layer FC Layer from FC Layer from AlexNet

(Layer 2) (Layer 2) AlexNet (Layer 11) with DBAP (Layer 11)

MNIST 97.9% (k=2) 98.0% (k=2) 98.7% (k=2) 99.1%(k=4)

F-MNIST 83.1% (k=2) 87.2% (k=2) 88.6% (k=2) 89.5% (k=16)

SVHN 66.0% (k=2) 68.4% (k=2) 88.0% (k=2) 94.4% (k=16)

CIFAR-10 52.7% (k=32) 53.6% (k=41) 68.9% (k=16) 83.7% (k=16)
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Table 9. Comparison of the number of trainable parameters in regular LeNet, LeNet with DBAP layer,

regular AlexNet and AlexNet with DBAP layer.

Layer Name Tensor Size Number of Parameters

Input Image 28×28×1 0

Conv-1 26×26×6 60

DBAP 26×26×6 0

Conv-2 24×24×16 880

MaxPool-2 12×12×16 0

FC-1 120×1 276,600

FC-2 84×1 10,164

FC-3 10×1 850

Output 10×1 0

Total 288,554 (∼ 0.28M)

(b) Architecture of LeNet with

DBAP Layer.
Layer Name Tensor Size Number of Parameters

Input Image 28×28×1 0

Conv-1 14×14×96 960

MaxPool-1 7×7×96 0

Conv-2 7×7×256 614,656

MaxPool-2 3×3×256 0

Conv-3 3×3×384 885,120

Conv-4 3×3×384 1,327,488

Conv-5 3×3×256 884,992

MaxPool-3 1×1×256 0

FC-1 4096×1 1,052,672

FC-2 4096×1 16,781,312

FC-3 10×1 40,970

Output 10×1 0

Total 21,588,170 (∼ 21M)

(c) AlexNet Architecture

Layer Name Tensor Size Number of Parameters

Input Image 28×28×1 0

Conv-1 14×14×96 960

DBAP 14×14×96 0

Conv-2 14×14×256 614,656

MaxPool-2 6×6×256 0

Conv-3 6×6×384 885,120

Conv-4 6×6×384 1,327,488

Conv-5 6×6×256 884,992

MaxPool-3 2×2×256 0

FC-1 4096×1 41,98,400

FC-2 4096×1 16,781,312

FC-3 10×1 40,970

Output 10×1 0

Total 24,733,898 (∼ 24M)

(d) Architecture of AlexNet with DBAP Layer.

5.6.1 Analysis of CNN Model with DBAP Layer as a Classifier330

When deploying CNN as a classifier, the test data is passed to the trained CNN model with DBAP layer,331

whose last layer consisting of softmax units is utilised for object categorisation. The discrimination332

performance of the model is assessed with the help of following evaluation metrics: Accuracy, precision,333

recall, F1-score, and area under the curve (AUC), discussed in Section 5.3 and 7. Table 4 shows334

improvement in the discrimination performance yielded by the proposed approach in comparison to the335

baseline AlexNet and LeNet architectures on four different benchmark data sets. We have also compared336

our results with local binary convolutional neural network (LBCNN) that offers to provide an alternative337

to standard convolutional layers in the convolutional neural network (Juefei et al., 2017), GoogleNet (also338

known as Inception V1) (Szegedy et al., 2015) and MobileNet (Howard et al., 2017). GoogleNet is a339

22-layer CNN inspired by LeNet, whereas MobileNet is an efficient CNN architecture with 17 layers340

streamlined for mobile applications. We observe that the classification performance of the proposed341

model with DBAP layer is competitive to the state of the art results shown by ultra deep convolutional342

neural models. The precision, recall and F1 scores of the proposed model further reassure the precision343

and discrimination power of the proposed deep model for unseen test examples.344

In Table 4, one may observe that unlike other data sets, the classification results of DBAP features345

on CIFAR-10 data set are a lot worse in comparison to LBCNN (Juefei et al., 2017). This is because346

the images in CIFAR-10 possess natural objects with rich textures as compared to the hand written digit347

images present in other data sets. For this reason, LBCNN works exceptionally better on CIFAR-10 in348

comparison to AlexNet with DBAP features. Also LBCNN replaces all convolutional layers of AlexNet349

with LBP inspired layers which is popular for extracting discriminative texture descriptors, whereas our350

proposed model only replaces the first MaxPooling layer with LBP inspired feature detectors, hence the351

performance gap is higher in contrast. Similar impact in performance could also be observed in area under352

the curve graphs shown in the supplementary section.353

We have conducted experiments to compare the discrimination power of LBP operator with DBAP354

features in Table 4. The classifiers used for the purpose are k-NN and SVM. One can observe that355

LBP operator on its own does not yield as good classification results as the DBAP layer introduced in356

LeNet and AlexNet architectures. The open source code developed for these experiments is available at357

:https://github.com/shakeel0232/DBAP-CNN.358
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5.6.2 Analysis of CNN Model with DBAP Layer as a Feature Extractor359

In order to assess the discrimination power of features learned by DBAP layer, we have also checked360

their accuracy with simple off the shelf classifiers like k-nearest neighbour (k-NN) and support vector361

machines (SVM). We selected pre-trained CNN models with and without DBAP layer to extract features362

for image classification task. The results shown in Tables 5, 6, 7 and 8 demonstrate that DBAP layer363

can serve as a competitive feature extractor in comparison to the intermediate layer features such as364

MaxPooling layer of AlexNet and LeNet. For SVM classifier, the optimal value of parameter C is searched365

via grid-search method on the validation set and shown against each data set in the tables. Similarly, for366

k-nearest neighbour (k-NN), the optimal value of k is searched using the validation set and then used367

for the test data in each benchmark data set. The empirical results reveal that DBAP features could be368

used as readily available features from a pre-trained model for applications where quick retrieval and369

classification results are required.370

We have also assessed the impact of DBAP layer on FC layer features. The fully connected (FC)371

layers are known to retain better discrimination power for classification tasks, however with the inclusion372

of DBAP layer, their ability to classify objects is further improved as can be seen in the last two columns373

of Tables 5, 6, 7 and 8 .374

5.6.3 Statistical Significance of Models375

We have also applied hypothesis testing to estimate the statistical significance of the proposed models.376

Statistical tests help us identify the behaviour of models if the test set changes. Since our data sets are377

standardised, we assume a normal distribution of features and have applied McNemar’s test or 5× 2378

cross-validation with a modified paired Student t-test. The null hypothesis assumes that the two samples379

came from the same distribution. In contrast, the alternative hypothesis assumes that the samples came380

from two different distributions and hence there is a difference between the tested models or classifiers.381

With 0.05 level of confidence/significance, the p values attained for LeNet with DBAP layer and AlexNet382

with DBAP layer models are 0.007 and 0.011 respectively. In both the cases, p < 0.05, shows the samples383

generated from the proposed architectures are statistically different from the ones without DBAP layer.384

5.7 Visualisation of Filters385

We have also visualised the mid-level features learned by DBAP layer and compared them with the386

features learned by max-pooling layers used in classical CNN architectures. Figures 5 and 6 demonstrate387

the improvement in visual representation of intermediate features learned by the two CNN architectures388

in comparison to their baseline counterparts with maxpooling layer. One can observe that DBAP layer389

learns semantically better features from the input images as compared to the maxpooling layer used in390

classical LeNet and AlexNet architectures. As we go higher in the model hierarchy, the filters become391

more abstract and sparsity of the activations increases, i.e. the filters become more blank and the pattern392

encoded by the image is not showcased by the filter (François, 2017).393

Improving the visualisation strength of neural models can help us explore and understand the black394

box learning behaviour of deep models. Better visualisation can serve as a great diagnostic tool (Liu et al.,395

2019) for observing the evolution of features during model training and diagnose potential problems with396

the model via online/offline feature representations. This facilitates the researchers to fix their training397

practices and find models that can outperform an existing successful deep model. For example, the398

deconvolutional technique proposed for visualising the hidden layer features suggested an architectural399

change of smaller convolutional filters that lead to state of the art performance on the ImageNet benchmark400

in 2013 (Zeiler and Fergus, 2014).401

5.8 Proposed Model’s Complexity402

We next compare the count of trainable parameters in LeNet and AlexNet containing DBAP layers with403

their baseline counter parts in Table 9. The total number of CNN parameters are the sum of all its weights404

and biases connecting the convolutional, input, output and fully connected layers. The pooling layers405

in the architecture do not contribute to the count of model parameters as they contain hyper-parameters406

such as pool size, stride, and padding which do not need to be learned during the training phase. The407

number of model parameters before the advent of DBAP layer remain fixed. However, when we replace408

the first pooling layer with DBAP layer, the output tensor of Layer 2 is not down sampled as it does409

in regular LeNet and AlexNet architectures, rather the tensor scale remains the same as its input (i.e.410

26×26×6 for LeNet and 14×14×96 for AlexNet). This impacts the size of the kernel in the following411
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convolutional layer, and the effect is carried out forward to the next maxpooling and fully connected layers.412

Overall, there is an increase of 380.33% in LeNet parameters and an increase of 14.57% in AlexNet413

model parameters with the inclusion of DBAP layer.414

Keeping in view the size of model parameters, the proposed model is not well suited for resource415

constrained environments, where storage and computation of large number of parameters becomes a416

bottleneck. However, it offers two fold advantage in comparison to the state of the art models: (1)417

Effective intermediate feature visualisation power and (2) competitive discrimination performance as a418

feature extractor and classifier. Models such as LBCNN (Juefei et al., 2017) propose to use a compact419

neural model whose convolutional layers are all replaced by LBP operator. This move reduces the number420

of learnable parameters massively to around 0.352million, thus making it very suitable for resource421

constrained environments.422

6 CONCLUSION & FUTURE WORK423

In this paper, we propose to induce discrimination into the intermediate layers of the convolutional neural424

network by introducing a novel local binary pattern layer that can serve as a replacement of the first425

standard maxpooling layer used at early stage of feature learning in the convolutional neural network.426

The empirical results on benchmark data sets as well as the visual feature maps of intermediate layers427

demonstrate the strength of the proposed idea to learn more discriminative features without building ultra428

deep models. Our experiments reveal that the proposed approach can strengthen the discriminative power429

of mid-level features as well as high level features learned by fully connected (FC) layers of convolutional430

neural network. The experiments with simple classifier like k-NN and popular industry classifier like431

SVM, suggest the use of intermediate DBAP layer and its following fully connected layers in the deep432

learning pipeline for off-line feature extraction and classification tasks.433

In future, we aim to improve the training complexity of the proposed approach by reducing the434

number of learnable parameters for model training. In this regard, we shall explore sparsity in the neural435

connections to adopt suitable regularisation technique for fast model learning.436

7 SUPPLEMENTARY437

The supplementary section shows some additional results to support reproducible research and make the438

main text more readable and understandable. We have shown precision, recall and F1-score of LeNet and439

Alexnet models along with their improved counterparts in Tables 10 and 11. These evaluation metrics in440

combination with the accuracy show how good the proposed models are in comparison to their baseline441

models.442

One can also observe the area under the curve (AUC) for the developed classifiers in Figures 7, 8, 9443

and 10. AUC ranges between 0 and 1. Higher the AUC, better the model is at predicting classes correctly444

as positive and negative, significantly above the random chance. AUC is good at catching the performance445

of models when the class distribution is skewed. We observe that with the addition of DBAP layer in446

CNN architecture, AUC in ROC either increases or remains the same as shown in few cases.447

Table 10. Precision, Recall and F1-Score of LeNet and LeNet with DBAP Layer Using Softmax

Classifier.

LeNet LeNet-with-DBAP

Data Sets Precision Recall F1-Score Precision Recall F1-Score

MNIST 99 % 99 % 99 % 99 % 99 % 99 %

FASHION-MNIST 90 % 90 % 90 % 91 % 91 % 91 %

SVHN 86 % 85 % 86 % 88 % 87 % 87 %

CIFAR-10 72 % 72 % 72 % 74 % 75 % 74 %
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Table 11. Precision, Recall and F1-Score of AlexNet and AlexNet with DBAP Layer Using Softmax

Classifier.

AlexNet AlexNet-with-DBAP

Data Sets Precision Recall F1-Score Precision Recall F1-Score

MNIST 99 % 99 % 99 % 100 % 99 % 100 %

FASHION-MNIST 91 % 91 % 91 % 91 % 91 % 91 %

SVHN 90 % 90 % 90 % 94 % 94 % 94 %

CIFAR-10 71 % 72 % 71 % 77 % 78 % 77 %

Figure 7. ROC Curve of k-NN, Softmax and SVM Classifiers on MNIST Data Set.

.

Figure 8. ROC Curve of k-NN, Softmax and SVM Classifiers on Fashion MNIST Data Set.

Figure 9. ROC Curve of k-NN, Softmax and SVM Classifiers on SVHN Data Set.
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Figure 10. ROC Curve of k-NN, Softmax and SVM Classifiers on CIFAR-10 Data Set.
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Figure 1
Classical CNN Architectures: LeNet and Alexnet
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Figure 2
Graphical abstract of DBAP layer embedded in classical convolutional neural network
models for boosting discrimination performance and feature visualisation power.
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Figure 3
Train and test accuracy curves of LeNet with DBAP layer are demonstrated on state-of-
the-art benchmark data sets. The softmax activation function is used to enable LeNet
for classification task.
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Figure 4
Train and test accuracy curves of AlexNet with DBAP layer are demonstrated on state-
of-the-art benchmark data sets. The softmax activation function is used to enable
AlexNet for classification task.
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Figure 5
Visualising the response of neurons in the MaxPool layer and DBAP layer present in
baseline LeNet and LeNet with DBAP layer respectively. With 6 filters/kernels deployed
in the first MaxPool layer of LeNet, one can observe that the visualisations of DBAP
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Figure 6
Visualising the response of neurons in MaxPool layer and DBAP layer with baseline
AlexNet and AlexNet with DBAP layer respectively. AlexNet uses 96 filters/kernels of
size $3\times3.$ in the first MaxPool layer and one can see that DBAP layer retains most
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Figure 7
ROC Curve of k-NN, Softmax and SVM Classifiers on MNIST Data Set.
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Figure 8
ROC Curve of k-NN, Softmax and SVM Classifiers on Fashion MNIST Data Set.
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Figure 9
ROC Curve of k-NN, Softmax and SVM Classifiers on SVHN Data Set.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54285:1:2:CHECK 19 Mar 2021)

Manuscript to be reviewedComputer Science



Figure 10
ROC Curve of k-NN, Softmax and SVM Classifiers on CIFAR-10 Data Set.
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