
Malware homology determination using
visualized images and feature fusion
Xuejin Zhu1, Jie Huang1,2, Bin Wang3 and Chunyang Qi1

1 School of Cyber Science and Engineering, Southeast University, Nanjing, Jiangsu, China
2 Purple Mountain Laboratories, Nanjing, Jiangsu, China
3 College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, China

ABSTRACT
The family homology determination of malware has become a research hotspot as
the number of malware variants are on the rise. However, existing studies on
malware visualization only determines homology based on the global structure
features of executable, which leads creators of some malware variants with the same
structure intentionally set to misclassify them as the same family. We sought to
develop a homology determination method using the fusion of global structure
features and local fine-grained features based on malware visualization. Specifically,
the global structural information of the malware executable file was converted into a
bytecode image, and the opcode semantic information of the code segment was
extracted by the n-gram feature model to generate an opcode image. We also propose
a dual-branch convolutional neural network, which features the opcode image
and bytecode image as the final family classification basis. Our results demonstrate
that the accuracy and F-measure of family homology classification based on the
proposed scheme are 99.05% and 98.52% accurate, respectively, which is better than
the results from a single image feature or other major schemes.

Subjects Computer Networks andCommunications, Cryptography, Security and Privacy, Software
Engineering, Visual Analytics
Keywords Computer security, Homology determination, Malware visualization, Machine learning

INTRODUCTION
With the rapid development of information technology, malware has grown exponentially
to become the main threat to network security. Malware generally refers to all malicious
program codes, which can cause information leakage or resource abuse of the target
system, devastate the integrity and availability of the system, and violate the security policy
of the target system. Malware can be categorized into several types, including computer
viruses, worms, Trojan horses, backdoors and logic bombs. According to the 2019
malware statistics report by McAfee Labs, the number of new malware samples intercepted
in 2018 exceeded 200 million, which grew by 41.63% compared to the same period last year
(McAfee, 2019). However, most of these newly discovered malware samples can be
regarded as variants of existing malware and often come from the same malware family
with highly similar code structures. With the increasing popularity of a variety of
automated malware generation tools, attackers can easily create new variants of malicious
code by modifying or confusing the code based on existing malware (Mohamed & Ithnin,
2017). Variations from the same family are called homologous malware. Analyzing the
homology of malware and classifying malware accurately helps our understanding of its

How to cite this article Zhu X, Huang J, Wang B, Qi C. 2021. Malware homology determination using visualized images and feature fusion.
PeerJ Comput. Sci. 7:e494 DOI 10.7717/peerj-cs.494

Submitted 11 December 2020
Accepted 26 March 2021
Published 15 April 2021

Corresponding authors
Jie Huang, jhuang@seu.edu.cn
Bin Wang, bin_wang@zju.edu.cn

Academic editor
Sedat Akleylek

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.494

Copyright
2021 Zhu et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.494
mailto:jhuang@�seu.�edu.�cn
mailto:bin_wang@�zju.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.494
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

evolutionary trend, aids in the detection of new variants of malware, and allows us to trace
their sources.

As early as 1998, Goldberg proposed the theory of constructing a virus family tree
(Goldberg et al., 1998) and pioneered the study of malware homology determination. Since
then, researchers have proposed many methods to determine the homology of malware,
mainly based on similarities as indicators. The traditional methods can be divided into
dynamic analysis and static analysis which extracts statistical features like n-grams or
application programming interface (API) calls (Morales et al., 2010; Egele et al., 2012;
Narouei et al., 2015; Catak et al., 2020). Dynamic analysis must execute malware samples
in a virtual environment, and then collect and analyze behavioral information such as
system calls, network operations, and registry modification records (Rieck et al., 2008;
Kolosnjaji et al., 2016), to determine the homology of malware. Bailey et al. (2007)
described the behavior of malware as changes of the system state at runtime, calculated
the similarity by means of the standard Euclidean distance, and determined the homology
by clustering. Park et al. (2010) constructed the system call graph of behavior by
dynamically capturing the behavior of malware for classification and determining the
code similarity. Dynamic analysis observes the actual behavior of malware, and thus can
identify and classify confused and encrypted malware more effectively. It has, however, has
a high system overhead and long detection cycle, causing low detection efficiency.
Moreover, some malware can detect whether the running environment is a virtual
environment, and then hide the real malicious intent by performing normal behavior,
making it difficult to collect instances of abnormal behavior.

Considering the time and resources consumed by dynamic analysis, static analysis is
more conducive to analyzing the malware and its explosively growing variants. Static
homology analysis analyzes the function, code structure, and some malicious behaviors of
malware without executing them. Static methods can be used for fine-grain analysis of the
structure and content of code in detail, which can effectively classify the family of the
malware. Qiao et al. (2013) used the system API calls sequence in malware as the basis to
determine the homology of the malware and proposed a framework named CBM to
dynamically restore the API after deformation to solve some code deformation problems.
Santos et al. (2013) found that the statistical characteristics of the opcode sequences of
malware and benign software are different, which indicated that malware can be detected
by the frequency of different opcode sequences after disassembling. Zolotukhin &
Hamalainen (2014) also used the n-gram algorithm model to extract the opcode sequence
of length n as an input feature of malware detection. The static method does not need
to actually execute the malware, so it has the advantage of high analysis efficiency.
However, variants of malware usually reduce the effective code feature by means of
obfuscation and deformation, resulting in low accuracy for static analysis (Moser, Kruegel
& Kirda, 2007).

A new homology determination method based on malware visualization image was
recently proposed. Conti et al. (2010) proposed the idea of converting binary text into a
grayscale image. Nataraj et al. (2011a) then introduced this idea into the determination of
malware homology, where it was proposed to convert binary executable files into grayscale

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 2/22

http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

images in bytes. Their results found that malware images of the same family had similar
structural texture features, while the features of malware images under different families
were quite different. Then, the k-nearest neighbor (KNN) algorithm was applied to
compare the Gist texture features of the malware grayscale image to achieve the
classification of malware samples. The introduction of malware visualization is a landmark
advance in homology determination and subsequent research has made many
improvements. Malware files are transformed into binary grayscale images, and then
texture features are extracted by image processing technology to complete the family
classification. Compared with the traditional static and dynamic methods, this method
has the advantages of simple realization, low computational complexity, and high
classification accuracy. It can achieve the same classification accuracy as dynamic analysis,
and reduce the running time by 95% (Nataraj et al., 2011b).

Many researchers have proposed new family homology analysis methods on the basis
of Nataraj method. Han et al. (2015) introduced the concept of the entropy diagram.
This method does not extract texture features of the malware grayscale image, but
compares the entropy value of the image. Compared to the Nataraj method, this method is
able to achieve equivalent classification ability and significantly enhance efficiency.
With the rapid development of deep learning in recent years, some researchers have used
this method to classify malware images. Cui et al. (2018) used the convolutional neural
network (CNN) to classify the grayscale images of malware, and adopted the bat algorithm
to balance the number of different families. Venkatraman, Alazab & Vinayakumar
(2019) proposed a hybrid architecture method based on CNN and gated recurrent unit
(GRU) to classify malware images. Yuan et al. (2020) converte malware binaries into
markov images according to bytes transfer probability matrixs. Then the deep CNN is used
for markov images classification. Ghouti & Imam (2020) use simple algebraic dot products
and support vector machines to classify malware based on representative digital images.
These methods show the efficiency of deep learning in the field of malware image
classification.

However, most of the existing visualization schemes (Nataraj et al., 2011a; Nataraj
et al., 2011b;Han et al., 2015; Cui et al., 2018; Venkatraman, Alazab & Vinayakumar, 2019;
Yuan et al., 2020; Ghouti & Imam, 2020; Chu, Liu & Zhu, 2020) convert the whole portable
executable (PE) format binary malware file into an image and the feature information
contained in the image is typically contained in the global structure of the file. The code
segment image only takes a small part of the whole malware image, and is a compiled
“black box feature”, which leads to the neglect of the specific semantic information
contained in the code segment. This flaw will cause malwares with a similar file global
structure to be mistakenly classified into the same family, which, in fact, do not belong to
the same family. Malware makers may also deliberately change their own file structural
features to avoid detection. Therefore, it is not enough to analyze the homology of malware
based on the binary image. From existing static analysis research, we can see that the
semantic information of the code segment, called the “white box feature”, should be
considered as the most important basis to represent a malware feature (Gandotra, Bansal
& Sofat, 2014). Compared with other existing works of malware homology determination

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 3/22

http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

based on visualization, our method makes the malware feature information more specific.
The targeted semantic information features of the code segment are extracted and
converted into the opcode image while using the whole binary byte grayscale image.

A novel visualization method based on feature fusion is proposed for the malware
homology determination in this paper. The main contributions of this work are
summarized as follows:

(1) We transformed global structural features of the malware PE file into a bytecode
image and designed a construction method of the opcode image. The specific semantic
features contained in the code segment of the PE file were extracted and transformed into
the opcode image so as to make the malware features more specific.

(2) We proposed a dual-branch CNN model to fuse the features of the bytecode image
and opcode image to get an accurate and efficient malware family classification.

(3) The experimental results show that this method combines the global structure and
local semantic features of malware, and had a higher classification performance than single
feature or other major methods.

MATERIALS & METHODS
We proposed a method of malware homology determination based on malware
visualization and malware image classification. The overall architecture of the scheme is
shown in Fig. 1.

We converted the PE file of malware to a bytecode grayscale image with 8-bit as a unit
for malware visualization. We propose the opcode image, which is used to specify the code
segment information since the bytecode image mainly contains the global structure
features of malware and lacks the semantic information features of code segments.
First, we disassembled the PE file to access the assembly file of malware and selected the
most critical m opcodes as the feature analysis. Then the n-gram model was applied to
extract the sequence of opcodes as the feature, and each malware sample was transformed
to an m2-dimensional opcode sequence vector. The weight in the direction of each
opcode sequence in the vector was represented by the product of frequency and

Malware Samples

Malware Visualization

Step1: Overall PE Structural Feature Processingp

Bytecode image
construction

g

Image
normalization

M l Vi li ti

Step2: Code-segment Semantic Feature Processing
Bytecode image

Opcode imageN-Gram feature
extraction

Disassemble

Opcode selection

Opcode image
construction

Opcode sequence
vector

Dual-branch CNN
model

Malware family
classification

result

Step3: Malware Image
Classification

Figure 1 Overview of the proposed method. Full-size DOI: 10.7717/peerj-cs.494/fig-1

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 4/22

http://dx.doi.org/10.7717/peerj-cs.494/fig-1
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

information gain rate. Finally, we transformed the m2-dimensional opcode sequence
vector into the m�m opcode grayscale image.

We designed a dual-branch CNN classification model for feature fusion, which took
the bytecode image and opcode image as the input of two branch networks to extract the
deep features of the malware image for malware image classification. Then, the feature
maps of the branch networks were fused and used as the final classification basis of the
Softmax classifier in the network to obtain the malware classification model with specific
features.

Malware visualization
We propose an improved method of malware visualization, including (1) converting the
PE file to a bytecode grayscale image; and (2) extracting the semantic information from the
PE file code segment and converting it to an opcode grayscale image.

Bytecode image construction
The process of converting a given executable file of malware, i.e., a PE binary file, to an
image is shown in Fig. 2. First, the 8-bit length was used as the unit to read in turn and
converted it into an integer in the range of 0 to 255, thus forming a one-dimensional
vector. Then, according to the fixed row width, we transformed it into a two-dimensional
matrix. The value range of each element in the matrix was the same as the image pixel
value, which was 0 to 255. This allowed the elements in the matrix to be mapped as pixels,
further converted into grayscale image, which we called bytecode images.

We set the width of the bytecode image to a fixed value, while the height depended on
the PE file size. Since the sizes of different malware files varied greatly, we adopted different
image widths for different file sizes, as shown in Table 1.

Opcode image construction
We obtained the global structure information of the malware PE file after retrieving the
bytecode image. We then specified the code segment of PE file and converted the opcode
feature information into an opcode image after disassembling the code segment.

The PE file of malware uses flat address space, so the code and data are stored in
different blocks in a more fixed format. For example, the code segment is specially applied

PE Binary File
（110111010110…)

Binary to
8 bit vector

Two-dimensional
matrix

Image pixel
mapping

Figure 2 Construction process of bytecode image. Full-size DOI: 10.7717/peerj-cs.494/fig-2

Table 1 Bytecode grayscale image size.

PE file size Image width

<1,024 kb 512

1,024–4,096 kb 1,024

>4,096 kb 2,048

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 5/22

http://dx.doi.org/10.7717/peerj-cs.494/fig-2
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

to store the program code of PE file. Although the information contained in the segment
has certain redundancy, it is obviously the most representative feature in the malware
information. Therefore, we used the assembly code features of this part to analyze the
homology of the malware.

We disassembled the malware sample in the PE format through IDA Pro, which
generated the “.asm” format assembly file. In assembly file text, “.text” or “CODE” was
typically used to identify each line of code instruction, where the instruction structure
contained the opcodes and operands. The operand is actually the memory address of a
function or variable. The malware variants with homology were obtained by a deforming
code, which may cause operands to change. The part of the opcode in the instruction
was unchanged or rarely changed in malware deformation (Bilar, 2007). Therefore, we
only used the opcode as the feature and did not consider the operands. We extracted the
opcode from the assembly code in the malware assembly file to get the opcode stream
(Fig. 3).

It should be noted that malware developers may use techniques such as code
obfuscation to disassemble, so that the disassembled program contains invalid interference
instructions or control flow graphs. However, the method proposed in this paper mainly
focuses on the statistical characteristics of each opcode sequence in malicious code, and
it is difficult for code obfuscation techniques to completely change this characteristic.

N-gram is a commonly used semantic feature model in natural language processing,
which considers that the occurrence probability of the nth word is only related to the
preceding n−1 word. Program code is essentially a text language, such as the assembly code
obtained above also has language structural and semantic features, so the n-gram model
was used as the feature analysis and extraction method of malware. We introduced the
n-gram model into the semantic information analysis of opcodes, and previous studies

Figure 3 Extraction of the opcode stream from malware assembly file.
Full-size DOI: 10.7717/peerj-cs.494/fig-3

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 6/22

http://dx.doi.org/10.7717/peerj-cs.494/fig-3
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

have shown that different malware families have different n-gram characteristics (Santos
et al., 2009; Li, Chen & Cui, 2017).

However, before extracting the n-gram features, we considered that there are many
very rare opcodes in the opcode stream of malware, and the n-gram sequence formed by
them only appears in a few malware and may be used by malware makers for code
obfuscation. Therefore, these opcodes did not contribute to our analysis because of their
capacity for rapid growth of the feature. In order to avoid the influence of rare opcodes on
the n-gram feature capacity, we first selected the key m opcodes according to their
probability before extracting the opcode sequence. For the set O composed of all the
opcodes in the training set X, the probability of the set element oi is calculated as follows:

p oið Þ ¼
P

xi2X freq oijxið ÞP
oi2O

P
xi2X freq oijxið Þ (1)

where freq oijxið Þ refers to the frequency of opcode oi in the sample xi that belongs to the
training set X. For the opcode stream extracted from specific malware samples, we deleted
the non-critical rare opcode to get a simplified opcode stream. In this way, we greatly
reduced the n-gram feature capacity, so as to improve the calculation efficiency for the
subsequent analysis.

For the simplified opcode stream, we use a sliding window with the size of 2 to extract a
series of 2-gram opcode sequences, and then counted the frequency of each sequence. In
this paper, we set the sequence length of opcodes to 2 instead of using a single opcode,
because most operations with malicious intent in malware need to be completed by
consecutive multiple opcodes. However, if we extracted a larger length of the opcode
sequence, the number of features would be greatly increased, resulting in a rapid increase
in computational overhead.

For some opcode stream of malware samples (Fig. 2), if the opcode ‘shl’ does not belong
to the m key opcodes screened, the final n-gram opcode sequence generated is
os1 ¼ and; subð Þ; os2 ¼ sub; xorð Þ; os3 ¼ xor; incð Þ… os12 ¼ cmp; jmpð Þ, and the
frequency of each sequence is 1.

We can constructm2 opcode sequences with the length 2 by means of the selectedm key
opcodes according to permutations and combinations in pairs, and then assign a weight
factor wi to each sequence osi to get a m2-dimension opcode sequence vector:

V ¼ os1;w1ð Þ; os2;w2ð Þ; . . . ; osm2 ;wm2ð Þf g (2)

The weight factor wi is calculated by a new computing method called TF-GR, and is
equal to the product of the word relative frequency tfi of the opcode sequence and the
information gain rate:

wi ¼ tfi � GR X; osið Þ (3)

where GR X; osið Þ represents the information gain rate of the opcode sequence osi to the
malware training set X. If there are l opcode sequences in a sample of malware, the

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 7/22

http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

frequency of occurrence of each osi is denoted by ni. The tfi and GR X; osið Þ of each osi for a
malware simple are calculated as follows:

tfi ¼ niPl
j¼1 nj

(4)

GR X; osið Þ ¼ H Xð Þ � H Xjosið Þ
H osið Þ (5)

where H Xð Þ and HðosiÞ represent the information entropy of dataset X and opcode
sequence osi respectively, HðXjosiÞ represents the conditional entropy of dataset X under
opcode sequence osi. If the data set X has k different families fc, c ¼ 1; 2; . . . ; k, and the
number of opcode sequence osi appears in all malware samples has s different values
numj osið Þ, j ¼ 1; 2; . . . ; s, then H Xð Þ; HðosiÞ and HðXjosiÞ can be expressed as follows:

H Xð Þ ¼ �
Xk
c¼1

p fcð Þlog2p fcð Þ (6)

H Xjosið Þ ¼
Xs

j¼1

p numj osið Þ� �
H X j num osið Þ ¼ numj osið Þ� �

(7)

H osið Þ ¼ �
Xs

j¼1

p numj osið Þ� �
log2p numj osið Þ� �

(8)

It is important to note that if a malware sample does not contain a specific opcode
sequence, the weight factor of the opcode sequence is equal to 0, because its frequency is 0.

In this subsection we converted the opcode sequence vector V obtained previously
into a grayscale image. We took m selected key opcodes as the horizontal axis and the
vertical axis of the image respectively, for images regarded as a pixel matrix and then
constructed an m�m opcode image matrix. The two-dimensional coordinates of each
point in the matrix were expressed as an opcode sequence with the length 2, as shown in
Table 2. Then, we mapped the opcode sequence vector to the image. The sequence in each
element of the vector was mapped to the position of a specific pixel point in the image
matrix, and the weight factor corresponding to the sequence was expressed as the pixel
value of the point.

Because the pixel value of the image is between the interval [0 255], we normalized the
weight factor so that its value fell within the range of pixel value as follows:

pixi ¼ wi

max wið Þ � 255 (9)

According to the above grayscale image generation method, we mapped the malware
opcode sequence vectors of different families to opcode images. The detailed opcode image
construction process is given in Algorithm 1. Figure 4 illustrates an example of different

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 8/22

http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

families of opcode images (image size 64� 64). Malware opcode images of different
families are visually distinct, while malware with homology has a high visual similarity in
opcode images due to the similar statistical characteristics of opcode.

Classification of malware image based on CNN
As a classical deep neural network, CNN is widely used in the field of computer vision and
speech processing. Compared with the general fully-connected neural network, CNN
mainly uses weight sharing, local sensing, and down-sampling techniques to greatly reduce
the number of weight parameters, thus significantly reducing the computation in model
training. Meanwhile, CNN directly takes the original image as the input, and the
convolution layer is responsible for the extraction of image features. As a result, there is no
need for additional feature extraction. Each convolution layer outputs a set of feature

Table 2 Opcode image matrix.

opcode1 opcode2 opcode3 … opcodem

opcode1 o1; o1ð Þ o1; o2ð Þ o1; o3ð Þ . . . o1; omð Þ
opcode2 o2; o1ð Þ o2; o2ð Þ o2; o3ð Þ . . . o2; omð Þ
opcode3 o3; o1ð Þ o3; o2ð Þ o3; o3ð Þ . . . o3; omð Þ
… … … … … …

opcodem om; o1ð Þ om; o2ð Þ om; o3ð Þ . . . om; omð Þ

Algorithm 1 Opcode image construction.

Input:
files: malware assembly files;

Output:
images: pixel value of all opcode images;

1: for each file f in files

2: seq ← get_opcode_seq (f);

3: V ← get_seq_vector (seq);

4: Initialize an m�m matrix: image;

5: for each element os; wð Þ in V do

6: i; jð Þ ← map osð Þ;
7: if w ! ¼ 0 then

8: image i; jð Þ ¼ normalization wið Þ;
9: else

10: image i; jð Þ ¼ 0;

11: end for

12: images.add(image);

13: end for

14: return(images);

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 9/22

http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

graphs, and each feature graph represents a higher-order feature extracted by a specific
filter. We propose a dual-branch CNN model suitable for the classification of malware
images, which fuse the features of the bytecode image and opcode image to produce
classification results.

Image preprocessing

We preprocessed the malware image to meet the requirements of CNN for input data. The
CNN model is required to input image data of the same size when it performs a task such
as image classification. Moreover, in order to facilitate the subsequent convolution
operation, the length and width of image data should be the same. Due to the different sizes
of executable PE files of malware, the sizes of various converted bytecode images are also
different. Therefore, it is necessary to normalize all grayscale images.

A

B

C

D

Figure 4 Opcode images of different families. (A) Lollipop family. (B) Kelihos_ver3 family. (C) Keli-
hos_ver1 family. (D) Gatak family. Full-size DOI: 10.7717/peerj-cs.494/fig-4

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 10/22

http://dx.doi.org/10.7717/peerj-cs.494/fig-4
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

This paper uses four pixel values of the nearest neighbor in the original image to
determine a pixel value of the target image by means of bilinear interpolation algorithm,
which does not produce the sawtooth effect. The algorithm is more suitable for our
scenario than the nearest neighbor interpolation. The normalized size of the grayscale
image is a hyper-parameter, reflecting the relationship between classification accuracy and
computational expense (Zhang & Wu, 2006). The larger the normalized image size, the
more information CNN input data contains, resulting in better classification effect at a cost
of higher time consumption. However, the bytecode image and opcode image need to be
input to CNN as two channels at the same time. In order to facilitate the subsequent
feature fusion operation, we kept the two input data formats unified. The size of the
opcode image was m�m, so the bytecode image also needed to get the grayscale image of
m�m through sampling operation. Figure 5 shows a sample of a byte grayscale image
with the original size of 512 � 248 converted into 128 � 128 and 64 � 64 input images
after sampling.

Dual-branch CNN model design
We propose a dual-branch CNN model suitable for malware image classification as
shown in Fig. 6. Bytecode image and opcode image are used respectively as input of
dual-tunnel branch networks of the CNN model to extract the deep features of malware.
Then, the feature maps respectively obtained by the two branch CNN networks were
fused in the last fully-connected layer which served as the final classification basis of the
Softmax classifier. Specifically, each branch network consisted of two convolution layers
with the ReLU activation function. Their filter size was 3 × 3 and the number is 16 and 32,
respectively. Each convolution layer was followed by a max pooling layer, where the
pooling size was 2 × 2 and stride was 2. Figure 6 shows a 64 × 64 figure as an example, and
32 feature maps with the size of 16 × 16 were output from each branch network after two
rounds of convolution feature extraction. We fused the feature maps to get 64 feature
maps. Since the output of the pooling layer was multidimensional, it was necessary to
use the flattened layer to convert multidimensional nodes into one-dimensional nodes as
the input of the fully-connected layer D1 with 512 nodes. In order to prevent over-fitting,

512×248

64×64

128×128
Figure 5 Reshape the bytecode image to a fixed size square image.

Full-size DOI: 10.7717/peerj-cs.494/fig-5

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 11/22

http://dx.doi.org/10.7717/peerj-cs.494/fig-5
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

we also added the dropout layer after the fully-connected D1 layer. The final part of the
whole network model was the Softmax layer to output the family classification results.
The specificity of dual-branch CNN structure and parameters is shown in Table 3.

Convolution maps each position of the image to a new value through a linear
transformation to extract a simple feature of the data. Multi-layer convolution uses layer-
by-layer mapping to extract more complex abstract features of the image; the feature map
may be obtained using the activation function after convolution. The process of
convolution operation can be expressed as follows:

h ið Þ ¼ f
Xn

x¼1

Xn

y¼1

Xm

z¼1
ax;y;z � wi

x;y;j þ bi
� �

(10)

where ax;y;z represents the value of input data node x; y; zð Þ in the filter, and wi
x;y;j

represents the weight of the filter for the input node x; y; zð Þ. bi represents the bias
parameter corresponding to the output node. f ðÞ is the activation function. n represents
the length and width of the filter, and m indicates the depth of the filter.

The pooling layer was used for image feature downsampling and feature dimension
reduction. The data processing capacity was compressed while the effective information
was retained, which effectively reduced over-fitting and improved the fault tolerance of the

ConvolutionsConvolutions Pooling Pooling Full connection

D1

Softmax

Feature fusion

2×(16@64×64) 64@16×162×(16@32×32) 2×(32@32×32) 2×(32@16×16)

Figure 6 Architecture of the proposed dual-branch CNN model.
Full-size DOI: 10.7717/peerj-cs.494/fig-6

Table 3 The list of dual-branch CNN structure parameters.

Network layer type Size Output dimension

Input layer – (2, 1, 64, 64)

Convolutional layer 2 × (16 @ 3 × 3) filter (2, 16, 64, 64)

Max pooling layer 2 × 2, stride 2 (2, 16, 32, 32)

Convolutional layer 2 × (32 @ 3 × 3) filter (2, 32, 32, 32)

Max pooling layer 2 × 2, stride 2 (2, 32, 16, 16)

Fully connected layer 512 nodes (512,1)

Output layer – 1

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 12/22

http://dx.doi.org/10.7717/peerj-cs.494/fig-6
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

model. For the input feature map, new smaller size features were obtained through the
pooling operation of Formula (11).

Yiþ1
j ¼ downsamp Yi

j

� �
þ biþ1

j (11)

where downsamp ð�Þ represents the downsampling mode under image features, and biþ1
j

represents the bias parameter. In general, max-pooling or mean-pooling can be selected for
pixels in the field determined by the filter. We found that the pooling layer of the CNN
adopts the max pooling image feature subsampling method.

EXPERIMENTS AND RESULTS
Experimental data
In order to verify the effectiveness of our proposed method, we used real malware
dataset (Big 2015 provided by Microsoft) as the experimental data (Kaggle, 2015). Since the
dataset does not publish the family label of the malware in the test set, we only use the
malware samples in the training set. The training set of the dataset contains 10,868
malware program samples from nine families. Each malware sample in the dataset has a
binary representation of the executable file and its corresponding disassembly file. It
should be noted that, since the disassembly file is directly provided in the malware samples,
there was no need to use IDA Pro to perform the disassembly operation during the
experiments. Table 4 shows the family distribution of malware programs present in the
dataset.

Experimental design
The experimental environment adopted Intel i7-9700 CPU @ 3.00 GHz, with 32.0 GB of
RAM, and the GPU was GeForce RTX 2060S. Tensorflow was used to conduct deep
learning classification of malware images for the dataset.

We tested different hyper-parameters to determine the best classification model. The
hyper-parameters to tune the dual-branch CNN model are listed in Table 5. We adjusted
the hyper-parameters in the search space, and then found the best value. For example,
when the number of epoch exceeded 20, the model test results did not continue to improve,

Table 4 The sample distribution of the dataset.

Family Sample number Family ID

Ramnit 1,541 1

Lollipop 2,478 2

Kelihos_ver3 2,942 3

Vundo 475 4

Simda 42 5

Tracur 751 6

Kelihos_ver1 398 7

Obfuscator.ACY 1,228 8

Gatak 1,013 9

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 13/22

http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

and the training time was longer, so this hyper-parameter was set to 20. The learning
rate was another important hyper-parameter, which determined whether the objective
function converges to a local minimum and when. A proper learning rate can make the
objective function converge to a local minimum in proper time. We set the initial learning
rate to 0.0013. In addition, we set the decay of learning rate to 0.02. The learning rate
gradually decreased as the number of iterations increased, which sped up training in the
early stages of training. The learning rate during each iteration of training is as follows:

lriteration ¼ lriteration �1 � 1
1þ decay � iteration

(12)

where lriteration represents the learning rate at the iterationth. In addition, the classification
of malware families is a multi-classification problem, so we used categorical cross-entropy
as the loss function.

The accuracy measure was used to evaluate the overall classification performance, which
is essentially the number of correctly classified samples divided by the total number of
samples. In addition, in order to comprehensively evaluate our model, additional
evaluation metrics were adopted, including precision, recall and F-measure. Accuracy
is often misleading and using accuracy metrics alone can lead to one-sided results.
This situation occurs when the class imbalance is large, that is, the predicted results of
the model for all tasks are of the majority class, and the overall classification accuracy is
high, but the predictive ability of the minority class is poor (Gibert et al., 2019). Therefore,
it may be better to select a model that has lower accuracy but greater predictive ability of
the problem in some scenarios. The evaluation metrics are as follows:

Accuracy ¼
P

i2C TPi

N
(13)

Precision ¼
P

i2C TPiP
i2CðTPi þ FPiÞ (14)

Recall ¼
P

i2C TPiP
i2C TPi þ FNið Þ (15)

Table 5 Hyper-parameters to tune the dual-branch CNN model.

Hyper-parameter Search space Best value

Epoch 10–50 20

Batch training samples 64–512 128

Optimization algorithm SGD, Adadelta, RMSprop, Adam, Adagrad Adam

Initial learning rate 0.0001–0.01 0.0013

Decay of learning rate 0.001–0.1 0.02

Dropout probability 0.1–0.9 0.5

Loss function – categorical_crossentropy

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 14/22

http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

F �measure ¼ 2� Reacll� Precision
Reacllþ Precision

(16)

where N refers to the total number of samples in the dataset with k families. The
parameters such as TPi (True Positive), TNi (True Negative), FPi (False Positive) and
FNi (False Negative) are usually defined in binary classification problems. In this
paper, since our target task is a multi-class classification task with the malware families set
C, the definition of these parameters for a specific malware family i 2 C are shown as
follows:

� TPi refers to the number of samples classified as family i and actually belong to family i.

� TNi refers to the number of samples not classified as family i and actually do not belong
to family i.

� FPi refers to the number of samples classified as family i but actually do not belong to
family i.

� FNi refers to the number of samples not classified as family i but actually belong to the
family i.

In order to better evaluate our model, we used 10-fold cross validation. The dataset
was divided into 10 sub-samples. In each experiment, one sub-sample was used as the
validation set and the other nine sub-samples were used as the training set. The training
and testing of the model were performed in a loop 10 times, and then the average of the
results was taken as the final evaluation.

Effects of image size on classification performance
In our proposed method, the opcode image was composed of m key opcodes, which
means that the value of m was critical to the performance of the proposed model.
A lower value probably did not retain enough the important feature information
(i.e., lost discriminative information for a family) while higher values only increased the
computational time without increasing the classification accuracy. When m is equal to
16, 32, 64 and 128, respectively, the corresponding opcode image size will be 16 × 16, 32 ×
32, 64 × 64, 128 × 128. At the same time, the bytecode image was sampled to make it
consistent with the size of opcode image. We obtained various performance metrics of
sample classification under different m sizes through experiments (Table 6). Figure 7
shows the change of classification accuracy with the increase of training epochs under
different image sizes. It can be seen that after 20 epochs of model training, the classification

Table 6 Effects of image size on classification performance.

Image size Accuracy Precision Recall F1-measure Time (ms)

16 � 16 0.9154 0.9037 0.8934 0.8985 12

32 � 32 0.9641 0.9630 0.9672 0.9651 30

64 � 64 0.9905 0.9871 0.9833 0.9852 42

128 � 128 0.9907 0.9846 0.9812 0.9829 180

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 15/22

http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

performance achieved by 64 × 64 and 128 × 128 was highly similar. When m was greater
than 64, the performance did not have a positive correlation with the value of m, and
the time overhead was rapid growth. Therefore, in order to reduce the number of
calculations, the value of m should be fixed as 64. Malware images from the Big 2015
dataset were sampled to corresponding 64 × 64 pixels and the greater width and height did
not improve the performance of the classification model.

Effects of feature description on classification performance
Three different feature selections were adopted to assess the effects of the malware feature
description on the family classification performance and time overhead of the proposed
method, including global structural features (bytecode image), local semantic features
(opcode image), and structural and semantic features combined (bytecode and opcode
images). We obtained various performance metrics of sample classification under three
different feature descriptions through experiments (Table 7). Figure 8 shows the change of

Figure 7 Accuracy of malware classification with different size of image.
Full-size DOI: 10.7717/peerj-cs.494/fig-7

Table 7 Impact of different features description on classification performance.

Image type Feature Accuracy Precision Recall F-measure Time (ms)

bytecode structural 0.9201 0.9212 0.9224 0.9218 30

opcode semantic 0.9617 0.9534 0.9591 0.9562 38

bytecode+ opcode structural+
semantic

0.9905 0.9871 0.9833 0.9852 42

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 16/22

http://dx.doi.org/10.7717/peerj-cs.494/fig-7
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

classification accuracy with the increase of training epochs under different feature
combinations. The results show that the combination of structural and semantic features
was superior to individual structural features or individual semantic features in
classification performance. In terms of the single feature, the accuracy and F-measure of
the semantic features were 4.16% and 3.44% higher than structural features respectively, so
the proposed opcode image was more effective than the bytecode image for malware
classification. In terms of the fusion of semantic features and structural features, the
accuracy and F-measure improved by 7.04% and 6.34% when compared with that of
structural features only, and the length of time was acceptable. Therefore, this experiment
proves that the addition of fine-grained semantic features of the code segments can
improve the performance of malware family classification.

The confusion matrix and classification accuracy of various malware families based
on malware images of 64 � 64 is shown in Fig. 9. The sample number of Simda family
was only 42 and the effective classification information of this category was insufficient,
so the classification accuracy of this family was low in our experiment. However, the
accuracy of the Simda family was still over 83%, which was improved by nearly half
compared to using individual features. At the same time, we saw that the Obfuscator.ACY
family (family ID: 8) achieved a classification accuracy rate of 96%, which was 9% higher
than the single bytecode feature, indicating that our model can also achieve the ideal
classification effect for confused malware. The classification accuracy of other families has
also been improved to different degrees.

Figure 8 Accuracy of malware classification with different feature descriptions.
Full-size DOI: 10.7717/peerj-cs.494/fig-8

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 17/22

http://dx.doi.org/10.7717/peerj-cs.494/fig-8
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

Comparison with other works
To validate the advantages and efficiency of our proposed method, we compared our
model with five advanced malware classification models. These models respectively adopt
image feature extraction schemes based on malware grayscale image similar to bytecode
image (Nataraj et al., 2011a; Luo & Lo, 2017; Cui et al., 2019; Venkatraman, Alazab &
Vinayakumar, 2019) and text feature extraction scheme (Santos et al., 2013). As shown
in Table 8, in terms of bytecode images, the accuracy of traditional image feature extraction
technology such as Gist and local binary pattern (LBP) only reaches about 90%, while
the accuracy of using CNN to classify malware images exceeds 95%, and the F-measure is
also higher. These methods feed the image directly into the CNN network without
additional feature extraction. Therefore, CNN is more suitable for the scenario of
malware image classification than the traditional image feature extraction technology.
The classification accuracy of n-gram text features is also about 90%, which are similar
to the classification effect of bytecode images based on traditional image feature
extraction technology. The double image feature fusion method proposed in this paper
comprehensively considers the code segment n-gram feature and bytecode image of the
malware, which has a higher classification accuracy (99.05%) and F-measure (98.52%)
than other methods. The result shows that the fusion of the overall structural feature and

Figure 9 Confusion matrix of nine families for different feature descriptions. (A) Bytecode image feature. (B) Opcode image feature. (C)
Bytecode+Opcode image feature. Full-size DOI: 10.7717/peerj-cs.494/fig-9

Table 8 Proposed model compared with other methods.

Method Accuracy Precision Recall F-measure

Gist+KNN (image) 0.8897 0.9150 0.9122 0.9081

LBP+KNN (image) 0.9110 0.9198 0.9563 0.9137

CNN (image) 0.9760 0.9310 0.8871 0.9085

Hybrid of CNN and GRU (image) 0.9651 0.9517 0.9439 0.9478

N-gram + KNN (text) 0.8908 0.8891 0.9197 0.9119

Proposed method 0.9905 0.9871 0.9833 0.9852

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 18/22

http://dx.doi.org/10.7717/peerj-cs.494/fig-9
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

the fine-grained feature of the opcode is effective for determining the homology of the
malware family.

CONCLUSIONS
We proposed a novel family classification method based on image visualization and feature
fusion for homology determination of malware variants. We converted the malware
executable into two feature representations of bytecode image and opcode image. The
bytecode image represented the global structural features of the malware file, which was
converted from binary file to grayscale image. Opcode images represented the local
fine-grained features of malware code segments. The construction methods included key
opcode extraction, n-gram feature extraction, opcode sequence vector and opcode image
generation. We built a malware image classification model of dual-channel CNN using
these construction methods, which fused the double image features and obtain homology
determination results. We adopted the real dataset (Big 2015) from Microsoft Malware
Classification Challenge to train and evaluate the model. Our results showed that the
model had a 99.05% accuracy. Our proposed model improves the classification accuracy by
9%, particularly with confusing malware families, compared with using a single image
feature. Compared with other major methods, our method outperforms others in the
homology determination of the malware variants from different families.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Key Research and Development Program of
China (Grant No. 2018YFB2100403). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Key Research and Development Program of China: 2018YFB2100403.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Xuejin Zhu conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Jie Huang conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

� Bin Wang conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 19/22

http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

� Chunyang Qi performed the experiments, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

Data and code are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.494#supplemental-information.

REFERENCES
Bailey M, Oberheide J, Andersen J, Mao Z, Jahanian F, Nazario J. 2007. Automated classification

and analysis of internet malware. In: Proceedings of the 10th International Conference on Recent
Advances in Intrusion Detection, 178–197.

Bilar D. 2007. Opcodes as predictor for malware. International Journal of Electronic Security and
Digital Forensics 1(2):156–168 DOI 10.1504/IJESDF.2007.016865.

Catak FO, Yazi AF, Elezaj O, Ahmed J. 2020. Deep learning based sequential model for malware
analysis using Windows exe API Calls. PeerJ Computer Science 6(81):285–307
DOI 10.7717/peerj-cs.285.

Chu Q, Liu G, Zhu X. 2020. Visualization feature and CNN based homology classification of
malicious code. Chinese Journal of Electronics 29(1):154–160 DOI 10.1049/cje.2019.11.005.

Conti G, Bratus S, Shubina A, Sangster B, Ragsdale R, Supan M, Andrew L, Perez-Alemany R.
2010. Automated mapping of large binary objects using primitive fragment type classification.
Digital Investigation 7:S3–S12 DOI 10.1016/j.diin.2010.05.002.

Cui Z, Du L, Wang P, Cai X, ZhangW. 2019.Malicious code detection based on CNNs and multi-
objective algorithm. Journal of Parallel and Distributed Computing 129(5):50–58
DOI 10.1016/j.jpdc.2019.03.010.

Cui Z, Xue F, Cai X, Cao Y, Wang GG, Chen J. 2018. Detection of malicious code variants based
on deep learning. IEEE Transactions on Industrial Informatics 14(7):3187–3196
DOI 10.1109/TII.2018.2822680.

Egele M, Scholte T, Kirda E, Kruegel C. 2012. A survey on automated dynamic malware-analysis
techniques and tools. ACM Computing Surveys 44(2):1–42 DOI 10.1145/2089125.2089126.

Gandotra E, Bansal D, Sofat S. 2014. Malware analysis and classification: a survey. Journal of
Information Security 5(02):56–64 DOI 10.4236/jis.2014.52006.

Ghouti L, Imam M. 2020. Malware classification using compact image features and multiclass
support vector machines. IET Information Security 14(4):419–429
DOI 10.1049/iet-ifs.2019.0189.

Gibert D, Mateu C, Planes J, Vicens R. 2019. Using convolutional neural networks for
classification of malware represented as images. Journal of Computer Virology and Hacking
Techniques 15(1):15–28 DOI 10.1007/s11416-018-0323-0.

Goldberg L, Goldberg P, Phillips C, Sorkin G. 1998. Constructing computer virus phylogenies.
Journal of Algorithms 26(1):188–208 DOI 10.1006/jagm.1997.0897.

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 20/22

http://dx.doi.org/10.7717/peerj-cs.494#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.494#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.494#supplemental-information
http://dx.doi.org/10.1504/IJESDF.2007.016865
http://dx.doi.org/10.7717/peerj-cs.285
http://dx.doi.org/10.1049/cje.2019.11.005
http://dx.doi.org/10.1016/j.diin.2010.05.002
http://dx.doi.org/10.1016/j.jpdc.2019.03.010
http://dx.doi.org/10.1109/TII.2018.2822680
http://dx.doi.org/10.1145/2089125.2089126
http://dx.doi.org/10.4236/jis.2014.52006
http://dx.doi.org/10.1049/iet-ifs.2019.0189
http://dx.doi.org/10.1007/s11416-018-0323-0
http://dx.doi.org/10.1006/jagm.1997.0897
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

Han KS, Lim JH, Kang B, Im EG. 2015. Malware analysis using visualized images and entropy
graphs. International Journal of Information Security 14(1):1–14
DOI 10.1007/s10207-014-0242-0.

Kaggle. 2015. Microsoft malware classification challenge (big 2015). Available at https://www.
kaggle.com/c/malware-classification/data (accessed 6 October 2020).

Kolosnjaji B, Zarras A, Webster G, Eckert C. 2016. Deep learning for classification of malware
system call sequences. In: Australasian Joint Conference on Artificial Intelligence, 137–149.

Li P, Chen Z, Cui B. 2017. Detecting malware based on opcode N-gram and machine learning. In:
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 99–110.

Luo J, Lo DC. 2017. Binary malware image classification using machine learning with local binary
pattern. In: IEEE International Conference on Big Data (Big Data). Piscataway: IEEE, 4664–4667.

McAfee. 2019. McAfee labs threats report: August 2019. Available at https://www.mcafee.com/
enterprise/en-us/threat-center/mcafee-labs/reports.html (accessed 6 October 2020).

Mohamed G, Ithnin N. 2017. Survey on representation techniques for malware detection system.
American Journal of Applied Sciences 14(11):1049–1069 DOI 10.3844/ajassp.2017.1049.1069.

Morales JA, Albataineh A, Xu S, Sandhu R. 2010. Analyzing and exploiting network behaviors of
malware. In: International Conference on Security & Privacy in Communication Systems, 20–34.

Moser A, Kruegel C, Kirda E. 2007. Limits of static analysis for malware detection. In: Annual
Computer Security Applications Conference, 421–430.

Narouei M, Ahmadi M, Giacinto G, Takabi H, Sami A. 2015. DLLMiner: structural mining for
malware detection. Security and Communication Networks 8(18):3311–3322
DOI 10.1002/sec.1255.

Nataraj L, Karthikeyan S, Jacob G, Manjunath BS. 2011a. The malware images: visualization and
automatic classification. In: Proceedings of the 8th International Symposium on Visualization for
Cyber Security, 1–7.

Nataraj L, Yegneswaran V, Porras P, Zhang J. 2011b. A comparative assessment of malware
classification using binary texture analysis and dynamic analysis. In: Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence. New York: ACM, 21–30.

Park Y, Reeves D, Mulukutla V, Sundaravel B. 2010. Fast malware classification by automated
behavioral graph matching. In: Proceedings of the Sixth Annual Workshop on Cyber Security and
Information Intelligence Research, 1–4.

Qiao Y, Yang Y, He J, Tang C, Liu Z. 2013. CBM: free, automatic malware analysis framework
using API call sequences. Advances in Intelligent Systems and Computing 214(1):225–236
DOI 10.1007/978-3-642-37832-4_21.

Rieck K, Holz T, Willems C, Düssel P, Laskov P. 2008. Learning and classification of malware
behavior. In: International Conference on Detection of Intrusions and Malware and Vulnerability
Assessment, 108–125.

Santos I, Brezo F, Ugarte-Pedrero X, Bringas PG. 2013. Opcode sequences as representation of
executables for data-mining-based unknownmalware detection. Information Sciences 231:64–82
DOI 10.1016/j.ins.2011.08.020.

Santos I, Penya YK, Devesa J, Bringas PG. 2009. N-grams-based file signatures for malware
detection. In: International Conference on Enterprise Information Systems, 317–320.

Venkatraman S, Alazab M, Vinayakumar R. 2019. A hybrid deep learning image-based analysis
for effective malware detection. Journal of Information Security and Applications 47(11):377–
389 DOI 10.1016/j.jisa.2019.06.006.

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 21/22

http://dx.doi.org/10.1007/s10207-014-0242-0
https://www.kaggle.com/c/malware-classification/data
https://www.kaggle.com/c/malware-classification/data
https://www.mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html
https://www.mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html
http://dx.doi.org/10.3844/ajassp.2017.1049.1069
http://dx.doi.org/10.1002/sec.1255
http://dx.doi.org/10.1007/978-3-642-37832-4_21
http://dx.doi.org/10.1016/j.ins.2011.08.020
http://dx.doi.org/10.1016/j.jisa.2019.06.006
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

Yuan B, Wang J, Liu D, Guo W, Wu P, Bao X. 2020. Byte-level malware classification based on
markov images and deep learning. Computers & Security 92(2):1017401–10174012
DOI 10.1016/j.cose.2020.101740.

Zhang L, Wu X. 2006. An edge-guided image interpolation algorithm via directional filtering and
data fusion. IEEE Transactions on Image Processing 15(8):2226–2238
DOI 10.1109/TIP.2006.877407.

Zolotukhin M, Hamalainen T. 2014. Detection of zero-day malware based on the analysis of
opcode sequences. In: IEEE 11th Consumer Communications and Networking Conference.
Piscataway: IEEE, 386–391.

Zhu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.494 22/22

http://dx.doi.org/10.1016/j.cose.2020.101740
http://dx.doi.org/10.1109/TIP.2006.877407
http://dx.doi.org/10.7717/peerj-cs.494
https://peerj.com/computer-science/

	Malware homology determination using visualized images and feature fusion
	Introduction
	Materials & methods
	Experiments and results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

