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ABSTRACT
The cross-modal retrieval (CMR) has attracted much attention in the research
community due to flexible and comprehensive retrieval. The core challenge in CMR
is the heterogeneity gap, which is generated due to different statistical properties of
multi-modal data. The most common solution to bridge the heterogeneity gap is
representation learning, which generates a common sub-space. In this work, we
propose a framework called “Improvement of Deep Cross-Modal Retrieval
(IDCMR)”, which generates real-valued representation. The IDCMR preserves both
intra-modal and inter-modal similarity. The intra-modal similarity is preserved by
selecting an appropriate training model for text and image modality. The inter-modal
similarity is preserved by reducing modality-invariance loss. The mean average
precision (mAP) is used as a performance measure in the CMR system. Extensive
experiments are performed, and results show that IDCMR outperforms over state-of-
the-art methods by a margin 4% and 2% relatively with mAP in the text to image and
image to text retrieval tasks on MSCOCO and Xmedia dataset respectively.

Subjects Data Mining and Machine Learning, Natural Language and Speech
Keywords Information retrieval, Multi-modal data, Cross-modal retrieval, Bag-of-words,
Convolutional neural network

INTRODUCTION
In the era of big data, multimedia data such as text, image, audio, and video are growing at
an unprecedented rate. Such Multi-Modal data has enriched people’s lives and become a
fundamental component to understand the real world. We access multi-modal data in
various situations like education, entertainment, advertisements, social media, which are
helpful to provide effective communication. Also, real-world articles use different
modalities to provide comprehensive information about any concept or topic. In recent
years, Image captioning and cross-modal retrieval (CMR) have become hot research
directions in vision-language tasks (Xu, Li & Zhang, 2020; Yanagi et al., 2020). The
difference between them is shown in Fig. 1. The image captioning system, as shown in
Fig. 1A and Fig. 1B, takes an image from the MSCOCO dataset (Lin et al., 2015b) and
retrieves the description of an image in the form of text. Here the retrieved information is
provided by both modalities (e.g., the word “cat” and pixels of “cat” are closed to each
other in a learning space). On the other hand, the CMR system provides flexible retrieval
where the user can give any modality as the input and retrieves any other modality as the
output. As shown in Fig. 1C and Fig. 1D, an image of “owl” from the XMedia dataset
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(“PKU XMediaNet Dataset”, http://59.108.48.34/tiki/XMediaNet/) can be explained with
multiple texts, which is not visible from the image only. Such comprehensive retrieval from
the CMR system is widely used in applications like hot topic detection and personalized
recommendation (Peng et al., 2017).

The real challenge in CMR is the heterogeneity gap (Wang et al., 2016b), which is
generated due to the different statistical properties of each modality. For example, an
image representation is real-valued and dense in the form of pixels, whereas text
representation is sparse and discrete. Such a different representation of each modality does
not allow a direct comparison for retrieval. The most common solution to bridge the
heterogeneity gap is to generate a common sub-space (Zhen et al., 2019) using a function,
which transforms the different representation of modalities into a common representation,
such that direct retrieval is possible. Many approaches for CMR have been proposed in the
past to generate a common sub-space, which is categorized into binary-valued and real-
valued representation. The binary-valued representation maps heterogeneous data into
the encoded form using a hash function. The advantage of binary-valued representation is
less storage, which leads to faster retrieval because hamming distance can be computed
faster with the help of binary code using bit operations. However, binary-valued
representation suffers from information loss, which leads to unsatisfactory performance.
In this paper, real-valued representation is considered, which stores actual representation.
Previous CMRmethods like spectral hashing (SH) (Weiss, Torralba & Fergus, 2009), cross-
view hashing (CVH) (Kumar & Udupa, 2011), inter-media hashing (IMH) (Song et al.,

(A)

(C) (D) 

(B)

Figure 1 Image-Text pairs fromMSCOCO and Xmedia dataset. (A) A cat is sleeping on top of an open
laptop computer. (B) Tomatoes, bananas and peaches are sitting on a covered table. (C) The owl is one of
the most widespread of all birds, which is found almost everywhere in the world except polar and desert
regions, Asia north of the Himalayas, most of Indonesia, and some Pacific islands. (D) An ambulance is a
vehicle for transportation of sick or injured people to, from or between places of treatment for an illness
or injury, and in some instances will also provide out of hospital medical care to the patient.

Full-size DOI: 10.7717/peerj-cs.491/fig-1
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2013), collective matrix factorization hashing (CMFH) (Ding, Guo & Zhou, 2014),
semantic correlation maximization (SCM) (Zhang & Li, 2014), Latent semantic sparse
hashing (LSSH) (Zhou, Ding & Guo, 2014) and semantic preserving hashing (SePH)
(Lin et al., 2015a) perform feature learning and correlation learning as an independent
process to generate a common sub-space. All these CMR methods perform feature
learning using scale-invariant feature transform (SIFT) (Lowe, 2004) and histogram of
oriented gradients (HoG) (Hardoon, Szedmak & Shawe-Taylor, 2004). However, the
correlation learning ignores the correlation between different modalities during feature
learning, which may not achieve satisfactory performance. The standard statistical
correlation-based method is canonical correlation analysis (CCA) (Hardoon, Szedmak &
Shawe-Taylor, 2004), which learns linear projections from heterogeneous data, and a
common sub-space is generated. However, multi-modal data is involved with non-linear
relations, which cannot be learned with CCA. So, some kernel-based approach (Bhandare
et al., 2016) has been proposed which can handle the problem, but the selection of
the kernel function is one of the open challenges.

Motivated with great power and success of deep learning in the domain of
representation learning, a variety of approaches have been proposed, which generates a
common sub-space. The work presented in (Ngiam et al., 2011), proposes a deep auto-
encoder (DAE) to learn the correlation between multi-modal data and a restricted
Boltzmann machine (RBM) to learn a common sub-space in an unsupervised way. In
(Srivastava & Salakhutdinov, 2014), a graphical-based model called deep Boltzmann
machine (DBM) is used which does not need supervised data for training, and each layer of
the Boltzmann machine adds more level of abstract information. In Jiang & Li (2016), a
framework called deep cross-modal hashing (DCMH) is proposed, which generates a
common sub-space in a supervised way, and similarity is preserved by forcing image
and text representation to be as close as possible. In Wang et al. (2016a), Convolutional
Neural Network (CNN) for image modality and Neural Language Model for text modality
is used to learn a common sub-space using a mapping function. The Euclidean
distance calculates the distance between image and text representation, which is useful for
cross-modal learning. In Zhen et al. (2019), a framework called deep supervised
cross-modal retrieval (DSCMR) is proposed, which uses CNN for image modality and
word2vec for text modality, which generates real-valued representation. A lot of work is
carried out in CMR, but the performance of the CMR system can be further improved by
maintaining both intra-modal and inter-modal similarity as much as possible. In this
paper, we propose a novel framework called “Improvement of Deep Cross-Modal Retrieval
(IDCMR)”, which generates a common sub-space by preserving similarity between image
and text modality. The objective function of IDCMR preserves both inter-modal and intra-
modal similarity. The main contributions of IDCMR are summarized as follow:

� The proposed framework IDCMR performs feature learning and correlation learning in
the same framework.

� Our proposed framework preserves intra-modal semantic similarity for text
modality. Experiments are performed using various vectorization methods on
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Multi-Modal datasets for the selection of an appropriate vectorization method for
text modality.

� The IDCMR generates real-valued representation in the common sub-space, which
preserves inter-modal and intra-modal similarities between image and text modality.

� The mean average precision (mAP) is used as a performance measure, and a comparison
of the proposed framework is made with state-of-the-art methods.

The rest of the paper is divided as follows. “Background and Literature Survey” gives
the background of vectorization methods for text modality. “Materials & Methods” covers
the proposed model and the proposed algorithm. “Results” covers experiments and
discussion. At last, “Conclusions” gives the conclusion of our work.

Background and literature survey
The biggest challenge in natural language processing (NLP) is to design algorithms, which
allows computers to understand natural language to perform different tasks. It is
recommended to represent each word in form of a vector as most of the machine learning
algorithms are not capable of processing text directly in its raw form. The process of
converting a word into a vector is called vectorization, which represents each word
into vector space. Broadly the vectorization methods are categorized into (a) local
representation method and (b) distributional representation method. The most common
local representation method is called bag-of-words (BoW), where each word is represented
as RjVj�1 vector with all 0’s and one 1 at the index of the word in the corpus. However,
the generated matrix is sparse in nature, which is inefficient for computation, and the
similarity between different words is not preserved, as the inner product between two
different one-hot vectors is zero. On the other hand, in distributional representation, each
word wi in the corpus is represented by featurized representation, which is denoted as wi ∈
Rd , where each word is represented in d dimensions.

The distributional representation generates distributional word vectors, which follows
the concept of the distributional hypothesis (Mikolov et al., 2013b), which states that words
that occur in the same contexts tend to have similar meanings. The distributional word
vectors are generated from count-based models or prediction based models. The count-
based models generate implicit distributional vectors using dimensionality-reduction
techniques, which map data in the high-dimensional space to a space of fewer latent
dimensions. The most popular method is singular value decomposition (SVD) (Van Loan,
1976), which generates embedding of each word in the vocabulary using matrix
factorization, but fails when the dimensionality of matrices is very large as the
computational cost for m × n matrix is O (mn2). The most popular count-based method
is Glove (Mikolov et al., 2013b), which generates implicit vector and achieve better
performance in comparison with other matrix-based methods. Another broader
classification for the generation of distributional word vector is prediction based models,
which are neural network based algorithms. Such models directly create low-dimensional
implicit distributional representations. An example of such a model is word2vec.
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The below section covers a detailed description of the generation of word vectors using
Glove and word2vec.

word2vec
The word2vec is a feed-forward based neural network, which has two algorithms:
continuous bag-of-words (CBOW) and skip-gram (SG) (Mikolov et al., 2013a, 2013b).
Figure 2 (Mikolov et al., 2013a) shows a description of CBOW and SG where CBOW
predicts the probability of center word w(t) and SG predicts the probability of surrounding
words w(t + j).

Working of SG model
SG predicts the probability of surrounding given a center word. For training of the
network, there is an objective function that maximizes the probability of surrounding
words given center word for each position of text t in the window size of m.

J0 uð Þ ¼
YT
t¼1

Y
�m�j�m

j6¼0

Pðwtþj jwt ; uÞ (1)

Here Pðwtþj jwtÞ is probability of surrounding words wtþj given center word wt.
Equation (1) can be rewritten as Eq. (2)

wt can be rewritten as

J uð Þ ¼ � 1
T

XT
t¼1

X
�m�j�m

j 6¼0

logPðwtþj jwt ; uÞ (2)

Figure 2 Description of CBOW and SG. (A) CBOW (B) SG.
Full-size DOI: 10.7717/peerj-cs.491/fig-2
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Pðwtþj jwtÞ can be rewritten as P ojcð Þ, which specifies the probability of surrounding

words o given center word c, and softmax function is used to generate probability.

P ojcð Þ ¼ eu
T
0 vcPV

w¼1 e
uTwvc

(3)

where u0 specifies vector representation of the surrounding word at index 0 and vc specifies
the vector representation of center word. Equation (3) can be applied in Eq. (2),

J uð Þ ¼ log
eu

T
0 vcPV

w¼1 e
uTwvc

(4)

Now, the objective is to optimize vc and uw. So need to take the derivative with respect to vc
and uw.

J uð Þ ¼ @

@vc
log eu

T
0 vc � @

@vc
log

XV
w¼1

eu
T
wvc (5)

where,

@

@vc
log eu

T
0 vc ¼ u0 (5a)

@

@vc
log

XV
w¼1

eu
T
wvc ¼ 1PV

w¼1 e
uTwvc

� @

@vc

XV
w¼1

eu
T
wvc (5b)

¼ 1PV
w¼1 e

uTwvc
� @

@vc

XV
x¼1

eu
T
x vc

¼ 1PV
w¼1 e

uTwvc
�
XV
x¼1

@

@vc
eu

T
x vc

¼ 1PV
w¼1 e

uTwvc
�
XV
x¼1

eu
T
x vc

@

@vc
eu

T
x vc

¼ 1PV
w¼1 e

uTwvc
�

XV
x¼1

eu
T
x vc ux

Combine (5.a) and (5.b),

J uð Þ ¼ u0 � 1PV
w¼1 e

uTwvc
�

XV
x¼1

eu
T
x vc ux

Above equation can be rewritten as

J uð Þ ¼ u0 �
XV
x¼1

P xjcð Þ: ux (6)

Where, u0 is the actual ground truth and P(x|c) is the probability of each surrounding
word x given the center word c, and ux is the average of all possible surrounding words. So
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cost function of SG guarantees that the probability of occurring surrounding words
maximizes given a center word.

Working of continuous bag-of-words model
CBOW predicts the probability of a center word given surrounding words. Input to
CBOW is d dimensional one-hot vector representation of a center word. The
representation of a center word is generated by multiplying d dimensional vector with the
weight matrix W of size p × d where p is the featurized representation of a word.

hp�1 ¼ WT
p�dxd ¼ Vc (7)

The above representation is a vector representation of the center word Vc. The
representation of outside words is generated by multiplying center representation with the
weight matrix W′.

ud�1 ¼ W0T
d�php�1 ¼ VT

wVc (8)

Where, Vc is a vector representation of the center word and Vw is a vector representation
of surrounding words. It is a prediction-based model so need to find the probability of a
word given the center word P(w|c).

yi ¼ P wjcð Þ ¼ j uið Þ ¼ euiP
i0 e

ui
¼ eV

T
wVcP

w02Text e
VT
w0Vc

(9)

There is an objective function, which maximizes P(w|c) by adjusting the hyper
parameters i.e., vc and vw.

l uð Þ ¼
X

w2Text
log Pðwjc; uÞ (10)

Put value of Eq. (9) in Eq. (10),

l uð Þ ¼
X

w2Text
log

eV
T
wVcP

w02Text e
VT
w0Vc

¼
X

w2Text
log eV

T
wVc �

X
w2Text

log
1P

w02Text e
VT
w0Vc

To optimize the hyper parameter, need to take derivation with respect to vc and vw.

@l
@vw

¼
X

w2Text
vc � 1P

w02Text e
VT
w0Vc

� @l
@w

eV
T
w0Vc

¼
X

w2Text
vc � 1P

w02Text e
VT
w0Vc

� eV
T
w0Vc � vc

¼
X

w2Text
vc � PðwjcÞvc

¼
X

w2Text
vc½1� PðwjcÞ�
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For optimization, gradient descent algorithm is applied and hyper parameter is
optimized.

Vw ¼ Vw � hVc 1� P wjcð Þ½ � (11)

Similar steps are followed for hyperparameter Vc.

Vc ¼ Vc � hVw 1� P wjcð Þ½ � (12)

So CBOW and SG preserve the semantic similarity by following the distributional
hypothesis in comparison with BoW model.

Glove (Count based method)
In contrast to word2vec, Glove captures the co-occurrence of a word from the entire
corpus (Pennington, Socher & Manning, 2014). Glove first constructs the global co-
occurrence matrix Xij, which gives information about how often words i and j appear in the
entire corpus. The size of the matrix can be minimized by the factorization process,
which generates a lower-dimensional matrix such that reconstruction loss is minimized.
The objective of the Glove model is to learn the vectors vi (vector representation of i
word) and vj (vector representation of j word), which are fruitful to information which
is in the form of Xij. The similarity between words is captured by finding the inner product

vTi vj, which gives similarity between words i and j. This similarity is proportional to P(j|i)

or P(i|j), where P(j|i) gives the probability of word j given the word i.

vTi vj ¼ log Pðj jiÞ
where, log Pðj jiÞ ¼ XijP

Xij
¼ Xij

Xi

vTi vj ¼ log Xij � log Xi (13)

Similarly,

vTj vi ¼ log Xij � log Xj (14)

Equations (15) and (16) are added,

2vTj vi ¼ 2 log Xij � log Xi � log Xj

vTj vi ¼ log Xij � 1
2
logXi � 1

2
log Xj (15)

Here vi and vj are learnable parameters and Xi, Xj is word specific biases, which will be
learned as well. The above equation can be rewritten as

vTj vi þ bi þ bj ¼ log Xij (16)

where bi is word specific bias for word i and bj is word specific bias for word j. All these
parameters are learnable parameters, whereas Xij is the actual ground truth that can be
known from the global co-occurrence matrix. Equation (16) can be formulated as an
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optimization problem, which gives the difference between predicted value using model
parameters and the actual value computed from the given corpus.

min
vi;vj;bi;bj

X
i;j

vTj vi þ bi þ bj � log Xij

� �2
(17)

In comparison with word2vec, Glove maintains both the local and global context of a word
from the entire corpus. To select an appropriate vectorization method, which maintains
intra-modal semantic coherence, the below section covers experiments performed using
different vectorization methods on Multi-Modal datasets. The Convolutional Neural
Network (CNN) is adopted for image modality in the proposed framework, as it has shown
promising performance in many computer vision applications (Bhandare et al., 2016).

MATERIALS & METHODS
Proposed framework for cross-modal retrieval
In this section, we present our proposed framework, which generates real-valued common
sub-space. It also covers the learning algorithm outlined in Algorithm 1.

Problem formulation
The proposed framework has image and text modality, which is denoted by

� ¼ Xi; Yið Þf gni¼1 where Xi and Yi is image and text sample respectively. Each instance of

Xi; Yið Þ has a semantic label vector Zi ¼ z1i; z2i; . . . :; zCi½ � 2 RC, where C is the number
of categories. The similarity matrix Sij = 1, if ith instance of image and text modality
matches to the jth category, otherwise Sij ¼ 0. The feature vectors of image and text
modality lie in different representation space, so direct composition is not possible
for retrieval. The objective is to learn two functions, ui ¼ f xi; uxð Þ 2 Rd and

vi ¼ g yi; uy
� � 2 Rd for image and text modality respectively, where d is the dimension

of a common sub-space. The ux and uy are hyper parameters of image and text modality,
respectively. The generated common sub-space allows direct comparison for retrieval even
though samples come from different statistical properties.

Proposed framework: Improvement of deep cross-modal retrieval
(IDCMR)
Figure 3 shows the proposed framework for image and text modality. The convolutional
layers of Convolutional Neural Network (CNN) for image modality are pretrained on
ImageNet, which generates high-level representation for each image. CNN has five
convolutional layers and three fully connected layers. Detailed configuration of the
convolutional layer is given in the proposed framework. Each convolutional layer contains
“f: num × size × size”, which specifies the number of the filter with specific size, “s”
indicates stride, “pad” indicates padding, and “pool” indicates downsampling factor.
The common representation for each image is generated by fully connected layers.
The number in the last fully connected layer (fc8) indicates the number of neurons or
dimensionality of the output layer. Similarly, the Glove model for text modality is
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pretrained on Google News, which represents each word in form of feature vector. The text
matrix is given to fully connected layers to learn the common representation for text.
To learn a common representation from image and text modality, the two sub-networks
share the weights of the last layers, which generate the same representation for semantic
similar image and text modality. In this work, real-valued coordinated representation is
generated, which preserves intra-modal and inter-modal semantic similarity. The inter-
modal similarity is preserved by minimizing the (i) discrimination loss in the label space J1.
The prediction of label from feature spaces is possible, by connecting a linear classifier
on top of each network. (ii) discrimination loss in text and image representation J2, and
(iii) modality-invariant loss J3 in the common sub-space. Further, the intra-modal
similarity is preserved by selecting an appropriate training model for each modality.

Algorithm 1 IDCMR.

Input:

� ¼ Xi;Yið Þf gni¼1 where Xi is the input image sample, and Yi is the input text sample of ith instance.

Zi ¼ z1i; z2i; . . . :; zCi½ � 2 RC where C is the number of categories Xi;Yið Þ ! cji
� �n

i¼1; 0 � j � C

Output:

The image representation U ¼ u1; u2; . . . :; un½ �, text representation V ¼ v1; v2; . . . :; vn½ �, hyper parameter hx of image modality, hyper parameter hy
of text modality, a common sub-space B.

Initialization

ux ¼ 0.1; uy ¼ 0:1,batch size=128,h ¼ 0:1; g ¼ 0:1,Ix ¼ n
batch size

l m
,Iy ¼ n

batch size

l m
where n is number of training data points.

Sij = 1 if (Xi,Yi) ∈ [z1i, z2i,….,zCi] 1 ≤ j ≤ C

Sij = 0 otherwise

Method

[Image Modality]

for iteration ¼ 1 to Ix

Step-1 Select 128 data points (batch size) from Image X and Word Vector Y

Step-2 Calculate learned image feature Ui ¼ f Xi; uxð Þ by forward propagation

Step-3 Calculate the learned text feature Vi ¼ g Yi; uy
� �

by forward propagation

Step-4 Calculate the discrimination loss in the label space. (Eq. (18))

Step-5 Calculate the discrimination loss of both text and image representation in the common sub-space. (Eq. (19))

Step-6 Calculate the modality wise invariance loss. (Eq. (23))

Step-7 Update the linear classifier C parameters by minimizing the cost function

C ¼ UUT
� ��1

UTSþ VVT
� ��1

VTS

Step-8 Update the parameters of image network and text network using stochastic gradient descent,

ux ¼ ux � h
@J
@ux

and uy ¼ uy � h
@J
@uy

end for
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The biggest challenge in text modality is to preserve semantic similarities between words.
There are many distributional representation methods available and the challenge is to
select an appropriate method, which preserves intra-modal similarity between different
words of text modality. The below section covers the learning algorithm, experiments of
different distributional models, and performance comparison of the proposed framework
with state-of-the-art methods.

[a] Calculate the discrimination loss in the label space
Once the features are learned from image and text modality, a linear classifier C is
connected to image and text sub networks, which predicts the semantic labels of the
projected features. This predicted label should preserve the semantic similarity with label
space. The discrimination loss in the label space is calculated by J1 using the following
equation:

J1 ¼
1
n
kCTU� SkF þ

1
n
kCTV� SkF (18)

where, ||·||F is Frobenius norm and n is the number of instances.

Figure 3 Proposed framework (IDCMR). Full-size DOI: 10.7717/peerj-cs.491/fig-3
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[b] Calculate the discrimination loss of both text and image modality in
the common sub-space
The inter-modal similarity is further preserved by minimizing discrimination loss from
image and text representation in the common sub-space, as denoted by Eq. (19).

J2 ¼
1
n

�
Xn
i;j¼1

½Sij uij � log 1þ uij
� ��

" #
þ 1
n

�
Xn
i;j¼1

½Sij jij � log 1þ jij

� �
�

" #
þ

1
n

�
Xn
i;j¼1

½Sij jij � log 1þ jij

� �
�

" # (19)

The first part of Eq. (19), preserves the semantic similarity between image
representation U and text representation V with similarity matrix S, which is denoted as,

uij ¼ UT
�i V�j

The above equation should maximize the likelihood

PðSij jU�i;V�jÞ ¼ Sij ¼ 1 when Sij ¼ 1

1� s uij
� �

when Sij ¼ 0 (20)

where sðuijÞ ¼ 1
1þ e�uij

is a sigmoid function that exists between 0 to 1, and it
is preferable when there is a need to predict the probability as an output. Since the
probability of anything exists between a range of 0 to 1, sigmoid is the right choice.

It is represented as,

PðSij jU�i;V�jÞ ¼ p ðs uij
� �ÞSij 1� s uij

� �� �1�Sij

¼
Xn
i;j¼1

½Sij uij þ log 1� uij
� �� (21)

Equation (21) can be rewritten as below cost function which forces representation uij to
be larger when Sij = 1 and vice versa.

J ¼ �
Xn
i;j¼1

½Sij uij � log 1þ uij
� �� (22)

So, here cost function forces uij to be larger when and vice versa.
The second part and third part of the equation measures the similarities with image

representation and text representations.

jij ¼ UT
�i U�j

jij is image representation, for instance, i and j whereas

fij ¼ VT
�i V�j

fij is text representation, for instance, i and j.
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[c] Calculate the modality wise invariance loss

J3 ¼
1
n
kU� VkF (23)

The final objective function is,

J ¼ J1 þ �J2 þ h J3 (24)

The final objective function of IDMR in Eq. (24) can be optimized during the stochastic
gradient descent algorithm. The � and h are hyper parameters. The J1, J2, and J3 are
the loss functions, used to preserve inter-modal similarity between image and text
modality. The proposed framework has used the sigmoid activation function, which is a
nonlinear function used to learn complex structures in the data. However, sometimes it
suffers from vanishing gradient descent, which prevents deep networks to learn from
learning effectively. The problem of vanishing gradient can be solved by using another
activation function, like rectified linear activation unit (ReLU).

RESULTS
To evaluate the effectiveness of the proposed framework, we have performed experiments
on well-known datasets MSCOCO (Lin et al., 2015b), Flickr8k (“Flickr8K”, https://kaggle.
com/shadabhussain/flickr8k), and XMedia (PKU XMediaNet Dataset, Supplemental File;
Zhai, Peng & Xiao, 2014; Peng et al., 2016), which are widely used in the studies. The
MSCOCO dataset has total of 3,28,000 images, which is divided into 91 categories and each
image is associated with at least 5 captions. The MSCOCO dataset consists of daily
scene images and their descriptions. The training set consists of 15,000 images and the
query set consists of 4,000 images. The Flickr8k dataset contains 8,000 images and each
paired with 5 different captions. The training set consists of 6,000 images and the testing
set consists of 1,000 images. The XMedia dataset has text, image, video, and audio
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modality, which has a total of 20 different categories and each category has 600 media
instances. The training set consists of 8,000 images and the testing set consists of 1,500
images. We perform experiments on GPU architecture, NVIDIA cuda cores-3840, the
memory size of 12 GB GDDR5X, 32 GB RAM, 2TB hard disk, and Intel Core i7 8th

generation. We have considered mean average precision (mAP) as a statistical
measure, which is used to measure the performance of the CMR system (Peng et al., 2017;
Yanagi et al., 2020).

Following is the analysis after performing experiments.

1. The biggest challenge in text modality is to preserve semantic similarity between
different words. Here experiments are carried out between different vectorization
methods like BoW, CBOW, SG, and Glove. The syntactic and semantic pairs are selected
from each Multi-Modal dataset like MSCOCO, Flickr8k, and XMedia. The cosine
similarity is used to calculate the similarity between different pairs of words. Figure 4
shows the performance of various vectorization methods on Multi-Modal datasets. The
experiment shows that Glove outperforms other vectorization methods. The Glove
achieves better performance as it can preserve the similarity of words by considering the
entire corpus. Due to better performance, Glove is selected as a vectorization method in
the proposed framework.

2. The objective function of IDMR generates real-valued representation of image and text
modality in the common sub-space, which preserves inter-modal and intra-modal
similarity. The performance of IDCMR is compared with state-of-the-art CMR
methods. Source codes of DCMH, DSCMR, SePH, SCM, DBM, and DAE are provided
by the corresponding authors. Figures 5, 6, 7, and 8 show the performance of IDCMR
on MSCOCO and XMedia dataset for image!text and text!image retrieval,
respectively. The experiment shows that IDCMR outperforms over state-of-the-art
methods in both image!text and text!image retrieval. The advantage of IDCMR over
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other state-of-the-art methods is that the objective function of IDCMR preserves both
inter-modal similarity and intra-modal similarity.

CONCLUSIONS
The work presented in the paper has proposed a framework called “Improvement of
Deep Cross-Modal Retrieval (IDCMR)”, which is restricted to image and text modality.
The generated heterogeneity gap is bridged by generating a common sub-space.
The nature of the common sub-space is real-valued, which preserves similarities
between different modalities. The uniqueness of our proposed framework is that we
consider both the inter-modal and intra-modal similarities between various modalities.
The proposed framework outperforms state-of-the-art methods in text!image and
image!text retrieval tasks on multi-modal datasets. However, there exist many types of
noise and redundancies in multi-modal data, which need to be resolved to improve the
performance of the CMR system. Here the proposed framework is restricted to image and
text modality, which can be extended to other modalities.
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