
A vehicle to vehicle relay-based task
offloading scheme in Vehicular
Communication Networks
Salman Raza1, Muhammad Ayzed Mirza2, Shahbaz Ahmad3,
Muhammad Asif3, Muhammad Babar Rasheed4,5 and Yazeed Ghadi6

1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing, China

2 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing,
China

3 Department of Computer Science, National Textile University, Faisalabad, Pakistan
4 Computer Engineering Department, University of Alcalá, Madrid, Spain
5 Department of Electronics and Electrical Systems, The University of Lahore, Lahore, Pakistan
6 Department of Software engineering/Computer Science, Al Ain University of Science and
Technology, Abu Dhabi, UAE

ABSTRACT
Vehicular edge computing (VEC) is a potential field that distributes computational
tasks between VEC servers and local vehicular terminals, hence improve vehicular
services. At present, vehicles’ intelligence and capabilities are rapidly improving,
which will likely support many new and exciting applications. The network resources
are well-utilized by exploiting neighboring vehicles’ available resources while
mitigating the VEC server’s heavy burden. However, due to the vehicles’ mobility,
network topology, and the available computing resources change rapidly, which are
difficult to predict. To tackle this problem, we investigate the task offloading schemes
by utilizing vehicle to vehicle and vehicle to infrastructure communication modes
and exploiting the vehicle’s under-utilized computation and communication
resources, and taking the cost and time consumption into account. We present a
promising relay task-offloading scheme in vehicular edge computing (RVEC).
According to this scheme, the tasks are offloaded in a vehicle to vehicle relay for
computation while being transmitted to VEC servers. Numerical results illustrate
that the RVEC scheme substantially enhances the network’s overall offloading cost.

Subjects Computer Networks and Communications, Distributed and Parallel Computing, Mobile
and Ubiquitous Computing
Keywords Vehicular edge computing, Mobile edge computing, Vehicular cloud computing,
Vehicular adhoc network, Task offloading

INTRODUCTION
The progress in the Internet of Things and wireless technologies put forward us prevalent
smart devices like smart vehicles, which can execute numerous powerful and innovative
applications (Raza et al., 2019). These applications include infotainment, automatic
driving, and traffic cognition (Zhou et al., 2017). However, as resources are ever-increasing
and performance requirements are more robust. Therefore, it is difficult for resource-
constrained vehicles to support such intensive computing applications (Fuqiang &
Lianhai, 2020).

How to cite this article Raza S, Ayzed Mirza M, Ahmad S, Asif M, Rasheed MB, Ghadi Y. 2021. A vehicle to vehicle relay-based task
offloading scheme in Vehicular Communication Networks. PeerJ Comput. Sci. 7:e486 DOI 10.7717/peerj-cs.486

Submitted 8 February 2021
Accepted 19 March 2021
Published 13 April 2021

Corresponding author
Muhammad Asif, asif@ntu.edu.pk

Academic editor
Tawfik Al-Hadhrami

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.486

Copyright
2021 Raza et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.486
mailto:asif@�ntu.�edu.�pk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.486
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Mobile cloud computing is introduced to cope with extensive computation
requirements and greatly enhances computation performance and resource utilization.
However, It also has its limitations due to the latency constraints while communicating
with backbone networks. Since cloud servers are at a great distance from moving vehicles,
this would lead to offloading effectiveness. Edge computing is presented as a way out,
whereby it brings the services of the cloud to the edge of the network (Feng et al., 2017;
Anavar et al., 2018) and facilitates computational offloading in the vicinity of the
mobile vehicular networks (Shakarami et al., 2020). In VEC networks, each computation
task has its own set of resource requirements (computational resources for executing the
task and communication resources for its transmission) as VEC servers operate near to
radio access networks and transfer task files with the help of associated roadside units
(RSUs) (Zhou et al., 2020). Therefore, their operational areas may be confined by RSUs
radio coverage. Vehicles are highly mobile, and they cross various RSUs and VEC servers
on their way, so the computation tasks might be offloaded to any of the VEC servers, which
they can access (Liu et al., 2020).

Due to the advancements in the internet of vehicles, there are more smart vehicles.
These vehicles are armed with the computation unit, multi-communication technology,
sensor platform, and human-machine interaction devices. With such progress in
technology, it is more feasible for these smart vehicles to provide smart traffic applications,
e.g., parking decisions, monitoring road traffic, and automatic management. Moreover,
different multimedia onboard applications exist for both passengers and drivers
(Boukerche & Soto, 2020). Such applications need high-grade computation. They have
delay limitations, particularly the ones that involve real-time interaction and video
processing like Image assisted navigation, immersive applications, and natural language
processing (Shakarami et al., 2020).

The applications having too stringent computation requirements in computation present
many constraints to the vehicular terminals, specifically their computational resources.
Since vehicles have low computation capacity and limited storage compared to VEC servers
(Raza et al., 2020). To address the ever-growing computation requirement of such
applications, task offloading to VEC servers via the vehicular cloud is an exciting idea.
However, exploiting the underutilized computational resources in a VEC environment is
also useful for reducing VEC congestion and overall system cost (Raza et al., 2019). Also,
vehicles often meet together for various purposes, such as passing through toll stations,
waiting for traffic lights, or attracted to a particular area specifically in an urban
environment. For instance, as we can observe in Fig. 1, the vehicles travel together due to
traffic lights and can utilize resources for a short time. These vehicles might have unused
resources for computing the tasks (Li et al., 2018). Accordingly, vehicles can offload the task
to those relay vehicles and enable the resource constraint vehicle and relaying vehicles to
cooperatively complete the task to minimize the task completion time (Guo et al., 2017).

Motivation
VEC servers provide reduced transmission cost and quick response to the computation
offloading service due to proximity. Nevertheless, compared to the conventional cloud, the

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 2/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

VEC server still faces resource limitations. VEC servers have a tight time duration to
perform computation tasks, particularly for the VEC servers, which are situated in highly
dense road segments and experience various computation demands. Also, vehicles can
communicate in a relay via V2V multi-hop connections as a considerable number of
vehicles present on the road. Therefore, exploiting the benefit of V2V communication and
using underutilized computational resources leads in terms of load balancing and latency
reduction in vehicular networks. Moreover, unlike that, some operators provide RSU
access services, V2V communication is self-organized by moving vehicles, and its cost is
lesser than Vehicle-to-Infrastructure (V2I) communication.

Contribution
Motivated by the facts mentioned above, we present a relay task/computation offloading
scheme in vehicular edge computing (VEC). Figure 1 illustrates the task offloading through
our proposed scheme. According to the scheme, the vehicles forward the input task
files in their moving direction to the VEC servers through V2V multi-hop. The relay
vehicle checks whether it has computational resources available to compute the task while
transferring the task file. If it has sufficient resources, it computes the task and sends the
desired vehicle’s output file.

They are otherwise based on the precise file transmission prediction and period spent by
the vehicle while on the road. The other vehicle may enter the transmission range of

Core &
Internet

V2V

Vehicle to eNB (V2N)

Vehicle to RSU (V2I)

Vehicle to Traffic Signal /Signage (V2I)

RSU / eNB to Core

RSUeNBTraffic Signal to RSU / eNB
Possible V2V Realying Path

Figure 1 Depiction of Vehicle-to-Vehicle (V2V) relaying in task offloading in an urban vehicular
edge computing environment. Full-size DOI: 10.7717/peerj-cs.486/fig-1

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 3/20

http://dx.doi.org/10.7717/peerj-cs.486/fig-1
http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

RSU_n the moment its task is completed. The computation result is transferred straightly
from RSU_n to the other vehicle via V2I transmission without multi-hop backhaul. Hence,
using both computation and communication resources of the vehicle can reduce the
overall system time and cost for the task offloading and network congestion. However, the
duration of transmission delay of V2V and V2I modes depends on the state of wireless
channels, the size of the input file, and the density of the road since beacons are the packets
sent periodically in a broadcast by vehicles to share its information like type, speed,
direction computation capacity, and channel state (Raza et al., 2020).

This paper put forward a promising relay task offloading scheme in vehicular edge
computing (RVEC). In this work, both the heterogeneous demands of computation
and communication tasks are examined by taking into account the vehicle dynamics.
This scheme enhances transmission efficacy while meeting the computation tasks’
delay constraint. Moreover, RVEC reduces the overall cost of the offloading process.
The significant contributions of this article are summarized as follows:

� This paper aims to minimize the overall offloading cost, including the computation and
communication cost, while meeting the VEC environment’s delay constraints to ensure
vehicular user quality of experience (QoE).

� We proposed an RVEC scheme, which allows vehicles to transfer the task to their
neighboring vehicle in their moving direction to the VEC servers via V2V multi-hop.
The V2V computation is done in the neighboring vehicle case with sufficient resources,
and the output returns to the vehicle in a relay fashion. This is conditional on the
maximum delay tolerance and the vehicle’s stay time. This scheme the overall offloading
latency and cost and network congestion.

� A distributed RVEC algorithm is designed for the proposed scheme. We evaluate the
impact of various parameters on the RVEC algorithm by comparing it with different
approaches. The results confirm that RVEC outperforms compared to the existing
solutions to minimize offloading cost, i.e., computation latency and communication
resource utilization.

The rest of this article is structured as follows. We review the related work in “Related
Work”. The system model is described in “System Model”. In “Relay Task Offloading
Scheme in VEC”, our proposed RVEC scheme is discussed, comprised of computation
mode and communication mode. The distributed RVEC algorithm is presented in
“The Distributed RVEC Algorithm”. We demonstrate numerical results in “Numerical
Results” and conclude the paper in “Conclusion”.

RELATED WORK
Recently, plenty of research has been done on the vehicular networks to use the
underutilized vehicular resources. In Yu et al. (2015), the authors provided a model for the
coalition game to manage vehicular resources and share them with various cloud service
providers. The soft data fusion and cognitive radio in vehicular networks are used and
developed a traffic offloading mechanism in a distributed environment for cognitive

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 4/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

vehicular cloud networks in Cordeschi, Amendola & Baccarelli (2015). Integrating vehicle
cloud and central cloud, in Zhang, Zhang & Du (2015), and offloading strategy was
proposed to find unused resources and perform task mitigation. Furthermore, the
authors prepared an architecture for vehicular fog computing that uses a corporation of
near-user edge devices and vehicles to accomplish computation and communication.
These studies are primarily concerned with utilizing the unused vehicular resources and
did not address the VEC server’s overload.

The most encouraging technical method to enhance cloud computing efficiency, Mobile
edge computing (MEC), has gathered the researchers’ substantial focus lately. Recent
works on MEC aims at minimizing latency by offloading computation-intensive and
latency-sensitive tasks to the neighboring RSUs or base stations for executing it remotely.
InMao, Zhang & Letaief (2016), while considering the offloading decision, a delay-optimal
computation offloading algorithm was presented. The authors in Liu et al. (2016)
presented a power-constrained delay minimization problem and formulated it as a one-
dimensional search algorithm. To study MEC (Chen et al., 2016) analyzed the problem of
multiuser MEC computation offloading into a multichannel wireless environment and
considered a distributed game-theoretic offloading approach. In Nunna (2015) studied
the collaborate MEC with fifth-generation to offer context-aware communication in
real-time. Compared with a mobile edge cloud concerning the application execution time
in Drolia et al. (2013), the core cloud performance is compared. In Cau et al. (2016),
the MEC servers’ mechanism was developed to utilize cloud-based packets virtualization
fully. In Chen et al. (2015), the authors developed an algorithm for offloading decision
making for the computation-extensive tasks as a multiuser game and attained a Nash
equilibrium. However, some prior studies analyzed to optimize the task offloading
decisions based on VEC servers or vehicles by using their respected resources without
simultaneously optimizing them.

A vehicular cloud network can manage massive computation-extensive tasks flexibly
and in a virtual manner (Huang et al., 2016; Xia et al., 2015). The work in Zheng et al.
(2015) presents a semi-Markov-based decision-making scheme for maximizing the
expected reward calculation for computation resource allocation of a vehicular cloud
computing network. The authors in Yu et al. (2015) presented a coalition game for
resource management among cloud service providers, in which the resources of the
cloud-enabled vehicular network are utilized effectively.

However, several studies emphasize vehicular cloud networks and MEC technologies; in
contemporary literature, few papers provide MEC research with vehicular cloud networks.
Moreover, the effect of several vehicular communication schemes on task offloading
performance and vehicle mobility has been overlooked. However, in Zhang et al. (2017),
the authors proposed a predictive combination-mode offloading scheme (PCMS),
pinpointing the vehicles’ transmission channel and reducing the offloading cost. Contrary
to these studies, we study the offloading mechanism in VEC and propose a relay task
offloading scheme by fully utilizing the computation and communication resources of
vehicles to enhance the QoE and reduce the overall cost network.

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 5/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

SYSTEM MODEL
We consider a one-way road that has a continuous flow of traffic. The RSUs are located
along the road. M is considered to be the distance between two RSUs where each RSU
provides wireless access to the vehicles that are within its vicinity. The communication
range is represented as M/2, and the road can be segregated into various length M
segments. Under the V2I communication mode, the vehicles moving along a road can only
approach the RSUs located along the given road segment.

The RSUs connect each other via an optical-fiber backbone, and a central controller
is also installed that controls the RSUs (Zhang et al., 2016). Each RSU has an attached VEC
server facilitating vehicles for roadside services and computation resource sharing but in a
limited capacity. For various applications, computation’s input data size is much larger
than the output, e.g., speech recognition (Chen et al., 2015). The task-input file may not be
transferred among the RSUs to improve the transmission of wireless backhauls. For that
reason, each VEC server only performs the computation for the RSU with which it is
associated. Nevertheless, as the output data is smaller than input, it can be transferred from
one RSU to another through wireless backhaul.

Every Vehicle runs with uniform speed along the road, facilitated by vehicular
communication protocols like dedicated short-range communication standards (Kenney,
2011). The Poisson distribution is followed by the vehicles on the road (Kenney, 2011).
The density of traffic concerning the number of vehicles per unit distance is λ. Every
Vehicle has an extensive computation task performed either locally by the vehicular
terminal, in a V2V relay, or by the VEC servers attached with the RSUs. Table 1 enlists
the key notations, while Fig. 1 depicts a scenario of a relay-based task offloading scheme
in the vehicular edge networks. We represent the computation task by T ¼ c; d; tmaxf g,
where c represents the required computational resources to complete task T. The c can be
measured as the required number of CPU cycles, and the d in the equation shows the
input file size of the computation task along with some necessary information on the
computation task, e.g., the programing instructions, shared variables, methods, or link
libraries, whereas tmax is the maximum latency tolerance of the task.

We classify the S types of the tasks and define the tasks as Ti ¼ ci; di; ti;max
� �

; i 2 N , to
analyze the task characteristics on the design of offloading schemes, N represents a total
number of vehicle types. According to the type of computation task, the vehicles are

Table 1 The notations.

Symbol Explanation

N Total number of vehicle types

qi The proportion of type-i tasks associated with vehicles

c Required CPU cycles for task completion

d Computation size of the input file.

tmax The task maximum delay tolerance

ti;j;k The time of the type-i task through relay vehicles

Ri;j;k The cost of the type-i task through relay vehicles

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 6/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

similarly categorized into N types. The type-i tasks associated vehicles from entire vehicles
present on the road have a proportion qi, where i 2 N and

PN
i¼1 qi ¼ 1. Table 1 enlists

the key notations while Fig. 1 depicts a scenario of a relay-based task offloading scheme in
the vehicular edge networks.

RELAY TASK OFFLOADING SCHEME IN VEC
The RVEC comprises computation and communication modes. We discuss each mode in
detail, which are as follows. Display style equations should be numbered consecutively,
using Arabic numbers in parentheses.

Computation mode
The task computation mode selection depends on the processing time requirement and
its impending cost. Each vehicle can choose to accomplish its computation task either
locally on its vehicular terminal, on another vehicle in a relay, or a VEC server. The task-
completion mode selection depends on the processing time requirement and the
corresponding cost.

Onboard computing
Here, we assume that all vehicles have homogeneous resources for computation. C0

represents the local vehicle resources. The vehicles with type-i tasks are categorized as Ti

vehicles. A type-i vehicle wishes to complete its task Ti locally through its onboard
computing, the execution time can be denoted by ti;obc ¼ Ci=C0, and the cost of onboard
computing is Ri;obc.

By satisfying (1), type-i vehicles will offload their computation tasks to other vehicles in
a relay or to the VEC servers to execute the tasks under delay constraints.

ti;obc > ti;max: (1)

Relay computing
We denote the relay vehicle computation resources as Cr . In this case, if a type-i vehicle
wishes to perform a computation task Ti through offloading and there are sufficient
resources available to accomplish this task. The task’s execution time is denoted by
ti;relay ¼ Ci=Cr , and the relay cost is represented as Ri;relay.

Moreover, if (2) is satisfied, type-i vehicles forward the tasks to the other vehicles or the
VEC servers to complete those tasks through delay constraints.

ti;relay > ti;max: (2)

VEC computing

When portions of the vehicles decide to select VEC computing mode, they offload VEC
servers’ tasks. Let Pi;j represent the probability of the offloaded tasks by the type-i vehicles
to the VEC servers connected to the RSUs j that are far from their present location (Zhang
et al., 2017).

The integral part of the offloading process’s delay is the time consumption of file
transmission from the vehicles to the VEC servers. Furthermore, to transmit data, the

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 7/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

distant VEC server implies increasingly wireless transmission hops and greater time
latency. We denote Ji;max as the highest possible hop to the VEC servers, which type-i
vehicles may offload tasks under the task’s delay constraints. The arrival and the fulfillment
of the computing tasks on a VEC server follow anM/M/1 queue. According to this queuing
design, for every VEC server, computation has an exponential distribution with a mean
service time 1=m. The time required to complete a task is given by:

texecute ¼ 1= m� �ð Þ; (3)

which indicates both the waiting and the computing execution time in a queue. Here is the
average task arriving rate at a VEC server and is defined as:

¼
XN

i¼1

XJi;max

j¼1

Pi;jri�: (4)

The operators always provide different services, i.e., maintenance of VEC servers,
computation, offloading, etc., by charging some fees against those facilities. Where the
computing cost for a type-i task on the VEC servers is defined as Ri;execute.

Communication mode
We compare V2I transmission with our proposed relay transmission approach concerning
time consumption and cost to validate our approach. This work’s communication
scheme is used to generate a realistic vehicular environment to study the task offloading
problem. Moreover,

we examine practical assumptions and measure the transmission rates for relay
transmission and V2I transmission according to our previous work (Raza et al., 2020).

Offloading through direct transmission
We consider a scenario in which a type-i vehicle travels on a road segment m. The vehicle
can directly reach the in-range RSU located on the road segment. We represent this RSU
as RSU m. If the mode followed by the vehicle is direct V2I mode, then it will directly
transfer the file to the RSU m. The process of file uploading is more manageable, less
time-consuming, and more cost-efficient. However, each computation task on the VEC
server requires execution time ti;execute. Since the vehicle moves with high mobility, it might
get out of the communication range of the RSU m before the execution time ti;execute.
Therefore, the output data requires to be transferred from the RSU m to the RSU at the
place of the vehicle's arrival. The transmission among these RSUs travel via wireless
backhauls.

Let the time delay and the cost for transferring the type-i task output through one road
segment are expressed by ti;backhaul and Ri;backhaul, respectively. The overall time
consumption of task completion via V2I mode is defined as:

ti;m ¼ ti;up þ ti;execute þ xi D ti;backhaul þ ti;down; (5)

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 8/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

where xi represents the number of road segments that a vehicle passes via during the time
sum of ti;execute, ti;up and ti;down. The overall cost of completion of the task in V2I mode is
calculated as follows:

Ri;m ¼ Ri;up þ Ri;execute þ xi D Ri;backhaul þ Ri;down: (6)

Offloading relay transmission
As the vehicles’ speed is high and tasks take more time in their execution, the vehicle gets
out of the VEC server’s proximity that executes the task. A longer delay might incur
additional cost and transfer process.

In such cases, when a vehicle offloads its task, it is first transmitted through the multi-
hop V2V relay transmission. As a worst-case scenario, if no vehicles have enough
computational resources in the relay, they keep on transferring the task to the next
vehicle in a relay. Until the file is transferred to an RSU via V2I by the vehicle at the
transmission relay’s destination hop. Therefore, the computation task is offloaded in
advance of time to the VEC server in the vehicle’s headway compared to the vehicle’s
current position. After the computation result/output reception, the VEC server saves the
output to the RSU associated with it. Whenever the offloading vehicle enters into the
communication range of RSU, it takes the output directly from the RSU.

Let ti;v2v represents the average time delay in transmitting type-i input task files via a
one-hop V2V relay to the destination VEC. The overall time consumption of type-i task
accomplishment to VEC offloading is given as follows:

ti;j ¼ yj D ti;v2v þ ti;up þ ti;execute þ ti;down; (7)

where j is represented as the hop count to the upload destination RSU ahead from the
vehicle’s present location. We represent yj as the V2V relay hops needed to transfer the
input task file to the j-hop away RSU. Additionally, the total cost of the type-i task to VEC
offloading can be similarly given as:

Ri;j ¼ yjDRi;v2v þ Ri;up þ Ri;execute þ Ri;down: (8)

Contrary to this, if any vehicle in the relay has sufficient computation resources
available, it will compute the task file while moving on the road. After completing the task,
the vehicle sends the output to the relay’s desired vehicle and earns some reward for both
computation and transmission. This process can reduce the overall cost and time to
execute the task. The time consumption of the type-i task through relay vehicles will be
defined as:

ti;j;k ¼ yjDti;v2v þ ti;relay þ ykDti;v2v: (9)

Likewise, the cost would be defined as:

Ri;j;k ¼ yjDRi;v2v þ Ri;relay þ ykDRi;v2v: (10)

By comparing Eqs. (9) & (7) and (10) & (8), we can interpret that if a vehicle in a relay
has sufficient resources, then the task would be computed by exploiting the underutilized

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 9/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

vehicular resources since the vehicle gets its output before reaching its destination, RSU.
Therefore, it is less time-consuming and more cost-efficient. On the other hand, with
comparison to the Eqs. (9) & (5) and (10) & (6), it can be figured out that Eq. (5) uses
computational network resources, while the time of uploading ti;up, downloading ti;down,
and backhaul ti;backhaul will also be saved in Eq. (9). The cost factor will also work on the
same principle as we neither use computational nor the network’s communication
resources.

The total offloading cost for our scheme is defined as:

R ¼ min Ri;m;Ri;j;k
� �

: (11)

Thus, offloading cost minimization problem for the proposed relay task offloading
scheme can be formulated as:

P1 : min
ti;j;ti;j;kð Þ

R

s:t: ti;obc; ti;j;k � ti;max; (12)

0 � Ci � C0;Ci � Cr;Ci � CVEC; 8n 2 N; (13)

Here, (12) denotes that the computation time for local, relay, and VEC server's
computation time should not exceed the maximum allowable delay tolerance. (13)
Confirms that the allocated computing resource for the vehicle i would not exceed the
comprehensive local resource, neighboring vehicle, and VEC server, respectively.

THE DISTRIBUTED RVEC ALGORITHM
Here, by taking advantage of the neighboring vehicles’ communication and computational
resources, we design an effective algorithm identified as a distributed RVEC Algorithm.
The main objective of the distributed RVEC Algorithm is to minimize the network’s
offloading cost.

Algorithm 1 presents a complete description of the proposed task offloading scheme.
This algorithm aims to fully utilize the vehicular resources to provide the ease to
overburden VEC servers. In Algorithm 1, each vehicle has a task that is computed locally
or offloaded to the neighboring vehicle for computation or the VEC server via the V2V
relay or directly. The process remains conditional to the maximum delay tolerance.
Here, Lines 3–5 are used to compute the task locally, and Lines 6–22 are used to offload the
task. Line 8 indicates that the task is transmitted in V2V for maximum hop in a relaying
fashion.

Moreover, Line 9–13 represent that if the time in relay computation is less than that
of maximum delay tolerance, then the vehicle having sufficient computation resources
computes the task and provides the output to the initial vehicle in the relay and gets the
reward for providing its communication and computational resources from the service
provider. The reward is received in terms of, i.e., electronic cash, free provision of network
resources in the future, etc. On the other hand, Line 14–17 illustrates that if the vehicle is

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 10/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

unable to be computed, it transmits the task to the next vehicle in the relay and earns
its reward for only providing communication resources. Line 19–21 indicates that if none
of the relaying vehicles can compute. Then the task will be transferred to the VEC server
for computation. After the desire computation, the VEC server transfers back the initial
vehicle results via the corresponding RSU.

The flowchart of Algorithm 1 is represented in Fig. 2, which illustrates the algorithm
more clearly. Also, it is worth noting that a vehicle recognizes its neighboring vehicles
through the beacons since beacons are the packets sent periodically in a broadcast by
vehicles to inform its type, speed, computation capacity, location, and channel state (Raza
et al., 2020).

NUMERICAL RESULTS
We demonstrate the performance results of our RVEC scheme in this section. We take
five RSUs positioned alongside a unidirectional urban road. The vehicles are moving at a
speed of 120 Km/h, and the vehicle’s density on the road is considered as λ = 0.3.

Algorithm 1 RVEC algorithm.

1 J = 0 for onboard computation, and J = 1 Choose to offload task.

2 while ti,max do

3 if J = 0 then

4 Local computation

5 end if

6 if J = 1 then

7 Offloads the Task-file to the relay vehicle

8 while !Pi,j do

9 if ti,j,k <= ti,max then

10 Vehiclei will compute this Task-file

11 Send output via V2V Relay to desired Vehicle

12 Vehiclei gets reward for providing its both transmission and computation resources

13 exit()

14 else

15 Vehiclei will transfer the Task-file to next vehicle

16 Vehiclei gets reward for providing its transmission resources

17 end if

18 end while

19 Offload task file to VEC server

20 VEC Compute the task file

21 Send output to Vehicle through RSU

22 end if

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 11/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

The vehicle’s computational tasks are categorized into four types with the probabilities
{0.01,0.2,0.3,0.4}. We figure out each task type’s computation resource as {9,18,26,33}
units, respectively, other simulation parameter values are shown in Table 2. Since the
resource requirement is the vital factor influencing offloading performance.

Start
j = 0 for local computation

j = 1 for offloading
while
t i , max

if
j = 0

true

Perform Local Computing

Yes

if
j = 1

No

Offload the task file to the
relay vehicle

while
!P i , j

if
t i , j < = t i, maxtrue

vehicle i will transfer task file
to next vehicle

vehicle i gets reward for
providing its transmission

resources

vehicle i will compute the task
file

send output directly to the
source vehicle

No

yes

if
source vehicle

is in range

vehicle i gets reward for
providing its computation and

communication resources

Yes

No

if
V2V relay
path exist

send output vis V2V realy to
the source vehicle

vehicle i gets reward for
providing its computation and

communication resources

Yes

transfer result to the
connected RSU

No

vehicle i gets reward for
providing its computation and

communication resources

offload task file to the VEC
server

false

VEC will compute the task file
send result to source vehicle

through RSU

RSU will transfer the result to
the source vehicle

if
source vehicle
is in range of

RSU

Yes

RSU will transfer result to the
RSU in headyway of source

vehicle

RSU in headyway will transfer
the result to the source

vehicle

No

end

false

Figure 2 RVEC flowchart. Full-size DOI: 10.7717/peerj-cs.486/fig-2

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 12/20

http://dx.doi.org/10.7717/peerj-cs.486/fig-2
http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

The proposed RVEC scheme is evaluated against the following benchmark schemes.

� V2I Direct scheme: In this scheme, the task is directly transmitted to the vehicle’s VEC
server. Therefore, this scheme ignores utilizing the neighboring vehicles’ computation
resources.

� PCMS Scheme: This scheme utilizes the vehicular communication resource while
ignoring the vehicular computation resources. Thus, the task is only computed on VEC
servers in a V2V relay manner.

Figure 2 analyses the total task offloading costs concerning vehicle density (�) on the
road. We make a comparison of our proposed RVEC scheme with the V2I direct and
PCMS (Zhang et al., 2017). It can easily be seen that when the density of the vehicle (�) is
high, then the RVEC dramatically reduces the overall offloading cost. Nevertheless, the
cost-effectiveness is not satisfactory while having low density (�). Since the number of
vehicles on the road is limited, the difference between all schemes’ offloading costs is
minor. Besides, the burden of computation on every VEC server is low. A large percentage
of the VEC servers’ tasks may be computed in the specific period while the vehicles are
accessing their corresponding RSUs.

On the other hand, in the case where the (�) has a high value, the moving vehicles may
pass more RSUs during a long time of task execution on VEC servers. Due to
communication and computation, the wireless backhaul cost among RSUs, the direct V2I
offloading scheme’s overall costs rise fast as the � grows. Moreover, in PCMS, part of
the transmission is offloaded to the vehicular relay, which has a lesser cost than the wireless
backhaul communication. However, the results reveal that the proposed scheme distinctly
reduces computation and communication time and offloading system cost. Therefore,
using the RVEC scheme, the overall offloading cost can effectively be saved.

Figure 3 presents the percentage of different types of tasks offloaded via RVEC
transmission. We take a low priority task as type 1 to the highest priority task as type 4,
respectively, in terms of the real-time response, i.e., safety application and non-safety
application. The more critical processes required a prompt response; thus, they prefer to
offload with the RVEC scheme. Moreover, it becomes more advantageous to increase
vehicles’ density (�). The VEC servers are at a heterogeneous level of computation load.
When the vehicles take up V2I direct, the higher priority-type index tasks may take a
longer time to complete their job. Thus, more RSUs may pass through as vehicles move at

Table 2 System parameters.

Parameter Value

No. of RSUs 5

The transmission power of each Vehicle 24 dBm

Computation capacity of a VEC [3.10] MIPS

Computation capacity of a vehicle [1.3] MIPS

Wireless transmission speed 10 MB/s

Task input size [2.5] MB

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 13/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

high speed. The extra cost of backhaul transmission will be induced to the system. On the
other hand, if the vehicle chooses the PCMS scheme, the vehicle still consuming the
computation resources of VEC and increases the burden. Moreover, those tasks that rapid
response will not be treated until the vehicle reaches the communication area of the
destination RSU.

In Fig. 4, the offloading cost with different speeds of the vehicles is illustrated. It can
be observed that the offloading cost increase as the speed of the vehicle increases. Due to
strict transmission delay constraints, the number of relay vehicles decreases as the vehicle
speed increases. Consequently, the vehicle is unlikely to match with a vehicle with
adequate resources to perform computation, and the VEC server can only process the
tasks. Therefore, the proposed scheme is more suitable for all conditions than the other
benchmark schemes.

In Fig. 5, the offloading cost in terms of different maximum delay tolerance tmax is
presented. We observe that the higher the value of tmax, the lower the offloading cost.
We consider that more computation is done on V2V mode and need not pay for the
communication and computation costs when they offload their tasks to the VEC servers.
The performance of the RVEC scheme is much more reliable than other schemes.
The results reveal that compared with the V2I Direct and PCMS algorithm, the RVEC
algorithm can significantly minimize the offloading cost over the considered range of tmax,
by about 25% and 13%, respectively.

Figure 6 reveals that all algorithms’ offloading cost grows with the task data size.
The larger the task’s size, the longer it will require accomplishing the task on the vehicle
or a VEC server. Thus, it consumes more computation and communication resources.
Moreover, each task offloaded to the other vehicles via V2V mode, or the VEC server takes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Vehicle Density

10%

20%

30%

40%

50%

60%

70%

80%

90%

O
ff

lo
ad

in
g

 C
o

st

V2I Direct
PCMS
RVEC

Figure 3 The offloading costs in terms of vehicles density.
Full-size DOI: 10.7717/peerj-cs.486/fig-3

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 14/20

http://dx.doi.org/10.7717/peerj-cs.486/fig-3
http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

more time offloading and takes more computation time. Therefore, an increase in task
communication and computation time affects the system’s overall offloading cost.
Consequently, the offloading cost rises exponentially. We can observe from Fig. 7 that
the proposed algorithm remains cost-efficient from other schemes for all task sizes.

40 60 80 100 120

Vehicles Speed (Km/h)

20%

30%

40%

50%

60%

70%

80%

90%

O
ff

lo
ad

in
g

 C
o

st

V2I Direct
PCMS
RVEC

Figure 5 The offloading costs in terms of the vehicles’ speed.
Full-size DOI: 10.7717/peerj-cs.486/fig-5

10 15 20 25 30 35 40 45 50

Number of Vehicles

10%

20%

30%

40%

50%

60%

70%

80%

90%

P
er

ce
n

ta
g

e
o

f
T

as
k

o
ff

lo
ad

in
g

Type-1
Type-2
Type-3
Type-4

Figure 4 The offloading costs in terms of the relay task offloading in vehicular edge computing.
Full-size DOI: 10.7717/peerj-cs.486/fig-4

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 15/20

http://dx.doi.org/10.7717/peerj-cs.486/fig-5
http://dx.doi.org/10.7717/peerj-cs.486/fig-4
http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

For the reasons mentioned above, using the RVEC scheme will relieve the
communication and computing burden of the VEC servers, thus avoiding network
congestion. The higher priority task is more likely to prefer the RVEC scheme to reduce the
offloading cost.

CONCLUSION
In contempt of the rapid response rate, the VEC servers usually confront the resource
limitation compared to the conventional core-cloud with a comparatively large

1 2 3 4 5 6 7 8 9 10
Task Data Size (MBs)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

O
ff

lo
ad

in
g

 C
o

st

V2I Direct
PCMS
RVEC

Figure 7 The offloading costs in terms of the task data size.
Full-size DOI: 10.7717/peerj-cs.486/fig-7

1 2 3 4 5

Maximum Delay Tolerance (s)

40%

50%

60%

70%

80%

90%

O
ff

lo
ad

in
g

 C
o

st

V2I Direct
PCMS
RVEC

Figure 6 The offloading costs in terms of the maximum delay tolerance.
Full-size DOI: 10.7717/peerj-cs.486/fig-6

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 16/20

http://dx.doi.org/10.7717/peerj-cs.486/fig-7
http://dx.doi.org/10.7717/peerj-cs.486/fig-6
http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

computational capacity. The VEC servers associated with RSUs located at the road
segments have to serve a high density of vehicles, leading to increased latency and network
congestion. To avoid this situation, we designed a task offloading strategy while taking
advantage of a vehicle’s transmission and underutilized-computational resources.
Furthermore, we investigated the time consumption and the offloading cost of different
transmission modes and proposed a promising relay task offloading mechanism in
VEC. Also, numerical results reveal that our scheme significantly reduces the offloading
cost, i.e., computation latency and communication resource utilization, and outperforms
other benchmark schemes. In our future work, we will study how to shift VEC server
burdens to the vehicular cloud through incorporating a machine learning algorithm.
By considering the dynamic vehicular nature, diverse application needs, and application
stringent latency constraints in more practical and real trace-based complex road scenarios
in our future work.

ACKNOWLEDGEMENTS
The content of this article does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the
authors.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This project has received funding from the European Union Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No 754382,
GOT ENERGY TALENT.

Grant Disclosures
The following grant information was disclosed by the authors:
Marie Sklodowska-Curie: 754382.

Competing Interests
Muhammad Asif is an Academic Editor for PeerJ.

Author Contributions
� Salman Raza conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

� Muhammad Ayzed Mirza conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Shahbaz Ahmad conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 17/20

http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

� Muhammad Asif conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.

� Muhammad Babar Rasheed analyzed the data, authored or reviewed drafts of the paper,
and approved the final draft.

� Yazeed Ghadi analyzed the data, performed the computation work, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

There was no data used in the project but a simulation was performed. The simulation
code used is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.486#supplemental-information.

REFERENCES
Anavar MR, Wang S, Azam Zia M, Jadoon AK, Akram U, Raza S. 2018. Fog computing: an

overview of big IoT data analytics. Wireless Communications and Mobile Computing
2018:7157192 DOI 10.1155/2018/7157192.

Boukerche A, Soto V. 2020. Computation offloading and retrieval for vehicular edge computing:
algorithms, models, and classification. ACM Computing Surveys 53(4):1–35.

Cau E, Corici M, Bellavista P, Foschini L, Carella G, Edmonds A, Bohnert TM. 2016. Efficient
exploitation of mobile edge computing for virtualised 5G in EPC architectures. In: Proceeding of
the International Conference on Mobile Cloud Computing, Services, and Engineering, 100–109.

Chen X, Jiao L, Li W, Fu X. 2015. Efficient multiuser computation offloading for mobile-edge
cloud computing. IEEE/ACM Transactions on Networking 24(5):2795–2808
DOI 10.1109/TNET.2015.2487344.

Chen X, Jiao L, Li W, Fu X. 2016. Efficient multiuser computation offloading for mobile-edge
cloud computing. IEEE/ACM Transactions on Networking 24(5):2795–2808
DOI 10.1109/TNET.2015.2487344.

Cordeschi N, Amendola D, Baccarelli E. 2015. Reliable adaptive resource management for
cognitive cloud vehicular networks. IEEE Transactions on Vehicular Technology 64(6):2528–
2537 DOI 10.1109/TVT.2014.2345767.

Drolia U, Martins R, Tan J, Chheda A, Sanghavi M, Gandhi R, Priya Narasimhan. 2013. The
case for mobile edge-clouds. In: Proceeding of the International Conference on Ubiquitous
Intelligence and Computing and International Conference on Autonomic and Trusted computing,
209–215.

Feng J, Liu Z, Wu C, Ji Y. 2017. AVE: autonomous vehicular edge computing framework with
ACO-based scheduling. IEEE Transactions on Vehicular Technology 66(12):10660–10675
DOI 10.1109/TVT.2017.2714704.

Fuqiang L, Lianhai S. 2020. Heterogeneous vehicular communication architecture and key
technologies. ZTE Communications 8(4):39–44.

Guo J, Song B, He Y, Yu FR, Sookhak M. 2017. A survey on compressed sensing in vehicular
infotainment systems. IEEE Communications Surveys & Tutorials 19(4):2662–2680
DOI 10.1109/COMST.2017.2705027.

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 18/20

http://dx.doi.org/10.7717/peerj-cs.486#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.486#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.486#supplemental-information
http://dx.doi.org/10.1155/2018/7157192
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TVT.2014.2345767
http://dx.doi.org/10.1109/TVT.2017.2714704
http://dx.doi.org/10.1109/COMST.2017.2705027
http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

Huang X, Yu R, Kang J, Wang N, Maharjan S, Zhang Y. 2016. Software defined networking with
pseudonym systems for secure vehicular clouds. IEEE Access 4:3522–3534
DOI 10.1109/ACCESS.2016.2560902.

Kenney JB. 2011. Dedicated short-range communications (DSRC) standards in the United States.
Proceedings of the IEEE 99(7):1162–1182 DOI 10.1109/JPROC.2011.2132790.

Li C, Wang S, Huang X, Li X, Yu R, Zhao F. 2018. Parked vehicular computing for energy-
efficient internet of vehicles: a contract theoretic approach. IEEE Internet of Things Journal
6(4):6079–6088 DOI 10.1109/JIOT.2018.2869892.

Liu L, Chen C, Pei Q, Maharjan S, Zhang Y. 2020. Vehicular edge computing and networking: a
survey. Mobile Networks and Applications 1–24 DOI 10.1007/s11036-020-01624-1.

Liu J, Mao Y, Zhang J, Letaief KB. 2016. Delay-optimal computation task scheduling for mobile-
edge computing systems. In: 2016 IEEE International Symposium on Information Theory (ISIT),
1451–1455.

Mao Y, Zhang J, Letaief KB. 2016. Dynamic computation offloading for mobile-edge computing
with energy harvesting devices. IEEE Journal on Selected Areas in Communications 34(12):3590–
3605 DOI 10.1109/JSAC.2016.2611964.

Nunna S. 2015. Enabling real-time context-aware collaboration through 5G and mobile edge
computing. In: Proceeding of the International Conference on Information Technology-New
Generations, Piscataway: IEEE, 601–605.

Raza S, Liu W, Ahmed M, Anwar MR, Mirza MA, Sun Q, Wang S. 2020. An efficient task
offloading scheme in vehicular edge computing. Journal of Cloud Computing 9:1–14.

Raza S, Wang S, Ahmed M, Anwar MR. 2019. A survey on vehicular edge computing:
architecture, applications, technical issues, and future directions. Wireless Communications and
Mobile Computing 2:1–19 DOI 10.1155/2019/3159762.

Shakarami A, Ghobaei-Arani M, Masdar M, Hosseinzadeh M. 2020. A survey on the
computation offloading approaches in mobile edge/cloud computing environment:
a stochastic-based perspective. Journal of Grid Computing 18(4):1–33
DOI 10.1007/s10723-020-09530-2.

Xia Z, Wang X, Sun X, Wang Q. 2015. A secure and dynamic multi-keyword ranked search
scheme over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems
27(2):340–352 DOI 10.1109/TPDS.2015.2401003.

Yu R, Huang X, Kang J, Ding J, Maharjan S, Gjessing S, Zhang Y. 2015. Cooperative resource
management in cloud-enabled vehicular networks. IEEE Transactions on Industrial Electronics
62(12):7938–7951.

Yu R, Huang X, Kang J, Ding J, Maharjan S, Gjessing S, Zhang Y. 2015. Cooperative resource
management in cloud-enabled vehicular networks. IEEE Transactions on Industrial Electronics
62(12):7938–7951.

Zhang K, Mao Y, Leng S, He Y, Zhang Y. 2017.Mobile-edge computing for vehicular networks: a
promising network paradigm with predictive offloading. IEEE Vehicular Technology Magazine
12(2):36–44 DOI 10.1109/MVT.2017.2668838.

Zhang K, Mao Y, Leng S, Vinel A, Zhang Y. 2016. Delay constrained offloading for mobile edge
computing in cloud-enabled vehicular networks. In: 2016 8th International Workshop on
Resilient Networks Design and Modeling (RNDM), 288–294.

Zhang H, Zhang Q, Du X. 2015. Toward vehicle-assisted cloud computing for smartphones. IEEE
Transactions on Vehicular Technology 64(12):5610–5618 DOI 10.1109/TVT.2015.2480004.

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 19/20

http://dx.doi.org/10.1109/ACCESS.2016.2560902
http://dx.doi.org/10.1109/JPROC.2011.2132790
http://dx.doi.org/10.1109/JIOT.2018.2869892
http://dx.doi.org/10.1007/s11036-020-01624-1
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1155/2019/3159762
http://dx.doi.org/10.1007/s10723-020-09530-2
http://dx.doi.org/10.1109/TPDS.2015.2401003
http://dx.doi.org/10.1109/MVT.2017.2668838
http://dx.doi.org/10.1109/TVT.2015.2480004
http://dx.doi.org/10.7717/peerj-cs.486
https://peerj.com/computer-science/

Zheng K, Meng H, Chatzimisios P, Lei L, Shen X. 2015. An SMDP-based resource allocation in
vehicular cloud computing systems. IEEE Transactions on Industrial Electronics 62(12):7920–
7928 DOI 10.1109/TIE.2015.2482119.

Zhou F, Hu RQ, Li Z, Wang Y. 2020. Mobile edge computing in unmanned aerial vehicle
networks. IEEE Wireless Communications 27(1):140–146 DOI 10.1109/MWC.001.1800594.

Zhou Z, Wang Y, Wu QMJ, Yang C-N, Sun X. 2017. Effective and efficient global context
verification for image copy detection. IEEE Transactions on Information Forensics and Security
12(1):48–63 DOI 10.1109/TIFS.2016.2601065.

Raza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.486 20/20

http://dx.doi.org/10.1109/TIE.2015.2482119
http://dx.doi.org/10.1109/MWC.001.1800594
http://dx.doi.org/10.1109/TIFS.2016.2601065
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.486

	A vehicle to vehicle relay-based task offloading scheme in Vehicular Communication Networks
	Introduction
	Related work
	System model
	Relay task offloading scheme in vec
	The distributed rvec algorithm
	Numerical results
	Conclusion
	flink8
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

