
Submitted 12 October 2020
Accepted 17 March 2021
Published 28 April 2021

Corresponding author
Oliver Serang, oliver.serang@umt.edu

Academic editor
Rahul Shah

Additional Information and
Declarations can be found on
page 9

DOI 10.7717/peerj-cs.483

Copyright
2021 Kreitzberg et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Selection on X1+X2+ ··· +Xm via
Cartesian product trees
Patrick Kreitzberg1, Kyle Lucke2, Jake Pennington1 and Oliver Serang2

1Department of Mathematics, University of Montana, Missoula, MT, United States of America
2Department of Computer Science, University of Montana, Missoula, MT, United States of America

ABSTRACT
Selection on the Cartesian product is a classic problem in computer science. Recently,
an optimal algorithm for selection on A+B, based on soft heaps, was introduced.
By combining this approach with layer-ordered heaps (LOHs), an algorithm using a
balanced binary tree ofA+B selections was proposed to perform selection onX1+X2+

···+Xm in o(n·m+k ·m), where Xi have length n. Here, that o(n·m+k ·m) algorithm is
combined with a novel, optimal LOH-based algorithm for selection onA+B (without a
soft heap). Performance of algorithms for selection on X1+X2+···+Xm are compared
empirically, demonstrating the benefit of the algorithm proposed here.

Subjects Algorithms and Analysis of Algorithms
Keywords Selection, Cartesian product, Tree, Sorting

INTRODUCTION
Sorting all values in A+B, where A and B are arrays of length n and A+B is the
Cartesian product of these arrays under the + operator, is nontrivial. In fact, there
is no known approach faster than naively computing and sorting them which takes
O(n2 log(n2))=O(n2 log(n)) time (Bremner et al., 2006); however, Fredman (1976) showed
that O(n2) comparisons are sufficient, though no O(n2) time algorithm is currently
known. Frederickson & Johnson (1982) published an algorithm which selects the k th value
in A+B with runtime O(n+ plog(k/p)) where p=min(k,n). In 2018, Kaplan et al.
described an optimal method for selecting the top k values of A+B, in terms of soft heaps
(Kaplan et al., 2019; Chazelle, 2000). Serang (2020) created an optimal method for selecting
the top k values of A+B which does not rely on a pointer-based data structure like the
soft heap and is fast in practice. Any reference to ‘‘Serang’s method’’ or ‘‘Serang’s pairwise
method’’ will be in reference to this optimal method which performs pairwise selection
on A+B.

Johnson & Mizoguchi (1978) extended the problem to selecting the k th value in
X1+X2+···+Xm and did so with runtime O(m ·nd

m
2 e log(n)); however, there has not been

significant work done on the problem since. Kreitzberg, Lucke & Serang (2020a) introduced
the FastSoftTree method which performs selection on X1+X2+···+Xm by creating a
balanced binary tree of pairwise selection problems. FastSoftTree uses Kaplan et al.’s soft
heap-based pairwise selection method and performs selection in O(n ·m+ k ·mlog2(α

2))
time with space usage in O(n ·m+ k log(m)) for constant α > 1. If only the k th value is

desired, then Johnson and Mizoguchi’s method is the fastest known when k> m·nd
m
2 e log(n)

mlog2(α2)
,

How to cite this article Kreitzberg P, Lucke K, Pennington J, Serang O. 2021. Selection on X1+X2+···+Xm via Cartesian product trees.
PeerJ Comput. Sci. 7:e483 http://doi.org/10.7717/peerj-cs.483

https://peerj.com/computer-science
mailto:oliver.serang@umt.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.483
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.483

for k < m·nd
m
2 e log(n)

mlog2(α2)
(or if the top k values are desired) Kreitzberg et al.’s FastSoftTree is

fastest.
Selection on X1+X2+···+Xm is important for max-convolution (Bussieck et al., 1994)

and max-product Bayesian inference (Serang, 2015; Pfeuffer & Serang, 2016). Computing
the k best quotes on a supply chain for a business, when there is a prior on the outcome (such
as components from different companies not working together), becomes solving the top
values of a probabilistic linear Diophantine equation (Kreitzberg & Serang, 2021) and thus
becomes a selection problem. Finding themost probable isotopologues of a compound such
as hemoglobin, C2952H4664O832N812S8Fe4, may be done by solving C+H+O+N+S+Fe,
where C would be the most probable isotope combinations of 2,952 carbon molecules
(which can be computed via a multinomial at each leaf, ignored here for simplicity), H
would be the most probable isotope combinations of 4,664 hydrogen molecules, and so on.
The selection method proposed in this paper has already been used to create the world’s
fastest isotopologue calculator (Kreitzberg et al., 2020b).

Layer-ordered heaps
In a standard binary heap, the only known relationships between a parent and a child is
Ai≤Achildren(i). A layer-ordered heap (LOH) has stricter ordering than the standard binary
heap, but is able to be created in 2

(
nlog(n

n·(α−1)+1)+
n·α·log(α)
α−1

)
=2(n) time for constant

α > 1 (Pennington et al., 2020). α is the rank of the LOH and determines how fast the layers
grow. A LOH partitions the array into several layers, Li, which grow exponentially such
that |L1| = 1 and |Li+1|

|Li|
≈ α. Every value in a layer Li is ≤ every value in proceeding layers

Li+1,Li+2,... which we denote as Li≤ Li+1, this is the ‘‘layer-ordering property.’’ If α= 1,
then all layers are size one and the LOH is sorted; therefore, to be constructed in2(n) time
the LOH must have α > 1.

Pairwise selection
Serang’s method of selection on A+B utilizes LOHs to be both optimal in theory and fast
in practice. In this section we provide a summary of Serang’s method, for a more detailed
description with analysis see Serang (2020). The method has four phases. Phase 0 is simply
to LOHify (make into a layer-ordered heap) the input arrays which can be done in 2(n)
time.

Phase 1 finds which layer products may be necessary for the selection. A layer
product, A(u)

+B(v), is the Cartesian product of layers A(u) and B(v): A(u)
1 +B(v)1 ,A

(u)
2 +

B(v)1 ,...,A
(u)
1 +B(v)2 ,.... Finding which layer products are necessary for the selection can

be done using a standard binary heap. A layer product is represented in the binary heap
in two separate ways: a min tuple bu,vc= (min(A(u)

+B(v)),(u,v),false) and a max tuple
d(u,v)e= (max(A(u)

+B(v)),(u,v),true). Creating the tuples does not require calculating
the Cartesian product of A(u)

+B(v) since min(A(u)
+B(v))=min(A(u))+min(B(v)) which

can be found in a linear pass of A and B separately. The same argument applies for d(u,v)e.
false and true note that the tuple contains the minimum or maximum value in the layer
product, respectively. Also, let false = 0 and true = 1 so that a min tuple is popped before
a max tuple even if they contain the same value.

Kreitzberg et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.483 2/11

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.483

4 4 10 11 17 13 19

2

2
9

10
15
11
16

6 12 13 21

6
13

6
 19

13
 28

14

20

14

 26

21

 35

A
B

6
6

(A)

Val, (u,v), is max? |Au|•|Bv| s
(6, (1,1), false) 1 0
(6, (1,1), true) 1 1
(6, (1,2), false) 2 1
(6, (2,1), false) 2 1
(6, (2,2), false) 4 1
(12, (1,2), true) 2 3
(13, (2,1), true) 2 5
(13, (1,3), false) 4 5
(13, (2,3), false) 8 5
(14, (3,1), false) 4 5
(14, (3,2), false) 8 5
(19, (2,2), true) 4 9
(20, (3,1), true) 4 13

(B)

Figure 1 (A): Nine layer products of A+ B. (B): The layer product tuples in the order they would pop
from the heap, the number of values in their Cartesian product, and s, the cumulative size of the layer
products whose max tuples have been popped. The two axes are the input arrays after being LOHified.
The values of all 18 possible layer product tuples are shown (nine min tuples in blue and nine max tuples
in green). If k = 10, then the tuples will be popped in the order shown in (B). After (20,(3,1),true) is
popped, s (the total number of items in the Cartesian product of all max tuples) exceeds k. Note that the
values in the layers of A and B are not necessarily in sorted order.

Full-size DOI: 10.7717/peerjcs.483/fig-1

Phase 1 uses a binary heap to retrieve the tuples in sorted order. When a min tuple,
b(u,v)c, is popped, then its neighbors (b(u+1,v)c,b(u,v+1)c) and the corresponding
max tuple are pushed, assuming b(u+1,v)c,b(u,v+1)c are in bounds (a set is used to
ensure a layer product is inserted only once). When a max tuple is popped, a variable s is
increased by |A(u)

+B(v)| = |A(u)
| · |B(v)| and (u,v) is appended to a list q. This continues

until s≥ k. Figure 1 shows an example of phase 1 when k= 10.
In phases 2 and 3 all max tuples still in the heap have their index appended to q, then the

Cartesian product of all layer products in q are generated. A linear time one-dimensional
k-select is performed on the values in the Cartesian products to produce only the top k
values in A+B. The time complexity of the algorithm is linear in the overall number of
values produced which is O(k).

In this paper we efficiently perform selection on X1+X2+···+Xm by utilizing Serang’s
pairwise selection method.

METHODS
In order to retrieve the top k values from X1+X2+···+Xm, a balanced binary tree
of pairwise selections is constructed. The top k values are calculated by selection on
X1+X2,X3+X4,... then on (X1+X2)+ (X3+X4),(X5+X6)+ (X7+X8),.... All data
loaded and generated is stored in arrays which are contiguous in memory, allowing for
great cache performance compared to a soft heap-based method.

Kreitzberg et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.483 3/11

https://peerj.com
https://doi.org/10.7717/peerjcs.483/fig-1
http://dx.doi.org/10.7717/peerj-cs.483

Tree construction
The tree has height dlog2(m)e withm leaves, each one is a wrapper around one of the input
arrays which are unsorted and have no restrictions on the type of data they contain. Upon
construction, the input arrays are LOHified in2(n ·m) time, which is amortized out by the
cost of loading the data. Each node in the tree above the leaves performs pairwise selection
on two LOHs: one generated by its left child and one generated by its right child. All nodes
in the tree generate their own LOH, but this is done differently for the leaves vs the pairwise
selection nodes. When a leaf generates a new layer it simply allows its parent to have access
to the values in the next layer of the LOHified input array. For a pairwise selection node,
generating a new layer is more involved.

Pairwise selection nodes
Each node above the leaves is a pairwise selection node, each of which has two children
that may be leaves or other pairwise selection nodes. In contrast to the leaves, the pairwise
selection nodes will have to calculate all values in their LOHs by generating an entire layer
at a time. Generating a new layer requires performing selection on A+B, where A is the
LOH of its left child and B is the LOH of its right child. Due to the combinatorial nature
of this problem, simply asking a child to generate their entire LOH can be exponential in
the worst case so they must be generated one layer a time and only as necessary.

The pairwise selection performed is Serang’s method with a few modifications (though
Fig. 1 is still representative of the method). The size of the selection is always the size of
the next layer, k= |Li|, to be generated by the parent. The selection begins in the same way
as Serang’s: a heap is used to pop min and max layer product tuples. When a min tuple,
b(u,v)c, is popped the values in the Cartesian product are generated and appended to a list
of values to be considered in the k-selection. The neighboring layer products inserted into
the heap are determined using the scheme from Kaplan et al. which differs from Serang’s
method: d(u,v)e and b(u,v+1)c are always inserted and, if v = 1, b(u+1,v)c is inserted as
well. This insertion scheme will not repeat any indices and therefore does not require the
use of a set to keep track of the indices in the heap. When any min tuple is proposed, the
parent asks both children to generate the layer if it is not already available. If one or both
children are not able to generate the layer (i.e., the index is larger than the full Cartesian
product of the child’s children) then the parent does not insert the tuple into its heap. The
newly generated layer is simply appended to the parent’s LOH and may now be accessed by
the parent’s parent. An example of a pairwise selection node generating a new layer which
requires a child to generate a new layer is shown in Fig. 2.

The dynamically generated layers should be kept in individual arrays, then a list of
pointers to the arrays may be stored. This avoids resizing a single array every time a new
layer is generated.

Theorem 1 in Serang (2020) proves that Serang’s method performs selection in O(k)
time. lemmas 6 and 7 show that the number of all values generated is O(n+k); however,
lemma 7 may be amended to show that any layer product of the form (u,1) or (1,v) will
generate ≤ α · |(u−1,1)| ∈O(k) or ≤ α · |(1,v−1)| ∈O(k) values, respectively, to show

Kreitzberg et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.483 4/11

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.483

C=A+B

A

B

C

F=D+E

D

E

F

G=C+F

C

F

G

G=C+F

C

F

G

C=A+B

A

B

C

F=D+E

D

E

F
G=C+F

C

F

G

C=A+B

A

B

C

(C)

(A)

(D)

(B)

Figure 2 The process of adding a layer to a pairwise selection node’s LOH,G, when both children are
pairwise selection nodes. Each node has a LOH it generates for its parent to access as well as a (not real-
ized) matrix formed by the Cartesian product of its children’s LOHs. Blue layer products currently have
their min tuple in the heap. Green layer products have had at least their min tuple popped from the heap
(and thus have inserted other tuples into the heap). (A) The triplet before adding a new layer to G. (B) The
parent generating the next layer in its LOH. The parent pops b(1,3)c and must now insert d(1,3)e and
b(1,4)c; however, the left child has not yet generated the fourth layer in its LOH, C , so the parent can not
insert b(1,4)c. (C) The left child generating the fourth layer in its LOH, C . The left child pops b(2,2)c then
inserts d(2,2)e and b(2,3)c. The left child continues and pops d(2,2)e and b(2,3)c and performs the ap-
propriate insertions: d(2,3)e and b(2,4)c. Finally, the left child pops d(2,3)e at which point it has enough
values to select the next layer in C . Now that C has its fourth layer, the parent is able insert b(1,4)c and
continue. The parent then pops d(1,3)e and selects its third layer. The parent did not need F to generate a
new layer and so the right child remains the same as before. (D) The triplet after the parent and left child
perform the necessary operations to generate the next layer in G.

Full-size DOI: 10.7717/peerjcs.483/fig-2

that the total values generated is O(k). Thus, the total number of values generated when a
parent adds a new layer Li is O(|Li|).

Selection from the root
In order to select the top k values from X1+X2+···+Xm, the root is continuously asked to
generate new layers until the cumulative size of the layers in their LOH exceeds k. Then a
k-selection is performed on the layers to retrieve only the top k. Due to the layer-ordering
property, a selection only needs to be performed on the last layer, all values in previous
layers will be in the top k.

The Cartesian product tree is constructed in the sameway as the FastSoftTree (Kreitzberg,
Lucke & Serang, 2020a) as both methods dynamically generate new layers in a similar
mannerwith the same theoretical runtime. In bothmethods, the pairwise selection creates at
mostO(α2 ·k) values. Thus the theoretical runtime of bothmethods isO(n·m+k ·mlog2(α

2))
with space usage O(n ·m+k log(m)).

Kreitzberg et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.483 5/11

https://peerj.com
https://doi.org/10.7717/peerjcs.483/fig-2
http://dx.doi.org/10.7717/peerj-cs.483

Wobbly version
In Serang’s pairwise selection, after enough layer product tuples are popped from the heap
to ensure they contain the top k values, there is normally a selection performed to remove
any excess values. Strictly speaking, this selection is not necessary anywhere in the tree
except for the root when the final k values are returned. When the last max tuple d(u,v)e
is popped from the heap, max(A(u)

+B(v)) is an upper bound on the k th value in the
k-selection. Instead of doing a k-selection and returning the new layer, which requires a
linear time selection followed by a linear time partition, we can simply do a value partition
on max(A(u)

+B(v)).
A new layer generated from only a value partition and not a selection is not guaranteed

to be size k, it is at least size k but contains all values ≤max(A(u)
+B(v)). In the worst case,

this may cause layer sizes to grow irregularly with a constant larger than α. For example,
if k = 2 and |L1| = |L2| = 1 then in the worst case every parent will ask their children to
each generate two layers and the value partition will not remove any values. Each leaf will
generate two values, their parents will then have a new layer of size 22= 4, their parent will
have a new layer of size (22)2= 16, etc. Thus the root will have to perform a 2-selection on
2m values which will be quite costly.

In an application like calculating the most probable isotopologues of a compound,
this version can be quite beneficial. For example, to generate a significant amount of the
isotopologues of the titin protein may require k to be hundreds of millions. Titin is made
of only carbon, hydrogen, nitrogen, oxygen, and sulfur so it will only have five leaves and
a tree height of three. The super-exponential growth of the layers for a tree with height
three is now preferential because it will still not create so many more than k values but it
will do so in many fewer layers with only value partitions and not the more costly linear
selections. We call this the ‘‘wobbly’’ Cartesian product tree.

RESULTS
All experiments were run on a workstation equipped with 256GB of RAM and two AMD
Epyc 7351 processors runningUbuntu 18.04.4 LTS. The data was randomly generated using
the built-in rand() function (seeded with the value 1) in C++. All values were integers
between 0 and 10,000. Though arrays of random values are used, the performance gain
does not depend on the values in the arrays. If the input arrays are homogeneous so that
the value for all min and max tuples are the same, they will be popped in ascending order
of their index tuple and will still generate at most O(α2 ·k) values.

Cartesian product trees vs FastSoftTree
In a Cartesian product tree, replacing the pairwise A+B selection steps from Kaplan
et al.’s soft heap-based algorithm with Serang’s optimal LOH-based method provides
the same o(n ·m+ k ·m) theoretical performance for the Cartesian product tree but is
practically much faster (Table 1). This is particularly true when k ·mlog2(α

2)
� n ·m, where

popping values dominates the cost of loading the data. When k ≥ 210, k ·m0.2750< n ·m
which is reflected in our results where for k = 220 we get a 630.4× speedup, significantly
larger than for k = 210 which only has a 10.27× speedup. For any reasonable ε and α,

Kreitzberg et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.483 6/11

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.483

Table 1 Runtimes for Cartesian product tree vs FastSoftTree with n = 32,m = 256 and α = 1.1. The
runtime is averaged over 20 iterations. For small problems the soft heap-based tree is competitive with the
Cartesian product tree; however, for large enough k the cache performance of the LOH significantly out-
performs the soft heap resulting in a 630.4× speedup for k= 220.

k Cartesian product tree
(seconds)

FastSoftTree
(seconds)

22 1.404×10−03 3.146×10−03

23 1.504×10−03 2.855×10−03

24 1.521×10−03 3.163×10−03

25 1.592×10−03 2.618×10−03

26 1.689×10−03 4.172×10−03

27 1.718×10−03 4.830×10−03

28 1.881×10−03 8.864×10−03

29 2.080×10−03 0.01143
210 1.745×10−03 0.01792
211 2.217×10−03 0.02362
212 3.123×10−03 0.04459
213 3.318×10−03 0.07026
214 5.099×10−03 0.111
215 6.240×10−03 0.2296
216 8.724×10−03 0.4952
217 0.01266 0.9609
218 0.01663 1.610
219 0.02684 12.77
220 0.0405 25.53

the difference in number of values generated (and thus in memory usage) will not differ
significantly. Regardless of which algorithm generates less values, the performance gain
due to generating less overall values will be negligible compared to the difference in cache
performance between soft heaps and LOHs.

Standard vs Wobbly
As we see in Table 2, for small m the Cartesian product tree can gain significant increases
in performance when there are no linear selections performed in the tree and the layers
are allowed to grow super-exponentially. As k grows, the speedup of the wobbly version
continues to grow, resulting in a 1.786× speedup for k = 230. When m� 5 the growth
of the layers near the root start to significantly hurt the performance. For example, if
n= 32,m= 256 and k = 256 the wobbly version takes 0.5805 seconds and produces
149,272 values at the root compared to the non-wobbly version which takes 1.8810×10−03

seconds and produces just 272 values at the root.

DISCUSSION
Replacing pairwise selection which uses a soft heap with Serang’s method provides a
significant increase in performance. Since both methods LOHify the input arrays (using
the same LOHify method) the most significant increases are seen when k ·mlog2(α

2)
� n ·m.

Kreitzberg et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.483 7/11

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.483

Table 2 Runtimes for standard Cartesian product tree vs wobbly Cartesian product tree with n= 256,
m= 5 and α= 1.1. The runtime is averaged over 20 iterations for the two methods. Withm= 5 the tree
only has three layers and so the super-exponential growth of the layers as they go from the leaves to the
roots does not become intractable. As k becomes extremely large the ability of the wobbly tree to generate
huge layers at the root without performing any selections significantly reduces the runtime resulting in a
1.786× speedup.

k Standard version
(seconds)

Wobbly version
(seconds)

22 1.544×10−04 1.777×10−04

23 1.754×10−04 1.468×10−04

24 2.086×10−04 1.846×10−04

25 2.386×10−04 2.046×10−04

26 2.080×10−04 1.935×10−04

27 3.060×10−04 2.672×10−04

28 3.481×10−04 3.225×10−04

29 4.289×10−04 2.978×10−04

210 6.119×10−04 4.087×10−04

211 7.976×10−04 4.585×10−04

212 1.000×10−03 7.263×10−04

213 1.711×10−03 1.189×10−03

214 2.344×10−03 1.465×10−03

216 7.531×10−03 4.890×10−03

215 3.919×10−03 2.578×10−03

217 0.0113 9.090×10−03

218 0.01741 0.01583
219 0.02777 0.02511
220 0.04904 0.04228
221 0.08572 0.07773
222 0.1623 0.1424
223 0.3274 0.234
224 0.636 0.4838
225 1.210 1.029
226 2.306 1.588
227 4.993 3.487
228 9.995 8.441
229 19.7 14.31
230 43.45 24.33

For small m, the performance can be boosted using the wobbly version; however, for large
m the super-exponentially sized layers can quickly begin to dampen performance. It may
be possible to limit the layer sizes in the wobbly version by performing selections only at
certain layers of the tree: either by performing the selection on every ith layer or only on
the top several layers.

For all experiments α= 1.1, though the optimal α is not known. As α approaches 1 the
layer sizes also approach 1 and the LOHs become fully sorted. Having all layer sizes of 1
will mean not producing any unnecessary values; however, this will lead to slower practical

Kreitzberg et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.483 8/11

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.483

performance due to popping k layer product tuples from the binary heap which will cause
runtime to be in �(k log(k)). As α grows, both the number of pops from the binary heap
and the time to LOHify the input arrays decreases but the amount of unnecessary values
increases. The unnecessary values will slow practical performance both when they are
calculated and in the subsequent linear selections and partitions performed to create the
layer. In practice, α= 1.1 seems to find a good balance between number of pops from
binary heaps and the number of unnecessary values generated, both in Tables 1 and 2 as
well as when calculating the most probable isotopologues of a compound.

Due to corruption, when using a soft heap-based method, online computation of values
requires retrieving the top k1 values and then top k2 remaining values and so on in order
to be performed with optimal runtime. Selection on X1+X2+···+Xm requires optimal,
online computation of values in each pairwise selection node in order to be performed in
o(n ·m+k ·m) time, but this applies to any soft heap-based method which requires online
computation of the top values.

The number of corrupt values is bounded by ε ·I , where I insertions have been performed
to date; therefore, there are at most ε ·c ·k1 corrupt values. The top k1 values can be selected
by retrieving no more than k1+ε · c ·k1 values from the soft heap and then performing a
k1-selection (via median-of-medians) on the retrieved values. The ε ·k1 corrupt values are
reinserted into the soft heap, bringing the total insertions to k1 ·ε · (1+ c). To retrieve the
top k2 remaining values, k2+ε ·k1 ·ε ·(1+c)∈�(k2+k1) values need to be popped. These
top k2 values can be retrieved in optimalO(k2) time if k2 ∈2(k1). Likewise, k3 ∈2(k1+k2),
and so on. Thus, for optimal, online computation the sequence of kj values must grow
exponentially.

Rebuilding the soft heap (rather than reinserting the corrupted values into the soft heap)
instead does not alleviate this need for exponential growth in k1,k2,... required to achieve
optimal O(k1+k2+···) total runtime. When rebuilding, each next kj must be comparable
to the size of the entire soft heap (so that the cost of rebuilding can be amortized out by
the optimal 2(kj) steps used to retrieve the next kj values). Because c ≥ 1, the size of the
soft heap is always ≥ k1+ k2+···+ kj−1 for the selections already performed, and thus
the rebuilding cost is k1+k2+···+kj−1, which must be ∈2(kj). This likewise requires
exponential growth in the kj .

The necessity to have exponential growth in kj enforces the layer-ordering property
on the resulting values. It is the layer-ordering property which guarantees that a proposal
scheme such as that in Kaplan et al. does not penetrate to great depth in the combinatorial
heap, which could lead to exponential time complexity when c > 1. In this manner, the
k1,k2,... values can be seen to form layers of a LOH, which would not require retrieving
further layers before the current extreme layer has been exhausted. Thus, both FastSoftTree
and Cartesian product trees have to have pairwise selection nodes which can generate
LOHs one layer at a time. FastSoftTree nodes require a soft heap to generate the LOHs
where Cartesian product tree nodes generate layers in a straight-forward manner.

This method has already proved to be beneficial in generating the top k isotopologues of
chemical compounds, but it is not limited to this use-case. It is applicable to fast algorithms
for inference on random variables Y = X1+X2+···+Xm in the context of graphical

Kreitzberg et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.483 9/11

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.483

Bayesian models. It may not generate a value at every index in a max-convolution, but it
may generate enough values fast enough to give a significant result.
Code availability

A C++ implementation can be found in https://bitbucket.org/seranglab/cartesian-
product-tree/ under the MIT license. The code is free for academic and commercial use.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by NSF CAREER grant 1845465. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
NSF CAREER: 1845465.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Patrick Kreitzberg, Kyle Lucke, Jake Pennington and Oliver Serang conceived and
designed the experiments, performed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Software implementations of the code are available at BitBucket: https://bitbucket.org/
seranglab/cartesian-product-tree.

REFERENCES
Bremner D, Chan TM, Demaine ED, Erickson J, Hurtado F, Iacono J, Langerman S,

Taslakian P. 2006. Necklaces, convolutions, and X +Y . In: Algorithms–ESA 2006.
Berlin, Heidelberg: Springer, 160–171.

BussieckM, Hassler H,Woeginger GJ, Zimmermann UT. 1994. Fast algorithms for
the maximum convolution problem. Operations Research Letters 15(3):133–141
DOI 10.1016/0167-6377(94)90048-5.

Chazelle B. 2000. The soft heap: an approximate priority queue with optimal error rate.
Journal of the ACM 47(6):1012–1027 DOI 10.1145/355541.355554.

Frederickson GN, Johnson DB. 1982. The complexity of selection and ranking in
X +Y and matrices with sorted columns. Journal of Computer and System Sciences
24(2):197–208 DOI 10.1016/0022-0000(82)90048-4.

Kreitzberg et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.483 10/11

https://peerj.com
https://bitbucket.org/seranglab/cartesian-product-tree/
https://bitbucket.org/seranglab/cartesian-product-tree/
https://bitbucket.org/seranglab/cartesian-product-tree
https://bitbucket.org/seranglab/cartesian-product-tree
http://dx.doi.org/10.1016/0167-6377(94)90048-5
http://dx.doi.org/10.1145/355541.355554
http://dx.doi.org/10.1016/0022-0000(82)90048-4
http://dx.doi.org/10.7717/peerj-cs.483

FredmanML. 1976.How good is the information theory bound in sorting?. Theoretical
Computer Science 1(4):355–361 DOI 10.1016/0304-3975(76)90078-5.

Johnson D, Mizoguchi T. 1978. Selecting the k th element in x+ y and x1+ x2+ ...xm.
SIAM Journal on Computing 7(2):147–153 DOI 10.1137/0207013.

Kaplan H, Kozma L, Zamir O, Zwick U. 2019. Selection from heaps, row-sorted matrices
and X+Y using soft heaps. Symposium on Simplicity in Algorithms 69:5.1–5.21.

Kreitzberg P, Lucke K, Serang O. 2020a. Selection on X1+X2+···Xm with layer-ordered
heaps. In reviewArXiv preprint. arXiv:1910.11993.

Kreitzberg P, Pennington J, Lucke K, Serang O. 2020b. Fast exact computation of the
k most abundant isotope peaks with layer-ordered heaps. Analytical Chemistry
92(15):10613–10619 DOI 10.1021/acs.analchem.0c01670.

Kreitzberg P, Serang O. 2021. On solving probabilistic linear diophantine equations.
Journal of Machine Learning Research.

Pennington J, Kreitzberg P, Lucke K, Serang O. 2020. Optimal construction of a layer-
ordered heap. ArXiv preprint. arXiv:2007.13356.

Pfeuffer J, Serang O. 2016. A bounded p-norm approximation of max-convolution for
sub-quadratic Bayesian inference on additive factors. Journal of Machine Learning
Research 17(36):1–39.

Serang O. 2015. A fast numerical method for max-convolution and the application to
efficient max-product inference in Bayesian networks. Journal of Computational
Biology 22:770–783 DOI 10.1089/cmb.2015.0013.

Serang O. 2020. Optimal selection on X Y simplified with layer-ordered heaps. ArXiv
preprint. arXiv:2001.11607.

Kreitzberg et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.483 11/11

https://peerj.com
http://dx.doi.org/10.1016/0304-3975(76)90078-5
http://dx.doi.org/10.1137/0207013
http://arXiv.org/abs/1910.11993
http://dx.doi.org/10.1021/acs.analchem.0c01670
http://arXiv.org/abs/2007.13356
http://dx.doi.org/10.1089/cmb.2015.0013
http://arXiv.org/abs/2001.11607
http://dx.doi.org/10.7717/peerj-cs.483

