
Submitted 21 September 2020
Accepted 16 March 2021
Published 27 April 2021

Corresponding author
Hesham Hassan, h.hassan@fci-
cu.edu.eg

Academic editor
Mario Luca Bernardi

Additional Information and
Declarations can be found on
page 35

DOI 10.7717/peerj-cs.480

Copyright
2021 Ibrhim et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A conflicts’ classification for IoT-based
services: a comparative survey
Hamada Ibrhim1,*, Hesham Hassan2 and Emad Nabil2,3,*

1Computer Science Department, Faculty of Computers and Information, Minia University, Minia, Egypt
2Computer Science Department, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
3Computer Science Department, Faculty of Computer and Information Systems, Islamic University in Madi-
nah, Madinah, Saudi Arabia

*These authors contributed equally to this work.

ABSTRACT
Recently, Internet of Things (IoT)-based systems, especially automation systems, have
become an indispensable part of modern-day lives to support the controlling of the
networked devices and providing context-aware and intelligent environments. IoT-
based services/apps developed by the end-users interact with each other and share
concurrent access to devices according to their preferences, which increases safety,
security, and correctness issues in IoT systems. Due to the critical impacts resulting
from these issues, IoT-based apps require a customized type of compilers or checking
tools that capable of analyzing the structures of these apps and detecting different
types of errors and conflicts either in intra-IoT app instructions or in inter-IoT apps
interactions. A plethora of approaches and frameworks have been proposed to assist the
best practices for end-users in developing their IoT-based apps andmitigate these errors
and conflicts. This paper focuses on conflict classification and detection approaches
in the context of IoT systems by investigating the current research techniques that
provided conflicts’ classification or detection in IoT systems (published between 2014
and 2020). A classification of IoT-based apps interaction conflicts is proposed. The
proposed conflicts’ classification provides a priori conflicts detection method based
on the analysis of IoT app instructions’ relationships with utilizing the state-of-the-
art Satisfiability Modulo Theories (SMT) model checking and formal notations. The
current detection approaches are compared with each other according to the proposed
conflicts’ classification to determine to which extend they cover different conflicts.
Based on this comparison, we provide evidence that the existing approaches have a gap
in covering different conflicts’ levels and types which yields to minimize the correctness
and safety of IoT systems. We point out the need to develop a safety and security
compiler or tool for IoT systems. Also, we recommend using a hybrid approach that
combines model checking with a variety of languages and semantic technologies in
developing future IoT-based apps verification frameworks to cover all levels and types
of conflicts to guarantee and increase the safety, security, and correctness of IoT systems.

Subjects Adaptive and Self-Organizing Systems, Mobile and Ubiquitous Computing, Theory and
Formal Methods
Keywords Local conflicts, Global conflicts, Safety critical system, Correctness and safety, Building
automation system, Rule-Based System, IoT-based services

How to cite this article Ibrhim H, Hassan H, Nabil E. 2021. A conflicts’ classification for IoT-based services: a comparative survey. PeerJ
Comput. Sci. 7:e480 http://doi.org/10.7717/peerj-cs.480

https://peerj.com/computer-science
mailto:h.hassan@fci-cu.edu.eg
mailto:h.hassan@fci-cu.edu.eg
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.480
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.480


1This can be detected and counted using,
for example, passive infrared (PIR)
detectors or video cameras

INTRODUCTION
Automation of large and complex buildings such as houses, hospitals, universities, and
other commercial buildings requires a multi-purpose system that can perform different
tasks. This type of system is capable of supporting end-users with a user-friendly GUI
to develop their automation tasks such as: detecting bugs and errors in these apps,
distinguishing conflicts in apps’ interactions, orchestrating apps, and providing data
integration over-attached devices. The main features of these multi-purpose systems are
accomplishing tasks automatically and providing different facilities in the building based
on users’ preferences. These facilities range from predicting user occupancy and turn on
lights toHVAC, security, fire-alarm,maintaining comfortable utility services for occupants,
and combining several vendor-based systems to achieve the required goals. In IoT-based
systems, the embedded sensors and actuators offer their functionalities via service-oriented
interfaces such as SOAP-based (web services) (Teixeira et al., 2011) or RESTful (Pautasso,
Zimmermann & Leymann, 2008).

To the best of our knowledge, we can categorize Internet of Things (IoT) automation
facilities into two main categories, ‘‘An Automation Service’’ and ‘‘A System Policy’’.
There is an abundance of definitions of IoT automation services and system policies. In
this context, we will define them in the following ways. An Automation Service (later
referred to as ‘IoT app’ or ‘service’ interchangeably) is a set of RULES authored by an
end-user and to personalize the actions of specific devices in a spatio-temporal of interest.
Each service rule is a set of activating conditions (based on device outputs or environment
state change) and a set of actions to perform. An example of automation service is to
open Fan and Window of a lecture hall when the number of students is greater than 60.1

A System Policy (later referred to as ‘policy’) is a set of CONSTRAINTS and obligations
used to specify acceptable ranges for a set of devices. System policies are created by system
admins (or rarely by end-users) to ensure that a smart IoT system meets the intended
needs of its users and to limit the actions that may cause harm for either the occupants,
the IoT environment, or the building itself. An example of environmental policy is to
ensure that the lecture hall AC is turned off when no one is in the hall. System policies have
been used in previous works with different synonyms as Requirement Dependencies (Munir
& Stankovic, 2014), Properties (Zhang et al., 2019a), Constraints (Le Guilly et al., 2016),
and Devices Communication policies (Nagendra et al., 2019). On the other hand, they used
policies differently to resolve the conflicts between different users.

Automation services and system policies can be represented using different notation
styles of automation programming tools and platforms in particular Rule-based tools (Shafti
et al., 2013) such as IFTTT (IFTTT, 2020), Tasker (Tasker, 2021), Atooma (Atooma, 2021)
and Trigger-Action programming (TAP) (Ur et al., 2014). These Rule-based tools are
considered the most popular representations for IoT apps, due to their expressiveness and
simplicity as depicted in Fig. 1.

User-defined automation services may be partially or fully realized by the system
depending on system policies and other users’ automation services affecting the same
spaces. Partial realization results from the following reasons (among others): (1) increasing

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 2/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Figure 1 Example of building environment control via two users.
Full-size DOI: 10.7717/peerjcs.480/fig-1

number of authored services from non-technical users, which characterized by different
users preferences, (2) potential authoring errors in automation services, (3) unexpected
hardware and software bugs, (4) increasing number of heterogeneous resources (e.g.,
devices), and (5) It’s quite difficult for developers of IoT systems to satisfy all users’
preferences when developing such systems. IoT apps programming bugs and conflicts in
intra-interactions and inter-interactions between users’ IoT apps are the main results of
these reasons.

Previous researches have shown such different categories of conflicts affecting IoT
system correctness and safety (Delicato et al., 2013; Zhang et al., 2018; Alharithi, 2019;
Huang, Bouguettaya & Mistry, 2020; Ibrhim et al., 2020; Balliu, Merro & Pasqua, 2020). A
modicum of researches focused on providing literature reviews about conflict detection
(Resendes, Carreira & Santos, 2014; Carreira, Resendes & Santos, 2014), but there exist
abundantly of studies that proposed classification for conflicts in their work (Sun et al.,
2014; Shah et al., 2019; Chaki, Bouguettaya & Mistry, 2020). According to the study of the
several literature and approaches on IoT-based apps related conflicts. We have proposed
a conflicts’ classification that provides a-priori technique for detecting and mitigating
intra-user’ rules bugs, conflicts, and policy violations. We mean by a-priori, the ability to
conclude that the system encountered a bug or conflict before its occurrence.

Specifically, we have conducted a qualitative comparison of available approaches based
on the proposed conflicts’ classification. We focus on two different aspects: coverage of
conflict types and inclusion of automation services and system policies. The advantages of
our conflicts’ classification are: (1) considering the first attempt towards a comprehensive
classification of rule-based conflicts in IoT systems, (2) supporting the inclusion of
automation services and system policies in conflicts definitions, (3) using Satisfiability
Modulo Theories (SMT)-based model-checking (Barrett & Tinelli, 2018) for defining the
conflicts instead of creating manual annotations, (4) considering a step toward developing
a custom compiler/verifier to distinguish bugs and conflicts in IoT-based apps, and (5)
highlighting the uncovered conflicts in the literature that should be taken in consideration.

In this survey, we conducted a comprehensive literature review of IoT apps conflicts and
introduced a classification of these conflicts. To the best of our knowledge, the proposed
classification of conflicts in this paper surpasses previous surveys (Resendes, Carreira &

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 3/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-1
http://dx.doi.org/10.7717/peerj-cs.480


Santos, 2014; Carreira, Resendes & Santos, 2014; Sun et al., 2014; Shah et al., 2019; Chaki,
Bouguettaya & Mistry, 2020) by covering more levels and types of conflicts. Moreover, this
study highlights the limitations of the current IoT apps verification frameworks with the
help of the proposed classification. Moreover, it proposes a solution to fill the gap in the
current IoT systems.

This survey provides an extensive illustration of current technological and research issues
of IoT service bugs and conflicts which is vital for IoT systems community. For example,
companies that work in developing IoT automation frameworks will use our classification.
This is done by developing a new framework that covers all mentioned conflicts to detect
end-users programming bugs, ensure maximizing safety and security. Also, companies
that work in building smart cities will have a clear vision and evaluation of the current
IoT systems with the aid of this survey. On the other side, researchers in the IoT systems
verification area will gain benefits from the paper through our recommendations of how
all mentioned conflicts can be checked by showing the shortage of using a single model
checker. This paper urges researchers of the importance of developing IoT verification
systems using hybrid model checkers and approaches as using a single method/model
checker would not be enough to cover all conflicts.

This paper is structured as follows. In the ‘Survey Methodology’ section, the searching
and inspecting process is conducted to obtain the most related works to the topic of this
paper interest. The ‘Current Conflicts’ Classifications and Detection Methods’ section
investigated the current relevant work in detail. In ‘The Proposed Conflict’ Classification
Framework’ section, a classification of conflicts’ levels and types is proposed with a
definition and explanation of each conflict. In the ‘Discussion’ section, based on a qualitative
comparison of relevant studies, we provided some insights and limitations in the current
IoT apps conflict detection frameworks that should be considered when developing IoT
systems. Finally, the ‘Conclusions’ section provides a concluding summary.

SURVEY METHODOLOGY
We conducted a searching process method for the literature review. This process specifies
research questions and defines some criteria for including and excluding the studied papers.

Overarching research question
From the authors’ point of view, to develop an IoT framework that guarantees user comfort
with an acceptable level of system correctness and safety, conflicts that may occur should be
well-defined and known. For this, the analysis of the literature was guided by the following
research question:

How much coverage of conflict types is achieved by the current IoT verification and
detection frameworks?

To answer this question, we need to determine if IoT apps conflict detection is still
a relatively challenging task? Also, is it essential to develop a new IoT apps verification
framework or not? These questions are compulsory identifying the current state-of-the-art
of IoT-based end-users automation conflicts’ classifications and detection approaches:

• What are the existing IoT apps conflicts’ classifications?

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 4/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


• What are the existing IoT apps’ conflicts detection methods?
• What are the main characteristics of each conflict detection method?

Search process
To ensure that the survey is rigorous and unbiased, we conducted a review of relevant
studies that address the research questions. Figure 2 shows the search process used to obtain
relevant studies. The search process involves five phases of search and enhancement. The
search process performed in well-known online databases, which are IEEEXplore (IEEE,
2021), ACM (ACM, 2020), Google Scholar (Scholar, 2020), Springer (Springer, 2021), and
ScienceDirect (ScienceDirect, 2020).

In phase 1, the search string Eq. (1) below is created to retrieve relevant studies from
aforesaid databases. We formulated this search string based on an analysis of the keywords
from the relevant literature. Initially, using these search terms, we obtained plenty of
potential studies in the databases. Totally, the search string produced 1536 results.(
‘‘IFTTT ′′ OR ‘‘ECA rules′′

)
AND ‘‘conflict ′′ AND

(
‘‘detection′′ OR ‘‘classification′′

)
(1)

In phase 2, a step-forward to minimize the results from phase 1, we filter results by
refining the search string Eq. (1) by adding more keywords related to IoT systems conflicts
as below in search string Eq. (2). As a result of refining the search terms, 223 studies were
identified.(
‘‘IFTTT ′′ OR ‘‘ECA rules′′

)
AND ‘‘conflict ′′ AND (‘‘detection′′ OR ‘‘classification′′) AND

(‘‘IoT ′′ OR ‘‘building automation′′) AND (‘‘correctness′′ OR ‘‘safety ′′) (2)

In phase 3, due to paper unavailability, redundancy, or irrelevance, we excluded those
papers that satisfy these reasons. We obtained 150 studies.

In phase 4, we defined inclusion and exclusion criteria to enhance the filtering results
from phase 3. Below, the inclusion and exclusion criteria used. We obtained 100 studies.

• Inc1: including the papers that provided conflict classification.
• Inc2: including the papers that described a conflict detection method.
• Exc1: excluding the papers that did not describe a conflict classification or provide a
conflict detection method.

In phase 5, after using the filtering search string, inclusion and exclusion criteria,
and excluding unavailable and duplicated papers, we ensure that the remaining papers
are mostly related to the IoT apps conflict classifications and detection by screening
both papers’ titles and abstracts. Finally, we obtained 63 studies. Figs. 3 and 4 show the
distribution of reviewed papers over the defined period (between 2014 and 2020) and
selected search databases, respectively.

CURRENT CONFLICTS’ CLASSIFICATIONS AND
DETECTION METHODS
Developing reliable software means to ensure the correctness, security, and safety issues
in the to-be software. Among the stumbling blocks that make developing such software

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 5/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Figure 2 The survey search methodology.
Full-size DOI: 10.7717/peerjcs.480/fig-2

Figure 3 Reviewed papers distribution over defined period.
Full-size DOI: 10.7717/peerjcs.480/fig-3

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 6/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-2
https://doi.org/10.7717/peerjcs.480/fig-3
http://dx.doi.org/10.7717/peerj-cs.480


Figure 4 Reviewed papers distribution over selected search databases.
Full-size DOI: 10.7717/peerjcs.480/fig-4

is still a challenge are the errors related to the software, violating certain properties, and
vulnerabilities. Ignoring the surety for these issues could lead to negative impacts either on
the software, the users, hardware failures, sniffing users’ sensitive information, the harmful
influence of information flow, or other ramifications.

A plethora of defense techniques and approaches have been proposed and applied in
different domains and contexts for the above-mentioned issues. Among these techniques
are Security Policy Enforcement (Herrmann & Murari, 2004; Sicari et al., 2016; Neisse,
Steri & Baldini, 2014; Keromytis & Wright, 2000; Adi, Hamza & Pene, 2018), Language-
based Security (Abadi, Morrisett & Sabelfeld, 2005; Bandi, Fellah & Bondalapati, 2019;
Khan et al., 2019; Vaidya et al., 2019; Zigmond et al., 2019), Formal-language Verification
(Foughali et al., 2018; Fragoso Santos et al., 2017; Grimm, Lettnin & Hübner, 2018; Abbas et
al., 2020; Halima et al., 2018), Software Verification (Rodriguez, Piattini & Ebert, 2019;
Feldt et al., 2010; Zheng et al., 2014; Miksa & Rauber, 2017; Zhang et al., 2019b), and
Developing Secure Compiler (Busi & Galletta, 2019; Lee, Jeong & Son, 2017; Zúñiga et
al., 2020; Abate et al., 2020; Hastings et al., 2019). All of these methods and others share
the same approach. Giving a program as input along a set of predefined requirement
properties/policies (e.g., the syntax and semantic behaviors’ rules, security/safety needs,
software constraints, etc.) that needed to be validated in the input program, and concluding
with either the given program is passed (i.e., satisfying all the given requirements) or failed
(i.e., some bugs/conflicts are issued due to violating these requirements). The input
programs and the predefined requirements are differed according to the context they
applied for, how they are represented, the checking/validating process, and how to resolve
the violated requirements.

In the IoT context, especially for the automation systems, correctness, security, and safety
consider sensitive concerns (Tawalbeh et al., 2020) as a misunderstanding or mishandling
them may lead to harm to the users (e.g., unlocking doors at the wrong time) or even
causing massive damages in IoT-system environment (e.g., not opening water valve in
fire situations). Regarding the IoT app’s source code, static and dynamic analysis tools
(Celik et al., 2018; Celik, McDaniel & Tan, 2018; Celik, Tan & McDaniel, 2019) have been

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 7/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-4
http://dx.doi.org/10.7717/peerj-cs.480


proposed to track the privacy-sensitive data flow and to prevent conflicts between IoT
apps interactions. However, the IoT context, in general, has some differences, which make
IoT apps source code errors prediction and mitigation techniques than its peers in the
traditional programs analysis. Among these differences there are:

• The (computation, memory, and energy) resource limitations of IoT systems impose
different constraints,
• The dynamic nature of IoT systems implies the need for dynamic and fault-tolerant
services verification and coordination methods matching this nature,
• The new nature of interaction with the physical world which makes the traditional
methods need a bit more refinement or even inventing new methods, and
• The multi-user programming environment used in IoT systems results in a different set
of properties to be checked which depends on the end-users preferences.

To a certain extent, the proposed work in this paper is targeting the same goal as the
above-mentioned techniques, in which it provides a classification for the programming
bugs and safety policies violations in IoT systems. However, there are some similarities
between these methods, especially the compiler design, and the proposed work in this paper
as follows: (i) each has programmers, but in IoT automation systems the end-users are
considering the main programmers instead of developers, (ii) each has programmed apps,
but here the automation apps are simple (i.e., IFTTT-style rules) instead of hardcoded
instructions (e.g., Java source code), and (iii) like the syntax/semantic analysis related
to compilers which is responsible for detecting the syntax structure errors and semantic
violations in the program code, the syntax/semantic analysis is applied in customized ways
in IoT apps.

In next subsections, we reviewed the relevant works in two categories, including: (1)
literature that provided conflicts’ classifications/categorizations for the IoT-based apps’
interactions and (2) IoT-based apps conflict detection approaches. The striking similitude
between various tools and approaches denotes that sometimes it is hard to identify intense
boundaries between them. Here, we mainly focus on the tools and models contributing to
provide a classification or conflict detection in the IoT systems context.

Literature analysis of conflicts’ classification
A body of current researches focused on providing classifications of the conflicts in the
context of IoT smart environment or building automation. In the following paragraphs,
we reviewed relevant works on conflict classification.

For Ambient Intelligence (AmI) systems, Resendes, Carreira & Santos (2014) and
Carreira, Resendes & Santos (2014) investigated and provided a conflict classification
based on four dimensions, (i) source, (ii) interventions, (iii) time of detection, and (iv)
solvability. Their classification provided multi-level categories for conflicts and supports
the interactions either in user application, between the user application and space policy
(system policy), or between different users’ applications. However, their work is limited in
conflict classification and does not provide an exact or formal definition for the conflicts,

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 8/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


or how they could be occurred. Also, all conflict categories are for one conflict type that is
inconsistency conflict.

Resendes, Carreira & Santos (2014) andHomola et al. (2015) investigated the importance
of conflict resolution for Knowledge Representation (KR) in AmI, where agents (i.e., user
automation needs) required/consumed knowledgemay cause conflicts in their interactions.
Homola et al. (2015) mentioned and explained approaches that can help to solve these
conflicts such as context modeling, multi-context systems, belief revision, ontology
evolution, and debugging argumentation, preferences, and paraconsistent reasoning.
However, the work focused on the conflict classification proposed in Resendes, Carreira &
Santos (2014) and did not consider conflict resulting from violating system policies.

Homola & Patkos (2014) followed the previous two works in conflict classification and
proposed a new conflict category caused by knowledge sharing between different AmI
systems. They also referred to five conflict types of this category, which are (i) sensory
input, (ii) context, (iii) domain and background knowledge, (iv) goal, and (v) action
conflicts. Their work is ignoring conflicts against policy constraints.

The UTEA (User, Trigger, Environment entity, and Actuator) model proposed in Sun et
al. (2014) provided a classification for IoT apps conflicts. Their classification contains five
conflict types (i) shadow conflict, (ii) execution conflict, (iii) environment mutual conflict,
(iv) direct dependence conflict, and (v) indirect dependence conflict. This classification
is based on 11 rule relations. Although they provided how the conflict occurs, Sun et al.
considered only the interaction between rules and the conflicts when users’ priorities are
similar. Their rule relation schema depended on manual annotations of conflicts and no
representation for environment and system requirements.

Based on Feature Interaction (FI), Magill & Blum (2016) provided five types of rule
interaction and defined them as conflicts. These interactions are (i) shared trigger
interaction, (ii) sequential action interaction, (iii) looping interaction, (iv) multiple action
interaction, and (v) missed trigger interaction. Using Event Calculus (EC) with proposed
detection algorithms, authors capable of detecting these conflicts. However, the work did
not explain how these conflicts may appear in the run-time of automated service.

For WSAN-based smart building, Sun et al. (2016) provided a conflict classification
and categorized them into two based (i) rule conflict on the device (redundancy and
contradiction conflicts) and (ii) rule conflict on the environment (write-write and read-
write conflicts). The proposed algorithms in their work missing the consideration of system
policies and consequently forgetting its related violations.

IoTSAT framework is proposed in Mohsin et al. (2016) to detect the security risks in
IoT devices. The framework is based on SMT solvers to convert each of the functional and
network-level dependencies to predicate logic. For ensuring the behavioral model of IoT,
some constraints are defined. The threats are classified into three types (i) context threats,
(ii) trigger threats, and (iii) actuation threats.

While, HomeGuard system proposed in Chi et al. (2018) for ensuring smart home safety
against threats resulting from interactions between multiple IoT apps. A categorization
of the Cross-App Interference (CAI) threats has been proposed, and the detection of
these threats was based on a symbolic detection module. The categorization includes

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 9/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


three categories (i) action-interference threats (actuator race and goal conflicts), (ii)
trigger-interference threats (covert triggering, self disabling, and loop triggering threats),
and (iii) condition-interference threats (enabling-condition and disabling-condition
threats). Although the authors cover a range of threats between IoT apps, they omit the
representation of a system or environment constraints and the threats that may occur due
to violating these constraints.

For security issues, the iRULER tool inWang et al. (2019) is proposed to discover inter-
rule vulnerabilities. These vulnerabilities are (i) condition bypass, (ii) condition block,
(iii) action revert, (iv) action conflict, (v) action loop, and (vi) action duplicate. iRULER
is based on natural language processing (NLP) methods to derive flows in trigger-action
apps and verify the inter-rule interactions using Satisfiability Modulo Theories (SMT)
(Barrett & Tinelli, 2018) based model checking. However, the tool not supporting complex
rules (rule conditions are represented only using Boolean flags) and does not take into
consideration the conflicts resulting from violating system policies.

An error categorization is explained in Palekar, Fernandes & Roesner (2019) for user
programming errors in smart home behaviors. They mentioned errors like (i) lack of
action reversal, (ii) feature interaction, (iii) feature chaining, (iv) event+event rules, (v)
state+state rules, (vi) missing trigger, (vii) missing action, (viii) secrecy violations, and (ix)
integrity violations. Their work mentioned the missing of some trigger-action platforms
in handling these errors. However, the work missing to mention the level of conflicts, they
only focused on checking these conflicts during the user authoring process.

Using TAP rules, Brackenbury et al. (2019) explained using testing the bugs related to
the rules. They categorize bugs into three categories, (i) control flow, (ii) timing, and (iii)
inaccurate user expectations. Although the work provided more conflict types, they did not
make allowances for the bugs that may result from policy violations and composite service
violations against policies. Shah et al. (2019) proposed a schema to detect rule conflicts,
which include execution, independent, shadow, and rule incompleteness conflicts. But,
considered only conflicts in actions of the rules (e.g., contradiction or false impact actions)
and no representation for environment or system requirements.

A conflict taxonomy and detection model are proposed in Alharithi (2019). Conflicts
are considered for multiple user-defined policies’ interactions. The taxonomy categorizes
the conflicts into two main categories, (i) direct conflicts (e.g., opposite conflict, overwrite
conflict, and environmental conflict) and (ii) indirect conflicts (e.g., chain conflict, feedback
conflict, and environmental conflict). Static analysis is used to detect the interaction
between IFTTT rules. Although the taxonomy provided a range of policy conflicts, it did
not providemethods to resolve the detected conflicts. Also, it did not take into consideration
the conflicts that may result due to violating the system policies.

The work presented in Huang, Bouguettaya & Mistry (2020) investigated the rule
interactions in single user’s rules by proposing an ontology to represent different contexts
of IoT applications. Using this ontology, the framework categorized the conflicts into three
categories (i) environment related conflicts (i.e., opposite environment conflict, additive
environment conflict, and transitive environment conflict), (ii) action related conflict (i.e.,
contradiction conflict), and (ii) quality related conflict (i.e., contradiction conflict only for

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 10/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Integer devices). However, detecting conflicts is based on knowledge-based IoT-services
(conflict annotations) which written by a domain expert. Also, based on the setting of time
threshold, which requires techniques to determine the suitable ones. Moreover, the same
IoT service property is used for two different conflicts, which may confuse the detecting
process (e.g., brightness is used for quality conflict and additive environment conflict).

In Chaki, Bouguettaya & Mistry (2020) and Chaki & Bouguettaya (2020) a hybrid
framework to detect conflicts is proposed. The framework has a knowledge-driven approach
represented in an ontology to model and describe the conflicts in both functional (i.e.,
On/Off of a device) and non-functional (e.g., Temperature value) properties of IoT services.
Also, it has a data-driven approach represented using IoT service usage history. However,
conflict detection is based on peoples’ service usage history, which not suitable for real-time
(dynamic) IoT service requests. Policy violations are neglected.

Trimananda et al. (2020) provided a study of pairwise IoT apps interactions to determine
app conflicts. They categorize the conflicts into three groups, (i) conflicts resulting from
accessing the same device with incompatible values, (ii) conflicts resulting from physical
interactions as app chain, and (iii) conflicts resulting from modifying the same global
variable. To detect these conflicts, the IoTCheck tool is implemented based on the
Java Pathfinder (JPF) model checking infrastructure (Visser et al., 2003). A drawback
of IoTCheck is that, the IoTCheck’s performance due to the use of JPF and Groovy
language (Groovy, 2020). Moreover, IoTCheck focused only on three types of conflicts
ignoring conflicts between multiple app interactions and system policy violations.

The IoTCOM approach is proposed in Alhanahnah, Stevens & Bagheri (2020). IoTCOM
is based on the static analysis of behavioral models of IoT apps and formal methods to
detect the security and safety violations against some predefined IoT safety and security
properties. IoTCOM classifies the potential multi-IoT app coordination threats into seven
classes, (i) action-trigger, (ii) action-condition (match), (iii) action-condition (no match),
(iv) self coordination, (v) action-action (conflict), (vi) action-action (repeat), and vii)
exclusive event coordination. Although IoTCOM investigates the coordination between
IoT apps, it is omitting conflicts resulting from properties violation and co-exists of IoT
apps that violate these properties. Also, IoTCOM did not provide resolution methods for
the detected threats.

Literature analysis of conflict detection
Different methods and approaches are developed for ensuring the interactions between
automation services and system policies in IoT systems by detecting various conflicts that
maybe happened in these interactions. The following is a brief explanation of current IoT
app conflict detection methods.

Single User IoT App Conflicts Detection
In Cano, Delaval & Rutten (2014), the authors categorized the ECA rules problems based
on compiler and runtime. The ECA rules are translated formally to Heptagon/BZR
language. Rules problems like (i) redundancies, (ii) inconsistencies, (iii) circularities, and
iv) app dependent safety issues are detected. Termination, confluence, and consistency

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 11/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


are explained in Corradini et al. (2015). The ECA rules are created using IRON language
and compiler proposed in their work. However, the proposed IRON language required
the programmer to have knowledge about devices’ properties (e.g., device type, physical
or logical—has a constraint or not) which implies a burden for normal users when
developing their apps. Also, it did not provide a means for the conflicts caused by violating
system-specific constraints.

Inconsistency and desired behavior violation conflicts in IFTTT-style programs are
investigated inHuang & Cakmak (2015) using somemental models. The conductedmental
models studies concluded with the ambiguities cause errors in programs. Conflicts against
system requirements are omitted in their work. Temporal ECA rules are used by Le Guilly
et al. (2016) and provided a framework to define behaviors that are not wanted to occur
in the environment. Their work defined a set of constraints represented in the undesired
behaviors states. Rules used in their work are simple (a single condition and action) and
did not support complex rule systems. The IoT apps are formed using a temporal ECA
language and checked against the reachability of these constraints. However, only the
reachability is checked and not touching conflicts and violations that may take place.

Perumal et al. (2016), action contradiction conflict was discussed. Also, an ECA Priority
Schema has been proposed to solve this conflict. However, the work did not take into
account other conflict types and no representation for system policies. Policy violation
like condition inconsistency and non-specified conflicts that occur in IoT apps has been
studied by Liang et al. (2016a) using Salus framework. However, the work focusing only
on two conflicts, ignoring other conflicts and local conflicts.

Peña et al. (2016) proposed a decision support system using data mining techniques and
context-aware information to detect energy inefficiency situations that cause high energy
consumption in smart buildings. The detection is based on a developed set of energy
efficiency indicators to find these energy anomalies. But, the energy efficiency indicators
policies are considered rigid and not suitable for the dynamic nature of IoT applications.

Vannucchi et al. (2017) conflicts such as Unused, Redundant, and Incorrect rule conflicts
that may happen in Integrated Rule ON data (IRON) rules are referred. These conflicts
have been detected during different rule interactions, so no handling for local conflicts.
Goynugur et al. (2017) authors proposed a policy (i.e., user-defined rules) framework based
on OWL-QL representation language. They also used the JSHOP2 AI planner to avoid
conflicts. In their work, two policies cause a conflict if and only if: (a) policies shared the
same device or individual, (b) one policy must oblige an action, while the other prohibits
the same action; and (c) policies are active at the same time. Their conditions for conflict
are considered only for direct conflict and not for other conflicts that may occur in design
and run times.

In De Russis & Monge Roffarello (2018), a debugging approach for trigger-action rules
against loops, action inconsistency, and redundancy conflicts have been proposed, the
proposed approach—also in Corno, De Russis & Monge Roffarello (2019)—was based on
semantic colored Petri net to formulate the execution model of rules. For ensuring not
violating end-users privacy, a static taint analysis tool (SAINT) for IoT applications is
proposed in Celik et al. (2018). SAINT is based on analyzing the Samsung SmartThings

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 12/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


app’s source code and data packets to prevent and track any attacker malicious interactions.
SAINT privacy-sensitive data is divided into device states, device information, location,
user inputs, and state variables.

My IoT Puzzle tool has been proposed in Corno, De Russis & Roffarello (2019) to
compose and debug IFTTT rules. The rules are authored using the block programming
approach to achieve simplicity for users. The authors define three types of conflicts’ loops,
redundancies, and inconsistencies. However, the tool correctly detects the rules problems,
but the mentioned conflicts are for design-time only. In this work (Al Farooq et al. 2019),
a rule-based system called IoTC2 has been implemented in Prolog to ensure safety in
controllers’ behaviors through some controller safety policies defined by Al Farooq et
al. (2019) and conflicts such as dependent/indirect dependent and overlapping events.
However, the rigidity safety properties defined in IoTC2 restrained the dynamic nature of
IoT applications.

Manca, Santoro & Corcella (2019) explained how end-user trigger-action rules could be
analyzed and debugged through why/why not common questions to ensure it behaves as
it desired by the user. The Interactive Trigger-Action Debugging (ITAD) tool developed
in Manca, Santoro & Corcella (2019) is capable of detecting some conflicts between user-
defined rules. Although ITAD refers to there are design and runtime conflicts, it omits
to represent system policies. AutoTap has been proposed in Zhang et al. (2019a) to allow
less user program failure through ensuring means safety-properties which allow users to
express system states that should always be satisfied. The user rules are translated to LTL
for synthesizing against these properties. AutoTap is missing other conflicts that may occur
due to sharing the location of interest between different users, also omitting local conflicts.

Krishna et al. (2020) proposed a tool called MOZART (Mozilla and Advanced Rule
Triggers) that provides several functionalities for IoT applications, such as providing UI
to create rules, analyzing the created rules and checking against deadlocks, and finally
deploying to execute the rules. MOZART only checks for deadlock and did not care about
errors resulting from devices’ effects on each other. Deadlocks are checked after forming
the composite service using the suggested operators.

Multiple user IoT apps conflicts detection
DepSys (Munir & Stankovic 2014) focused on dependency checks that may take place
between different IoT apps that share devices in both service times (design and run times).
DepSys defined some dependencies requirements to ensure the IoT apps relationships.
But, the developers are responsible for specifying these dependencies within their apps’
metadata. Although DepSys provided different types of app dependencies, it did not
consider other conflicts that happened in runtime when violating system constraints.

Based on a multi-agent auction mechanism, Liang, Hsu & Lin (2014) proposed different
algorithms to efficiently orchestrate IoT applications that share actuators. The authors
focused on action contradiction conflict between two applications. However, the work
benefits from a multi-round single-item auction in conflict resolution to maximize the
utility, but they did not take into account other conflict types.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 13/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Cheng et al. (2014) proposed an IoT middleware for conflict resolution. Concurrent
access for devices/resources is the main conflict focused in the middleware where situation-
aware services are represented as Situation-oriented ECA rules. Based on the diagram of
the situation state transition, the author proposed a set of policies to resolve the conflict
between users. The middleware ignored other types of conflicts.

Safe Internet oF Things (SIFT) (Liang et al., 2015) automatically verified IoT apps
correctness against high-level user requirements (policies) using an SMT-based checker.
The correctness in their work represented the avoidance of simultaneous device access
and detecting the violations of predefined policies. SIFT ignores other conflicts of policy
violation and co-exist of multiple users.

In Yagita, Ishikawa & Honiden (2015), the authors presented an approach to handle a
single actuator simultaneously control conflict at installation time. The rules generated
by the parser module in Yagita, Ishikawa & Honiden (2015) are translated to a Kripke
structure and verify their correctness against one property, ‘‘no two apps use actuators
to create different effects at the same location’’, through the use of model-checker. Also,
using the effect attribute of actuators, the approach can detect device-influence conflicts.
Different other conflicts are ignored in this approach.

Zave, Cheung & Yarosh (2015) proposed a framework for controlling, composing, and
conflict resolution, IoT apps. IoT apps are represented using feature interactions to check
their behavioral properties using the Alloy Analyzer. The only conflict reported in their
work is the inconsistency conflict. But no clear definition for other conflicts.

An Agent-basedNegotiation System (ABNS) has been proposed inAlfakeeh & Al-Bayatti
(2016) to simplify interactions between different residents’ services expressed using means
of features interaction hierarchy. Contradiction conflict caused by concurrent access for
shared devices is discussed. No other conflicts are detected in their work.

TrigGen tool is proposed in Nandi & Ernst (2016) for finding the missing conditions or
preventing unnecessary triggers based on static analysis of OpenHAB rules. It depends on
generating the abstract syntax tree (AST) of the rule actions to suggest adding or eliminating
triggers. TrigGen rules are depending only on OpenHAB rules which may not be suitable
to apply on other platforms. And, saying the rule is missing or requiring triggers is based
on violating the user’s expectation, which can not be obtained previously and requires
effort-intensive to be detected.

Hadj et al. (2016) added a modification to iCASA (Escoffier, Chollet & Lalanda, 2014)
by adding an autonomic access layer, which allows detecting direct conflict between smart
home apps due to shared devices. The work not suitable for non-technical end-users and
also did not provide management for other conflicts.

A context descriptor using a visualization model proposed in Oh et al. (2017) for
trigger contradictory action conflict that may happen between apps and In-deterministic
conflict occurs against system policies. No clear definition of the mentioned conflict.
Simultaneously arrived conflict for events has been explored in Shahi et al. (2017) and
depending on weighted-priority scheduling for solving such conflict. The work focused on
one conflict, ignoring other conflict types.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 14/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Based on Trigger-Actuator-Status (TAS) rules, Lin et al. (2017) proposed a formal rule
model for just one conflict, redundancy conflict. However, the rule model did not consider
other conflict types.

In Celik et al. (2019) the authors provided two frameworks Soteria (Celik, McDaniel
& Tan 2018) and IoTGuard (Celik, Tan & McDaniel 2019) for real-world IoT apps
verification. The former performing static analysis against identified properties. The latter
focused on ensuring safety and security proprieties during runtime IoT apps interactions.
Both frameworks are based on model checking (e.g., NuSMV Cimatti et al. (2002)). For
IoTGuard, to detect policy conflict using the unified dynamic model of apps interaction,
these apps must have a shared events chain between them, so it fails to detect conflict in IoT
apps (e.g., Joint-behavior services conflict in Subsection ‘Conflict Notations and Types’)
not having this events chain.

OKAPI platform is proposed inMelissaris, Shaw & Martonosi (2019) for eliminating the
consistency deficiencies, event reordering, and race conditions problems resulting from
accessing or modifying shared resources in smart homes. The consistency check did not
include the system requirements violations. RemedIoT framework proposed in Liu et al.
(2019) to detect and resolve IoT app conflicts with respect to policies—set of rules that
must not be violated—through simplifying IoT app using the Abstraction Module. There
are three types of conflicts defined in this work, Racing events (i.e., contradicting actions),
Cyclic events, and policy violation conflicts. The work did not take into account other
different conflicts in the app itself or between apps.

To simplify IoT apps abstractions and support free-conflicts apps, VISCR proposed in
Nagendra et al. (2019) and Nagendra et al. (2020). The IoT infrastructure administrators’
policies and the communication between devices policies are translated into a vendor-
independent graph-based specification to detect some conflicts like loops and runtime
violations and rouge policies. VISCR can detect a small set of conflicts and bugs. VISCR
missing of representing environment policies which have a great impact to secure and safe
occupants and building.

In Li, Zhang & Shen (2019) and Shen, Zhang & Li (2017) utilizing graph-based
representation and SMT solvers to represent IoT inter-app interplays and detect conflicts
between IoT apps. Using Inter-App Graphs (IA-Graph) and some proposed algorithm
provided the Detector of IoT App Conflicts (DIAC) tool for checking the conflicts. Also,
they provided a definition refinement for the apps conflicts based on three categories (i)
Strong conflict, (ii) Weak conflict, and (iii) Implicit conflict. These conflict categories
investigate the inter-app influences and the action inconsistency conflict between them.
Although DIAC using an SMT solver, there are some conflicts ignored or can not be
detected due to missing the relationship analysis between IoT apps rules.

Xiao et al. (2019) proposed a method called Automatic and Interpretable Implicit
Interference Detection (A3ID) to detect implicit interference based on intensive analysis
using natural language processing (NLP) techniques and a lexical database. But, the
detection process is time consuming due to intensive rule NLP analysis, also based on the
knowledge extracted from the knowledge graph, which still has a weakness of representing
all information of all devices.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 15/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Chen et al. (2019) proposed IoT Interaction Extraction (IoTIE) tool to explore the cross-
interactions between IoT Apps and the physical environment entities (e.g., temperature,
humidity, light, motion). IoTIE is based on the NLP method to detect these cross-
interactions by calculating the similarity between the rules and physical environment
entities. However, depending on NLP methods may result in incorrect similarity results,
which affect the resolution of these interactions. Also, IoTIE did not care about other types
of conflicts that may occur between IoT apps.

Using wireless communications, (Gu et al., 2020) introduced the ‘‘wireless context’’
concept that represented the actual packets workflow of IoT apps. By applying the machine
learning model, system anomalies (e.g., App misbehavior, Event spoofing, Over-privilege,
Device failure, and Hidden vulnerabilities) can be detected by comparing the user IoT
context against the wireless context. For detecting hidden vulnerabilities in interactions
between apps, hidden channels (i.e., device influences) is used. Also, no solutions for the
detected anomalies and no means for representing environment constraints.

Balliu, Merro & Pasqua (2020) and Balliu, Merro & Pasqua (2019) proposed a
framework to ensure the security and safety for cross-app IoT interactions. Based on
the process calculus, the authors formally defined safe and secure cross-app interactions
policies. Although the proposed policies can make inferences for both syntactic and
semantic conditions for IoT apps, they did not provide ways to resolve these interactions.
Also, they did not take environmental requirements into considerations when two systems
of apps are interacting together.

Rule Verification Framework (RVF) was proposed in Ibrhim et al. (2020). RVF
comprised a set of algorithms for detecting and resolving building automation system-
related conflicts. RVF is based on Z3 (De Moura & Bjørner, 2008), a state-of-the-art SMT-
based model checker, to analyze, detect, and resolve the conflicts in campus buildings
context. However, RVF fails to detect the co-existence of users’ services that violating
system policy. Also, no means for representing devices’ influences.

To sum up, there are different methods and approaches that have been proposed to
categorize and define IoT apps’ interaction errors and conflicts. There is a general point
of missing in these approaches that is, the conflicts have a rapport with these interactions
ignoring either to represent the environment requirements or to check their violations.
Also, the detection approaches focus on inconsistency, redundancy, and dependency
conflicts. The proposed conflicts classification aims at filling this gap.

THE PROPOSED CONFLICTS’ CLASSIFICATION
FRAMEWORK
In this section, we provide a detailed explanation of the proposed IoT-based service
conflicts’ classification. We begin with the formalization for both automation services
and policies defined in the ‘Introduction’ section; then, we provide the definitions and
notations for the conflicts included in the classification.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 16/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Rule and constraint formalization
The rule and the constraint forms for representing user’ automation service or system
policy used in this work are as follows:
Simple trigger A rule structure or policy constraint that specifies a Boolean expression
over one or two devices.

Rule1: IF Occupancy = True THEN Light = True

Rule2: IF Temperature>20 AND Occupancy = True

THEN Fan = True AND Window = False

Arithmetic operation A rule structure for specifying a Boolean expression that involving
an arithmetic operation in its condition part.

Rule1: IF OutTemperature - InTemperature >= 10 THEN AC = True

AND Thermostat = 22

Admissible range A rule condition part or a policy constraint that identifies a specific
range of valid values for a device.

Rule1: IF 20 < Temperature < 27 THEN Window = True

Constraint1: 20 < ACThermostat < 27

Device grouping A policy constraint structure used to specify conjunction or disjunction
over a set of devices.

Constraint1: AirConditional = True AND Datashow = True

Constraint2: (NOT (AirConditional = True AND Heater = True))

Direct actuation A rule structure used to specify conjunction over a set of devices that
affect system state directly without specifying a condition part.

Rule1: Fan = True AND Window = True

Translating these rules or constraints requires caring about computer-spoken logic. One
of the logic formalisms that may be used to formalize real-life IoT applications is First-order
logic (FOL). FOL is used to express IoT applications as an arrangement of action effects on
IoT resources.

Among SMT-based languages that formulates the inputs to SMT-based model checkers
(e.g., Z3 (De Moura & Bjørner, 2008), MathSAT5 (Cimatti et al., 2013), Yices (Dutertre &
De Moura, 2006), and Boolector (Brummayer & Biere, 2009)) is the standard SMT-Lib v2
language (Barrett, Stump & Tinelli, 2010). Both services’ rules and policies’ constraints
are translated to assertions in the form C =>A, where C and A are FOL formulae over
one or more theories. These assertion in this form means if-this-then-that, or conditional
expression that changes the system state as specified in A when the system has a situation
state satisfyingC . The translation usingBarrett, Stump & Tinelli (2010)will take this general
form,

(define-fun < variable > () < sort > )

(assert (=> < assertion > ) )

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 17/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


where variable represents the device name, sort represents Boolean or Integer types
for devices, and assertion represents the transformation of the rule forms (mentioned in
Section ‘Introduction’) as specified by the user.

For instance, the automation service of a lecturer who wants to adjust the indoor
environment temperature by letting fresh air entering the lecture hall when the number of
students is more than 60. Additionally, suppose a faculty admin who wants to save energy
in the lecture hall, saying that, if no one is in the lecture hall, then the air-conditioner
should always be off. These examples can be converted to SMT-Lib v2, respectively as
follows,

(define-fun LectureHallStudentNumber () Int)

(define-fun LectureHallFan () Bool)

(define-fun LectureHallWindow () Bool)

(assert (=> (> LectureHallStudentNumber 60)

(and LectureHallFan LectureHallWindow) ) )

(define-fun LectureHallAC () Bool)

(define-fun LectureHallOccupancy () Bool)

(assert (and (not LectureHallAC)

(not LectureHallOccupancy ) ) )

Conflict notations and types
Tuttlies, Schiele & Becker (2007) specified the conflict concerning end-user service or system
policy as ‘‘...a context change that leads to a state of the environment which is considered
inadmissible by the application or user’’. In our proposed conflicts’ classification, as shown
in Fig. 5, we identified two main conflict categories. Firstly, local conflicts are those
conflicts that occur between intra-rules or intra-constraints of the same automation service
or policy authored by the same user or the same admin, respectively. The reasons for this
type of conflict are the missing of programming erudite of end-users and less knowledge
about devices’ interaction relationships. Secondly, global conflicts are those conflicts that
may occur in inter-interactions between different automation services or between different
policies. Overlapping in spatio-temporal attributes and violating system policies are the
main reasons for these types of conflicts.

These two main categories (local and dynamic conflicts) are related to a level-based
category, which indicates where the conflict may occur. There are two levels, Service
Level Conflicts (SLCs) and Policy Level Conflicts (PLCs). SLCs are the conflicts that may
happen in service rules, either local or global. On the other hand, PLCs are the conflicts
that may happen in policy constraints, either locally or globally.

For defining conflicts in a low level of a classification hierarchy, Table 1 provides the
notations used for describing these conflicts in a formal specification. Also, we started by
defining the concept of Rule Satisfiability Measure (RSM). RSM allows us to assess and
filter the rules. RSM is the state of the SMT-based checker (i.e., SAT or UNSAT) when
checking conjunctions of rule parts (i.e., conditions and actions). In respect of simplifying

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 18/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Figure 5 The proposed IoT apps conflicts’ classification.
Full-size DOI: 10.7717/peerjcs.480/fig-5

the conflicts definition, we will use Venn diagram to represent the relation between the
rule parts. There are two cases for the diagram. The former case is when the Venn diagram
has no superimposition, that represents the ‘‘UNSAT’’ state determined by the solver. The
latter is when the Venn diagram has a superimposition, that represents the ‘‘SAT’’ state
determined by the solver.

One or more of the following conflict situations may occur between the two rules under
the assumption which they shared the same location and have time overlapping. These
conflicts should be taken into consideration to ensure overall system correctness, security,
and safety issues, as violating any of them may lead to danger or harm situations.

Rule Dependency Conflict (RDC) For two or more rules, this conflict occurs when the
actions resulting from satisfying the conditions of one rule leads to trigger the second rule,
where its actions lead to the triggering of the first rule, creating an infinite cycle of these rule
interactions.

This conflict is mentioned in Ibrhim et al. (2020) and also known as Confluence Property
in Corradini et al. (2015) and Looping Interaction inMagill & Blum (2016). Figure 6 shows
a Venn diagram for this conflict. Formally, this conflict can be described as follows:

RDC
⊥ :=


∃Rij and Rik

∈ the same service i where j 6= k,

∃d1∈ {DRij
c ,DRik

a }, ∃d2∈ {DRij
a ,DRik

c },and

∃v ∈V Rij
c : (Rij

c ∩¬R
ik
a ) 7→UNSAT and

(Rij
a ∩¬R

ik
c ) 7→UNSAT

(3)

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 19/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-5
http://dx.doi.org/10.7717/peerj-cs.480


Table 1 Conflict notations used.

Notation Meaning

situation The state of the system environment at a given location of
interest and time and represented by the values sensed by
devices attached to the system. It has two cases situationv
and situationiv represent valid and invalid situations,
respectively.

V Defines the set of all situations occur in the system.
D Defines the set of all devices in the system.
Rij Represents the jth rule which belongs to the ith automation

service.
Rij
c and Rij

a Represents the conditions and actions groups of the rule Rij ,
respectively.

Cmn Represents the nth constraint which belongs to themth
system policy.

Cmn
c and Cmn

a Represents the conditions and actions groups of the
constraint Cmn, respectively.

V Rij or V Cmn Defines the set of the admissible situations that satisfying
the rule Rij or the constraint Cmn, respectively.

DRij or DCmn Defines the set of the devices that appear in the rule Rij or
the constraint Cmn, respectively.

conflict
⊥ Represents the type of the conflict that occurs.

Figure 6 Rule dependency conflict conflict representations.
Full-size DOI: 10.7717/peerjcs.480/fig-6

R11: IF Occupancy = True THEN Light = True

R12: IF Light = True THEN Occupancy = True AND Fan = True

Consider the above example, we say that R11 RDC
⊥ R12 according to the definition

provided in Eq. (3). In other words, when the rule R11 is triggered by a system situation
and its actions affects the environment, the second rule R12 will be activated, which in turn
leads to satisfying the conditions of R11, and so on.

Rule Redundancy Conflict (RRC)For any two rules, this conflict may occur when the system
has at least one valid situation which satisfies the conditions of the rules and the actions of one
rule is a subset of the actions of the second rule.

This conflict is mentioned in Ibrhim et al. (2020) and also known as Shadow Conflict
in Le Guilly et al. (2016). Figure 7 shows the Venn diagram for the conflict. Formally, this

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 20/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-6
http://dx.doi.org/10.7717/peerj-cs.480


Figure 7 Rule redundancy conflict venn diagram representation.
Full-size DOI: 10.7717/peerjcs.480/fig-7

conflict can be described as follows:

RRC
⊥ :=


∃Rij and Rik

∈ the same service i where j 6= k,

∃d1∈ {DRij
c ,DRik

c }, ∃d2∈ {DRij
a ,DRik

a },and

∃v ∈V Rij
c : (Rij

c ∩¬R
ik
c ) 7→UNSAT and

(Rij
a ∩¬R

ik
a ) 7→UNSAT

(4)

R11: IF Temperature >= 25 AND Occupancy = True THEN Fan = True

AND Window = True

R12: IF Occupancy = True THEN Fan = True

Giving the above example, we say that R12 RRC
⊥ R11 (i.e., R12 is redundant based

on R11) according to the definition provided in Eq. (4). In other words, it is not
possible to assign values to the variables (Temperature and Occupancy) to satisfy
(Temperature >= 25∩Occupancy = True)∩¬(Occupancy = True). Also, there is
no assignment to the variables (Fan and Window) that satisfied this conjunction
(Fan=True∩Window =True)∩¬(Fan=True).

Value Inconsistency Conflict (VIC) For any two rules, this conflict may occur when the
system has at least one valid situation that leads to the triggering of these rules and their
actions change the state of the shared devices in a contradicting way. A service rule and a
policy constraint may have this conflict as well.

This conflict is mentioned in Ibrhim et al. (2020) also known as Contradiction Conflict
in Sun et al. (2016), Execution Conflict in Sun et al. (2014) and referred to as Termination
Property in Corradini et al. (2015). Figure 8 shows the Venn diagram for the conflict.
Formally, this conflict can be described as follows:

VIC
⊥ :=


∃Rij and Rik

∈ the same service i where j 6= k,

∃d1∈ {DRij
c ,DRik

c }, ∃d2∈ {DRij
a ,DRik

a },and

∃v ∈V Rij
c : (Rij

c ∩¬R
ik
c ) 7→UNSAT and

(Rij
a ∩R

ik
a ) 7→UNSAT

(5)

R11: IF Temperature >= 25 AND Occupancy = True THEN Fan = True

R12: IF Occupancy = True THEN Fan = False

Giving the above example, we say that R11 VIC
⊥ R12 according to the definition provided in

Eq. (5). In other words, every time R11 is triggered, R12 is triggered as well, but the actions of

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 21/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-7
http://dx.doi.org/10.7717/peerj-cs.480


Figure 8 Value inconsistency conflict venn diagram representation.
Full-size DOI: 10.7717/peerjcs.480/fig-8

Figure 9 Value inconsistency conflict against policy constraint venn diagram representation.
Full-size DOI: 10.7717/peerjcs.480/fig-9

the two rules cannot be simultaneously satisfied, as there is no valid assignment that satisfies
(Temperature >= 25∩Occupancy =True)∩¬(Occupancy =True), and there is no valid
assignment that satisfies the rules’ actions simultaneously (Fan=True)∩ (Fan= False).

VIC
⊥ :=


∃Cmn and Rij,

∃d ∈ {DCmn
,DRij

a },and
∀v ∈V Cmn

: (Cmn
∩Rij

a ) 7→UNSAT
(6)

When VIC occurs between an automation service and a system policy constraint,

as shown in Fig. 9, we say that R11 VIC
⊥ C11 according to the second description of

VIC
⊥ provided in Eq. (6). For example, consider the following service rule and policy
constraint. There is no satisfying assignment for (ACThermostat > 22)∩(AirConditioner =
True∩ACThermostat = 18).
C11: ACThermostat > 22

R11: IF Temperature > 20 THEN AirConditioner = True AND ACThermostat = 18

Condition Inconsistency Conflict (CIC) For two rules, we say that there is a CIC conflic-
t/warning when rules’ conditions are contradicting and the actions of one rule are considered
a subset of the other rule’s actions.

This conflict is mentioned in Ibrhim et al. (2020). Figure 10 shows the Venn diagram for
the conflict. Formally, this conflict can be described as follows:

CIC
⊥ :=


∃Rij and Rik

∈ the same service i where j 6= k,

∃d1∈ {DRij
c ,DRik

c }, ∃d2∈ {DRij
a ,DRik

a },and
∀v ∈V : (Rij

c ∩R
ik
c ) 7→UNSAT and

(Rij
a ∩¬R

ik
a ) 7→UNSAT

(7)

For clarity, the situations where this conflict may occur is not always considered as
conflict but could be considered as a warning or potential conflict, where the end-user

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 22/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-8
https://doi.org/10.7717/peerjcs.480/fig-9
http://dx.doi.org/10.7717/peerj-cs.480


Figure 10 Condition inconsistency conflict venn diagram representation.
Full-size DOI: 10.7717/peerjcs.480/fig-10

can be notified that she writes something error. According to the end user’s intentions or
preferences, she can report this as a conflict or warning.
R11: IF Temperature >= 30 THEN AirConditioner = True

R12: IF Temperature < 30 THEN AirConditioner = True

In the above example, we say that R11 CIC
⊥ C12 according to the definition provided

in Eq. (7). In other words, the action of R11 supersedes the action of R12, but the
two rules cannot be simultaneously triggered. For the above rules, there is no valid
assignment to satisfy neither (Temperature >= 30)∩ (Temperature < 30), but for
(AirConditioner = True)∩ (AirConditioner = True) there is a valid assignment. In this
example, the state of AirConditioner is always ON, which will increase the energy
consumption, therefore the end-users considers it as a conflict.

On the other hand, CIC can be handled as a warning. Consider the following two rules,
while there is no valid assignment to satisfy neither (UseratHome=True)∩(UseratHome=
False), but for (SecurityCamera= True)∩ (SecurityCamera= True) there is a valid
assignment. In this example, the preference of the end-user may need is the Security
Camera to be always running in either he is at home or not, therefore the end-user may
notify about this state ‘‘Does it legal for him or not’’.

R11: IF UseratHome = True THEN SecurityCamera = True

R12: IF UseratHome = False THEN SecurityCamera = True

Race Condition Conflict (RCC) When the system has at least one valid situation whereby
two different rules’ conditions are satisfied (or triggered together after a while) concurrently,
and their actions need to update the system state of the shared devices in different ways, letting
the system be in a non-specified state. A service rule and a policy constraint may have this
conflict as well.

This conflict is mentioned in Ibrhim et al. (2020) as Non-Specified Conflict, called Race
Condition in Celik, Tan & McDaniel (2019), and discussed in Nacci et al. (2018) for rules
that have temporal patterns in their conditions. Figure 11 shows the Venn diagram for the
conflict. Formally, this conflict can be described as follows:

RCC
⊥ :=



∃Rij and Rik
∈ the same service i where j 6= k,

∀d1∈DRij
c d1 6∈DRik

c ,∃d2∈ {DRij
a ,DRik

a },and
∃v1∈V : (Rij

c ∩R
ik
c ) 7→ SAT and

(Rij
a ∩R

ik
a ) 7→UNSAT

∃v2∈V : (Rij
c ∩¬R

ik
c ) 7→ SAT and

(Rij
a ∩R

ik
a ) 7→UNSAT

(8)

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 23/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-10
http://dx.doi.org/10.7717/peerj-cs.480


Figure 11 Race condition conflict venn diagram representation.
Full-size DOI: 10.7717/peerjcs.480/fig-11

R11: IF Occupancy = True THEN AirConditioner = False

R12: IF Temperature > 30 THEN AirConditioner = True

In the above example, we say that R11 RCC
⊥ C12 according to the definition provided

in Eq. (8). In other words, the rules actions are contradicting but there is a possibility
of simultaneously triggering both rules. There is valid assignment that satisfies
(Occupancy = True)∩¬(Temperature > 30) and a valid assignment that satisfies
(Occupancy = True)∩ (Temperature > 30), but for the actions in both cases have no
valid assignment that satisfies (AirConditioner =True)∩ (AirConditioner = False).

On the other hand, when RCC conflict occurs with a policy constraint, consider for
example the below service rule and policy constraint. Here, we could say that an RCC
conflict will occur after a while (e.g., after 5 min) or the rule has a chronological pattern
to be executed, and the rule’s actions violating the policy constraint which try to make the
location more suitable in emergencies.

C11: Doors = False AND EmergencySituations = True

R11: AFTER 5 minutes, IF Lecture_started = True THEN LectureDoors = False

Useless Rule Conflict (URC) When a rule’s conditions are violating all the admissible values
determined by a policy constraint (i.e., the semantic rule for a device), we say that the rule is
useless.

This conflict is mentioned in Ibrhim et al. (2020), called Unused Rules in Vannucchi et
al. (2017), and known as Policy Violation in Liang et al. (2016a). Figure 12 shows the Venn
diagram for the conflict. Formally, this conflict can be described as follows:

URC
⊥ :=


∃Cmn and Rij,

∃d1∈ {DCmn
,DRij

c },and
∀v ∈V Cmn

: (Cmn
∩Rij

c ) 7→UNSAT
(9)

Taken separately, a useless rule is considered syntactically valid according to the user
preferences. However, when combined with policy constraints, it has no semantic and has
no chance of running because its condition is not achievable given the policy constraints.
C11: CO2 <= 1000

R11: IF CO2 > 1000 THEN Fan = On

With respect to the given example, we say that R11 URC
⊥ C11 according to the definition

provided in Eq. (9). In other words, R11 should never be triggered because its condition

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 24/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-11
http://dx.doi.org/10.7717/peerj-cs.480


Figure 12 Useless rule conflict venn diagram representation.
Full-size DOI: 10.7717/peerjcs.480/fig-12

Figure 13 Range incomplete conflict venn diagram representation.
Full-size DOI: 10.7717/peerjcs.480/fig-13

should never occur. There is no valid assignment to satisfy (CO2<= 1000)∩(CO2> 1000).
Here, the policy constraint is defined as the admissible values for the smoke level in a
location of interest, and because the user’s intentions breakdown this range of safety, his
rule is classified as conflict.

Range Incomplete Conflict (RIC) For a service rule and a policy constraint when the rule’s
conditions satisfy some values of the inadmissible range specified by the constraint.

This conflict is mentioned in Ibrhim et al. (2020) and known as Incorrect Rules in
Vannucchi et al. (2017). Figure 13 shows the Venn diagram for the conflict. Formally, this
conflict can be described as follows:

RIC
⊥ :=



∃Cmn and Rij,

∃d1∈ {DCmn
a ,DRij

c }, ∃d2∈ {DCmn
c ,DRij

a },and

∃v1∈V Rij
c : (Cmn

a ∩R
ij
c ) 7→ SAT and

(Cmn
c ∩¬R

ij
a ) 7→UNSAT

∃v2∈V Rij
c : (Cmn

a ∩¬R
ij
c ) 7→ SAT and

(Cmn
c ∩¬R

ij
a ) 7→UNSAT

(10)

C11: IF AirConditioner = True THEN Temperature > 25

R11: IF Temperature > 28 THEN AirConditioner = True

With respect to the given example, we say that R11 RIC
⊥ C11 according to the definition

provided in Eq. (10). In other words, there is a satisfying assignment for (Temperature >

25)∩ (Temperature > 28), and also for (Temperature > 25)∩¬(Temperature > 28).

Joint-behavior Services Conflict (JBsC) When there is at least one valid system situation
that triggers two rule conditions belonging to two different users and their joint actions violate
a policy constraint.

A case of this conflict is defined in Celik, Tan & McDaniel (2019) under some
assumptions. Figure 14 shows the Venn diagram for the conflict. Formally, this conflict

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 25/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-12
https://doi.org/10.7717/peerjcs.480/fig-13
http://dx.doi.org/10.7717/peerj-cs.480


Figure 14 Joint-behavior services conflict venn diagram representation.
Full-size DOI: 10.7717/peerjcs.480/fig-14

can be described as follows:

JBsC
⊥ :=


∃Cmn,Rij,and Rkl,

∀d1∈DRij
c ,d1 6∈DRkl

c ,∀d2∈DRij
a , d2 6∈DRkl

a ,and
∃v1∈V : (Rij

c ∩R
kl
c ) 7→ SAT

(Cmn
c ∩ (R

ij
a ∩R

kl
a )) 7→UNSAT

(11)

C11: Not(Window AND AirConditioner)

R11: IF S1Occupancy = True THEN Window = True

R21: IF S2Occupancy = True THEN AirConditioner = True

As stated in the above example, we say that R11 and R21 JBsC
⊥ C11 according to the

definition provided in Eq. (11). In other words, there is no satisfying assignment for
¬(Window =True∩AirConditioner =True)∩(Window =True∩AirConditioner =True).

Device-influence Conflict (DIC) For two or more service rules when there is at least one
valid system situation triggers the rules and there exists a shared environment entity (e.g.,
temperature, humidity, light) between them, where their actions affecting this entity in
contradicting ways (i.e., affecting the performance of the actions’ devices of the other rule).

This conflict is discussed in Shah et al. (2019) and called Opposite-environment-conflict
in Huang, Bouguettaya & Mistry (2020). Consider the following situation example in
Huang, Bouguettaya & Mistry (2020), suppose a rule that lets the window opened in hot
summer while there exists another rule that opens AC for cooling the same location. In
this example, opening the window will influence the environment entity ‘‘temperature’’,
which in turn dramatically affects the AC performance. This conflict may be considered
as a subset of RCC with policy, where if we suppose there is a policy constraint that says,‘‘
window must be closed when AC is running’’ to ensure that the system is working in a safe
state, this situation can be detected as RCC conflicts.

Integrity Violation (IV) For a service rule, when rule’s conditions may be triggered by a third
party app or another unauthorized user (e.g., intruder) rule, and its actions directly affect the
user’ environment.

This violation is discussed in Celik, Tan & McDaniel (2019). Integrity situations could
be occurred due to the deliberate effect of sabotage by using counterfeit components. For
example, consider the below service rule. If we suppose that an intruder can deliberately

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 26/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-14
http://dx.doi.org/10.7717/peerj-cs.480


affect the temperature sensor attached outside the building to increase the temperature
value, he can affect the user’s indoor environment by letting the air-conditioner turn on.

R11: IF outside_SensorTemperature > 23 THEN AC = True

Confidentiality Violation (CV) For a user service rule when rule’s conditions are satis-
fied/triggered by the user or system situation and its actions make the information disclosed
to a third party app without rule owner consent. This violation is discussed in Babun et al.
(2019).

R11: IF end_Meeting = True THEN postFinancialReports_Fb = True

For example, consider the above service rule. The rule will post a financial report about a
meeting on Facebook when the meeting is ended. Here, the financial reports are considered
a piece of private information that must not be shared publicly.

Privacy Violation (PV) For a user service rule, this violation occurs when the rule’s
conditions are satisfied by a system state, and its actions breakdown the privacy obligations of
either the rule owner or others. This violation is discussed in (Celik et al., 2018; Bastys, Balliu
& Sabelfeld, 2018; Tawalbeh et al., 2020).

R11: IF OutOffice = True AND Motion = True THEN Camera = True

AND sendPics = True

For example, consider the above service rule. The rule will turn on the security camera
and send pictures about strangers trying to enter the office, while the user is out of his office
and there is a motion near to the office. There are two cases for this rule’s actions: one case,
if we suppose that these pictures are sent to the rule owner (e.g., his phone) securely, this
rule will not consider a violation, since the data is now secure. The other case, if no security
on the sending process this rule will violate the privacy of others (e.g., pictures of others
may be sniffed by intruders). Babun et al. (2019) suggested when the end-users have a tool
by which they can express their privacy preferences, makes the system more secure.

DISCUSSION
Aqualitative comparison for the relevantworks resulting from the search process performed
in Section ‘Survey Methodology’ is conducted. The comparison is based on the proposed
classification, especially for the automation service level, SLCs, and their related conflicts’
types. The results are summarized in Table 2.

Insights gained from qualitative comparison
Grouping the relevant works according to the proposed conflicts’ classification allows us
to obtain limitations in the current IoT methods and frameworks of detecting interactions
conflicts and insights that will be useful in future IoT automation frameworks as follows:
• In Table 2, the Conflict Coverage column is used to represent the percentage between
the total number of conflicts in the proposed classification and the number of conflicts
covered by the method or tool. Using this percentage, we can determine the capability of
the method or tool. For example, approaches proposed in (Hadj et al., 2016; Melissaris,

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 27/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Table 2 Qualitative comparison between related work based on the explained classification.

Type Approach Conflict Levels and Types Conflict Covering (%)

Local conflicts Global conflicts

Service against policies Service against services

A B C D E F G H I B C J K A B C D E F L

Resendes, Carreira &
Santos (2014)

√ √ √
15

Sun et al. (2014)
√ √ √ √ √

25

Conflict Magill & Blum (2016)
√ √ √ √

20

Sun et al. (2016)
√ √ √ √ √

25

Mohsin et al. (2016)
√ √ √ √ √ √ √ √

40

Classification Chi et al. (2018)
√ √ √ √

20

Wang et al. (2019)
√ √ √ √ √

25

Palekar, Fernandes &
Roesner (2019)

√ √ √
15

Brackenbury et al.
(2019)

√ √ √ √ √
25

Shah et al. (2019)
√ √ √ √

20

Alharithi (2019)
√ √ √ √ √

25

Chaki, Bouguettaya &
Mistry (2020)

√ √ √ √
20

Huang, Bouguettaya &
Mistry (2020)

√ √ √ √
20

Trimananda et al.
(2020)

√ √ √
15

(continued on next page)

Ibrhim
etal.(2021),PeerJ

C
om

put.Sci.,D
O
I10.7717/peerj-cs.480

28/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Table 2 (continued)
Type Approach Conflict Levels and Types Conflict Covering (%)

Local conflicts Global conflicts
Service against policies Service against services

A B C D E F G H I B C J K A B C D E F L

Alhanahnah, Stevens &
Bagheri (2020)

√ √ √ √ √
25

Conflict Single User Cano, Delaval & Rut-
ten (2014)

√ √ √ √
20

Corradini et al. (2015)
√ √ √ √ √

25

Huang & Cakmak
(2015)

√ √
15

Le Guilly et al. (2016)
√ √

10

Perumal et al. (2016)
√ √

10

Peña et al. (2016)
√

5

Liang et al. (2016a)
√ √

10

Vannucchi et al. (2017)
√ √ √

15

Goynugur et al. (2017)
√ √

10

De Russis & Monge
Roffarello (2018)

√ √ √ √
20

Celik et al. (2018)
√

5

Corno, De Russis &
Roffarello (2019)

√ √ √ √
20

Al Farooq et al. (2019)
√ √ √ √ √

25

Manca, Santoro & Cor-
cella (2019)

√ √ √ √ √
25

Zhang et al. (2019a)
√ √ √

15
(continued on next page)

Ibrhim
etal.(2021),PeerJ

C
om

put.Sci.,D
O
I10.7717/peerj-cs.480

29/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Table 2 (continued)
Type Approach Conflict Levels and Types Conflict Covering (%)

Local conflicts Global conflicts
Service against policies Service against services

A B C D E F G H I B C J K A B C D E F L

Krishna et al. (2020)
√

5

Munir & Stankovic
(2014)

√ √ √ √
20

Liang, Hsu & Lin
(2014)

√
5

Cheng et al. (2014)
√

5

Liang et al. (2015)
√ √ √ √

20

Yagita, Ishikawa &
Honiden (2015)

√ √
10

Zave, Cheung & Yarosh
(2015)

√
5

Alfakeeh & Al-Bayatti
(2016)

√
5

Nandi & Ernst (2016)
√ √ √

15

Detection Multiple users Hadj et al. (2016)
√

5

Oh et al. (2017)
√ √

10

Shahi et al. (2017)
√

5

Lin et al. (2017)
√

5

Celik, McDaniel & Tan
(2018)

√ √ √ √
20

Celik, Tan & McDaniel
(2019)

√ √ √ √ √ √ √
35

Melissaris, Shaw &
Martonosi (2019)

√ √
10

Liu et al. (2019)
√ √ √ √

20

Nagendra et al. (2019)
√ √ √ √

20

Li, Zhang & Shen
(2019)

√ √
10

Xiao et al. (2019)
√ √ √

15

Chen et al. (2019)
√

5

Gu et al. (2020)
√ √ √

15

Balliu, Merro &
Pasqua (2020)

√ √ √ √ √ √
30

Ibrhim et al. (2020)
√ √ √ √ √ √ √ √ √ √ √ √ √

65

Notes.
The
√

marks indicate the conflict detected by the work. Empty cell means the conflict is not detected.
A, Rule Redundancy Conflict; B, Value Inconsistency Conflict; C, Race Condition Conflict.; D, Rule Dependency Conflict; E, Condition Inconsistency Conflict; F, Device-influence Conflict.; G, In-
tegrity Violation; H, Confidentiality Violation; I, Privacy Violation; J, Useless Rule Conflict; K, Range Incomplete Conflict.; L, Joint-behavior Conflict.

Ibrhim
etal.(2021),PeerJ

C
om

put.Sci.,D
O
I10.7717/peerj-cs.480

30/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


Figure 15 Classification of conflicts’ detection by year according to the reviewed papers.
Full-size DOI: 10.7717/peerjcs.480/fig-15

Figure 16 The number of publications that covers different conflicts’ checking levels.
Full-size DOI: 10.7717/peerjcs.480/fig-16

Figure 17 Automation service checking process according to the proposed conflicts’ classification.
Full-size DOI: 10.7717/peerjcs.480/fig-17

Shaw &Martonosi, 2019; Li, Zhang & Shen, 2019; Chen et al., 2019) cover fewer number
of conflicts, which affect in the overall system correctness and user safety. On the other
hand, methods such as (Mohsin et al., 2016; Celik, Tan & McDaniel, 2019; Ibrhim et al.,
2020) although they need more enhancement, they cover a set of mentioned conflict
types in the proposed classification.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 31/43

https://peerj.com
https://doi.org/10.7717/peerjcs.480/fig-15
https://doi.org/10.7717/peerjcs.480/fig-16
https://doi.org/10.7717/peerjcs.480/fig-17
http://dx.doi.org/10.7717/peerj-cs.480


• A notable gap in previous works is represented in the sparse focusing on the conflicts
detection and not covering different conflict types. Figure 15 shows a classification of
conflicts’ detection by year according to the reviewed papers across the defined period
of time. From the figure we could determine the most conflict types that take more
researchers attentions such as VIC, RCC, and RDC. On the other side, conflicts such
as CIC, IV, CV, PV, RIC, and JBsC have a little attention in the reviewed studies, this
is due to different reasons. For instance, in Vannucchi et al. (2017), although it uses the
same symbolic verification model checker as in our work proposed in this paper, it fails
to detect VIC, RCC, and JBsC conflicts. The reasons for this are, the work in Vannucchi
et al. (2017) using different ways to detect the conflict, where it includes the invariants
to detect the conflicts, and it depends on a single IoT app with its invariants. For
instance, RRC in their work is detected only using invariants. Also, IoTGuard in Celik,
Tan & McDaniel (2019) used another symbolic verification model checker to detect
conflicts between multiple IoT apps. However, it fails to detect the JBsC conflict because
the unified dynamic model generated by their work required the IoT apps to have a
chain of events. According to our work, the JBsC conflict may occur between multiple
IoT apps without having this event chain. Similar, the interactions across applications
influence discussed in Chen et al. (2019) require apps to share an environment entity
(temperature) to detect the influence. So, it fails to detect the JBsC conflict when the
app does not share devices or environment entities. Approaches proposed in (Shah et
al., 2019;Huang, Bouguettaya & Mistry, 2020) are depending on manual annotations for
detecting the conflicts that suffer from rigidity and not suitable for the dynamic and
high complexity nature of users intentions. Corradini et al. (2015), Despite having the
meaning of constraints over devices, IRON did not consider the conflicts that violate
these constraints. (Li, Zhang & Shen, 2019), Like our work, the authors of this paper use
SMT solver in conflict detection. In our work, we analyze the relationships between IoT
apps rules which provide more insights about conflicts. Also, the work in Li, Zhang &
Shen (2019) is missing the representation of system requirements as constraints which
are missing in their work.
• The RVF framework proposed in Ibrhim et al. (2020) covers a good set of conflicts as
indicated in Table 2. RVF framework provides an incremented and iteratively manner in
detecting the intra-automation service and inter-automation services conflicts. Firstly,
RVF begins to collect the IoT app’s meta-data (e.g., rules, location, execution period,
etc.) and converts its rules into an intermediate representation, SMT-Lib v2 language,
to be used within SMT solver. After that, it starts checking the IoT app’s rules against
themselves to detect local conflicts. When such conflicts do not exist, it forwards these
rules to the next checking step that is responsible for detecting global conflicts. The global
checking within RVF is determined by searching for the overlapping IoT apps in both
location and time meta-data. The advantage of using this incremented and iteratively
manner is that it adds an acceptable of ensuring that the IoT app will never be executed
until all conflicts are detected. For the sake of detecting different levels and types of
conflicts, RVF depends on rule relationship analysis using SMT based solver. However,

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 32/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


RVF fails to detect DIC, IV, CV, and PV conflicts because the rule representation used
in it does not include the representation of devices’ effects on each other.
• Although the state-of-the-art for IoT apps’ interactions conflicts detection provide
different frameworks and methods, whereas some issues still exist and need to be
covered in the future development of IoT verification systems. Among the shortage in
the current verification and detection methods are as follows: The works that proposed
parser-based methods such as (Wang et al., 2019; Chen et al., 2019) are built under the
assumption that the user inputs are always correct, which does not happen in reality. Also,
facing the NLP classification errors. The proposed method in Xiao et al. (2019) utilizing
different tools to able to analyze the rule structures. In addition to this, these methods
suffer from analyzing rules such as ‘‘IF living room temperature is hot THEN cool down
the room temperature’’. Such rules that express the user preferences using words instead
of Boolean or Integer valued parameters need the using of the string-supported model
checker as (Liang et al., 2016b; Abdulla et al., 2015) which supporting the combination
of string constraints and linear integer arithmetic. On the other hand, the methods
as (Magill & Blum, 2016; Sun et al., 2014) either depend on manual annotations of
conflicts without checking the validity of these annotations using model checkers or
did not provide the definitions of other conflicts. Also, these methods are missing of
representing the environment entities that could be affected by different devices; for
example, illumination could be affected by a rule that opens a window or another rule
that open lights. Adding to this, using single logic for rules interpretations (Ibrhim et
al., 2020) and others is missing of representing the description of some conflicts like
Integrity, Confidentiality, and Privacy. SMT-based methods are missing of representing
temporal behaviors rules (i.e., Time-based rules), where rules have some chronological
patterns represented by the temporal operators (e.g., FUTURE, PAST, UNTIL, AFTER,
BEFORE), instead of representing time as a monotonically increasing variable, where
time is considered as a device like a temperature sensor that can send its value when
required. Omitting the representation of the temporal operators adds a drawback in the
rules’ relationships analysis to detect more conflicts. For the sake of covering these issues,
we recommend using a hybrid approach that combines model checking with a variety of
languages and semantic technologies in developing future IoT-based apps verification
frameworks to cover all levels and types of conflicts to guarantee and maximize the
safety, security, and correctness of IoT systems.
• Like Shehata, Eberlein & Fapojuwo (2007), the work distinguishes between two types
of IoT apps, which are automation service and system policy, as indicated in Table 2,
PLCs are ignored in state-of-the-art conflict detection approaches, maybe due to they
suppose that the constraints of the policy do not need to be checked because of its domain
expert’s (administrator, a person who has the authority to write policies) responsibilities.
But, in the proposed conflicts’ classification, both policies, and automation services are
checked against conflicts. Suppose, for example, a location may have more than one
administrator, so policy’ constraints must check against themselves and other policies.
• Levels of checking process in previous approaches and tools have the limitation of
not supporting different automation services checking level. Figure 16 shows that the

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 33/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


conflicts resulting from the interactions between different IoT apps are the main focus in
the reviewed papers. As seen in Table 2, Conflict Classification, the previous works
in IoT apps conflicts’ classifications focused mainly on IoT apps rules conflicts either
the rules belong to a single app (Sun et al., 2014; Wang et al., 2019; Shah et al., 2019) or
multiple apps (Chi et al., 2018; Chaki, Bouguettaya & Mistry, 2020; Trimananda et al.,
2020). Little attentions come for violating system policies, these attentions are elucidated
in value inconsistency conflict. According to the proposed conflicts’ classification which
suggests performing the checking and detecting of interactions conflicts in different
levels, as shown in Fig. 17. For instance, for the SLCs, there are two levels of checking,
Firstly, in (1) the rules authored by the non-technical user are checked against themselves
to detect local conflicts. Secondly, in the case of no local conflicts, the rules are checked
to detect global conflicts (2). This level includes three checking steps, which are (2-a) to
check rules against the system policies in the same location, (2-b) to check rules against
the shared spatial–temporal services for other users, and (2-c) to check each services pair
owned by different users against the joint-behavior conflict.
• The proposed conflicts’ classification intended use is within smart buildings, smart
campus, or any smart consumer of IoT resources. Also, it is based on a general
condition-action paradigmwith some rules and constraints structures. So, for completing
the picture and take more and more advantages from the classification, a standard
representation for both automation service rules and system policies which include
different IoT platforms (e.g., SmartThings, IFTTT, Zapier, OpenHAB, etc.) is required.
The main required feature in this standard representation is the capability of expressing
the end-users heterogeneity and complex preferences.With this standard representation,
IoT systems developers can make more IoT apps’ interactions analysis and take correct
decisions for both design time and run time errors and conflicts during the development
step of such systems.
• Our survey opens a new research direction in the area of developing custom or domain-
specific compilers for the IoT systems verification context. In this context, almost all
components (e.g., infrastructures, involved users, applied technologies, services, etc.)
within it are characterized by the dynamic nature, which requires the development of
compilers that is capable of not only detecting the end-users programming errors but
also has the ability to mitigate and resolve conflicts resulting from interacting IoT apps
in different levels (i.e., during IoT app design time and within its run time). At last,
we suggest using/adding our conflicts’ classification in the future formal verification
methods or even compilers related to IoT systems, as a part that is responsible for
ensuring the correctness and safety of end-users programmed IoT applications.

CONCLUSIONS
Rule interaction conflicts in IoT apps are a challenging concern. One purpose is sought,
which is ensuring the correctness of the interactions between automation services and
system policies through detecting as many conflicts as possible. In this survey, IoT systems
related conflicts and their levels and types, including the automation services and system

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 34/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


policies, were revealed. The purpose of this survey is to highlight the relevant studies on the
IoT apps conflicts definition and detection. This survey proposed a conflicts’ classification
which aims at filling the gap in relevant studies and considers the first work to collect all
types of conflict for IoT systems. The advantages of the proposed conflicts’ classification
over others are: (1) providing a comprehensive classification of rule-based conflicts in
IoT systems with differentiating between the conflicts related to automation services and
system policies, (2) supporting multi-level checking, (3) defining the conflicts is based
on the formal method and SMT-based checker instead of manual annotations, (4) a step
toward developing a custom compiler for IoT-based apps to detect bugs and conflicts in
them, and (5) highlighting the uncovered conflicts that should be taken when building
accurate IoT verification frameworks.

In light of the conducted review, a domain-specific language is needed to generalize
the creation of automation service and system policy in building automation. Another
main thing needed is performing an analysis to determine the different ways of solving the
conflicts’ types stated in the proposed classification. Also, there is a need to reconnoiter
the use of hybrid verification and rule formalization tools to guarantee a high level of
IoT system safety, security, and correctness. Finally, enhancing the verification model
with a level of device interactions and influences knowledge that will help overcome some
conflicts.

ACKNOWLEDGEMENTS
This work is part of a research project entitled: Campus as Mashups Platform for IoT
Experimentation (CAMPIE), which is a project of the National Telecommunications
Regulatory Authority (NTRA) of Egypt (Project number CFP5/2015/CAMPIE).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Hamada Ibrhim, Hesham Hassan and Emad Nabil conceived and designed the
experiments, performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

We have no raw data or code as this is a literature review.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 35/43

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.480


REFERENCES
Abadi M, Morrisett G, Sabelfeld A. 2005. Language-based security. Journal of Functional

Programming 15(2):129–129 DOI 10.1017/S0956796804005428.
Abate C, Blanco R, Ciobâcă , Durier A, Garg D, Hricu C, Patrignani M, Tanter É,

Thibault J. 2020. Trace-relating compiler correctness and secure compilation. In:
European Symposium on Programming. New York: Springer, 1–28.

Abbas M, Rioboo R, Ben-Yelles C.-B, Snook CF. 2020. Formal modeling and verification
of UML Activity Diagrams (UAD) with FoCaLiZe. Journal of Systems Architecture
114:101911 DOI 10.1016/j.sysarc.2020.101911.

Abdulla PA, Atig MF, Chen Y-F, Holík L, Rezine A, Rümmer P, Stenman J. 2015. Norn:
an SMT solver for string constraints. In: International conference on computer aided
verification. New York: Springer, 462–469.

ACM. 2020. ACM Digital Library. Available at https://dl.acm.org/ (accessed on 22
December 2020).

Adi K, Hamza L, Pene L. 2018. Automatic security policy enforcement in computer
systems. Computers & Security 73:156–171 DOI 10.1016/j.cose.2017.10.012.

Al Farooq A, Al-Shaer E, Moyer T, Kant K. 2019. IoTC 2: a formal method approach
for detecting conflicts in large scale IoT systems. In: 2019 IFIP/IEEE symposium on
integrated network and service management (IM). Piscataway: IEEE, 442–447.

Alfakeeh A, Al-Bayatti A. 2016. Feature interactions detection and resolution in smart
homes systems. Int J Electron Electr Eng 4(1):66–73 DOI 10.18178/ijeee.4.1.66-73.

AlhanahnahM, Stevens C, Bagheri H. 2020. Scalable analysis of interaction threats in
IoT systems. In: Proceedings of the 29th ACM SIGSOFT international symposium on
software testing and analysis, 272–285 DOI 10.1145/3395363.3397347.

Alharithi F. 2019. Detecting conflicts among autonomous devices in smart homes. PhD
thesis.

Atooma. 2021. The company. Available at https:// atooma.com/about.html (accessed on 1
February 2021).

Babun L, Celik ZB, McDaniel P, Uluagac AS. 2019. Real-time analysis of privacy-(un)
aware IoT applications. ArXiv preprint. arXiv:1911.10461.

Balliu M, MerroM, PasquaM. 2019. Securing cross-app interactions in IoT platforms.
In: 2019 IEEE 32nd computer security foundations symposium (CSF). Piscataway:
IEEE, 319–31915.

Balliu M, MerroM, PasquaM. 2020. Friendly fire: cross-app interactions in IoT
platforms. In: Italian conference on cybersecurity (ITASEC).

Bandi A, Fellah A, Bondalapati H. 2019. Embedding security concepts in introductory
programming courses. Journal of Computing Sciences in Colleges 34(4):78–89
DOI 10.5555/3344013.3344021.

Barrett C, Stump A, Tinelli C. 2010. The SMT-Lib standard: Version 2.0. In: Proceedings
of the 8th international workshop on satisfiability modulo theories (Edinburgh,
England), volume 13. page 14.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 36/43

https://peerj.com
http://dx.doi.org/10.1017/S0956796804005428
http://dx.doi.org/10.1016/j.sysarc.2020.101911
https://dl.acm.org/ 
http://dx.doi.org/10.1016/j.cose.2017.10.012
http://dx.doi.org/10.18178/ijeee.4.1.66-73
http://dx.doi.org/10.1145/3395363.3397347
https://atooma.com/about.html 
http://arXiv.org/abs/1911.10461
http://dx.doi.org/10.5555/3344013.3344021
http://dx.doi.org/10.7717/peerj-cs.480


Barrett C, Tinelli C. 2018. Satisfiability modulo theories. In: Handbook of model checking.
Cham: Springer, 305–343 DOI 10.1007/978-3-319-10575-8_11.

Bastys I, Balliu M, Sabelfeld A. 2018. If this then what? Controlling flows in IoT apps.
In: Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security, 1102–1119 DOI 10.1145/3243734.3243841.

BrackenburyW, Deora A, Ritchey J, Vallee J, HeW,Wang G, LittmanML, Ur B. 2019.
How users interpret bugs in Trigger-Action Programming. In: Proceedings of the 2019
CHI conference on human factors in computing systems, 1–12.

Brummayer R, Biere A. 2009. Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Int. Conf. Tools Algorithms Constr. Anal. Syst. Springer, 174–177.

Busi M, Galletta L. 2019. A brief tour of formally secure compilation. In: 3rd Italian
conference on cyber security, ITASEC 2019, volume 2315. CEUR-WS.

Cano J, Delaval G, Rutten E. 2014. Coordination of ECA rules by verification and con-
trol. In: Int. Conf. Coord. Lang. Model. Springer, 33–48 DOI 10.1007/978-3-662-43376-8_3.

Carreira P, Resendes S, Santos AC. 2014. Towards automatic conflict detection in home
and building automation systems. Pervasive Mob. Comput. 12:37–57.

Celik ZB, Babun L, Sikder AK, Aksu H, Tan G, McDaniel P, Uluagac AS. 2018. Sensitive
information tracking in commodity IoT. In: 27th USENIX Security Symposium
(USENIX Security 18), 1687–1704.

Celik ZB, McDaniel P, Tan G. 2018. Soteria: automated IoT safety and security analysis.
In: USENIX Annual Technical Conference USENIX ATC 18, 147–158.

Celik ZB, McDaniel P, Tan G, Babun L, Uluagac AS. 2019. Verifying internet of
things safety and security in physical spaces. Piscataway: IEEE Security & Privacy
17(5):30–37.

Celik ZB, Tan G, McDaniel PD. 2019. IoTGuard: Dynamic enforcement of security and
safety policy in commodity IoT. In: NDSS.

Chaki D, Bouguettaya A. 2020. Fine-grained conflict detection of IoT services. ArXiv
preprint. arXiv:2007.12487.

Chaki D, Bouguettaya A, Mistry S. 2020. A conflict detection framework for IoT services
in multi-resident smart homes. ArXiv preprint. arXiv:2004.12702.

Chen Z, Zeng F, Lu T, ShuW. 2019.Multi-platform application interaction extraction
for iot devices. In: 2019 IEEE 25th international conference on parallel and distributed
systems (ICPADS). IEEE, 990–995.

Cheng Z,Wang J, Huang T, Li P, Yen N, Tsai J, Zhou Y, Jing L. 2014. A situation-
oriented IoT middleware for resolution of conflict contexts based on combination
of priorities. In: Advanced technologies, embedded and multimedia for human-centric
computing. New York: Springer, 441–454.

Chi H, Zeng Q, Du X, Yu J. 2018. Cross-app interference threats in smart homes:
categorization, detection and handling. ArXiv preprint. arXiv:1808.02125.

Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R,
Tacchella A. 2002. Nusmv 2: an opensource tool for symbolic model checking. In:
International conference on computer aided verification. Berlin: Springer, 359–364.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 37/43

https://peerj.com
http://dx.doi.org/10.1007/978-3-319-10575-8_11
http://dx.doi.org/10.1145/3243734.3243841
http://dx.doi.org/10.1007/978-3-662-43376-8_3
http://arXiv.org/abs/2007.12487
http://arXiv.org/abs/2004.12702
http://arXiv.org/abs/1808.02125
http://dx.doi.org/10.7717/peerj-cs.480


Cimatti A, Griggio A, Schaafsma BJ, Sebastiani R. 2013. The MathSAT5 SMT Solver. In:
TACAS, volume 7795. Berlin: Springer, 93–107.

Corno F, De Russis L, Monge Roffarello A. 2019. Empowering end users in debugging
trigger-action rules. In: Proc. 2019 CHI Conf. Hum. Factors Comput. Syst. ACM, 388.

Corno F, De Russis L, Roffarello AM. 2019.My IoT Puzzle: debugging IF-THEN
Rules Through the Jigsaw Metaphor. In: Int. Symp. End User Dev. Springer, 18–33
DOI 10.1007/978-3-030-24781-2_2.

Corradini F, Culmone R, Mostarda L, Tesei L, Raimondi F. 2015. A constrained ECA
language supporting formal verification of WSNS. In: 2015 IEEE 29th Int. Conf. Adv.
Inf. Netw. Appl. Work. Piscataway: IEEE, 187–192.

DeMoura L, Bjørner N. 2008. Z3: an efficient SMT solver. In: International conference
on tools and algorithms for the construction and analysis of systems. Springer, 337–340
DOI 10.1007/978-3-540-78800-3_24.

De Russis L, Monge Roffarello A. 2018. A debugging approach for Trigger-Action
Programming. In: Extended abstracts of the 2018 CHI conference on human factors in
computing systems, 1–6 DOI 10.1145/3170427.3188641.

Delicato FC, Pires PF, Batista T, Cavalcante E, Costa B, Barros T. 2013. Towards an IoT
ecosystem. In: Proceedings of the first international workshop on software engineering
for systems-of-systems, 25–28.

Dutertre B, DeMoura L. 2006. The YICES SMT solver. Tool Pap. 2(2):1–2. Available at
http/ /yices.csl.sri.com/ tool-paper.pdf .

Escoffier C, Chollet S, Lalanda P. 2014. Lessons learned in building pervasive platforms.
In: 2014 IEEE 11th consumer communications and networking conference (CCNC).
Piscataway: IEEE, 7–12.

Feldt R, Torkar R, Ahmad E, Raza B. 2010. Challenges with software verification and
validation activities in the space industry. In: 2010 third international conference on
software testing, verification and validation. Piscataway: IEEE, 225–234.

Foughali M, Berthomieu B, Dal Zilio S, Hladik P-E, Ingrand F, Mallet A. 2018. Formal
verification of complex robotic systems on resource-constrained platforms. In: 2018
IEEE/ACM 6th international FME workshop on formal methods in software engineering
(FormaliSE). Piscataway: IEEE, 2–9.

Fragoso Santos J, Maksimović P, Naudžiūnienė D,Wood T, Gardner P. 2017. JaVerT:
JavaScript verification toolchain. Proceedings of the ACM on Programming Languages
2(POPL):1–33 DOI 10.1145/3158138.

Goynugur E, de Mel G, SensoyM, Calo S. 2017. Tractable policy management frame-
work for IoT. In: Ground/Air Multisensor Interoperability, Integration, and Net-
working for Persistent ISR VIII, volume 10190. International Society for Optics and
Photonics, 101900C DOI 10.1117/12.2266597.

GrimmT, Lettnin D, Hübner M. 2018. A survey on formal verification techniques for
safety-critical systems-on-chip. Electronics 7(6):81 DOI 10.3390/electronics7060081.

Groovy . 2020. The Apache Groovy programming language. Available at https:// groovy-
lang.org/ (accessed on 22 December 2020).

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 38/43

https://peerj.com
http://dx.doi.org/10.1007/978-3-030-24781-2_2
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/3170427.3188641
http//yices.csl.sri.com/tool-paper.pdf
http://dx.doi.org/10.1145/3158138
http://dx.doi.org/10.1117/12.2266597
http://dx.doi.org/10.3390/electronics7060081
https://groovy-lang.org/ 
https://groovy-lang.org/ 
http://dx.doi.org/10.7717/peerj-cs.480


Gu T, Fang Z, Abhishek A, Fu H, Hu P, Mohapatra P. 2020. IOTGAZE: IoT security
enforcement via wireless context analysis. ArXiv preprint. arXiv:2006.15827.

Hadj RB, Chollet S, Lalanda P, Hamon C. 2016. Sharing devices between applications
with autonomic conflict management. In: 2016 IEEE international conference on
autonomic computing (ICAC). Piscataway: IEEE, 219–220.

Halima RB, Zouaghi I, Kallel S, GaaloulW, Jmaiel M. 2018. Formal verification of
temporal constraints and allocated cloud resources in business processes. In:
2018 IEEE 32nd international conference on advanced information networking and
applications (AINA). Piscataway: IEEE, 952–959.

Hastings M, Hemenway B, Noble D, Zdancewic S. 2019. Sok: general purpose compilers
for secure multi-party computation. In: 2019 IEEE Symposium on Security and
Privacy (SP). Piscataway: IEEE, 1220–1237.

Herrmann C, Murari S. 2004. System and methodology for policy enforcement. US
Patent App. 10/249,073.

HomolaM, Patkos T. 2014. Different types of conflicting knowledge in AmI envi-
ronments. In: International conference on knowledge engineering and knowledge
management. Springer, 52–63 DOI 10.1007/978-3-319-17966-7_5.

HomolaM, Patkos T, Flouris G, Šefránek J, Šimko A, Frtús J, Zografistou D, Baláž M.
2015. Resolving conflicts in knowledge for Ambient Intelligence. The Knowledge
Engineering Review 30(5):455–513 DOI 10.1017/S0269888915000132.

Huang B, Bouguettaya A, Mistry S. 2020. Conflict detection of IoT_Services in smart
home. ArXiv preprint. arXiv:2005.06895.

Huang J, CakmakM. 2015. Supporting mental model accuracy in trigger-action
programming. In: Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. ACM,
215–225.

IbrhimH, Khattab S, Elsayed K, Badr A, Nabil E. 2020. A formal methods-based Rule
Verification Framework for end-user programming in campus Building Automation
Systems. Building and Environment 106983.

IEEE. 2021. IEEE Xplore. Available at https:// ieeexplore.ieee.org/Xplore/home.jsp (accessed
on 5 February 2021).

IFTTT. 2020. IFTTT helps every thing work better together. Available at https:// ifttt.com/
(accessed on 30 December 2020).

Keromytis AD,Wright JL. 2000. Transparent network security policy enforcement. In:
USENIX annual technical conference, FREENIX Track, 215–226.

KhanW, KamranM, Ahmad A, Khan FA, Derhab A. 2019. Formal analysis of language-
based android security using theorem proving approach. IEEE Access 7:16550–16560
DOI 10.1109/ACCESS.2019.2895261.

Krishna A, Pallec ML, Martinez A, Mateescu R, Salaün G. 2020.MOZART: design and
deployment of advanced IoT applications. In: Companion proceedings of the web
conference 2020, 163–166 DOI 10.1145/3366424.3383532.

Le Guilly T, NielsenMK, Pedersen T, Skou A, Kjeldskov J, SkovM. 2016. User con-
straints for reliable user-defined smart home scenarios. Journal of Reliable Intelligent
Environments 2(2):75–91 DOI 10.1007/s40860-016-0020-z.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 39/43

https://peerj.com
http://arXiv.org/abs/2006.15827
http://dx.doi.org/10.1007/978-3-319-17966-7_5
http://dx.doi.org/10.1017/S0269888915000132
http://arXiv.org/abs/2005.06895
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ifttt.com/
http://dx.doi.org/10.1109/ACCESS.2019.2895261
http://dx.doi.org/10.1145/3366424.3383532
http://dx.doi.org/10.1007/s40860-016-0020-z
http://dx.doi.org/10.7717/peerj-cs.480


Lee Y, Jeong J, Son Y. 2017. Design and implementation of the secure compiler and
virtual machine for developing secure IoT services. Future Generation Computer
Systems 76:350–357 DOI 10.1016/j.future.2016.03.014.

Li X, Zhang L, Shen X. 2019. IA-graph based inter-app conflicts detection in open
IoT systems. In: Proceedings of the 20th ACM SIGPLAN/SIGBED international
conference on languages, compilers, and tools for embedded systems, 135–147
DOI 10.1145/3391895.

Liang C-JM, Bu L, Li Z, Zhang J, Han S, Karlsson BF, Zhang D, Zhao F. 2016a. Sys-
tematically debugging IoT control system correctness for building automation. In:
Proceedings of the 3rd ACM international conference on systems for energy-efficient built
environments, 133–142 DOI 10.1145/2993422.2993426.

Liang C-JM, Karlsson BF, Lane ND, Zhao F, Zhang J, Pan Z, Li Z, Yu Y. 2015. SIFT:
building an internet of safe things. In: Proc. 14th Int. Conf. Inf. Process. Sens.
Networks. ACM, 298–309.

Liang C-W, Hsu JY-J, Lin K-J. 2014. Auction-based resource access protocols in IoT
service systems. In: 2014 IEEE 7th Int. Conf. Serv. Comput. Appl, 49–56.

Liang T, Reynolds A, Tsiskaridze N, Tinelli C, Barrett C, Deters M. 2016b. An efficient
SMT solver for string constraints. Formal Methods in System Design 48(3):206–234
DOI 10.1007/s10703-016-0247-6.

Lin Z,Wu T-Y, Sun Y, Xu J, Obaidat MS. 2017. A TAS-Model-Based Algorithm for rule
redundancy detection and scene scheduling in smart home systems. IEEE Systems
Journal 12(3):3018–3029.

Liu R,Wang Z, Garcia L, Srivastava M. 2019. RemedIoT: remedial actions for internet-
of-things conflicts. In: Proc. 6th ACM Int. Conf. Syst. Energy-Efficient Build. Cities,
Transp. ACM, 101–110.

Magill E, Blum J. 2016. Exploring conflicts in rule-based sensor networks. Pervasive and
Mobile Computing 27:133–154 DOI 10.1016/j.pmcj.2015.08.005.

MancaM, Santoro C, Corcella L. 2019. Supporting end-user debugging of trigger-
action rules for IoT applications. International Journal of Human-Computer Studies
123:56–69
DOI 10.1016/j.ijhcs.2018.11.005.

Melissaris T, Shaw K, Martonosi M. 2019. OKAPI: in support of application correctness
in smart home environments. In: 2019 fourth international conference on fog and
mobile edge computing (FMEC). Piscataway: IEEE, 173–180.

Miksa T, Rauber A. 2017. Using ontologies for verification and validation of workflow-
based experiments. Journal of Web Semantics 43:25–45
DOI 10.1016/j.websem.2017.01.002.

MohsinM, Anwar Z, Husari G, Al-Shaer E, RahmanMA. 2016. IoTSAT: a formal
framework for security analysis of the internet of things (IoT). In: 2016 IEEE con-
ference on communications and network security (CNS). Piscataway: IEEE, 180–188.

Munir S, Stankovic JA. 2014. DepSys: dependency aware integration of cyber-physical
systems for smart homes. In: 2014 ACM/IEEE international conference on cyber-
physical systems (ICCPS). Piscataway: IEEE, 127–138.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 40/43

https://peerj.com
http://dx.doi.org/10.1016/j.future.2016.03.014
http://dx.doi.org/10.1145/3391895
http://dx.doi.org/10.1145/2993422.2993426
http://dx.doi.org/10.1007/s10703-016-0247-6
http://dx.doi.org/10.1016/j.pmcj.2015.08.005
http://dx.doi.org/10.1016/j.ijhcs.2018.11.005
http://dx.doi.org/10.1016/j.websem.2017.01.002
http://dx.doi.org/10.7717/peerj-cs.480


Nacci AA, Rana V, Balaji B, Spoletini P, Gupta R, Sciuto D, Agarwal Y. 2018. Buildin-
gRules: a trigger-action–based system to manage complex commercial buildings.
ACM Transactions on Cyber-Physical Systems 2(2):13 DOI 10.1145/3185500.

Nagendra V, Bhattacharya A, Yegneswaran V, Rahmati A, Das S. 2020. An intent-based
automation framework for securing dynamic consumer IoT infrastructures. In:
Proceedings of The Web Conference 2020, 1625–1636 DOI 10.1145/3366423.3380234.

Nagendra V, Bhattacharya A, Yegneswaran V, Rahmati A, Das SR. 2019. VISCR:
intuitive & conflict-free automation for securing the dynamic consumer iot infras-
tructures. ArXiv preprint. arXiv:1907.13288.

Nandi C, Ernst MD. 2016. Automatic trigger generation for rule-based smart homes. In:
Proc. 2016 ACMWork. Program. Lang. Anal. Secur. ACM, 97–102.

Neisse R, Steri G, Baldini G. 2014. Enforcement of security policy rules for the internet of
things. In: 2014 IEEE 10th international conference on wireless and mobile computing,
networking and communications (WiMob). Piscataway: IEEE, 165–172.

OhH, Ahn S, Choi JK, Yang J. 2017.Mashup service conflict detection and visualization
method for Internet of Things. In: 2017 IEEE 6th global conference on consumer
electronics (GCCE). Piscataway: IEEE, 1–2.

Palekar M, Fernandes E, Roesner F. 2019. Analysis of the susceptibility of smart home
programming interfaces to end user error. In: 2019 IEEE security and privacy
workshops (SPW). Piscataway: IEEE, 138–143.

Pautasso C, Zimmermann O, Leymann F. 2008. Restful Web Services vs. ‘‘Big’’ Web Ser-
vices: making the right Architectural Decision. In: Proc. 17th Int. Conf. World Wide
Web. New York: ACM, 805–814 DOI 10.1145/1367497.1367606978-1-60558-085-2.

PeñaM, Biscarri F, Guerrero JI, Monedero I, León C. 2016. Rule-based system to detect
energy efficiency anomalies in smart buildings, a data mining approach. Expert
Systems with Applications 56:242–255 DOI 10.1016/j.eswa.2016.03.002.

Perumal T, SulaimanMN, Datta SK, Ramachandran T, Leong CY. 2016. Rule-based
conflict resolution framework for Internet of Things device management in smart
home environment. In: Consum. Electron. 2016 IEEE 5th Glob. Conf. Piscataway:
IEEE, 1–2.

Resendes S, Carreira P, Santos AC. 2014. Conflict detection and resolution in home and
building automation systems: a literature review. Journal of Ambient Intelligence and
Humanized Computing 5(5):699–715 DOI 10.1007/s12652-013-0184-9.

Rodriguez M, Piattini M, Ebert C. 2019. Software verification and validation technolo-
gies and tools. IEEE Software 36(2):13–24 DOI 10.1109/MS.2018.2883354.

Scholar G. 2020. Google Scholar. Available at https:// scholar.google.com.eg/ (accessed on
22 December 2020).

ScienceDirect. 2020. ScienceDirect.com—Science, health and medical journals, full
text articles and books. Available at https://www.sciencedirect.com/ (accessed on 22
December 2020).

Shafti LS, Haya PA, Garcia-HerranzM, Perez E. 2013. Inferring ECA-based rules for
ambient intelligence using evolutionary feature extraction. Journal of Ambient
Intelligence and Smart Environments 5(6):563–587 DOI 10.3233/AIS-130232.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 41/43

https://peerj.com
http://dx.doi.org/10.1145/3185500
http://dx.doi.org/10.1145/3366423.3380234
http://arXiv.org/abs/1907.13288
http://dx.doi.org/10.1145/1367497.1367606978-1-60558-085-2
http://dx.doi.org/10.1016/j.eswa.2016.03.002
http://dx.doi.org/10.1007/s12652-013-0184-9
http://dx.doi.org/10.1109/MS.2018.2883354
https://scholar.google.com.eg/ 
https://www.sciencedirect.com/ 
http://dx.doi.org/10.3233/AIS-130232
http://dx.doi.org/10.7717/peerj-cs.480


Shah T, Venkatesan S, Ngo T, NeelamegamK, Pratima . 2019. Conflict detection in rule
based IoT systems. In: 2019 IEEE 10th Annual information technology, electronics and
mobile communication conference (IEMCON). Piscataway: IEEE, 0276–0284.

Shahi A, SulaimanMN,Mustapha N, Perumal T, Meimandi Parizi R. 2017. Sustain-
ability in intelligent building environments using weighted priority scheduling
algorithm. Journal of Ambient Intelligence and Smart Environments 9(6):689–705
DOI 10.3233/AIS-170462.

Shehata M, Eberlein A, Fapojuwo A. 2007. Using semi-formal methods for detecting
interactions among smart homes policies. Science of Computer Programming 67(2–
3):125–161 DOI 10.1016/j.scico.2006.11.002.

Shen X, Zhang L, Li X. 2017. A systematic examination of inter-app conflicts detections
in open IoT systems. Technical report. North Carolina State University. Dept. of
Computer Science.

Sicari S, Rizzardi A, Miorandi D, Cappiello C, Coen-Porisini A. 2016. Security policy
enforcement for networked smart objects. Computer Networks 108:133–147
DOI 10.1016/j.comnet.2016.08.014.

Springer. 2021. Springer—International Publisher Science, Technology, Medicine.
Available at https://www.springer.com/gp (accessed on 5 February 2021).

Sun Y,Wang X, Luo H, Li X. 2014. Conflict detection scheme based on formal rule
model for smart building systems. IEEE Transactions on Human-Machine Systems
45(2):215–227.

Sun Y,Wu T-Y, Li X, Guizani M. 2016. A rule verification system for smart buildings.
IEEE Transactions on Emerging Topics in Computing 5(3):367–379.

Tasker. 2021. Tasker for Android. Available at https:// tasker.joaoapps.com/ index.html
(accessed on 1 February 2021).

Tawalbeh L, Muheidat F, TawalbehM, Quwaider M. 2020. IoT Privacy and security:
challenges and solutions. Applied Sciences 10(12):4102 DOI 10.3390/app10124102.

Teixeira T, Hachem S, Issarny V, Georgantas N. 2011. Service oriented middleware
for the internet of things: a perspective. In: European conference on a service-based
internet. Berlin: Springer, 220–229 DOI 10.1007/978-3-642-24755-2_21.

Trimananda R, Aqajari SA, Chuang J, Demsky B, Xu GH, Lu S. 2020. Understanding
and automatically detecting conflicting interactions between smart home iot
applications. In: Proceedings of the 28th ACM joint european software engineering
conference and symposium on the foundations of software engineering.

Tuttlies V, Schiele G, Becker C. 2007. COMITY-conflict avoidance in pervasive
computing environments. In: OTM confederated international conferences
‘‘On the Move to Meaningful Internet Systems’’. Berlin: Springer, 763–772
DOI 10.1007/978-3-540-76890-6_2.

Ur B, McManus E, Pak Yong HoM, LittmanML. 2014. Practical trigger-action program-
ming in the smart home. In: Proceedings of the SIGCHI conference on human factors in
computing systems, 803–812 DOI 10.1145/2556288.2557420.

Vaidya RK, De Carli L, Davidson D, Rastogi V. 2019. Security issues in language-based
sofware ecosystems. ArXiv preprint. arXiv:1903.02613.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 42/43

https://peerj.com
http://dx.doi.org/10.3233/AIS-170462
http://dx.doi.org/10.1016/j.scico.2006.11.002
http://dx.doi.org/10.1016/j.comnet.2016.08.014
https://www.springer.com/gp 
https://tasker.joaoapps.com/index.html
http://dx.doi.org/10.3390/app10124102
http://dx.doi.org/10.1007/978-3-642-24755-2_21
http://dx.doi.org/10.1007/978-3-540-76890-6_2
http://dx.doi.org/10.1145/2556288.2557420
http://arXiv.org/abs/1903.02613
http://dx.doi.org/10.7717/peerj-cs.480


Vannucchi C, Diamanti M, Mazzante G, Cacciagrano D, Culmone R, Gorogiannis
N, Mostarda L, Raimondi F. 2017. Symbolic verification of event-condition-
action rules in intelligent environments. Journal of Reliable Intelligent Environments
3(2):117–130 DOI 10.1007/s40860-017-0036-z.

VisserW, Havelund K, Brat G, Park S, Lerda F. 2003.Model checking programs.
Automated Software Engineering 10(2):203–232 DOI 10.1023/A:1022920129859.

Wang Q, Datta P, YangW, Liu S, Bates A, Gunter CA. 2019. Charting the at-
tack surface of trigger-action IoT platforms. In: Proceedings of the 2019 ACM
SIGSAC conference on computer and communications security, 1439–1453
DOI 10.1145/3319535.3345662.

Xiao D,Wang Q, Cai M, Zhu Z, ZhaoW. 2019. A3ID: an automatic and interpretable
implicit interference detection method for smart home via knowledge graph.
Piscataway: IEEE Internet of Things Journal.

Yagita M, Ishikawa F, Honiden S. 2015. An application conflict detection and resolution
system for smart homes. In: 2015 IEEE/ACM 1st international workshop on software
engineering for smart cyber-physical systems. Piscataway: IEEE, 33–39.

Zave P, Cheung E, Yarosh S. 2015. Toward user-centric feature composition for the
Internet of Things. ArXiv preprint. arXiv:1510.06714.

Zhang L, HeW,Martinez J, Brackenbury N, Lu S, Ur B. 2019a. AutoTap: synthesizing
and repairing Trigger-Action programs using LTL properties. In: 2019 IEEE/ACM
41st international conference on software engineering (ICSE). Piscataway: IEEE,
281–291.

ZhangM,Wang J-Z, HuangW-J, Huang B-C. 2019b. Software verification and vali-
dation of digital nuclear instrumentation system. In: International symposium on
software reliability, industrial safety, cyber security and physical protection for nuclear
power plant. Springer, 313–321.

Zhang P, Liu JK, Yu FR, SookhakM, AuMH, Luo X. 2018. A survey on access control in
fog computing. IEEE Communications Magazine 56(2):144–149.

Zheng X, Julien C, KimM, Khurshid S. 2014. On the state of the art in verification and
validation in cyber physical systems. The University of Texas at Austin, The Center
for Advanced Research in Software Engineering, Tech. Rep. TR-ARiSE-2014-00,
14851..

Zigmond E, Chong S, Dimoulas C, Moore S. 2019. Fine-grained, language-based access
control for database-backed applications. ArXiv preprint. arXiv:1909.12279.

Zúñiga A, Sierra G, Bel-Enguix G, Gomez J. 2020. SICIoT: a simple instruction compiler
for the Internet of Things. Internet of Things 12:100304 DOI 10.1016/j.iot.2020.100304.

Ibrhim et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.480 43/43

https://peerj.com
http://dx.doi.org/10.1007/s40860-017-0036-z
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1145/3319535.3345662
http://arXiv.org/abs/1510.06714
http://arXiv.org/abs/1909.12279
http://dx.doi.org/10.1016/j.iot.2020.100304
http://dx.doi.org/10.7717/peerj-cs.480

