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ABSTRACT
An object-oriented computational framework for the transformation of colour data
and colour metric tensors is presented. The main idea of the design is to represent the
transforms between spaces as compositions of objects from a class hierarchy providing
the methods for both the transforms themselves and the corresponding Jacobian
matrices. In this way, new colour spaces can be implemented on the fly by transforming
from any existing colour space, and colour data in various formats as well as colour
metric tensors and colour difference data can easily be transformed between the colour
spaces. This reduces what normally requires several days of coding to a few lines of
code without introducing a significant computational overhead. The framework is
implemented in the Python programming language.

Subjects Computer Vision, Graphics, Optimization Theory and Computation, Scientific
Computing and Simulation, Software Engineering
Keywords Colour metrics, Colour space, Transform, Object-oriented, Python

INTRODUCTION
Colour data such as measured colours, specified colours or pixels of colour images are
most commonly described as sets of points in a three-dimensional space—a so-called
colour space. Many different colour spaces are currently in use in various settings.
For many applications, selecting the best colour space for processing the data can be
crucial (Plataniotis & Venetsanopoulos, 2000). Converting between all the different colour
spaces can be challenging. Different conventions for scaling and normalisation is used, and
many of the colour spaces commonly in use are inaccurately defined. The complexity of
conversion is particularly present for computations involving colour metric data, which,
by nature, is tensorial (Deza & Deza, 2009), giving rise to the need for not only the direct
transformations, but also the corresponding Jacobian matrices—a tedious and error-prone
process (Pant & Farup, 2012). So far, no common framework for such transformations of
colour data and metrics including the automated computation of Jacobian matrices has
been constructed.

From other fields of computational science, it is well established that object-oriented
frameworks can be useful for simplifying such matters (Beall & Shephard, 1999). With the
advent of modern high-level interpreted languages, the computational overhead is not
nearly as high as before, and the ease of use has increased significantly (Cai, Langtangen
& Moe, 2005). Thus, in order to simplify the matters for colour science and engineering,
an object-oriented framework for colour space construction, and conversion of colour
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data and colour metric tensor data is designed. The framework is currently limited to
three-dimensional colour spaces.

Following the background material on the principles of transforming colour data and
related tensorial data in the following section, the principles and ideas underlying the
framework are presented. To demonstrate to which degree the framework simplifies the
implementation of colour data and metric transformations, an implementation of the
framework using the high-level programming language Python (Van Rossum & Drake,
1995) is applied to some standard example problems.

BACKGROUND
Transformation of colour data
Transformations between different colour spaces can in general take the shape of a
function, x̄ = x̄(x), where x = (x1,x2,x3)T represents a colour, i.e., a point in a colour
space. Fortunately, most common colour space conversions are made up of a small set of
relatively simple mathematical operations. The linear transformation is a very common
ingredient in the transforms. Some colour spaces, such as, e.g., the CIECAT02 colour
adaptation space (Moroney et al., 2002), are even defined simply by a linear transformation
from some other colour space:

x̄ =Ax, (1)

where A is a 3× 3 constant matrix. Combined with the so-called gamma correction, which
is applied channel-wise, most RGB type colour spaces, and also, e.g., the IPT (Ebner &
Fairchild, 1998) colour space can be construced

x̄i= sgn(xi)|xi|γ , (2)

where γ > 0 is the constant exponent.
For many perceptual colour spaces such as CIELAB, both Cartesian and cylindrical

coordinates are commonly used for describing the chromatic plane. The transformation
from Cartesian to polar is

x̄1= x1,

x̄2=
√
x22+x

2
3 ,

x̄3= atan2(x3,x2),

(3)

with the corresponding inverse transform

x̄1= x1,

x̄2= x2cos(x3),

x̄3= x2sin(x3).

(4)
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Chromaticities and luminances are often represented in projective spaces such as xyY,

x̄1=
x1

x1+x2+x3
,

x̄2=
x2

x1+x2+x3
,

x̄3= x2.

(5)

Colour spaces used for colour metrics such as 1EE (Oleari, Melgosa & Huertas, 2009) and
the various DIN99 metrics (Cui et al., 2002) often include a logarithmic compression of
some or all of the channels such as lightness and chroma (radius in polar coordinates):

x̄i= ai ln(1+bixi), (6)

where ai and bi are the parameters of the transform. Recently, the Poincaré disk
representation of the hyperbolic plane has been used for representing the chromatic
plane (Lenz, Carmona & Meer, 2007; Farup, 2014). The chroma-preserving mapping to the
Poincaré disk can be written as a mapping of the radius in polar coordinates as

x̄2= tanh
( x2
2R

)
, (7)

where R> 0 is the radius of curvature. Besides these more generic transformations, various
non-linear transformation functions specific to individual colour spaces are used in such
cases as sRGB, CIELAB, CIELUV, the underlying colour space of the CIEDE2000 metric,
etc.

Transformation of tensorial data
Most colour metrics can be represented in the form of a line element, or a differential
quadratic form (Wyszecki & Stiles, 1982, Chapter 8.4), as

ds2= dxTGdx. (8)

Here, G is themetric tensor—a function of the coordinates. Formetrics defined as Euclidean
distances in a given colour space, the metric tensor is the identity tensor, I, in the given
space. Some colour metrics, like, e.g., CIEDE2000, cannot be written in this form, but can
be linearised—or Riemannised—to a good approximation (Pant & Farup, 2012).

Under a coordinate transformation, x̄ = x̄(x), this metric transforms according to

ds2= dxTGdx = dx̄T
∂x
∂ x̄

T
G
∂x
∂ x̄

dx̄ = dx̄T Ḡdx̄, (9)

where ∂x/∂ x̄ is the Jacobianmatrix of the coordinate transformwith componentns ∂xi/∂ x̄j .
In other words, the metric tensor transforms according to

Ḡ=
∂x
∂ x̄

T
G
∂x
∂ x̄
. (10)
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Under composition of several coordinate transformations, x̃ = x̃(x̄)= x̃(x̄(x)), the process
is nested,

ds2= dx̃T
∂ x̄
∂ x̃

T ∂x
∂ x̄

T
G
∂x
∂ x̄
∂ x̄
∂ x̃

dx̃, (11)

G̃=
∂ x̄
∂ x̃

T ∂x
∂ x̄

T
G
∂x
∂ x̄
∂ x̄
∂ x̃
, (12)

which can also be seen directly from the chain rule for the Jacobian matrices,

∂x
∂ x̃
=
∂x
∂ x̄
∂ x̄
∂ x̃
. (13)

All the points with unit distance from a given central point—a unit ball—constitute an
ellipsoid

1xTG1x = 1. (14)

The cross section of this ellipsoid with a principal plane in a given coordinate is obtained
by setting the corresponding 1xi= 0, reducing the ellipsoid to an ellipsis (Pant & Farup,
2012),

(
1x1 1x2

)(g11 g12
g21 g22

)(
1x1
1x2

)
= 1, (15)

with angle θ and semi-axes a and b given by

tan(2θ)=
2g12

g11−g22
, (16)

a=
1√

g22+g12cotθ
, (17)

b=
1√

g11−g12cotθ
. (18)

SYSTEM ARCHITECTURE
Since the computation of generic colour space transforms and, in partiular the composition
of their Jacobianmatrices can be a tedious and error-prone process (see, e.g., Pant & Farup,
2012), an object-oriented framework for transforming colour and metric data between
colour spaces has been implemented as a Python package colour. The package consists
of six partially interdependent modules space, data, metric, tensor, statistics and
misc. The relationship between the modules is shown in Fig. 1. In the figure, the arrows
indicate dependencies between the modules in the form of Python imports. Each of the
modules contain functions, classes and predefined objects with the purpose of simplifying
the implementation of new colour spaces and metrics.
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Figure 1 Structure of the modules within the colour package. The arrows indicate dependencies in the
form of Python imports.

Representing colour spaces
The core functionality of the colour space and colour metric transforms is found in the
space module. The basic idea in designing the object oriented framework is to realise a
colour space as an object, and to facilitate the construction of new such objects by providing
classes for transforming new colour spaces from already existing ones. The class hierarchy
which constistutes the core of the of the module, is shown in Fig. 2. All boxes represent
classes, and the arrows denote class inheritance. Italicized method names indicate methods
that should be overridden in a subclass. Details about attributes and auxiliary methods etc.
have been left out for readability.

All colour space objectsmust derive from the abstract Space class, and as such implement
the methods to_XYZ and from_XYZ for converting colour data between the XYZ colour
space and the colour space represented by the object, and the methods jacobian_XYZ and
inv_jacobian_XYZ for computing the corresponding Jacobian matrix and its inverse. The
two latter methods are implemented in Space as inverses of each other, so the subclasses
only need to implement one of them—the other one can be inherited. The colour data
is represented as N ×3 NumPy (Oliphant, 2007) ndarrays, and the Jacobian matrices as
N ×3×3 ndarrays.

All transformations between colour spaces must go through XYZ, which thus serves a
special role, and has a separate class of its own. Here, the transformations are simply the
identity transform, and the Jacobian matrices are identity matrices. All other colour spaces
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Figure 2 Structure of the classes within the spacemodule. Data types and parameters are not shown
for the derived methods.

will be built by transforming colour data from an already existing colour space, starting
from XYZ. To facilitate making the specific transforms, an abstract class Transform is
provided. During instantiation of a transformed colour space object, the base space of the
transformation has to be set. The virtual methods to_base and from_base for converting
colour data to and from the base base, and jacobian_base and inv_jacobian_base

for computing the Jacobian matrix and its inverse between the current space and the
base space must be provided in the derived classes. The methods to_XYZ, from_XYZ,
jacobian_XYZ, and inv_jacobian_XYZ are implemented in the base class Transform
using the transformation between the current space and the base space (provided by
derived classes) and the corresponding transformations in the base class, see Eq. (12).
Hence, there is no need to reimplement these in the derived classes. Finally, the concrete
colour space tranforms are implemented as classes TransformXXX derived from Transform.
They must all implement the methods to_base, from_base and either jacobian_base
or inv_jacobian_base. The remaining methods will be inferred by inheritance. In
some cases, though, it is more efficient to provide more methods in order to reduce the
computational cost. For example, in TransformLinear, both methods jacobian_base
and inv_jacobian_base are provided in order to avoid inverting every single Jacobian
matrix for large data sets.

Representing colour and metric data
The colour space objects constructed by the method described above, will convert colour
data represented as N ×3 ndarrays (N colour data points). For real-life applications,
colours some times come as single data points (3-vectors), some times as lists of colour
data (N ×3 matrices), and some times as images (M ×N ×3 arrays). In order for the
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Figure 3 The Data and TensorData classes for keeping track of colour data andmetric data, respec-
tively.

user not having to deal with converting back and forth between these formats, as well as
remembering in which colour space all the data is given, a separate class Data for storing
colour data has been implemented as part of the data module, cf. Fig. 3. Again, the boxes
denote classes. In this module, there are no inheritance relationship between the classes,
but they are related by the TensorData class having an attribute of the Data type.

A colour Data object can be instantiated with single colour data, lists of colour data,
or colour images in any implemented colour space. The Data object takes the colour
space (object) of the data as an argument, and keeps a dictionary of the colour spaces in
which the data in question has been computed. When the colour data in a given space
is requested (using the get method), it first checks the dictionary whether it has already
been computed. If not, it is computed, stored in the dictionary and returned. All the actual
computations are taken care of by the hierarcy of colour space objects representing the
transforms necessary for building the colour space.

A similar approach is taken for colour metric data in the form of colour tensors, see
Fig. 3. In this case, both the locations of the colour metrics (as colour Data), and the
metrics themselves are represented in the class. Like for the colour data, a dictionary of the
computed tensors is maintained. For the conversion between the different colour spaces,
the Jacobian matrices are applied according to Eq. (10). The nested tensor transforms,
Eq. (12), are implicitly taken care of by the colour space class hierarchy without the user
having to interfere.

Colour metrics, tensors and statistics
The four remaining modules, metric, tensor, statistics, and misc contain separate
functions (not part of the class hierarchy) for computing various properties of colour data,
colour transforms, and sets of these. The metric module has functions for computing
the most common colour metrics, such as the standard CIE 1Eab and 1Euv metrics,
CIEDE2000 (Luo, Cui & Rigg, 2001), the different versions of the DIN99 metric as
described by Cui et al. (2002), the log-compressed OSA-UCS metric 1EE by Oleari,
Melgosa & Huertas (2009), as well as a general Euclidean distance and the Poincare disk
metric developed in Reference (Farup, 2014) in any colour space. All these functions take
two colour data objects of the same size as arguments, and return an N -vector of colour
differences.

The tensormodule has functions for computing themetric tensors corresponding to the
metrics in the metric package. The functions take one colour Data object as argument, and
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returns the corresponding TensorData object. The statisticsmodule contains functions
for calculating various statistics of colour metric data, such as the STRESS measure (García
et al., 2007) and Pant’s R-values (Pant & Farup, 2012; Pant, Farup & Melgosa, 2013). The
misc module contains miscellaneous supporting functions.

Computational complexity
The framework has been implemented using NumPy (Oliphant, 2007) ndarrays, and
all operations for colour and metric conversion are vectorised. Thus, all the real
computations take place using the highly optimised underlying libraries for matrices,
such as LAPACK (Anderson et al., 1999) etc. No loops over individual colour data are
implemented in the high-level language. Thus, there are only two sources of computational
overhead by using the framework.

First, there are the function calls associated with computing the transformations between
a given colour space and its bases all the way back to the CIEXYZ colour space. These
function calls will only take place once per transformation call. This can be a significant
overhead when the data set consists of only one or very few data points, but then the
computation is very quick anyway. For bigger colour data sets, such as images, this will
represent only very few function calls (given by the number of steps in the transformation
from CIEXYZ to the given space), and thus be negligible in comparison with the real
computation, which takes place at the highly optimised low-level code.

Secondly, all colour and metric conversions go through the CIEXYZ colour space. When
converting between two colour spaces based on a common basis other than CIEXYZ, an
unneccesary conversion back and forth between this common basis and CIEXYZ will
inevitably take place. It would, in principle, be possible to eliminate this by advanced
optimisation techniques, but since the computations are already fast (fractions of a second
even for quite large images), and the goal of the framework has been ease of implementation
rather than computational efficiency, this has not been prioritized.

Not all of the operations in the statisticsmodule are vectorised, although this would
in principle also be possible. The reason for this is that they are mainly meant for colour
research applications, and as such, they are not expected to be used in production. For the
relevant use in research, data collection etc. will be much more time consuming than the
actual computations, so computational efficiency has not been emphasized in this part of
the framework.

EXAMPLE APPLICATION
In order to demonstrate the power of the proposed approach, a simple demo application is
shown in Fig. 4. In this short code (less than a page), (i) a new colour space is implemented,
(ii) individual colours, lists of colours and a colour image is converted to the new colour
space, (iii) the tensorial data corresponding to the MacAdam ellipses is converted by
the help of the Jacobian matrices of the transformation to the new space, and (iv) the
colour difference between two images is computed as a Eucildean distance in the newly
constructed colour space. These operations would normally require days of programming,
but with the use of the proposed framework it is all achieved by a few lines of code.
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Figure 4 Small demo of the colour package.

In lines 3–6, the library is imported. In a real application, one would normally only
import the colour package (import colour), and refer to the elements as, e.g.,
colour.space.TransformLinear etc., but here the specific classes, objects and functions
needed are imported specifically, simply in order to reduce the size and improve the
readability of the remaining code.

The transformation to the IPT colour space (Ebner & Fairchild, 1998) is composed of
a linear transform from XYZ followed by a gamma correction, followed by final linear
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Figure 5 An image (A) and its gamut clipped version (B).

Figure 6 The I (A), P (B), and T (C) planes of the image shown in Fig. 5A.
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Figure 7 TheMacAdam ellipses plotted in the PT-plane of the IPT colour space.

Figure 8 Difference maps of the two images shown in Fig. 5 for1Eab (A),1E00 (B), and the Euclidean
distance in the IPT colour space (C).

transform. The code for constructing this colour space is given in lines 9–16 of Fig. 4.
It should be noted that the programmer does not need to specify anything about the
computation of the corresponding Jacobian matrices—everyting is taken care of by the
constructors of the Transformation classes.

Once the colour space is constructed, the Data class can use it for converting colours in
various formats such as single data points—lines 19–20—giving

[9.99987871e-01 1.16264986e-03 1.69020684e-06],
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lists of colour points—lines 22–23—giving

[[9.99987871e-01 1.16264986e-03 1.69020684e-06]

[4.83120653e-01 5.61706973e-04 8.16583738e-07]

[0.00000000e+00 0.00000000e+00 0.00000000e+00]],

and even colour images (lines 25–26). The individual IPT colour planes of the image shown
in Fig. 5A resulting from this (lines 27–29) are shown in Fig. 6.

In order to demonstrate also the transformation of tensorial colour data, the code
in lines 32–37 loads, transforms, and plots the MacAdam ellipses (MacAdam, 1942) in
the PT-plane of the IPT space. The latter includes the tedious process of computing the
transformation of the corresponding metric tensors according to Eq. (10). The resulting
plot is shown in Fig. 7.

Similarly, the colour.metric module can compute colour differences of colour data
in any format, including images. For example, the code in lines 41–43 of Fig. 4 computes
the difference maps of the two images shown in Fig. 5 for 1Eab, 1E00 and the Euclidean
distance in the newly implemented IPT colour space. The results are shown in Fig. 8.

Please note that the entire code used to generate Figs. 5–8 is shown in Fig. 4.

CONCLUSION
An object-oriented computational framework for colour metrics and colour has
been designed and implemented in Python. The framework strongly simplifies the
implementation of new colour spaces for transfroming colour data and as well as
tensorial colour metric data between the various colour spaces without compromising
too much on the computational complexity. The code is freely available at GitHub
(https://github.com/ifarup/colourspace). Future extensions could include ICC support,
computation geodesics based on the colour metrics (Pant & Farup, 2013), computation
and representation of colour gamuts (Bakke, Farup & Hardeberg, 2010), as well as gamut
mapping algorithms (Alsam & Farup, 2009) in any colour space, and under any colour
metric.
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