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Feature selection techniques are very useful approaches for dimensionality reduction in data analysis.
They provide interpretable results by reducing the dimensions of the data to a subset of the original set
of features. When the data lack annotations, unsupervised feature selectors are required for their
analysis. Several algorithms for this aim exist in the literature, but despite their large applicability, they
can be very inaccessible or cumbersome to use, mainly due to the need for tuning non-intuitive
parameters and the high computational demands.

In this work, a publicly available ready-to-use unsupervised feature selector is proposed, with comparable
results to the state-of-the-art at a much lower computational cost. The suggested approach belongs to
the methods known as spectral feature selectors. These methods generally consist of two stages:
manifold learning and subset selection. In the first stage, the underlying structures in the high-
dimensional data are extracted, while in the second stage a subset of the features is selected to replicate
these structures. This paper suggests two contributions to this field, related to each of the stages
involved. In the manifold learning stage, the effect of non-linearities in the data is explored, making use
of a radial basis function (RBF) kernel, for which an alternative solution for the estimation of the kernel
parameter is presented for cases with high-dimensional data. Additionally, the use of a backwards greedy
approach based on the least-squares utility metric for the subset selection stage is proposed.

The combination of these new ingredients results in the Utility metric for Unsupervised feature selection
(U2FS) algorithm. The proposed U2FS algorithm succeeds in selecting the correct features in a simulation
environment. In addition, the performance of the method on benchmark datasets is comparable to the
state-of-the-art, while requiring less computational time. Moreover, unlike the state-of-the-art, U2FS does
not require any tuning of parameters.
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ABSTRACT12

Feature selection techniques are very useful approaches for dimensionality reduction in data analysis.

They provide interpretable results by reducing the dimensions of the data to a subset of the original set of

features. When the data lack annotations, unsupervised feature selectors are required for their analysis.

Several algorithms for this aim exist in the literature, but despite their large applicability, they can be very

inaccessible or cumbersome to use, mainly due to the need for tuning non-intuitive parameters and the

high computational demands.
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In this work, a publicly available ready-to-use unsupervised feature selector is proposed, with comparable

results to the state-of-the-art at a much lower computational cost. The suggested approach belongs to the

methods known as spectral feature selectors. These methods generally consist of two stages: manifold

learning and subset selection. In the first stage, the underlying structures in the high-dimensional data

are extracted, while in the second stage a subset of the features is selected to replicate these structures.

This paper suggests two contributions to this field, related to each of the stages involved. In the manifold

learning stage, the effect of non-linearities in the data is explored, making use of a radial basis function

(RBF) kernel, for which an alternative solution for the estimation of the kernel parameter is presented for

cases with high-dimensional data. Additionally, the use of a backwards greedy approach based on the

least-squares utility metric for the subset selection stage is proposed.
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The combination of these new ingredients results in the Utility metric for Unsupervised feature selection

(U2FS) algorithm. The proposed U2FS algorithm succeeds in selecting the correct features in a simulation

environment. In addition, the performance of the method on benchmark datasets is comparable to the

state-of-the-art, while requiring less computational time. Moreover, unlike the state-of-the-art, U2FS does

not require any tuning of parameters.
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INTRODUCTION34

Many applications of data science require the study of highly multi-dimensional data. A high number of35

dimensions implies a high computational cost as well as a large amount of memory required. Furthermore,36

this often leads to problems related to the curse of dimensionality (Verleysen and François, 2005) and thus,37

to irrelevant and redundant data for machine learning algorithms (Maindonald et al., 2007). Therefore, it38

is crucial to perform dimensionality reduction before analyzing the data.39

There are two types of dimensionality reduction techniques. On the one hand, feature selection, where40

the aim is to keep a subset of the original features. On the other hand, transformation techniques define41

a new smaller set of features, which are derived from a combination of all features of the original set.42

Some examples of these are Principal Component Analysis (PCA) (Wold et al., 1987) and Independent43

Component Analysis (ICA) (Jiang et al., 2006). These methods lead to less interpretable results, in which44

the direct relationship between the features and the results is lost.45

In this work, the focus is on unsupervised feature selectors. Since these methods do not rely on the46

availability of labels or annotations in the data, the information comes from the learning of the underlying47
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structure of the data. Despite this challenge, the generalization capabilities of these methods are typically48

better than for supervised or semi-supervised methods (Guyon and Elisseeff, 2003).49

One specific type of unsupervised feature selectors are those based on manifold and sparse learning50

(Lunga et al., 2013). These type of methods rely on graph theory to learn the underlying structures of the51

data. However, to the best of our knowledge, none explores specifically the behavior of these methods52

with data presenting non-linear relationships between the features (i.e., dimensions). While the graph53

definition step can make use of kernels to tackle non-linearities, these can be heavily affected by the curse54

of dimensionality, since they are often based on a distance metric (Aggarwal et al., 2001).55

After the manifold learning stage, sparse regression is applied to score the relevance of the features56

in the structures present in the graph. These formulations make use of sparsity-inducing regularization57

techniques to provide the final subset of features selected, and thus, they are highly computationally58

expensive. These methods are often referred to as structured sparsity-inducing feature selectors (SSFS)59

(Gui et al., 2016).60

Despite the large amount of unsupervised SSFS algorithms described in the literature, these methods61

are cumbersome to use for a novice user. This is not only due to the codes not being publicly available,62

but also due to the algorithms requiring regularization parameters which are difficult to tune, in particular63

in unsupervised settings.64

In this work, an efficient unsupervised feature selector based on the utility metric (U2FS) is proposed.65

U2FS is a ready-to-use, publicly available1 unsupervised feature selector designed to be robust for data66

containing non-linearities. The main contributions of this work are:67

• The definition of a new method to automatically approximate the radial-basis function (RBF) kernel68

parameter without the need for a user-defined tuning parameter. This method is used to tackle the69

curse of dimensionality when embedding the data taking non-linearities into account.70

• The suggestion of a backwards greedy approach for the stage of subset selection, based on the71

utility metric for the least-squares problem. The utility metric was proposed in the framework of72

supervised learning (Bertrand, 2018), and has been used for channel selection in applications such73

as electroencephalography (EEG) (Narayanan and Bertrand, 2020), sensor networks (Szurley et al.,74

2014), and microphone arrays (Szurley et al., 2012). Nevertheless, this is the first work in which75

this type of approach is proposed for the sparsity-inducing stage of feature selection.76

• Propose a non-parametric and efficient unsupervised SSFS algorithm. This work analyzes the77

proposed method U2FS in terms of its complexity, and of its performance on simulated and78

benchmark data. The goal is to reduce the computational cost while maintaining a comparable79

performance with respect to the state-of-the-art.80

The rest of the paper is structured as follows. In Related Work, previous algorithms on SSFS are81

summarized. In Methods, the proposed U2FS method is described: first the manifold learning stage,82

together with the algorithm proposed for the selection of the kernel parameter; and further on, the utility83

metric is discussed and adapted to feature selection. The experiments performed in simulations and84

benchmark databases, as well as the results obtained are described in the Results and Discussion sections.85

Finally, the last section provides some conclusions.86

RELATED WORK87

Spectral feature selection methods have become widely used in unsupervised learning applications for88

high-dimensional data. This is due to two reasons. On the one hand, the use of manifold learning89

guarantees the preservation of local structures present in the high-dimensional data. Additionally, its90

combination with feature selection techniques not only reduces the dimensionality of the data, but also91

guarantees interpretability.92

Spectral feature selectors learn the structures present in the data via connectivity graphs obtained in93

the high-dimensional space (Yan et al., 2006). The combination of manifold learning and regularization94

techniques to impose sparsity, allows to select a subset of features from the original dataset that are able95

to describe these structures in a smaller dimensional space.96

1U2FS code can be found in https://github.com/avillago/u2fs
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Most of these algorithms can also be categorized as sparsity-inducing feature selectors, since they97

make use of sparsity-inducing regularization approaches to stress those features that are more relevant for98

data separation. The sparsity of these approaches is controlled by different statistical norms (lr,p-norms),99

which contribute to the generalization capability of the methods, adapting them to binary or multi-class100

problems (Gui et al., 2016). One drawback of these sparse regression techniques is that generally, they101

rely on optimization methods, which are computationally expensive.102

The Laplacian Score (He et al., 2006) was the first method to perform spectral feature selection in an103

unsupervised way. Based on the Laplacian obtained from the spectral embedding of the data, it obtains104

a score based on locality preservation. SPEC (Zhao and Liu, 2007) is a framework that contains this105

previous approach, but it additionally allows for both supervised or unsupervised learning, including106

other similarity metrics, as well as other ranking functions. These approaches evaluate each feature107

independently, without considering feature interactions. These interactions are, however, taken into108

account in Multi-Cluster Feature Selection (MCFS) (Cai et al., 2010), where a multi-cluster approach109

is defined based on the eigendecomposition of a similarity matrix. The subset selection is performed110

applying an l1-norm regularizer to approximate the eigenvectors obtained from the spectral embedding111

of the data inducing sparsity. In UDFS (Yang et al., 2011) the l1-norm regularizer is substituted by a112

l2,1-norm to apply sample and feature-wise constraints, and a discriminative analysis is added in the graph113

description. In NDFS (Li et al., 2012), the use of the l2,1-norm is preserved, but a non-negative constraint114

is added to the spectral clustering stage.115

The aforementioned algorithms perform manifold learning and subset selection in a sequential way.116

However, other methods tackle these simultaneously, in order to adaptively change the similarity metric117

or the selection criteria regarding the error obtained between the original data and the new representation.118

Examples of these algorithms are JELSR (Hou et al., 2013), SOGFS (Nie et al., 2019) and (R)JGSC (Zhu119

et al., 2016), and all make use of an l2,1-norm. Most recently, the SAMM-FS algorithm was proposed120

(Zhang et al., 2019), where a combination of similarity measures is used to build the similarity graph,121

and the l2,0-norm is used for regression. This group of algorithms are currently the ones achieving the122

best results, at the cost of using complex optimization techniques to adaptively tune both stages of the123

feature selection process. While this can lead to good results, it comes with a high computation cost,124

which might hamper the tuning process, or might simply not be worthy for some applications. SAMM-FS125

and SOGFS are the ones that more specifically suggest new approaches to perform the embedding stage,126

by optimally creating the graph (Nie et al., 2019) or deriving it from a combination of different similarity127

metrics (Zhang et al., 2019). Again, both approaches require computationally expensive optimization128

techniques to select a subset of features.129

In summary, even if SSFS methods are getting more sophisticated and accurate, this results in130

algorithms becoming more complex in terms of computational time, and in the ease of use. The use of131

advanced numerical optimization techniques to improve results makes algorithms more complex, and132

requires regularization parameters which are not easy to tune. In this work, the combination of a new133

approach to estimate the graph connectivity based on the RBF kernel, together with the use of the utility134

metric for subset selection, results in an efficient SSFS algorithm, which is easy to use and with lower135

complexity than the state-of-the-art.136

METHODS137

This section describes the proposed U2FS algorithm, which focuses on selecting the relevant features138

in an unsupervised way, at a relatively small computational cost. The method is divided in three parts.139

Firstly, the suggested manifold learning approach is explained, where an embedding based on binary140

weighting and the RBF kernel are used. Then a method to select the kernel parameter of the RBF kernel141

is proposed, specially designed for high-dimensional data. Once the manifold learning stage is explained,142

the Utility metric is proposed as a new approach for subset selection.143

Manifold learning considering non-linearities144

Given is a data matrix X ∈ R
N×d , with X = [x1;x2; . . . ;xN ], xi = [x

(1)
i ,x

(2)
i , . . . ,x

(d)
i ], i = 1, . . . ,N, N the145

number of data points, and d the number of features (i.e., dimensions) in the data. The aim is to learn the146

structure hidden in the d-dimensional data and approximate it with only a subset of the original features.147

In this paper, this structure will be identified by means of clustering, where the dataset is assumed to be148

characterized by c clusters.149
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In spectral clustering, the clustering structure of this data can be obtained by studying the eigenvectors150

derived from a Laplacian built from the original data (Von Luxburg (2007), Biggs et al. (1993)). The151

data is represented using a graph G = (V ,E ). V is the set of vertices vi, i = 1, . . . ,N where vi = xi.152

E = {ei j} with i = 1, . . . ,N j = 1, . . . ,N is the set of edges between the vertices where {ei j} denotes the153

edge between vertices vi and v j. The weight of these edges is determined by the entries wi j ≥ 0 of a154

similarity matrix W. We define the graph as undirected. Therefore, the similarity matrix W, is symmetric155

(since wi j = w ji, with the diagonal set to wii = 0).156

Typically, W is computed after coding the pairwise distances between all N data points. There are157

several ways of doing this, such as calculating the k-nearest neighbours (KNN) for each point, or choosing158

the ε-neighbors below a certain distance (Belkin and Niyogi, 2002).159

In this paper, two similarity matrices are adopted inspired by the work in (Cai et al., 2010), namely a160

binary one and one based on an RBF kernel. The binary weighting is based on KNN, being wi j = 1 if and161

only if vertex i is within the K closest points to vertex j. Being a non-parametric approach, the binary162

embedding allows to simply characterize the connectivity of the data.163

Additionally, the use of the RBF kernel is considered, which is well suited for non-linearities and164

allows to characterize complex and sparse structures (Von Luxburg, 2007). The RBF kernel is defined as165

K(xi,x j) = exp(−||xi −x j||
2/2σ2). The selection of the kernel parameter σ is a long-standing challenge166

in machine learning. For instance, in Cai et al. (2010), σ2 is defined as the mean of all the distances167

between the data points. Alternatively, a rule of thumb, uses the sum of the standard deviations of the data168

along each dimension (Varon et al., 2015). However, the estimation of this parameter is highly influenced169

by the amount of features or dimensions in the data, making it less robust to noise and irrelevant features.170

In the next section, a new and better informed method to approximate the kernel parameter is proposed.171

The graph G, defined by the similarity matrix W, can be partitioned into multiple disjoint sets. Given172

the focus on multi-cluster data of our approach, the k-Way Normalized Cut (NCut) Relaxation is used,173

as proposed in Ng et al. (2002). In order to obtain this partition, the degree matrix D of W must be174

calculated. D is a diagonal matrix for which each element on the diagonal is calculated as Dii = ∑ j Wi, j.175

The normalized Laplacian L is then obtained as L = D−1/2WD−1/2, as suggested in Von Luxburg (2007).176

The vectors y embedding the data in L can be extracted from the eigenvalue problem (Chung and Graham,177

1997):178

Ly = λy (1)

Given the use of a normalized Laplacian for the data embedding, the vectors y must be adjusted using179

the degree matrix D:180

α = D1/2y, (2)

which means that α is the solution of the generalized eigenvalue problem of the pair W and D. These181

eigenvectors α are a new representation of the data, that gathers the most relevant information about the182

structures appearing in the high-dimensional space. The c eigenvectors, corresponding to the c highest183

eigenvalues (after excluding the largest one), can be used to characterize the data in a lower dimensional184

space (Ng et al., 2002). Thus, the matrix E = [α1,α2, . . . ,αc] containing column-wise the c selected185

eigenvectors, will be the low-dimensional representation of the data to be mimicked using a subset of the186

original features, as suggested in Cai et al. (2010).187

Kernel parameter approximation for high-dimensional data188

One of the most used similarity functions is the RBF kernel, which allows to explore non-linearities in189

the data. Nevertheless, the kernel parameter σ2 must be selected correctly, to avoid overfitting or the190

allocation of all data points to the same cluster. This work proposes a new approach to approximate this191

kernel parameter, which will be denoted by σ̂2 when derived from our method. This method takes into192

account the curse of dimensionality and the potential irrelevant features or dimensions in the data.193

As a rule of thumb, σ2 is approximated as the sum of the standard deviation of the data along each194

dimension (Varon et al., 2015). This approximation grows with the number of features (i.e. dimensions)195

of the data, and thus, it is not able to capture its underlying structures in high-dimensional spaces.196

4/17PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54747:0:0:NEW 30 Oct 2020)

Manuscript to be reviewedComputer Science



Nevertheless, this σ2 is commonly used as an initialization value, around which a search is performed,197

considering some objective function (Alzate and Suykens, 2008; Varon et al., 2015).198

The MCFS algorithm skips the search around an initialization of the σ2 value by substituting the sum199

of the standard deviations by the mean of these (Cai et al., 2010). By doing so, the value of σ2 does not200

overly grow. This estimation of σ2 suggested in Cai et al. (2010) will be referred to as σ2
0 . A drawback of201

this approximation in high-dimensional spaces is that it treats all dimensions as equally relevant for the202

final estimation of σ2
0 , regardless of the amount of information that they actually contain.203

The aim of the proposed approach is to provide a functional value of σ2 that does not require204

any additional search, while being robust to high-dimensional data. Therefore, this work proposes an205

approximation technique based on two factors: the distances between the points, and the number of206

features or dimensions in the data.207

The most commonly used distance metric is the euclidean distance. However, it is very sensitive to208

high-dimensional data, deriving unsubstantial distances when a high number of features is involved in the209

calculation (Aggarwal et al., 2001). In this work, the use of the Manhattan or taxicab distance (Reynolds,210

1980) is proposed, given its robustness when applied to high-dimensional data (Aggarwal et al., 2001).211

For each feature l, the Manhattan distance δl is calculated as:212

δl =
1

N

N

∑
i, j=1

|xil − x jl | (3)

Additionally, in order to reduce the impact of irrelevant or redundant features, a system of weights213

is added to the approximation of σ̂2. The goal is to only take into account the distances associated to214

features that contain relevant information about the structure of the data. To calculate these weights, the215

probability density function (PDF) of each feature is compared with a Gaussian distribution. Higher216

weights are assigned to the features with less Gaussian behavior, i.e. those the PDF of which differs the217

most from a Gaussian distribution. By doing so, these will influence more the final σ̂2 value, since they218

allow a better separation of the structures present in the data.219

Figure 1 shows a graphical representation of this estimation. The dataset in the example has 3220

dimensions or features: f1, f2 and f3. f1 and f2 contain the main clustering information, as it can be221

observed in Figure 1a, while f3 is a noisy version of f1, derived as f3 = f1 +1.5n, where n is drawn from222

a normal distribution N (0,1). Figures 1b, 1c and 1d show in a continuous black line the PDFs derived223

from the data, and in a grey dash line their fitted Gaussian, in dimensions f1, f2 and f3 respectively. This224

fitted Gaussian was derived using the Curve Fitting toolbox of MatlabTM. As it can be observed, the225

matching of a Gaussian with an irrelevant feature is almost perfect, while those features that contain more226

information, like f1 and f2, deviate much more from a normal distribution.227

Making use of these differences, an error, denoted φl , for each feature l, where l = 1, . . . ,d, is228

calculated as:229

φl =
1

H

H

∑
i=1

(pi −gi)
2, (4)

where H is the number of bins in which the range of the data is divided to estimate the PDF (p), and g230

is the fitted Gaussian. The number of bins in this work is set to 100 for standardization purposes. Equation231

(4) corresponds to the mean-squared error (MSE) between the PDF of the data over feature l and its fitted232

Gaussian. From these φl , the final weights bl are calculated as:233

bl =
φl

∑
d
l=1 φl

(5)

Therefore, combining (3) and (5), the proposed approximation, denoted σ̂2, is derived as:234

σ̂2 =
d

∑
l=1

blδl , (6)
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Figure 1. Weight system for relevance estimation. In Figure 1A, f1 and f2 can be seen. 1B, 1C and 1D

show in black the PDFs pi of f1, f2 and f3 respectively, and in grey dotted line their fitted Gaussian gi.

which gathers the distances present in the most relevant features, giving less importance to the235

dimensions that do not contribute to describe the structure of the data. The complete algorithm to calculate236

σ̂2 is described in Algorithm 1.237

Algorithm 1 Kernel parameter approximation for high-dimensional data.

Input: Data X ∈ R
N×d .

Output: Sigma parameter σ̂2

1: Calculate the Manhattan distances between the datapoints using Equation (3): vector of distances per

feature δl .

2: Obtain the weights for each of the features using Equations (4) and (5): weights bl .

3: Calculate σ̂2 using Equation (6).

Utility metric for feature subset selection238

In the manifold learning stage, a new representation E of the data based on the eigenvectors was built,239

which described the main structures present in the original high-dimensional data. The goal is to select240

a subset of the features which best approximates the data in this new representation. In the literature,241

this feature selection problem is formulated using a graph-based loss function and a sparse regularizer242

of the coefficients is used to select a subset of features, as explained in Zhu et al. (2016). The main243

idea of these approaches is to regress the data to its low dimensional embedding along with some sparse244

regularization. The use of such regularization techniques reduces overfitting and achieves dimensionality245

reduction. This regression is generally formulated as a least squares (LS) problem, and in many of these246

cases, the metric that is used for feature selection is the magnitude of their corresponding weights in247

the least squares solution (Cai et al., 2010; Gui et al., 2016). However, the optimized weights do not248

necessarily reflect the importance of the corresponding feature as it is scaling dependent and it does249

not properly take interactions across features into account (Bertrand, 2018). Instead, the importance250

of a feature can be quantified using the increase in least-squared error (LSE) if that feature was to be251

removed and the weights were re-optimized. This increase in LSE, called the ‘utility’ of the feature can252

be efficiently computed (Bertrand, 2018) and can be used as an informative metric for a greedy backwards253

feature selection procedure (Bertrand, 2018; Narayanan and Bertrand, 2020; Szurley et al., 2014), as an254

alternative for (group-)LASSO based techniques. Under some technical conditions, a greedy selection255

based on this utility metric can even be shown to lead to the optimal subset (Couvreur and Bresler, 2000).256

After representing the dataset using the matrix E ∈ R
N×c containing the c eigenvectors, the following
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LS optimization problem finds the weights p that best approximate the data X in the c-dimensional

representation in E:

J = min
P

1

N
||Xp−E||2F (7)

where J is the cost or the LSE and ||.||F denotes the Frobenius norm.257

If X is a full rank matrix and if N > d, the LS solution p̂ of (7) is

p̂ = R−1
XXRXE, (8)

with RXX = 1
N

XT X and RXE = 1
N

XT E.258

The goal of this feature selection method is to select the subset of s(< d) features that best represents259

E. This feature selection problem can be reduced to the selection of the best s(< d) columns of X which260

minimize (7). However, this is inherently a combinatorial problem and is computationally unfeasible to261

solve. Nevertheless, several greedy and approximative methods have been proposed (Gui et al., 2016; Nie262

et al., 2019; Narayanan and Bertrand, 2020). In the current work, the use of the utility metric for subset263

selection is proposed to select these best s columns.264

The utility of a feature l of X, in an LS problem like (7), is defined as the increase in the LSE J when265

the column corresponding to the l-th feature in X is removed from the problem and the new optimal266

weight matrix, p̂−l , is re-computed similar to (8). Consider the new LSE after the removal of feature l267

and the re-computation of the weight matrix p̂−l to be J−l , defined as:268

J−l =
1

N
||X−l p̂−l −E||2F (9)

where X−l denotes the matrix X with the column corresponding to l-th feature removed. Then269

according to the definition, the utility of feature l, Ul is:270

Ul = J−l − J (10)

A straightforward computation of Ul would be computationally heavy due to the fact that the compu-271

tation of p̂l requires a matrix inversion of X−lX
T
−l , which has to be repeated for each feature l.272

However, it can be shown that the utility of the l-th feature of X in (10) can be computed efficiently273

without the explicit recomputation of p̂−l by using the following expression (Bertrand, 2018):274

Ul =
1

ql

||p̄l ||2, (11)

where ql is the l-th diagonal element of R−1
XX and pl is the l-th row in p̂, corresponding to the l-th275

feature. The mathematical proof of (11) can be found in Bertrand (2018). Note that R−1
XX is already known276

from the computation of p̂ such that no additional matrix inversion is required.277

However, since the data matrix X can contain redundant features or features that are linear combi-278

nations of each other in its columns, it cannot be guaranteed that the matrix X in (7) is full-rank. In279

this case, the removal of a redundant column from X will not lead to an increase in the LS cost of (7).280

Moreover, R−1
XX, used to find the solution of (7) in (8), will not exist in this case since the matrix X is rank281

deficient. A similar problem appears if N < d, which can happen in case of very high-dimensional data.282

To overcome this problem, the definition of utility generalized to a minimum l2-norm selection (Bertrand,283

2018) is used in this work. This approach eliminates the feature yielding the smallest increase in the284

l2-norm of the weight matrix when the column corresponding to that feature were to be removed and the285

weight matrix would be re-optimized. Moreover, minimizing the l2-norm of the weights further reduces286

the risk of overfitting.287

This generalization is achieved by first adding an l2-norm penalty β to the cost function that is288

minimized in (7):289

J = min
p

1

2
||Xp−E||2F +β ||p||22 (12)
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where 0 < β 6 µ with µ equal to the smallest non-zero eigenvalue of RXX in order to ensure that the290

bias added due to the penalty term in (12) is negligible. The minimizer of (12) is:291

p̂ = R−1
XXβ

RXE = (RXX +β I)−1RXE (13)

It is noted that (13) reduces to R
†
XXRXE when β → 0, where R

†
XX denotes the Moore-Penrose pseudo-292

inverse. This solution corresponds to the minimum norm solution of (7) when X contains linearly293

dependent columns or rows. The utility Ul of the l-th column in X based on (12) is (Bertrand, 2018):294

Ul =
(

||X−l p̂−l −E||22 −||Xp̂−E||22
)

+β
(

||p̂−l ||
2
2 −||p̂||22

)

= (J−l − J)+β
(

||p̂−l ||
2
2 −||p̂||22

)

(14)

Note that if column l in X is linearly independent from the other columns, (14) closely approximates295

to the original utility definition in (10) as the first term dominates over the second. However, if column l296

is linearly dependent, the first term vanishes and the second term will dominate. In this case, the utility297

quantifies the increase in l2-norm after removing the l-th feature.298

To select the best s features of X, a greedy selection based on the iterative elimination of the features299

with the least utility is carried out. After the elimination of each feature, a re-estimation of the weights p̂300

is carried out and the process of elimination is repeated, until s features remain.301

Note that the value of β depends on the smallest non-zero eigenvalue of RXX. Since RXX has to be302

recomputed every time when a feature is removed, also its eigenvalues change along the way. In practice,303

the value of β is selected only once and fixed for the remainder of the algorithm, as smaller than the304

smallest non-zero eigenvalue of RXX before any of the features are eliminated (Narayanan and Bertrand,305

2020). This value of β will be smaller than all the non-zero eigenvalues of any principal submatrix of306

RXX using the Cauchy’s interlace theorem (Hwang, 2004).307

The summary of the utility subset selection is described in Algorithm 2. Algorithm 3 outlines the308

complete U2FS algorithm proposed in this paper.309

Algorithm 2 Utility metric algorithm for subset selection.

Input: Data X, Eigenvectors E, Number of features s to select

Output: s features selected

1: Calculate RXX and RXE as described in Equation (8).

2: Calculate β as the smallest non-zero eigenvalue of RXX

3: while Number of features remaining is > s do

4: Compute R−1
XXβ

and p̂ as described in (13).

5: Calculate the utility of the remaining features using (11)

6: Remove the feature fl with the lowest utility.

7: Update RXX and RXE by removing the rows and columns related to that feature fl .

8: end while

Algorithm 3 Unsupervised feature selector based on the utility metric (U2FS).

Input: Data X, Number of clusters c, Number of features s to select

Output: s features selected

1: Construct the similarity graph W as described in Section selecting one of the weightings:

• Binary

• RBF kernel, using σ2
0

• RBF kernel, using σ̂2 based on Algorithm 1

2: Calculate the normalized Laplacian L and the eigenvectors α derived from Equation (2).

Keep the c eigenvectors corresponding to the highest eigenvalues, excluding the first one.

3: Apply the backward greedy utility algorithm 2.

4: Return the s features remaining from the backward greedy utility approach.

8/17PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54747:0:0:NEW 30 Oct 2020)

Manuscript to be reviewedComputer Science



As it has been stated before, one of the most remarkable aspects of the U2FS algorithm is the use of310

a greedy technique to solve the subset selection problem. The use of this type of method reduces the311

computational cost of the algorithm. This can be confirmed analyzing the computational complexity of312

U2FS, where the most demanding steps are the eigendecomposition of the Laplacian matrix (step 2 of313

Algortihm 3), which has a cost of O(N3) (Tsironis et al., 2013), and the subset selection stage in step 3 of314

Algorithm 3. Contrary to the state-of-the-art, the complexity of U2FS being a greedy method depends on315

the number of features to select. The most computationally expensive step of the subset selection in U2FS316

is the calculation of the matrix R−1
XX, which has a computational cost of O(d3). In addition, this matrix317

needs to be updated d − s times. This update can be done efficiently using a recursive updating equation318

from Bertrand (2018) with a cost of O(t2), with t the number of features remaining in the dataset, i.e.319

t = d − s. Since t < d, the cost for performing d − s iterations will be O((d − s)d2), which depends on320

the number of features s to be selected. Note that the cost of computing the least squares solution p̂−l for321

each l in (14) is eliminated using the efficient equation (11), bringing down the cost for computing the322

utility from O(t4) to O(t) in each iteration. This vanishes with respect to the O(d3) term (remember that323

t < d). Therefore, the total asymptotic complexity of U2FS is O(N3 +d3).324

RESULTS325

The aim of the following experiments is to evaluate the U2FS algorithm based on multiple criteria. With326

the focus on the new estimation of the embedding proposed, the proposed RBF kernel approach using327

the estimated σ̂2 is compared to the σ2
0 parameter proposed in Cai et al. (2010), and to the binary KNN328

graph commonly used in Gui et al. (2016). On the other hand, the utility metric for subset selection is329

compared to other sparsity-inducing techniques, based on lp −norm regularizations. In these experiments,330

this is evaluated using the l1 −norm. The outline of the different combinations considered in this work331

summarized in Table 1. The last method, RBFσ̂2 + Utility, would be the one referred to as U2FS,332

combining the novelties suggested in this work.333

Table 1. Methods compared in the experiments

Similarity measure Subset selection

KNNBin + l1 −norm KNN + binary weighting l1-norm

RBFσ2
0

+ l1 −norm RBF kernel, σ2
0 l1-norm

KNNBin + Utility KNN + binary weighting Utility metric

RBFσ2
0

+ Utility RBF kernel, σ2
0 Utility metric

RBFσ̂2 + Utility RBF kernel, σ̂2 Utility metric

These novelties are evaluated in two different scenarios, namely a simulation study, and in the334

application of the methods on benchmark datasets. In particular for the latter, the methods are not only335

evaluated in terms of accuracy, but also regarding computational complexity. These evaluations are336

performed against the state-of-the-art.337

Simulations338

A set of nonlinear toy examples typically used in clustering problems are proposed to test the different339

feature selection methods. In these experiments, the goal was to verify the correct selection of the original340

set of features. Figure 2 shows the toy examples considered2, which are described by features f1 and f2 ,341

and the final description of the datasets can be seen in Table 2.342

All these problems are balanced, except for the last dataset Cres-Moon, for which the data is divided343

25% to 75% between the two clusters. Five extra features in addition to the original f1 and f2 were added344

to each of the datasets in order to include redundant or irrelevant information:345

• f ′1 and f ′2: random values extracted from two Pearson distributions characterized by the same346

higher-order statistics as f1 and f2 respectively.347

• f ′3 and f ′4: Original f1 and f2 contaminated with Gaussian noise (νN (0, 1)), with ν = 1.5.348

• f ′5: Constant feature of value 0.349
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Figure 2. Toy examples used for simulations.

Table 2. Description of the toy example datasets.

# samples # classes

Clouds 9000 3

Moons 10000 2

Spirals 10000 2

Corners 10000 4

Half-Kernel 10000 2

Crescent-Moon 10000 2

The first step in the preprocessing of the features was to standardize the data using z-score to reduce350

the impact of differences in scaling and noise. In order to confirm the robustness of the feature selection351

techniques, the methods were applied using 10-fold cross-validation on the standardized data. For each352

fold a training set was selected using m-medoids, setting m to 2000 and using the centers of the clusters353

found as training samples. By doing so, the generalization ability of the methods can be guaranteed354

(Varon et al., 2015). On each of the 10 training sets, the features were selected applying the 5 methods355

mentioned in Table 1. For each of the methods, the number of clusters c was introduced as the number of356

classes presented in Table 2. Since these experiments aim to evaluate the correct selection of the features,357

and the original features f1 and f2 are known, the number of features s to be selected was set to 2.358

Regarding the parameter settings within the embedding methods, the binary was obtained setting k in359

the kNN approach to 5. For the RBF kernel embedding, σ2
0 was set to the mean of the standard deviation360

along each dimension, as done in Cai et al. (2010). When using σ̂2, its value was obtained by applying361

the method described in Algorithm 1.362

In terms of subset selection approaches, the method based on the l1 −norm automatically sets the363

value of the regularization parameter required for the LARS implementation, as described in (Deng Cai,364

Chiyuan Zhang, 2020). For the utility metric, β was automatically set to the smallest non-zero eigenvalue365

of the matrix RXX as described in Algorithm 2.366

The performance of the algorithm is evaluated comparing the original set of features f1 and f2 to those367

selected by the algorithm. In these experiments, the evaluation of the selection results is binary: either the368

feature set selected is correct or not, regardless of the additional features f ′i , for i = 1,2, ...,5, selected.369

In Table 3 the most common results obtained in the 10 folds are shown. The utility-based approaches370

always obtained the same results for all 10 folds of the experiments. On the contrary, the l1 − norm371

methods provided different results for different folds of the experiment. For these cases, Table 3 shows372

the most common feature pair for each experiment, occurring at least 3 times.373

2The codes used to generate these datasets are available in https://github.com/avillago/u2fs
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Table 3. Results feature selection for toy examples

Method Utility metric l1 −norm

Embedding KNNBin RBFσ2
0

RBFσ̂2 KNNBin RBFσ2
0

Clouds f 1, f 2 f ’1, f ’4 f 1, f 2 f ’1, f ’2 f ’1, f ’2

Moons f 1, f 2 f ’3, f ’4 f 1, f 2 f ’1, f ’3 f ’1, f ’3

Spirals f 1, f 2 f 1, f 2 f 1, f 2 f 2, f ’2 f 2, f ’2

Corners f 1, f 2 f ’1, f ’2 f 1, f 2 f 2, f ’2 f 2, f ’2

Half-Kernel f 1, f 2 f 2, f ’3 f 1, f 2 f 1, f ’3 f 1, f ’3

Cres-Moon f 1, f 2 f 1, f ’4 f 1, f 2 f 2, f ’1 f 2, f ’2

As shown in Table 3, the methods that always obtain the adequate set of features are based on utility,374

both with the binary weighting and with the RBF kernel and the suggested σ̂2. Since these results were375

obtained for the 10 folds, they confirm both the robustness and the consistency of the U2FS algorithm.376

Benchmark datasets377

Additionally, the proposed methods were evaluated using 6 well-known benchmark databases. The378

databases considered represent image (USPS, ORL, COIL20), audio (ISOLET) and text data (PCMAC,379

BASEHOCK)3, proposing examples with more samples than features, and vice versa. The description of380

these databases is detailed in Table 4.381

Table 4. Description of the benchmark databases

Data Type Samples Features Classes

USPS Images 9298 256 10

Isolet Audio 1560 617 26

ORL Images 400 1024 40

COIL20 Images 1440 1024 20

PCMAC Text 1943 3289 2

BASEHOCK Text 1993 4862 2

In these datasets, the relevant features are unknown. Therefore, the common practice in the literature382

to evaluate feature selectors consists of applying the algorithms, taking from 10 to 80% of the original383

set of features, and evaluating the accuracy of a classifier when trained and evaluated with the selected384

feature set (Zhu et al., 2016). The classifier used for this aim in other papers is k-Nearest Neighbors385

(KNN), setting the number of neighbors to 5.386

These accuracy results are computed using 10-fold cross-validation to confirm the generalization387

capabilities of the algorithm. By setting m to 90% of the number of samples available in each benchmark388

dataset, m-medoids is used to select the m centroids of the clusters and use them as training set. Feature389

selection and the training of the KNN classifier are performed in these 9 folds of the standardized data,390

and the accuracy of the KNN is evaluated in the remaining 10% for testing. Exclusively for USPS, given391

the size of the dataset, 2000 samples were used for training and the remaining data was used for testing.392

These 2000 samples were also selected using m-medoids. Since PCMAC and BASEHOCK consist of393

binary data, these datasets were not standardized.394

The parameters required for the binary and RBF embeddings, as well as β for the utility algorithm,395

are automatically set as detailed in section .396

Figure 3 shows the median accuracy obtained for each of the 5 methods. The shadows along the397

lines correspond to the 25 and 75 percentile of the 10 folds. As a reference, the accuracy of the classifier398

without using feature selection is shown in black for each of the datasets. Additionally, Figure 4 shows the399

computation time for both the utility metric and the l1 −norm applied on a binary weighting embedding.400

In this manner, the subset selection techniques can be evaluated regardless of the code efficiency of the401

embedding stage. Similarly to Figure 3, the computation time plots show in bold the median running time402

3All datasets downloaded from http://featureselection.asu.edu/datasets.php
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for each of the subset selection techniques, and the 25 and 75 percentiles around it obtained from the403

10-fold cross-validation.404

Figure 3. Accuracy results for the benchmark databases, for selecting from 10 to 80% of the original

number of features. The thick lines represent the median accuracy of the 10-fold cross-validation, and the

shadows, the 25 and 75 percentile.

The difference in the trends of the l1 −norm and utility in terms of computation time is due to their405

formulation. Feature selection based on l1 −norm regularization, solved using the LARS algorithm in406

this case, requires the same computation time regardless of the number of features aimed to select. All407

features are evaluated together, and later on, an MCFS score obtained from the regression problem is408

assigned to them (Cai et al., 2010). The features with the higher scores are the ones selected. On the other409

hand, since the utility metric is applied in a backward greedy trend, the computation times change for410

different number of features selected. The lower the number of features selected compared to the original411

set, the higher the computation time. This is aligned with the computational complexity of the algorithm,412

described in Section . In spite of this, it can be seen that even the highest computation time for utility is413

lower than the time taken using l1 −norm regularization. The experiments were performed with 2x Intel414

Xeon E5-2640 @ 2.5 GHz processors and 64GB of working memory.415

Additionally, in order to compare the results of U2FS with more methods from the state-of-the-art, the416

results described in Zhu et al. (2016) for the BASEHOCK and PCMAC datasets are taken as a reference.417

The experiment set-up is equivalent to the one previously described, applying KNN to the data after418

having selected a subset of the features. Since the method proposed by Zhu et al., RJGSC, achieves the419

best results from the state-of-the-art, it is taken as benchmark in this paper. Table 5 summarizes those420

results by showing the KNN accuracy (ACC) for 10% of the features used, and the maximum ACC421

achieved among the percentages of features considered, for the BASEHOCK and PCMAC datasets. The422

algorithms compared are RJGSC, MCFS and U2FS. MCFS can be seen as a simplified version of U2FS,423

where the embedding is done using KNN and binary weighting, and the l1 − norm is used for subset424

selection. U2FS, on the other hand, results from the combination of the RBF kernel with σ̂2 and the utility425

metric.426

427

DISCUSSION428

The results obtained in the experiments suggest that the proposed U2FS algorithm obtains comparable429

results to the state-of-the-art in all the applications suggested, taking less computational time. Nevertheless,430
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Figure 4. Computation time for extracting from 10 to 80% of the original number of features for each of

the benchmark databases.

Table 5. Comparison of classification accuracy (ACC) with the state-of-the-art for PCMAC and

BASEHOCK datasets.

Dataset Method ACC at 10% features % features at Max ACC Max ACC

PCMAC U2FS 0.79 60% 0.83

RJGSC 0.81 60% 0.83

MCFS 0.67 20% 0.70

BASEHOCK U2FS 0.87 50% 0.93

RJGSC 0.90 80% 0.92

MCFS 0.82 80% 0.84
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the performance of the utility metric for feature selection varies for the different experiments presented431

and requires a detailed analysis.432

From Table 3, in Section , it can be concluded that the utility metric is able to select the correct433

features in an artificially contaminated dataset. Both the binary embedding and the RBF kernel with σ̂2
434

select the original set of features for the 10 folds of the experiment. The stability in the results also applies435

for the RBF embedding with σ2
0 , which always selected the same feature pair for all 10 folds even though436

they are only correct for the spirals problem.437

Therefore, considering the stability of the results, it can be concluded that the proposed approach is438

more robust in the selection of results than that based on the l1 −norm.439

On the other hand, when considering the suitability of the features selected, two observations can be440

made. First of all, it can be seen that the lack of consistency in the l1 −norm approaches discards the441

selection of the correct set of features. Moreover, the wrong results obtained with both l1 −norm and442

utility methods for the RBF embedding using σ2
0 reveal the drawback of applying this approximation443

of σ2
0 in presence of redundant or irrelevant features. Since this value is calculated as the mean of the444

standard deviation of all the dimensions in the data, this measure can be strongly affected by irrelevant445

data, that could be very noisy and enlarge this sigma, leading to the allocation of all the samples to a446

mega-cluster.447

While the use of the proposed approximation for σ̂2 achieves better results than σ2
0 , these are448

comparable to the ones obtained with the KNN binary embedding when using the utility metric. The use449

of KNN to build graphs is a well-known practice, very robust for dense clusters, as it is the case in these450

examples. The definition of a specific field where each of the embeddings would be superior is beyond451

the scope of this paper. However, the excellence of both methods when combined with the proposed452

subset selection method only confirms the robustness of the utility metric, irrespective of the embedding453

considered.454

For standardization purposes, the performance of the method was evaluated in benchmark databases.455

As it can be observed, in terms of the accuracy obtained for each experiment, U2FS achieves comparable456

results to the l1 − norm methods for most of the datasets considered, despite its condition of greedy457

method.458

In spite of this, some differences in performance can be observed in the different datasets. The different459

ranking of the methods, as well as the accuracy obtained for each of the databases can be explained taking460

into account the type of data under study and the ratio between samples and dimensions.461

With regard to the type of data represented by each test, it can be observed that for the ISOLET dataset,462

containing sound information, two groups of results are distinguishable. The group of the utility metric463

results outperforms those derived from the l1 −norm, which only reach comparable results for 60% of the464

features selected. These two groups of results are caused by the subset selection method applied, and not465

for the embedding, among which the differences are not remarkable.466

In a similar way, for the case of the image datasets USPS, ORL and COIL20, the results derived467

from utility are slightly better than those coming from the l1 −norm. In these datasets, similarly to the468

performance observed in ISOLET, accuracy increases with the number of features selected.469

Regarding the differences between the proposed embeddings, it can be observed that the results470

obtained are comparable for all of them. Nonetheless, Figure 3 shows that there is a slight improvement471

in the aforementioned datasets for the RBF kernel with σ̂2, but the results are still comparable to those472

obtained with other embeddings. Moreover, this similarity in the binary and RBF results holds for the473

l1 −norm methods, for which the accuracy results almost overlap in Figure 3. This can be explained by474

the relation between the features considered. Since for these datasets the samples correspond to pixels,475

and the features to the color codes, a simple neighboring method such as the binary weighting is able to476

code the connectivity of pixels of similar colors.477

The text datasets, PCMAC and BASEHOCK, are the ones that show bigger differences between the478

results obtained with utility and those obtained with the l1 −norm. This can be explained by the amount479

of zeros present in the data, with which the utility metric is able to cope slightly better. The sparsity of the480

data leads to more error in the l1 −norm results, since more features end up having the same MCFS score,481

and among those, the order for selection comes at random. The results obtained with the utility metric482

are more stable, in particular for the BASEHOCK dataset. For this dataset, U2FS even outperforms the483

results without feature selection if at least 40% of the features are kept.484

In all the datasets proposed, the results obtained with the l1 −norm show greater variability, i.e. larger485
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percentiles. This is aligned with the results obtained in the simulations. The results for the l1 − norm486

are not necessarily reproducible in different runs, since the algorithm is too sensitive to the training set487

selected. The variability of the utility methods is greater for the approaches based on the RBF kernel.488

This is due to the selection of the σ2 parameter, which also depends on the training set. The tuning of this489

parameter is still very sensitive to high-dimensional and large-scale data, posing a continuous challenge490

for the machine learning community (Yin and Yin, 2016; Tharwat et al., 2017).491

Despite it being a greedy method, the utility metric proves to be applicable to feature selection492

approaches and to strongly outperform the l1 −norm in terms of computational time, without significant493

reduction in accuracy. U2FS proves to be effective both in cases with more samples than features and494

vice versa. The reduction in computation time is clear, for all the benchmark databases described, and is495

particularly attractive for high-dimensional datasets. Altogether, our feature selection approach U2FS,496

based on the utility metric, and with the binary or the RBF kernel with σ̂2 is recommended due to its fast497

performance and its interpretability.498

Additionally, the performance of U2FS is comparable to the state-of-the-art, as shown in Table 5. In499

this table, the performance of U2FS (RBF kernel and σ̂2, with the utility metric) is compared to that of500

RJGSC, given its consistent good results for different datasets when contrasted against the state-of-the-art.501

It is clear that terms of accuracy, both for 10% of the features and for the maximal value of achieved,502

U2FS obtains similar results to RJGSC. These results confirm the relevance of U2FS, in particular when503

taking into account its lower complexity. While RJGSC requires the manual tuning of extra parameters,504

similar to other algorithms in the state-of-the-art, U2FS tunes its parameters automatically. Hence, the505

application of the method is straightforward for the users. Additionally, similar to SAMM-FS and SOGFS,506

the RJGSC method performs manifold learning and feature selection simultaneously, iteratively adapting507

both steps to achieve optimal results. It is due to this that the achievement of comparable results is508

even more relevant, since U2FS is based on a greedy approach. Nevertheless, for these methods U2FS509

does not present as a competitor in terms of accuracy, but in terms of simplicity. The stages of higher510

complexity in U2FS, previously defined as O(N3 + d3), are shared by most of the algorithms in the511

state-of-the-art. However, on top of these eigendecompositions and matrix inversions, the algorithms in512

the literature require a number of iterations in the optimization process that U2FS avoids. Additionally,513

U2FS is the only algorithm proposed based on a greedy approach, and therefore, the only one for which514

the computation time scales linearly with the amount of features selected.515

The current state-of-the-art of unsupervised spectral feature selectors applies the stages of manifold516

learning and subset selection simultaneously, which can lead to optimal results. In a field that gets more517

and more complex and goes far from applicability, U2FS is presented as a quick solution for a sequential518

implementation of both stages of SSFS algorithms, yet achieving comparable results to the state-of-the-art.519

Being a greedy method, the utility metric cannot be applied simultaneously to the manifold learning and520

subset selection stages. However, other sequential algorithms from the state-of-the-art could consider521

the use of utility for subset selection, instead of the current sparsity-inducing techniques. One of the522

most direct applications could be the substitution of group-LASSO for group-utility, in order to perform523

selections of groups of features as proposed by Bertrand (2018). This can be of interest in cases where the524

relations between features are known, such as in channel selection (Narayanan and Bertrand, 2020) or in525

multi-modal applications (Zhao et al., 2015).526

CONCLUSION527

This work presents a new method for unsupervised feature selection based on manifold learning and528

sparse regression. The main contribution of this paper is the formulation of the utility metric in the field529

of spectral feature selection, substituting other sparse regression methods that require more computational530

resources. This method, being a backward greedy approach, has been proven to obtain comparable531

results to the state-of-the-art methods with analogous embedding approaches, yet at considerably reduced532

computational load. The method shows consistently good results in different applications, from images533

to text and sound data; and it is broadly applicable to problems of any size: using more features than534

samples or vice versa.535

Furthermore, aiming to show the applicability of U2FS to data presenting non-linearities, the proposed536

approach has been evaluated in simulated data, considering both a binary and an RBF kernel embedding.537

Given the sensitivity of the RBF kernel to high-dimensional spaces, a new approximation of the RBF538

kernel parameter was proposed, which does not require further tuning around the value obtained. The539
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proposed approximation outperforms the rule-of-thumb widely used in the literature in most of the540

scenarios presented. Nevertheless, in terms of feature selection, the utility metric is robust against the541

embedding.542

U2FS is proposed as a non-parametric efficient algorithm, which does not require any manual tuning543

or special knowledge from the user. Its simplicity, robustness and accuracy open a new path for structure544

sparsity-inducing feature selection methods, which can benefit from this quick and efficient technique.545
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