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ABSTRACT
Deep learning based models are relatively large, and it is hard to deploy such models
on resource-limited devices such as mobile phones and embedded devices. One
possible solution is knowledge distillation whereby a smaller model (student model)
is trained by utilizing the information from a larger model (teacher model). In this
paper, we present an outlook of knowledge distillation techniques applied to deep
learning models. To compare the performances of different techniques, we propose a
new metric called distillation metric which compares different knowledge distillation
solutions based on models' sizes and accuracy scores. Based on the survey, some
interesting conclusions are drawn and presented in this paper including the current
challenges and possible research directions.

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Knowledge distillation, Model compression, Student model, Teacher model,
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INTRODUCTION
Deep learning has succeeded in several fields such as Computer Vision (CV) and Natural
Language Processing (NLP). This is due to the fact that deep learning models are relatively
large and could capture complex patterns and features in data. But, at the same time,
large model sizes lead to difficulties in deploying them on end devices.

To solve this issue, researchers and practitioners have applied knowledge distillation on
deep learning approaches for model compression. It should be emphasized that knowledge
distillation is different from transfer learning. The goal of knowledge distillation is to
provide smaller models that solve the same task as larger models (Hinton, Vinyals &
Dean, 2015) (see Fig. 1); whereas, the goal of transfer learning is to reduce training time
of models that solve a task similar to the task solved by some other model (cf. Pan & Yang
(2009)). Knowledge distillation accomplishes its goal by altering loss functions of
models being trained (student models) to account for output of hidden layers of pre-
trained models (teacher models). On the other hand, transfer learning achieves its goal by
initializing parameters of a model by learnt parameters of a pre-trained model.

There are many techniques presented in the literature for knowledge distillation. As a
result, there is a need to summarize them so that researchers and practitioners could have a
clear understanding of the techniques. Also, it is worth noting here that knowledge
distillation is one of the ways to compress a larger model into a smaller model with
comparable performance. Other techniques for model compression include row-rank
factorization, parameter sharing, transferred/compact convolutional filters, and parameter
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pruning as presented by Cheng et al. (2017). To the best of our knowledge, there is no
separate published survey on knowledge distillation techniques which motivated us to
present a survey on recent knowledge distillation techniques for deep learning. Since there
are many proposed knowledge distillation methods, we believe that they should be
compared appropriately. Knowledge distillation approaches can be compared by several
metrics such as reductions in model sizes, accuracy scores, processing times and so on.
Our main criteria are reductions in model sizes and accuracy scores. Accordingly, we
propose a metric–termed distillation metric–that takes into account the two criteria.

The main objectives of this work are to provide an outlook on the recent developments
in knowledge distillations and to propose a metric for evaluating knowledge distillation
approach in terms of reduction in size and performance. The paper also discusses some of
the recent developments in the related field to understand the knowledge distillation
process and the challenges that need to be addressed. The rest of the paper is organized
as follows: In “Background”, we provide a background on knowledge distillation.
In “Distillation Metric”, we present and discuss our proposed distillation metric. “Survey”
contains the surveyed approaches and “Applications of Knowledge Distillation” contains
some applications of knowledge distillation. We provide our discussion on surveyed
approaches and an outlook on knowledge distillation in “Discussion and Outlook”. Finally,
we present our conclusions in “Conclusions”.

SURVEY METHODOLOGY
We searched papers on the topic of knowledge distillation in Google Scholar and selected
the ones that were recent and not covered in previous similar surveys in the field. Papers
published in the year 2017 and onward were included in the current work. Moreover,
the papers were shortlisted based on the quality which was judged by the publication
venue, i.e., indexed journals and relevant conferences such as International Conference
on Machine Learning, Neural Information Processing Systems, AAAI Conference on
Artificial Intelligence, International Conference on Learning Representations, conference
on Computer Vision and Pattern Recognition, International Conference on Computer
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Figure 1 A generic illustration of knowledge distillation.
Full-size DOI: 10.7717/peerj-cs.474/fig-1
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Vision, Interspeech and the International Conference on Acoustics, Speech and Signal
Processing. The papers were also selected based on their impact, i.e., citation count.
Published works were searched using phrases containing the keywords such as
“Knowledge Distillation”, “Knowledge Distillation in Deep Learning” and “Model
compression”. Moreover, if a number of papers were retrieved in a specific topic, the
papers that were published in less relevant journals and conferences or those having lower
citation counts were excluded from the survey.

The available literature was broadly categorized into two sub-areas: techniques using
only soft labels to directly train the student models and techniques using knowledge
from intermediate layers to train the student models which may or may not use the
soft labels. Accordingly, the survey was structured into two major sections each dealing
with one of the broad categories. These sections were further divided into subsections for
ease of readability and comprehensibility.

BACKGROUND
Knowledge distillation was first introduced by Hinton, Vinyals & Dean (2015). The main
goal of knowledge distillation is to produce smaller models (student models) to solve the
same task as larger models (teacher models) with the condition that the student model
should perform better than the baseline model. Baseline models are similar to the student
models but trained without the help of a teacher model. The distilling process can be
achieved by using the soft labels, the probability distribution predicted by the teacher, in
addition to the hard label which is represented as a one-hot vector, to train a student
model. In this case, the student is trained with a loss function that minimizes the loss
between its predictions and the hard and soft labels. Furthermore, one may distill the
knowledge from the logits and feature maps of the teacher’s intermediate layers. Logits
are the output of a fully connected intermediate layer while feature maps are the output of
a convolution layer. In this case, the loss function can be defined to minimize the
differences between the selected intermediate layers of the corresponding teacher and
student models. The feature extractor part of a network, i.e., the stack of convolution
layers, are referred to as backbone. There are no conventions that guide student models’
sizes. For example, two practitioners might have student models with different sizes
although they use the same teacher model. This situation is caused by different
requirements in different domains, e.g., maximum allowed model size on some device.

There exist some knowledge distillation methods that target teacher and student
networks having the same size (e.g., Yim et al. (2017)). In such cases, the knowledge
distillation process is referred to as self-distillation and its purpose is to further improve
the performance by learning additional features that could be missing in the student model
due to the random initialization Allen-Zhu & Li (2020). Although an algorithm is
developed to distill knowledge from a teacher model to a student model having the
same size, the algorithm can be used to distill knowledge from a teacher to a smaller
student, as well. This is because, based on our survey, there is no restriction on model sizes,
and it is up to model designers to map teacher’s activations to student’s. So, in general
settings, knowledge distillation is utilized to provide smaller student models that have
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comparable accuracy scores to their corresponding teacher models. The distillation process
can be performed in offline or online manner. In offline distillation, the knowledge
distillation process is performed using a pre-trained teacher model. While online
distillation is for methods that perform knowledge distillation while training the teacher
model. The illustration of the two subcategories can be seen in Fig. 2.

Consequently, one could compare different knowledge distillation algorithms by their
reductions in model sizes. In addition, algorithms might be compared by how much
accuracy they maintain compared to teacher models. There is no rule that governs how
much reduction is best for all cases. For instance, if one needs to apply a knowledge
distillation algorithm, they need to compare the algorithm’s performance, in terms of
reductions in size and accuracy, to their system’s requirements. Based on the requirements,
they can decide which algorithm fits best in their situation. To ease the process of
comparison, we developed a distillation metric which can compare knowledge distillation
results based on model sizes and accuracy scores. For more details on the distillation
metric, please refer to “Distillation Metric”.

There are different knowledge distillation approaches applied to deep learning models.
For example, there exist approaches that distill knowledge from a single teacher to a single
student. Other approaches distill knowledge from several teachers to a single student.
Knowledge distillation could also be applied to provide an ensemble of student networks.
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Figure 2 Illustration of knowledge distillation using (A) pre-trained teacher model (offline) and
(B) while training the teacher model simultaneously (online).

Full-size DOI: 10.7717/peerj-cs.474/fig-2
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In “Survey”, we present recent knowledge distillation approaches that are applied on deep
learning based architectures.

DISTILLATION METRIC
We propose distillation metric to compare different knowledge distillation methods and to
select suitable model for deployment from a number of student models of various
sizes. The metric incorporates ratio of a student’s size to teacher’s size and student’s
accuracy score to teacher’s accuracy score. To have a good reduction in size, first ratio
should be as small as possible. For a distillation method to have a good maintainability
of accuracy, second ratio should be as close to 1 as possible. To satisfy these requirements,
we develop the following equation:

DS ¼ a� ðstudentsteachersÞ þ ð1−aÞ � ð1−studentateacheraÞ (1)

where DS stands for distillation score, students and studenta are student size and accuracy
respectively, and teachers and teachera are teacher size and accuracy respectively.
Parameter a ∈ [0, 1] is a weight to indicate importance of first and second ratio, i.e., size
and accuracy. The weight is assigned by distillation designers based on their system’s
requirements. For example, if some system’s requirements prefer small model sizes over
maintaining accuracy, designers might have a > 0.5 that best satisfies their requirements.

It should be noted that when a student’s accuracy is better than its teacher, the
second ratio would be greater than 1. This causes the right operand of the addition
operation (i.e., 1 − second ratio) to evaluate to a negative value. Hence, DS is decreased,
and it could be less than zero especially if weight of the second ratio is larger. This is a
valid result since it indicates a very small value for the first ratio as compared to the second
ratio. In other words, this behaviour indicates a large reduction in model size while, at
the same time, providing better accuracy scores than the teacher model. As presented in
“Survey”, a student model with a better accuracy is not a common case. It could be
achieved, for example, by having an ensemble of student models.

Regarding the behaviour of the distillation metric, it is as follows: The closer the
distillation score is to 0, the better the knowledge distillation. To illustrate, an optimal
knowledge distillation algorithm would provide a value that is very close to 0 for the
first ratio (e.g., the student’s size is very small as compared to the teacher’s size), and it
would produce a value of 1 for second ratio (e.g., the student and the teacher models have
same accuracy score). As a result, the distillation score approaches 0 as the first ratio
approaches 0 and the second ratio approaches 1.

To demonstrate the usage of distillation metric, we use the results reported in
Walawalkar, Shen & Savvides (2020) using CIFAR100 dataset Krizhevsky (2009) and the
Resnet44 architecture He et al. (2016). In their experiment, they trained four student
models having relative sizes of 62.84%, 35.36%, 15.25% and 3.74% as compared to the
teacher model. The teacher model achieved 71.76% accuracy, while the students achieved
69.12%, 67.04%, 62.87% and 43.11% accuracy, respectively. Considering that the model
accuracy and size reductions are equally important, we set a = 0.5. Calculating the
distillations metric for the four student models we get a score of 0.333, 0.210, 0.138 and
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0.218 respectively. Based on these results, we can notice that the model with the relative
size of 15.25% (100,650 parameter) has the best balance between size and accuracy as
compared to the teacher model and the other student models.

SURVEY
This section includes recent work that targets knowledge distillation in deep learning.
It is divided into two categories. The first category considers work that distills knowledge
from the soft labels of the teacher model to train the student. Soft labels refers to the
output of the teacher model. In case of classification tasks, the soft labels represent the
probability distribution among the classes for an input sample. The second category, on
the other hand, considers works that distill knowledge from other parts of the teacher
model, optionally including the soft labels. Within each category, we further divide
knowledge distillation methods into two subcategories: (1) offline distillation and
(2) online distillation. A summary can be found in Fig. 3. In this survey, our main criteria
are change in sizes and accuracy scores of student models against the corresponding
teacher models. Regarding experiment results for the surveyed work, they are summarized
in Tables 1 and 2.

Techniques that distill knowledge from soft labels of the teacher
models
Offline distillation

Fukuda et al. (2017) proposed a knowledge distillation approach by training a student
model using multiple teacher models. Unlike other multi-teacher approaches that average
the output of the teacher models to create the soft labels and then used to train the student
model (Wu, Chiu & Wu, 2019; Chebotar & Waters, 2016; Markov & Matsui, 2016), the
approach proposed by Fukuda et al. (2017) was to opt out of combining the teachers
output distribution and to train the student on the individual output distribution.
The authors argued that this would help the student model to observe the input data from
different angles and would help the model to generalize better.

Knowledge Distillation Methods

Using soft labels Using logits, feature maps
w/o soft labels

Offline Online Offline Online

Fukuda et al. (2017) 
Liu et al. (2018) 
BAN (Furlanello et al., 2018) 
Quantized Distillation (Polino et al. 2018) 
Kurata and Audhkhasi (2018) 
Mun’im et al. (2019) 
Imitation Networks (Kimura et al. 2019) 
ZSKD (Nayak et al. 2019) 
Wu et al. (2019)

ONE (Lan et al. 2018) 
Gradual Distillation (Min et al. 2019) 
RCO (Jin et al. 2019) 
OKDDip (Chen et al. 2020) 
KDCL (Guo et al. 2020)

Lopes et al. (2017) 
Yim et al. (2017) 
SSKD (Gao et al. 2018) 
Wang et al. (2019) 
He et al. (2019) 
Heo et al. (2019) 
LSL (Li et al. 2019) 
IRG (Liu et al. (2019))

Rocket Launching (Zhou et al. 2018) 
Zhang et al. (2019) 
FFL (Kim et al. 2019) 
Walawalkar et al. (2020) 
AFD (Chung et al. 2020)

Figure 3 A tree diagram illustrating the different knowledge distillation categories of methods and
the different branches within each category. Full-size DOI: 10.7717/peerj-cs.474/fig-3
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While deep learning has achieved great success across a wide range of domains, it
remains difficult to identify the reasoning behind model predictions, especially if models
are complex. To tackle this issue, Liu, Wang & Matwin (2018) proposed a method of
converting deep neural networks to decision trees via knowledge distillation. The proposed
approach consisted of training a Convolutional Neural Network (CNN) first with the
given dataset. Using the feature set from the training dataset as input and the logits from
the trained model as output, they trained a classification and regression trees model, where
logits are scores before the Softmax activations.

Table 1 Summary of knowledge distillation approaches that utilize soft labels of teacher to train student model. In case of several students,
results of student with largest size reduction are reported. In case of several datasets, dataset associated with the lowest accuracy reduction is
recorded. Baseline models have the same size as the corresponding student models, but they were trained without the teacher models.

Reference Targeted architecture Utilized data Reduction in accuracy
compared to teacher

Improvement in accuracy
compared to baseline

Reduction
in size

Offline distillation

Fukuda et al.
(2017)

CNN Aurora (Hirsch & Pearce, 2000) 0.782% 2.238% –

Liu, Wang &
Matwin (2018)

Decision tree MNIST (LeCun, 1998) 12.796% 1-5% –

Furlanello et al.
(2018)

DenseNet (Huang
et al., 2017)

CIFAR-100 (Krizhevsky, 2009) 2.369% (increase) – –

Polino, Pascanu
& Alistarh
(2018)

Wide ResNet
(Zagoruyko &
Komodakis, 2016)

CIFAR-100 0.1813% – 52.87%

Kurata &
Audhkhasi
(2018)

LSTM SWB Switchboard subset from
HUB5 dataset (https://catalog.
ldc.upenn.edu/LDC2002T43)

2.655% – 55.07%

Mun’im, Inoue
& Shinoda
(2019)

Seq2Seq WSJ Wall Street Journal dataset
(https://catalog.ldc.upenn.edu/
LDC93S6B)

8.264% 8.97% 89.88%

Kimura et al.
(2019)

CNN MNIST 10.526% (increase) 16.359% –

Nayak et al.
(2019)

CNN MNIST 0.57% – 40%

Wu, Chiu &Wu
(2019)

ResNet (He et al.,
2016)

HMDB51 (Kuehne et al., 2011) 0.6193% – 58.31%

Online distillation

Lan, Zhu &
Gong (2018)

ResNet CIFAR100, – 6.64% –

Min et al. (2019) Micro CNN Synthetic Aperture Radar Images
Synthetic Aperture Radar Images
dataset (https://www.sandia.gov/
radar/imagery/
index.html)

0.607% – 99.44%

Jin et al. (2019) MobileNetV2
(Sandler et al., 2018)

ImageNet (Deng et al., 2009) 9.644% 6.246% 70.66%

Chen et al.
(2020)

ResNet CIFAR100, – 5.39% –

Guo et al. (2020) ResNet CIFAR100, 1.59% 6.29% 34.29%
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Furlanello et al. (2018) proposed an ensemble knowledge distillation method called
Born-Again Neural Networks. The method considered the issue of teacher and student
models having the same architecture (self distillation). The method first trained a teacher
model using a standard approach. Then, it trained a student model using the ground
truth and teacher’s predictions. After that, it trained a second student model using the
ground truth and previous student’s predictions and so on (see Fig. 4). For instance,
studenti was trained by utilizing training labels and predictions of studenti − 1 for i ∈ [1, n],
where n is the number of student models. When student models were used for prediction,
their results were averaged. Furlanello et al. (2018) claimed that the method would
produce better models since it was based on ensemble learning, and a model was trained
on training labels and predictions of a previously trained model.

Polino, Pascanu & Alistarh (2018) developed a knowledge distillation approach for
quantized models. Quantized models are models whose weights are represented by a
limited number of bits such as 2-bit or 4-bit integers. Quantized models are used to
develop hardware implementations of deep learning architectures as they provide lower
power consumption and lower processing times compared to normal models (full-
precision models) (Courbariaux, Bengio & David, 2015). The distillation approach had
two variants. First variant was called quantized distillation, and it trained a quantized
student model and a full-precision student model. The two models were trained according

Table 2 Summary of knowledge distillation approaches that distills knowledge from parts other than or in addition to the soft labels of the
teacher models to be used for training the student models. In case of several students, results of student with largest size reduction are reported. In
case of several datasets, dataset associated with the lowest accuracy reduction is recorded. Baseline models have the same size as the corresponding
student models, but they were trained without the teacher models.

Reference Targeted
architecture

Utilized data Reduction in accuracy
compared to teacher

Improvement in accuracy
compared to baseline

Reduction
in size

Offline distillation

Lopes, Fenu & Starner
(2017)

CNN MNIST 4.8% 5.699% (decrease) 50%

Yim et al. (2017) ResNet CIFAR-10 0.3043% (increase) – –

Gao et al. (2018) ResNet CIFAR-100 2.889% 7.813% 96.20%

Wang et al. (2019) U-Net Janelia (Peng et al., 2015) – – 78.99%

He et al. (2019) MobileNetV2 PASCAL (Everingham et al.,
2010)

4.868% (mIOU) – 92.13%

Heo et al. (2019) WRN ImageNet to MIT scene
(Quattoni & Torralba, 2009),

6.191% (increase) 14.123% 70.66%

Li et al. (2019) CNN UIUC-Sports (Li et al., 2010) 7.431% 16.89% 95.86%

Liu et al. (2019) ResNet CIFAR10 0.831% 2.637% 73.59%

Online distillation

Zhou et al. (2018) WRN CIFAR-10 1.006% 1.37% 66%

Zhang et al. (2019) ResNet18 CIFAR100 13.72% – –

Kim et al. (2019) CNN CIFAR100 5.869% – –

Walawalkar, Shen &
Savvides (2020)

ResNet CIFAR10 1.019% 1.095% 96.36%

Chung et al. (2020) WRN CIFAR100 1.557% 6.768% 53.333%
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to true labels and the teacher’s predictions. The main purpose of the full-precision model
was to compute gradients and update the quantized model accordingly. As claimed by
Polino, Pascanu & Alistarh (2018) the reason behind this process was that there was no
objective function that accounted for quantized weights. This issue motivated Polino,
Pascanu & Alistarh (2018) to develop the second variant of their knowledge distillation
approach, and they called it differentiable quantization. They defined an objective function
to address the issue of quantized weights. As a result, there would be no need for a full-
precision student model.

Kurata & Audhkhasi (2018) developed a distillation approach that targeted sequence
models (Bahdanau et al., 2016) for speech recognition. The distillation goal was to transfer
knowledge of a Bidirectional Long Short-Term Memory model to an LSTM model.
This was achieved by considering teacher’s soft labels and comparing outputs of three
time steps of the teacher network to a single time step output of the student network.
Furthermore, Mun’im, Inoue & Shinoda (2019) proposed a distillation approach for
Seq2Seq speech recognition. The approach trained a student network to match teacher
k-best outputs generated with beam search, where k is a hyper-parameter.

When tackling problems where only few samples are available, it can make models
overfit easily. Kimura et al. (2019) proposed a method that allowed training networks with
few samples while avoiding overfitting using knowledge distillation. In their approach,
they first trained a reference model with few samples using Gaussian processes (GP)
instead of neural networks. Then, the samples used for training were augmented using
inducing point method via iterative optimization. Finally, the student model was trained
with the augmented data using loss function defined in the paper with the GP teacher
model to be imitated by the student model. Nayak et al. (2019) proposed a method to train
the student model without using any dataset or metadata. The method worked by
extracting data from the teacher model through modeling the data distribution in the
softmax space. Hence, new samples could be synthesized from the extracted information
and used to train the student model. Unlike generative adversarial networks where they
generate data that is similar to the real data (by fooling a discriminative network), here the
synthesized data was generated based on triggering the activation of the neurons before the
softmax function.

Wu, Chiu & Wu (2019) developed a multi-teacher distillation framework for action
recognition. Knowledge was transferred to the student by taking a weighted average of
three teachers soft labels (see Fig. 4). The three teachers are fed different inputs. The first
teacher is fed with the residual frame, while the second teacher is fed with motion vector.
The last teacher is fed with the I-frame image, similar to the student model.

Online distillation

In Lan, Zhu & Gong (2018), the authors proposed the On-the-fly Native Ensemble (ONE)
knowledge distillation. ONE takes a single model and creates multiple branches where
each branch can be considered as individual models. All the models share the same
backbone layers. The ensemble of models is viewed as the teacher while a single branch is
selected to be the student model. During training, the model is trained with three loss
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Figure 4 Illustration of different types of knowledge distillation depending on the number of
teachers and students. (A) Knowledge distillation from one teacher to one student. (B) Knowledge
distillation from one teacher to multiple students. (C) Knowledge distillation from multiple teachers to
one student. Full-size DOI: 10.7717/peerj-cs.474/fig-4
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functions. The first loss function is the cross entropy between the predictions of each
individual branch and the ground truth. The second loss function is the cross entropy
between the prediction distribution of the ensemble of all models and the ground truth.
The third loss function is the Kullback Leibler divergence between the prediction
distribution of the whole ensemble and the individual branches. The prediction
distribution of the ensemble of models is produced using a gating mechanism.

Min et al. (2019) presented a technique called gradual distillation arguing that quantized
distillation indirectly results in loss of accuracy and it is difficult to train directly from
the hard and soft labels. The gradual distillation approach trains the teacher model and
the student model simultaneously. The output from the teacher’s network at each step
is used to guide the student learning. Accordingly, the loss function for the student’s
network has two components: the cross-entropy loss between the output of the student’s
network and the hard labels, and the cross-entropy loss between the student output and the
teacher’s target.

Training a compact student network to mimic a well-trained and converged teacher
model can be challenging. The same rationality can be found in school-curriculum,
where students at early stages are taught easy courses and further increase the difficulty as
they approach later stages. From this observation, Jin et al. (2019) proposed that instead
of training student models to mimic converged teacher models, student models were
trained on different checkpoints of teacher models until teacher models converged.
For selecting checkpoints, a greedy search strategy was proposed that finds efficient
checkpoints that are easy for the student to learn. Once checkpoints were selected, a
student model’s parameters were optimized sequentially across checkpoints, while splitting
data used for training across the different stages depending on its hardness defined by a
hardness metric that was proposed by the authors.

An ensemble knowledge distillation approach named Online Knowledge Distillation
with Diverse peers (OKDDip) was proposed by Chen et al. (2020). OKDDip uses an
ensemble of models as a teacher (named auxiliary peer) and a single model within the
group as a student (named group leader). Unlike ONE, the ensemble of models can be
independent models or have shared layers. Each model is trained to reduce the cross
entropy between its predictions and the ground truth. Additionally, each model will take a
weighted average of predictions of all models in the ensemble and uses Kullback Leibler
divergence loss function between its prediction distribution and the weighted average
of predictions of the ensemble. Each auxiliary peer will assign different weights to all other
auxiliary peers in the group to determine how the prediction distribution is aggregated.
For the group leader, it will just take the average of the prediction of all the auxiliary peers.
The weight assignment process for the auxiliary peers takes the feature extracted for each
peer and projects it to two sub-spaces by applying linear transformation with learned
weights. The weights for each peer is then calculated similar to the self-attention
mechanism using the projected sub-spaces Vaswani et al. (2017).

Another ensemble knowledge distillation method was proposed by Guo et al. (2020)
named Knowledge Distillation via Collaborative Learning (KDCL). KDCL trains on input
data that is distorted differently for each student in the ensemble. The cross-entropy
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loss function between prediction and hard labels is used to train each student model in
addition to the Kullback Leibler divergence loss between the prediction and the soft labels.
The authors proposed four different methods to generate the soft labels. The first
method selects a single student’s probability distribution in the ensemble as soft label that
produces the minimum cross entropy loss. The second method finds the best linear
combination of the students logtis that minimizes the cross-entropy loss through convex
optimization and use it to generate the soft labels via softmax function. The third method
subtracts the logit that corresponds to the target class from all logits for each student.
Then, it constructs the ensemble logits by selecting the minimum logit for each class from
all the students in the ensemble which later is fed to softmax to create the soft labels.
The fourth method of producing the soft labels takes the weighted average of students’
outputs. The weight for each student is assigned after every training epoch and it is based
on its performance on the validation set.

Table 1 provides a summary of the presented work. It shows that the best achieved
reduction in size is by Min et al. (2019) with a reduction of 99.44% in the number of
parameters. We can also observe from the table that the best approach in terms of
maintaining accuracy is proposed by Kimura et al. (2019) with an increase in accuracy
by 10.526%. However, their work utilizes knowledge distillation to overcome overfitting
when dealing with small amount of training samples. Furthermore, they used a Gaussian
process as a teacher model which can explain the increase in accuracy of the student
CNN model. Additionally, Kimura et al. (2019) approach helped the student model to
generalize better on small number of training samples and achieve the highest increase in
accuracy compared to the baseline model which overfitted on the training data.

Techniques that sistills knowledge from other parts of the teacher
model with or without soft labels
Offline distillation
Lopes, Fenu & Starner (2017) proposed transferring knowledge to a student model
using a metadata which holds a summary of activations of the teacher model during
training on the original dataset, instead of using the original dataset used to train the
teacher. The metadata includes top layer activation statistics, all layers activation statistics,
all-layers spectral activation record, and layer-pairs spectral activation record. Then using
one of the collected metadata, we can capture the view of the teacher model of the
dataset and hence we can reconstruct a new dataset that can be used to train a compact
student model. Yim et al. (2017) proposed a two-stage distillation for CNNs. The first stage
defines two matrices between the activations of two non-consecutive layers. The first
matrix corresponded to the teacher network, and the second matrix corresponded to the
student network. Then, the student was trained to mimic the teacher's matrix. After that,
the second stage began by training the student normally.

Gao et al. (2018) proposed to only train the backbone of a student model to mimic
the feature extraction output of a teacher model. After that, the student model is trained
on ground truth data while freezing the parameters of the backbone layers. The knowledge
distillation process only happened during training of the backbone layers of the smaller
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student model, which allowed it to be trained on different dataset than the teacher
model. Wang et al. (2019) proposed a distillation method for encoder-decoder networks
that trained a student model by comparing its soft labels to the teacher’s labels and the
ground truth. Moreover, the student will also compare its encoders outputs to that of the
teacher.

He et al. (2019) proposed to train an auto-encoder network to compress feature maps of
the teacher. The student is later trained to match the compressed feature maps of the
teacher model. Additionally, the student was also trained to match its feature map affinity
matrix to the of the teacher model. This was needed because student network could not
capture long-term dependencies due to its relatively small size.

Unlike other knowledge distillation methods where neuron responses of teacher
model is the focus when transferring knowledge to students, Heo et al. (2019) proposed to
focus on transferring activation boundaries of teacher instead. Activation boundary is a
hyperplane that decides whether the neurons are active or not. In Pan & Srikumar (2016),
decision boundary of neural network classifier was proven to be a combination of
activation boundaries, which made them an important knowledge to be transferred to
the student model. Based on this,Heo et al. (2019) proposed an activation transfer loss that
penalized when neurons activations of teacher and student were different in the hidden
layers. Since both the teacher and the student model, most likely, would not have the
same number of neurons, the authors utilized a connector function that converts the
vector of neurons of the student model to be the same size as the vector of neurons in the
teacher model. By applying the proposed loss function, activation boundaries of the
teacher model were transferred to the student model.

Li et al. (2019) introduced the Layer Selectivity Learning (LSL) framework for
knowledge distillation. In LSL framework, some intermediate layers are selected in both
the teacher and the student network. The selection process is done by feeding data to
the teacher model and calculating the inter-layer Gram matrix and the layer inter-class
Gram matrix using the feature vectors in order to find layers that are the most informative
and discriminative across the different classes. The selection process can be applied to the
student model by training it on a dataset alone in order to select the same number of
intermediate layers. Once intermediate layers are selected from both the networks and
aligned, the student network is trained with an alignment loss function, in addition to a
loss function that minimizes the prediction loss, that minimizes the difference between the
feature vectors of pairs of intermediate layers from the teacher and the student network.
The alignment loss function will force the student’s intermediate layers to mimic the
intermediate layers of the teacher model. Since the feature vectors of a pair of intermediate
layers of the teacher and student network will not have the same dimensions, the feature
vector is fed to a fully-connected layer that projects the feature vectors to the same
dimensions.

Previous knowledge distillation approaches only considered the instance features
(the soft output of the layer) to be transferred from the teacher model to the student
model. This made it hard for student models to learn the relationship between the instance
feature and the sample with a different and compact model architecture. Liu et al. (2019)
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proposed representing the knowledge using an instance relation graph (IRG). For each
layer in the model, an IRG was created where vertices represent the instance features and
edges represent the instance relationship. Transformation function was defined to
transform two IRG of adjacent layers into new IRG which contained the feature-space
knowledge of the two layers. Using IRG of the teacher layers and the student layers, a loss
function was defined to help train the student model using the knowledge encapsulated in
the IRG of the teacher.

Online distillation
Zhou et al. (2018) proposed to train the teacher (named booster net) and the student
(named lightweight net) together. This was done by sharing the backbone layers of the
two models during training and then using a function where it contained the loss of
the booster network, the loss of the lightweight network, and the mean square error
between the logits before softmax activation of both the networks. To prevent the objective
function from hindering the performance of the booster network, a gradient block scheme
was developed to prevent the booster network’s specific parameter from updating
during the backpropagation of the objective function which would allow the booster
network to directly learn from the ground truth labels. To improve their approach further,
the authors used the knowledge distillation loss function from Hinton, Vinyals & Dean
(2015) in their objective function.

Zhang et al. (2019) proposed an online self-distillation method that trains a single
model. The model convolution layers is first divided into sections, where a branch is added
after each shallow section that contains a bottleneck layer He et al. (2016), fully connected
layer and a classifier. The added branches are only used during training and it will let
each section act as a classifier. The deepest classifier (original classifier after the last
convolution layer) is considered the teacher model. The deepest classifier and each shallow
classifier is trained using cross entropy between its prediction and the hard labels.
Additionally, each shallow classifier is trained using Kullback Leibler divergence loss to
minimize between its prediction and the soft labels of the deepest classifier. Moreover, each
shallow classifier is trained using L2 loss between the feature maps of the deepest classifier
and the feature maps of the bottleneck layer of each of the shallow classifiers.

Kim et al. (2019) proposed a learning framework termed Feature Fusion Learning (FFL)
that can also acts as a knowledge distillation framework. An ensemble of models with
either similar or different architecture is used in addition to a special model called fusion
classifier. If FFL is used for knowledge distillation, we can consider any single individual
model in the ensemble as a student model while the whole ensemble and the fusion
classifier will act as the teacher. Each model in the ensemble is trained normally with
the ground-truth labels while the fusion classifier takes the feature maps of all the models
in the ensemble as an input in addition to the ground-truth labels. Furthermore, the
ensemble models will distill its knowledge to the fusion classifier in the form of the average
of all predictions to be used with Kullback Leibler divergence loss in order to transfer
the knowledge of the ensemble to the fusion classifier. Moreover, the fusion classifier will
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also distill its knowledge back to each model in the ensemble in the form of its prediction
distribution to be used with Kullback Leibler divergence loss. This way, the knowledge
distillation is mutual between the fusion classifier and the ensemble. After training, any
model in the ensemble can be selected to be deployed or the whole ensemble with the
fusion classifier can be deployed in case of lenient hardware constraints.

Walawalkar, Shen & Savvides (2020) proposed to train an ensemble of models that is
broken down into four blocks, where all models share the first block of layers. The first
model in the ensemble is considered the teacher (termed pseudo teacher in the paper).
For each successive model (students), the number of channels in their convolution
layers is reduced by an increasing ratio to the teacher model. During deployment, any
model in the ensemble can be selected depending on the hardware constraints or, in cases
of lenient constraints, the whole ensemble can be deployed. In addition to training each
model using cross entropy between predictions and ground truth, an intermediate loss
function is used to distill the knowledge of the intermediate block of layers (feature maps)
of the teacher model to each of the student models. Moreover, Kullback Leibler divergence
loss is used between the model prediction and the average predictions of the whole
ensemble. Since the number of channels of the student models and the teacher model is
not the same, an adaptation layer (1 × 1 convolution) is used to map the student channels
to the teacher channels. The intermediate loss function is a mean squared error between
the feature maps of the teacher and student pair.

Chung et al. (2020) proposed online Adversarial Feature map Distillation (AFD) that
trains two networks to mimic each other’s feature maps through adversarial loss. Aside
from training using the cross-entropy loss on the ground truth and Kullback Leibler
divergence loss between the logits of the two networks, AFD trains a discriminator for each
network that distinguishes between the feature map produced by the accompanying
network and the other network. Each network in AFD is trained to fool its corresponding
discriminator and minimize the adversarial loss. This in-turn will let the model learn
the feature map distribution of the other network. In case of training two networks,
one can be considered as the student (model with less parameters) and the other as the
teacher model (with more parameters) and both the student and the teacher model
will learn from each other. Due to the difference in the number of channels of the feature
maps between the two networks, a transfer layer is used to convert the number of channels
of the student network to that of the teacher network.

Table 2 provides a summary of the presented works. It shows that the best approach
in terms of size reduction is proposed by Li et al. (2019) with a reduction of 95.86% in
size. The table also shows that the best approach in terms of maintaining accuracy is
proposed by Heo et al. (2019) with an increase in accuracy of 6.191%. However, their
experiments were conducted on a teacher model that is trained and evaluated on two
different datasets. Their experiments focused on combining knowledge transfer with
knowledge distillation. As for the improvement compared to the baseline model, the LSL
proposed by Li et al. (2019) achieved the best improvement of 16.89% increase in accuracy.
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APPLICATIONS OF KNOWLEDGE DISTILLATION
Traditionally, deep learning models typically run on Cloud computing platforms
delivering the results to the smart devices over a network. Although this model is feasible
in some situations, it is not preferred in many other situations where delay is not tolerable
or data privacy is a concern. Moreover, unpredictable network connections between
the cloud and the device can also pose significant challenges. Thus, running the deep
learning system on local devices is an important requirement in many domains and
has a wide variety of applications including smart cities, self-driving cars, smart homes,
medical devices and entertainment Véstias et al. (2020). Knowledge distillation allows
developers to shrink down the size of deep learning models in order for them to fit
into resource-limited devices having limited memory and power as illustrated in Fig. 5.
In this section we present some typical applications of knowledge distillation based on the
recent literature.

In Chen et al. (2019), knowledge distillation was used to train a lightweight model for
pedestrian detection which will enable fast pedestrian detection in smart vehicles with
autonomous driving functionality. Janveja et al. (2020) presented a smartphone-based
system for detecting driver fatigue based on frequency of yawning and frequency of
eye closure. Yang et al. (2018) presented the use of MobileNets in addition to Batch
Normalization and Swish activation function (cf. Ramachandran, Zoph & Le (2017)) to
estimate the steering angle for self-driving cars.

In the domain of healthcare, Esteva et al. (2017) presented an end-to-end deep CNN
based system to classify different types of skin cancer from skin images. The paper
proposed the idea of deploying the system on smart phones so that a large population
can easily access the diagnostic services. Ahn et al. (2018) presented a CNN based deep
learning system to assist in capsule endoscopy. The idea is to adaptively control the
capsule’s image capturing frequency and quality based on detecting damaged areas in a
patient’s small intestine. To adaptively control the capsule moving through a patient's

Distill
knowledge

Deploy
Teacher Model Student

Model

Smartwatch      IoT

Smartphones Smart TV

Laptops Smart Vehicle

Figure 5 Use cases for knowledge distillation to deploy deep learning models on small devices with
limited resources. Full-size DOI: 10.7717/peerj-cs.474/fig-5
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intestine, the authors suggest pairing the capsule with an external device attached to the
patient's waist which can process the incoming images in real-time and direct the capsule
in terms of image frequency and quality. The authors identified some of the challenges
that need to be addressed in order for the system to be of practical use. Among the
challenges identified were the need for the system to have low latency and be efficient in
battery usage. This can be achieved in part by developing light-weight models using
knowledge distillation techniques.

Plötz & Guan (2018) presented the use of deep learning system trained on the cloud to
be deployed on smart phones for human activity recognition (HAR) using the data
available from smartphone sensors. The authors identified the challenge of dealing with
resource constraints on these mobile devices and the use of knowledge distillation
techniques to address some of these challenges. Czuszynski et al. (2018) presented hand-
gesture recognition using recurrent neural networks (RNNs) deployed on smartphones.
The idea of HAR based on spatio-temporal features from IoT devices like a cup, a
toothbrush and a fork was presented in Lopez Medina et al. (2019). Knowledge distillation
was also used for training a small model for image classification which will help IoT-based
security systems to detect intrusion (Wang et al. (2020)).

Lane, Georgiev & Qendro (2015) presented an audio-sensing deep learning framework
for smartphones which can infer a number of situations such as the current environment
(voice, music, water and traffic), stress detection, emotion recognition (anger, fear,
neutral, sadness and happiness), and speaker identification using a smartphone’s audio
input. Mathur et al. (2017) presented a wearable vision system powered by deep learning
that can process the camera images in real-time locally in the device for tasks such as face
recognition, scene recognition, object detection, age and gender assessment from the
face images, and emotion detection. Another work on object recognition on smartphones
using deep learning systems was presented by Fang, Zeng & Zhang (2018). Chauhan et al.
(2018) presented a RNN based deep learning system for user authentication using
breathing-based acoustics data. The trained system is evaluated on smartphones,
smartwatches and Raspberry Pi. The authors show that model compression can help
reduce the memory size by a factor of five without any significant loss in accuracy.

DISCUSSION AND OUTLOOK
The distillation score proposed in this work can not be used as a fair comparison between
the different methods mentioned in this work. Each reported method utilizes different
datasets, architectures and uses knowledge distillation for different applications. Blalock
et al. (2020) discussed the difficulty of assessing the state-of-the-art in model pruning
as a model compression technique. The authors also listed various reasons why it is
difficult to compare different pruning techniques including the ambiguities related to the
architecture used or the metrics used to report the result. The authors also presented a
list of best practices and proposed an open source library as a benchmark to standardize
the experiments and evaluations.

Reporting the reduction in model size as well as change in accuracy for a student model
as compared to the corresponding teacher model is useful in our opinion. Although most
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authors report this information, some authors do not report either of the two pieces of
information. Moreover, comparing the performance of a student model to a baseline
model (e.g., trained-from-scratch model of comparable size to the student model) is also
very informative, and we believe that it should be reported by authors.

Regarding the future of knowledge distillation, most researchers did not provide
comments. Nevertheless, Polino, Pascanu & Alistarh (2018) suggested the use of
reinforcement learning to enhance development of student models. According to the
authors, it is not clear how to develop student models that meet memory and processing
time constraints. Building a program based on reinforcement learning such that its
objective is to optimize memory and processing time requirements would ease
development of student models.

In addition, most researchers focus on CV tasks. For instance, out of the surveyed work,
few considered NLP tasks. Recently, several language models based on transformer
architecture (Vaswani et al., 2017) have been proposed such as Bidirectional Encoder
Representations from Transformers (Devlin et al., 2018). These models have parameters in
the order of hundreds of millions. This issue has motivated several researchers to utilize
knowledge distillation (Sanh et al., 2019; Sun et al., 2019). However, knowledge distillation
has not been well investigated yet. Transformer based language models provide better
results, in terms of accuracy scores and processing times as compared to RNNs
(Devlin et al., 2018; Radford et al., 2019). As a result, it is important to study knowledge
distillation on such models so that relatively small and high performance models could be
developed.

The idea that knowledge distillation is a one-way approach of improving the
performance of a student model utilizing a teacher model has led some researchers
(e.g., Wang, Wang & Gao, 2018; Chung et al., 2020; Kim et al., 2019) to explore other
collaborative learning strategies where learning is mutual between teachers and students.

Based on some recent works such as Hooker et al. (2019) and Hooker et al. (2020),
measures like top-1 and top-5 accuracy masks some of the pitfalls of model compression
techniques. The impact of model compression on true generalization capability of the
compressed models are hidden by reporting models’ overall performances using such
measures. In general, difficult-to-classify samples are the ones which are more prone to
under-perform on the compressed models. Thus, it seems that the systems’ bias get further
amplified which can be a major concern in many sensitive domains where these
technologies will eventually be deployed such as healthcare and hiring. In addition,
compressed models are less robust to changes in data. Addressing these concerns will be an
important research direction in the area of model compression including knowledge
distillation. One implication of the work is to report class-level performances instead of
comparing one overall performance measure for the system such as accuracy. Macro-
averaged F1 scores across all the classes may be a more useful performance measure than
accuracy. Other appropriate measures need to be used for evaluation which can compare
fairness and bias across the models. The authors presented two such measures in their
work. Furthermore, it will be important to investigate these issues on more domains as the
current papers looked mainly on the image classification problems. One approach that
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might mitigate the above mentioned problems is to use a modified loss function during the
distillation process that penalizes label misalignment between the teacher and the student
models (e.g. Joseph et al. (2020)).

Allen-Zhu & Li (2020), in a recent paper, argues how knowledge distillation in neural
networks works fundamentally different as compared to the traditional random feature
mappings. The authors put forward the idea of ‘multiple views’ of a concept in the sense
that neural network, with its hierarchical learning, learns multiple aspects about a class.
Some or all of these concepts are available in a given class sample. A distilled model is
forced to learn most of these concepts from a teacher model using the soft labels or other
intermediate representations during the distillation process. In addition, the student model
learns its own concepts due to its random initialization. Now, in order to explain the
findings of Hooker et al. (2019) and Hooker et al. (2020), it seems that some of the less
prevalent concepts which were learnt by the teacher model are missed by the student
model which gives rise to increased biases in the student model.

CONCLUSIONS
We present several different knowledge distillation methods applied on deep learning
architectures. Some of the methods produce more than 80% decrease in model sizes
(He et al., 2019; Li et al., 2019). Some other methods provide around 50% size reductions,
but they maintain accuracy scores of teacher models (Polino, Pascanu & Alistarh, 2018;
Gao et al., 2018). In addition, there exist distillation approaches that result in student
models with better accuracy scores than their corresponding teacher models (Heo et al.,
2019; Furlanello et al., 2018). Our criteria in the present study are based on reductions in
models’ sizes and accuracy scores. Consequently, we propose distillation metric which
helps in comparing between multiple students of various sizes. We also highlight different
contexts and objectives of some of the knowledge distillation methods such as limited
or absence of the original dataset, improving interpretability, and combining transfer
learning with knowledge distillation.

Moreover, knowledge distillation is a creative process. There are no rules that guide
development of student models or mapping teacher’s activations to student’s although
there have been some recent attempts to understand them in a deeper way. As a
consequence, knowledge distillation highly depends on the domain where it is applied on.
Based on requirements of the specific domain, model designers could develop their
distillation. We advise designers to focus on simple distillation methods (or build a simpler
version of some method) that target a relatively small number of student and teacher
layers. This is an important step as it decreases the time needed for designers to get familiar
with different behaviour of different distillation methods in their domain. After that,
they could proceed with more complex methods as they would have developed intuitions
about how the methods would behave on their domain of application. As a result, they
could eliminate some methods without having to try them. In addition, designers could
utilize distillation metric to assess their evaluations. Moreover, other relevant measures
should be used in evaluating a technique and using the accuracy measure may not be
sufficient by itself. Some of the challenges in the area were discussed in this paper in
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addition to possible future directions. Last but not the least, we also discussed in this paper
some of the practical applications of knowledge distillation in real-world problems.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by King Fahd University of Petroleum and Minerals (KFUPM),
Dhahran, Saudi Arabia. No specific funding was received for this work. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.

Competing Interests
Irfan Ahmad is an Academic Editor for PeerJ Computer Science.

Author Contributions
� Abdolmaged Alkhulaifi conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Fahad Alsahli conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Irfan Ahmad conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

This is a survey paper and does not make use of data or code apart from the published
articles.

REFERENCES
Ahn J, Loc HN, Balan RK, Lee Y, Ko J. 2018. Finding small-bowel lesions: challenges in

endoscopy-image-based learning systems. Computer 51(5):68–76
DOI 10.1109/MC.2018.2381116.

Allen-Zhu Z, Li Y. 2020. Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning. arXiv. Available at http://arxiv.org/abs/2012.09816.

Bahdanau D, Chorowski J, Serdyuk D, Brakel P, Bengio Y. 2016. End-to-end attention-based
large vocabulary speech recognition. In: 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). Piscataway: IEEE, 4945–4949.

Blalock D, Ortiz JJG, Frankle J, Guttag J. 2020. What is the state of neural network pruning?
arXiv. Available at http://arxiv.org/abs/2003.03033.

Alkhulaifi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.474 20/24

http://dx.doi.org/10.1109/MC.2018.2381116
http://arxiv.org/abs/2012.09816
http://arxiv.org/abs/2003.03033
http://dx.doi.org/10.7717/peerj-cs.474
https://peerj.com/computer-science/


Chauhan J, Seneviratne S, Hu Y, Misra A, Seneviratne A, Lee Y. 2018. Breathing-based
authentication on resource-constrained iot devices using recurrent neural networks. Computer
51(5):60–67 DOI 10.1109/MC.2018.2381119.

Chebotar Y, Waters A. 2016. Distilling knowledge from ensembles of neural networks for speech
recognition. In: Interspeech. 3439–3443.

Chen R, Ai H, Shang C, Chen L, Zhuang Z. 2019. Learning lightweight pedestrian detector with
hierarchical knowledge distillation. In: 2019 IEEE International Conference on Image Processing
(ICIP). Piscataway: IEEE, 1645–1649.

Chen D, Mei J-P, Wang C, Feng Y, Chen C. 2020. Online knowledge distillation with diverse
peers. In: AAAI. 3430–3437.

Cheng Y, Wang D, Zhou P, Zhang T. 2017. A survey of model compression and acceleration for
deep neural networks. arXiv. Available at http://arxiv.org/abs/1710.09282.

Chung I, Park S, Kim J, Kwak N. 2020. Feature-map-level online adversarial knowledge
distillation. arXiv. Available at http://arxiv.org/abs/2002.01775.

Courbariaux M, Bengio Y, David J-P. 2015. Binaryconnect: training deep neural networks with
binary weights during propagations. In: Advances in Neural Information Processing Systems.
3123–3131.

Czuszynski K, Kwasniewska A, Szankin M, Ruminski J. 2018. Optical sensor based gestures
inference using recurrent neural network in mobile conditions. In: 2018 11th International
Conference on Human System Interaction (HSI). Piscataway: IEEE, 101–106.

Deng J, DongW, Socher R, Li L-J, Li K, Fei-Fei L. 2009. Imagenet: a large-scale hierarchical image
database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:
IEEE, 248–255.

Devlin J, Chang M-W, Lee K, Toutanova K. 2018. Bert: pre-training of deep bidirectional
transformers for language understanding. arXiv. Available at http://arxiv.org/abs/1810.04805.

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. 2017. Dermatologist-level
classification of skin cancer with deep neural networks. Nature 542(7639):115–118
DOI 10.1038/nature21056.

Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A. 2010. The pascal visual object
classes (voc) challenge. International Journal of Computer Vision 88(2):303–338
DOI 10.1007/s11263-009-0275-4.

Fang B, Zeng X, Zhang M. 2018. Nestdnn: resource-aware multi-tenant on-device deep learning
for continuous mobile vision. In: Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking. 115–127.

Fukuda T, Suzuki M, Kurata G, Thomas S, Cui J, Ramabhadran B. 2017. Efficient knowledge
distillation from an ensemble of teachers. In: Interspeech. 3697–3701.

Furlanello T, Lipton Z, Tschannen M, Itti L, Anandkumar A. 2018. Born again neural networks.
In: International Conference on Machine Learning. 1607–1616.

GaoM, Shen Y, Li Q, Yan J,Wan L, Lin D, Change Loy C, Tang X. 2018.An embarrassingly simple
approach for knowledge distillation. arXiv. Available at http://arxiv.org/abs/1812.01819v2.

Guo Q, Wang X, Wu Y, Yu Z, Liang D, Hu X, Luo P. 2020. Online knowledge distillation via
collaborative learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Piscataway: IEEE, 11017–11026.

He T, Shen C, Tian Z, Gong D, Sun C, Yan Y. 2019. Knowledge adaptation for efficient semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 578–587.

Alkhulaifi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.474 21/24

http://dx.doi.org/10.1109/MC.2018.2381119
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/2002.01775
http://arxiv.org/abs/1810.04805
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1007/s11263-009-0275-4
http://arxiv.org/abs/1812.01819v2
http://dx.doi.org/10.7717/peerj-cs.474
https://peerj.com/computer-science/


He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 770–778.

Heo B, Lee M, Yun S, Choi JY. 2019. Knowledge transfer via distillation of activation boundaries
formed by hidden neurons. Proceedings of the AAAI Conference on Artificial Intelligence
33:3779–3787 DOI 10.1609/aaai.v33i01.33013779.

Hinton G, Vinyals O, Dean J. 2015. Distilling the knowledge in a neural network. In: NIPS Deep
Learning and Representation Learning Workshop.

Hirsch H-G, Pearce D. 2000. The aurora experimental framework for the performance evaluation
of speech recognition systems under noisy conditions. In: ASR2000-Automatic Speech
Recognition: Challenges for the new Millenium ISCA Tutorial and Research Workshop (ITRW).

Hooker S, Courville A, Clark G, Dauphin Y, Frome A. 2019. What do compressed deep neural
networks forget? arXiv. Available at http://arxiv.org/abs/1911.05248.

Hooker S, Moorosi N, Clark G, Bengio S, Denton E. 2020. Characterising bias in compressed
models. arXiv. Available at http://arxiv.org/abs/2010.03058.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017. Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Piscataway: IEEE, 4700–4708.

Janveja I, Nambi A, Bannur S, Gupta S, Padmanabhan V. 2020. Insight: monitoring the state of
the driver in low-light using smartphones. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 4(3):1–29 DOI 10.1145/3411819.

Jin X, Peng B, Wu Y, Liu Y, Liu J, Liang D, Yan J, Hu X. 2019. Knowledge distillation via route
constrained optimization. In: Proceedings of the IEEE International Conference on Computer
Vision. Piscataway: IEEE, 1345–1354.

Joseph V, Siddiqui SA, Bhaskara A, Gopalakrishnan G, Muralidharan S, Garland M, Ahmed S,
Dengel A. 2020. Reliable model compression via label-preservation-aware loss functions. arXiv.
Available at http://arxiv.org/abs/2012.01604.

Kim J, Hyun M, Chung I, Kwak N. 2019. Feature fusion for online mutual knowledge distillation.
arXiv. Available at http://arxiv.org/abs/1904.09058.

Kimura A, Ghahramani Z, Takeuchi K, Iwata T, Ueda N. 2019. Few-shot learning of neural
networks from scratch by pseudo example optimization. In: British Machine Vision Conference
2018.

Krizhevsky A. 2009. Learning multiple layers of features from tiny images. Available at
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T. 2011. Hmdb: a large video database for
human motion recognition. In: 2011 International Conference on Computer Vision. Piscataway:
IEEE, 2556–2563.

Kurata G, Audhkhasi K. 2018. Improved knowledge distillation from bi-directional to uni-
directional lstm ctc for end-to-end speech recognition. In: 2018 IEEE Spoken Language
Technology Workshop (SLT). Piscataway: IEEE, 411–417.

Lan X, Zhu X, Gong S. 2018. Knowledge distillation by on-the-fly native ensemble. In: Advances in
Neural Information Processing Systems. 7517–7527.

Lane ND, Georgiev P, Qendro L. 2015. Deepear: robust smartphone audio sensing in
unconstrained acoustic environments using deep learning. In: Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing. 283–294.

LeCun Y. 1998. The mnist database of handwritten digits. Available at http://yann.lecun.com/
exdb/mnist/.

Alkhulaifi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.474 22/24

http://dx.doi.org/10.1609/aaai.v33i01.33013779
http://arxiv.org/abs/1911.05248
http://arxiv.org/abs/2010.03058
http://dx.doi.org/10.1145/3411819
http://arxiv.org/abs/2012.01604
http://arxiv.org/abs/1904.09058
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.7717/peerj-cs.474
https://peerj.com/computer-science/


Li H-T, Lin S-C, Chen C-Y, Chiang C-K. 2019. Layer-level knowledge distillation for deep neural
network learning. Applied Sciences 9(10):1966 DOI 10.3390/app9101966.

Li L-J, Su H, Fei-Fei L, Xing EP. 2010. Object bank: a high-level image representation for scene
classification & semantic feature sparsification. In: Advances in Neural Information Processing
Systems. 1378–1386.

Liu Y, Cao J, Li B, Yuan C, Hu W, Li Y, Duan Y. 2019. Knowledge distillation via instance
relationship graph. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 7096–7104.

Liu X, Wang X, Matwin S. 2018. Improving the interpretability of deep neural networks with
knowledge distillation. In: 2018 IEEE International Conference on Data Mining Workshops
(ICDMW). Piscataway: IEEE, 905–912.

Lopes RG, Fenu S, Starner T. 2017. Data-free knowledge distillation for deep neural networks.
arXiv. Available at http://arxiv.org/abs/1710.07535.

Lopez Medina MA, Espinilla M, Paggeti C, Medina Quero J. 2019. Activity recognition for iot
devices using fuzzy spatio-temporal features as environmental sensor fusion. Sensors
19(16):3512 DOI 10.3390/s19163512.

Markov K, Matsui T. 2016. Robust speech recognition using generalized distillation framework.
In: Interspeech. 2364–2368.

Mathur A, Lane ND, Bhattacharya S, Boran A, Forlivesi C, Kawsar F. 2017. Deepeye: resource
efficient local execution of multiple deep vision models using wearable commodity hardware. In:
Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and
Services. 68–81.

Min R, Lan H, Cao Z, Cui Z. 2019. A gradually distilled cnn for sar target recognition. IEEE Access
7:42190–42200 DOI 10.1109/ACCESS.2019.2906564.

Mun’im RM, Inoue N, Shinoda K. 2019. Sequence-level knowledge distillation for model
compression of attention-based sequence-to-sequence speech recognition. In: 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE,
6151–6155.

Nayak GK, Mopuri KR, Shaj V, Radhakrishnan VB, Chakraborty A. 2019. Zero-shot knowledge
distillation in deep networks. In: International Conference on Machine Learning. 4743–4751.

Pan X, Srikumar V. 2016. Expressiveness of rectifier networks. In: International Conference on
Machine Learning. 2427–2435.

Pan SJ, Yang Q. 2009. A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering 22(10):1345–1359 DOI 10.1109/TKDE.2009.191.

Peng H, Hawrylycz M, Roskams J, Hill S, Spruston N, Meijering E, Ascoli GA. 2015. Bigneuron:
large-scale 3d neuron reconstruction from optical microscopy images. Neuron 87(2):252–256
DOI 10.1016/j.neuron.2015.06.036.

Plötz T, Guan Y. 2018. Deep learning for human activity recognition in mobile computing.
Computer 51(5):50–59.

Polino A, Pascanu R, Alistarh D. 2018. Model compression via distillation and quantization. In:
International Conference on Learning Representations.

Quattoni A, Torralba A. 2009. Recognizing indoor scenes. In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition. Piscataway: IEEE, 413–420.

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. 2019. Language models are
unsupervised multitask learners. OpenAI Blog 1(8):9.

Alkhulaifi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.474 23/24

http://dx.doi.org/10.3390/app9101966
http://arxiv.org/abs/1710.07535
http://dx.doi.org/10.3390/s19163512
http://dx.doi.org/10.1109/ACCESS.2019.2906564
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1016/j.neuron.2015.06.036
http://dx.doi.org/10.7717/peerj-cs.474
https://peerj.com/computer-science/


Ramachandran P, Zoph B, Le QV. 2017. Searching for activation functions. arXiv. Available at
http://arxiv.org/abs/1710.05941.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. 2018. Mobilenetv2: inverted residuals
and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 4510–4520.

Sanh V, Debut L, Chaumond J, Wolf T. 2019. Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter. arXiv. Available at http://arxiv.org/abs/1910.01108.

Sun S, Cheng Y, Gan Z, Liu J. 2019. Patient knowledge distillation for bert model compression.
arXiv. Available at http://arxiv.org/abs/1908.09355.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I.
2017. Attention is all you need. In: Advances in Neural Information Processing Systems.
5998–6008.

Véstias MP, Duarte RP, De Sousa JT, Neto HC. 2020. Moving deep learning to the edge.
Algorithms 13(5):125 DOI 10.3390/a13050125.

Walawalkar D, Shen Z, Savvides M. 2020. Online ensemble model compression using knowledge
distillation. In: European Conference on Computer Vision. Springer, 18–35.

Wang J, Wang W, Gao W. 2018. Beyond knowledge distillation: collaborative learning for
bidirectional model assistance. IEEE Access 6:39490–39500
DOI 10.1109/ACCESS.2018.2854918.

Wang C, Yang G, Papanastasiou G, Zhang H, Rodrigues J, Albuquerque V. 2020. Industrial
cyber-physical systems-based cloud iot edge for federated heterogeneous distillation. Epub
ahead of print 7 July 2020. IEEE Transactions on Industrial Informatics DOI 10.1109/TII.9424.

Wang H, Zhang D, Song Y, Liu S, Wang Y, Feng D, Peng H, Cai W. 2019. Segmenting neuronal
structure in 3d optical microscope images via knowledge distillation with teacher-student
network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).
Piscataway: IEEE, 228–231.

Wu M-C, Chiu C-T, Wu K-H. 2019. Multi-teacher knowledge distillation for compressed video
action recognition on deep neural networks. In: ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 2202–2206.

Yang S, Hao K, Ding Y, Liu J. 2018. Vehicle driving direction control based on compressed
network. International Journal of Pattern Recognition and Artificial Intelligence 32(8):1850025
DOI 10.1142/S0218001418500258.

Yim J, Joo D, Bae J, Kim J. 2017. A gift from knowledge distillation: fast optimization, network
minimization and transfer learning. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. Piscataway: IEEE, 4133–4141.

Zagoruyko S, Komodakis N. 2016. Wide residual networks. arXiv. Available at http://arxiv.org/
abs/1605.07146.

Zhang L, Song J, Gao A, Chen J, Bao C, Ma K. 2019. Be your own teacher: Improve the
performance of convolutional neural networks via self distillation. In: Proceedings of the IEEE/
CVF International Conference on Computer Vision. Piscataway: IEEE, 3713–3722.

Zhou G, Fan Y, Cui R, Bian W, Zhu X, Gai K. 2018. Rocket launching: a universal and efficient
framework for training well-performing light net. In: Thirty-Second AAAI Conference on
Artificial Intelligence.

Alkhulaifi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.474 24/24

http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1908.09355
http://dx.doi.org/10.3390/a13050125
http://dx.doi.org/10.1109/ACCESS.2018.2854918
http://dx.doi.org/10.1109/TII.9424
http://dx.doi.org/10.1142/S0218001418500258
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146
http://dx.doi.org/10.7717/peerj-cs.474
https://peerj.com/computer-science/

	Knowledge distillation in deep learning and its applications
	Introduction
	Survey methodology
	Background
	Distillation metric
	Survey
	Applications of knowledge distillation
	Discussion and outlook
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


