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Global routing is an important link in Very Large Scale Integration (VLSI) design. As the
best model of global routing, X-architecture Steiner Minimal Tree (XSMT) has a good
performance in wire length optimization. XSMT belongs to non-Manhattan structural
model, and its construction process cannot be completed in polynomial time, so the
generation of XSMT is an NP hard problem. In this paper, an X-architecture Steiner Minimal
Tree algorithm based on Multi-strategy optimization Discrete Differential Evolution (XSMT-
MoDDE) is proposed. Firstly, an effective encoding strategy, a fitness function of XSMT,
and an initialization strategy of population are proposed to record the structure of XSMT,
evaluate the cost of XSMT and obtain better initial particles, respectively. Secondly, elite
selection and cloning strategy, multiple mutation strategies, and adaptive learning factor
strategy are presented to improve the search process of discrete differential evolution
algorithm. Thirdly, an effective refining strategy is proposed to further improve the quality
of the final Steiner tree. Finally, the results of the comparative experiments prove that
XSMT-MoDDE can get the shortest wire length so far, and achieve a better optimization
degree in the larger-scale problem.
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ABSTRACT14

Global routing is an important link in Very Large Scale Integration (VLSI) design. As the best model

of global routing, X-architecture Steiner Minimal Tree (XSMT) has a good performance in wire length

optimization. XSMT belongs to non-Manhattan structural model, and its construction process cannot

be completed in polynomial time, so the generation of XSMT is an NP hard problem. In this paper, an

X-architecture Steiner Minimal Tree algorithm based on Multi-strategy optimization Discrete Differential

Evolution (XSMT-MoDDE) is proposed. Firstly, an effective encoding strategy, a fitness function of XSMT,

and an initialization strategy of population are proposed to record the structure of XSMT, evaluate the

cost of XSMT and obtain better initial particles, respectively. Secondly, elite selection and cloning strategy,

multiple mutation strategies, and adaptive learning factor strategy are presented to improve the search

process of discrete differential evolution algorithm. Thirdly, an effective refining strategy is proposed to

further improve the quality of the final Steiner tree. Finally, the results of the comparative experiments

prove that XSMT-MoDDE can get the shortest wire length so far, and achieve a better optimization degree

in the larger-scale problem.
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INTRODUCTION28

At present, VLSI technology is developing at a high speed. Initially, the model to solve global routing29

problem was based on Manhattan structure (Held et al., 2017; Siddiqi and Sait, 2017; Chu and Wong,30

2007). There are two ways to connect each pin in this structure, which are horizontal direction and vertical31

direction. In the development of this structure, limitation of the interconnect wire length optimization32

appeared, and in the actual situation, there is still a lot of optimization space for wire length of Steiner33

Minimum Tree (SMT). Wire length has a decisive influence on the chip performance. Based on this34

situation, non-Manhattan structure, which can make full use of the routing resources and shorten the wire35

length, has become the mainstream model of global routing.36

X-architecture Steiner Minimal Tree (XSMT) is a representative model of non-Manhattan structure37

(Coulston, 2003; Chiang and Chiang, 2002). SMT problem is to find a minimum connection tree under a38

given set of pins by introducing additional Steiner points (Liu et al., 2014b). Because of SMT cannot39

be constructed in polynomial time, how to quickly and effectively construct an SMT is a key issue to be40

solved in VLSI manufacturing process. Heuristic search algorithm has a strong ability to solve NP-hard41

problem (Liu et al., 2018, 2020a). As a typical heuristic search algorithm, Differential Evolution (DE)42

algorithm has shown good optimization effect in many practical engineering problems. Therefore, based43

on DE algorithm, this paper designs relevant strengthening strategies to construct XSMT.44

DE is a global optimization algorithm proposed by Storn and Price in 1997 (Storn and Price, 1997).45
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Each particle in DE corresponds to a solution vector, and the main process is composed of three steps:46

mutation, crossover, and selection. DE algorithm has many advantages, such as robustness, reliability,47

simple algorithm structure and few control parameters, etc., and it has been widely applied in global48

optimization (Zhao et al., 2020; Ge et al., 2017), artificial intelligence (Brest et al., 2006; Zhang et al.,49

2015), bioinformatics (Zhang et al., 2020), and other fields (Wu et al., 2019; Xue et al., 2014). Generation50

strategy of trial vector and setting method of control parameters will greatly affect the performance of DE51

algorithm. Many scholars have improved DE algorithm in these directions, and it has made great progress52

in recent years. DE was originally proposed for continuous problems and can not be directly used to solve53

discrete problems such as XSMT, therefore, this paper explores and formulates a Discrete Differential54

Evolution (DDE) algorithm for solving XSMT problem.55

For this reason, this paper proposes X-architecture Steiner Minimal Tree algorithm based on Multi-56

strategy optimization Discrete Differential Evolution (XSMT-MoDDE). Firstly, we design an encoding57

strategy, a fitness function of XSMT, and a population initialization strategy based on Prim algorithm for58

DDE algorithm to record the structure of XSMT, evaluate XSMT and obtain high quality initial solution,59

respectively. Secondly, we design an elite selection and cloning strategy, a multiple mutation strategy,60

and an adaptive learning factor strategy to optimize the search process. At the end of the algorithm, an61

effective refining strategy is proposed to improve the quality of the final XSMT.62

RELATED WORK63

Research status of RSMT and XSMT64

Optimizing the wire length of SMT is a popular research direction, and there are many important research65

achievements. In Liu et al. (2011), Rectilinear Steiner Minimal Tree (RSMT) based on Discrete Particle66

Swarm Optimization (DPSO) algorithm was proposed to effectively optimize the average wire length (Liu67

et al., 2011). Liu et al. (2014a) proposed a multi-layer obstacle avoidance RSMT construction method68

based on geometric reduction method (Liu et al., 2014a). Zhang et al. (2016) proposed a heuristic for69

constructing a RSMT with slew constraints to maximize routing resources over obstacles (Zhang et al.,70

2016).71

Teig (2002) adopted XSMT, which is superior to RSMT in terms of average wire length optimization72

(Teig, 2002). In Zhu et al. (2005), an XSMT construction method was proposed by side substitution and73

triangle contraction methods (Zhu et al., 2005). Liu et al. (2020c) constructed a multi-layer global router74

based on the X-architecture. Compared with other global routers, it had better performance in overflow75

and wire length (Liu et al., 2020c). Liu et al. (2014b) proposed a PSO-based multi-layer obstacle-avoiding76

XSMT, which used an effective penalty mechanism to help particles to avoid obstacles (Liu et al., 2014b).77

In Liu et al. (2020b), a novel DPSO and multi-stage transformation were used to construct XSMT and78

RSMT. The simulation results on industrial circuits showed that this method could obtain high-quality79

routing solutions (Liu et al., 2020b).80

The present situation of DE and DDE algorithm81

DE algorithm has high efficiency and powerful search ability in solving continuous optimization problems.82

In the past 20 years after its emergence, many scholars have proposed improved versions of DE algorithm.83

These improvements better balance the exploitation and exploration ability of DE, and show strong84

optimization ability on many problems.85

An Self-adaptive DE (SaDE) algorithm was proposed in Qin et al. (2008). In different stages of the86

evolution process, the value of control parameters is adjusted according to experience, which saves the87

trial and error cost of developers in the process of adjusting parameters (Qin et al., 2008). Rahnamayan88

et al. (2008) proposed an algorithm for accelerating DE, using opposition-based DE and opposition-based89

learning methods to initialize population and realize generation jumping to accelerate convergence of90

DE (Rahnamayan et al., 2008). Subsequently, Wang et al. (2011a) proposed an improved version of91

accelerated DE, which could be used to solve high-dimensional problems (Wang et al., 2011a). Wang et al.92

(2011b) proposed Composite DE (CoDE). The algorithm proposed three generation strategies of trial93

vector and three control parameter settings, and randomly combined the generation strategies and control94

parameters. The experimental results showed that the algorithm had strong competitiveness (Wang et al.,95

2011b). Wang et al. (2015) combined adaptive DE algorithm with Back Propagation Neural Network96

(BPNN) to improve its prediction accuracy (Wang et al., 2015).97
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Pin p1 p2 p3 p4 p5

Coordinate (01,22) (05,05) (12,10) (18,03) (22,16)

Table 1. Coordinate information of pins

Figure 1. Distribution of pins.

DDE algorithm is a derivative of DE, which can solve discrete problems. Many existing results have98

applied DDE algorithm to solve practical problems. In Pan et al. (2008), DDE was used to solve the99

permutation flow shop scheduling problem with the total flow time criterion. For the total flow time100

criterion, its performance is better than the PSO algorithm proposed by predecessors (Pan et al., 2008). In101

Tasgetiren et al. (2010), an ensemble of DDE (eDDE) algorithms with parallel populations was presented.102

eDDE uses different parameter sets and crossover operators for each parallel population, and each parallel103

parent population has to compete with the offspring populations produced by this population and all other104

parallel populations (Tasgetiren et al., 2010). Deng and Gu (2012) presented a Hybrid DDE (HDDE)105

algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion. A new106

acceleration method based on network representation was proposed and applied to HDDE, and the local107

search of the inserted neighborhood in HDDE was effectively improved to balance global search and local108

development (Deng and Gu, 2012).109

PRELIMINARIES110

XSMT problem111

Unlike the traditional Manhattan structure, which only has horizontal and vertical connections, two112

connection methods of 45◦ and 135◦ are added to the XSMT problem (Liu et al., 2012, 2015). This113

paper introduces the concept of Pseudo-Steiner (PS) point (Definition 1). The PS point exists in two114

interconnected pins. The fixation of PS point determines the connection method (Definition 2-5) of two115

pins.116

An example of XSMT problem model is as follows. In a given set of pins {p1, p2, ..., pn}, pi represents117

the i− th pin to be connected, and the corresponding coordinate is (xi,yi). Given 5 pins, the corresponding118

coordinates are shown in Table 1, and the corresponding pin layout is shown in Figure 1.119

Definition 1. Pseudo-Steiner point. Except for pin points, other join points are called Pseudo-Steiner120

points, denoted as PS points.121

Definition 2. Selection 0. As shown in Figure 2(a), draw the vertical edge from A to point PS, and then122

draw the X-architecture edge from PS to B.123

Definition 3. Selection 1. As shown in Figure 2(b), draw the X-architecture edge from A to point PS, and124

then draw the vertical edge from PS to B.125
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(a) Selection 0 (b) Selection 1

(c) Selection 2 (d) Selection 3

Figure 2. Four selections for connection method.

Definition 4. Selection 2. As shown in Figure 2(c), draw the vertical edge from A to PS, and then draw126

the horizontal edge from PS to B.127

Definition 5. Selection 3. As shown in Figure 2(d), draw the horizontal edge from A to PS, and then draw128

the vertical edge from PS to B.129

Differential evolution algorithm130

DE algorithm is a heuristic search algorithm based on modern intelligence theory. The particles of131

population cooperate and compete with each other to determine the search direction.132

The update process of DE133

Initialization of the population: N particles are randomly generated, and the dimension of each particle is134

D. For example, X0
i represents the particle i, XL is the lower limit of D-dimensional particles, and XH is135

the upper limit of D-dimensional particles. The corresponding initialization method is as follows:136

X0
i = XL + randam(0,1)× (XH −XL) (1)

Mutation operator: In the process of the g-th iteration, mutation operator randomly select three137

particles X
g
a , X

g
b , and X

g
c in the population which are different from each other, and generate particles V

g
i138

according to the following mutation formula:139

V
g
i = Xg

a +F× (Xg
b −Xg

c ) (2)

where F is a learning factor, F ∈ [0,2].140

Crossover operator: In the process of crossover, the value of each dimension is selected from Particle141

X
g
i or Particle V

g
i . The probability of selection is cr. The formula of crossover is as follows:142

u
j
i =

{

v
j
i rand(0,1)≤ cr

x
j
i else

(3)
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Figure 3. Steiner tree.

where j represents the dimension, cr is the crossover probability, cr ∈ [0,1].143

Selection operator: It adopts greedy strategy in the process of selection, that is, selecting the particle144

with the optimal adaptive value. The formula is as follows:145

X
(g+1)
i =

{

V
g
i f (V g

i )< f (Xg
i )

X
g
i else

(4)

where the value of Function f (X) represents the fitness value of Particle X , and the fitness function146

definitions for each problem are different.147

The flow of DE algorithm148

Step 1. Initialize the population according to Formula 1, and initialize the parameters of DE algorithm.149

Step 2. Calculate the fitness value of each particle in the population according to fitness function.150

Step 3. During each iteration, mutation operation is performed on particles according to Formula 2 or151

other mutation operators to produce mutated particles.152

Step 4. Check whether the algorithm reaches the termination condition. If so, the algorithm is153

terminated. Otherwise, return to Step 2 and update the related parameters.154

XSMT-MODDE ALGORITHM155

Encoding strategy156

Property 1. The encoding strategy of edge-point pairs is suitable for DDE algorithm, and it can well157

record the structure of XSMT.158

Suppose there are n pin points in the pin graph, and the corresponding Steiner tree has n−1 edges159

and n−1 PS points. Number each pin, determine an edge by recording two endpoints, and add a bit to160

record selection method of edge. Finally, a bit is added at the end to represent the fitness value of the161

particle, and the final encoding length is 3× (n−1)+1. The Steiner tree corresponding to pins in Table 1162

is shown in Figure 3, and the corresponding encoding is: 1 3 1 2 3 0 4 5 0 3 4 3 46.284.163

Fitness function164

Property 2. The wire length of XSMT is a key factor that affects global routing results, and the fitness165

value based on the wire length of XSMT can make the algorithm go in the direction of optimal wire length166

to the greatest extent.167

In an edge set of a XSMT, all edges belong to one of the following four types: horizontal, vertical,168

45◦ diagonal and 135◦ diagonal. Rotate a 45◦ diagonal counterclockwise 45◦ to form a vertical line and169

a 135◦ diagonal counterclockwise 45◦ to form a horizontal line, so that the four types of edges can be170

replaced by two types. Make the starting point number of all edges smaller than the ending point number,171

and then sort all edges according to the starting point number, and subtract the overlapping part of the172

edges. At this time, the total wire length of XSMT can be obtained.173
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Algorithm 1 Initialization strategy based on Prim algorithm

Require: V , N

Ensure: P

1: function PRIMALGORITHM(V )

2: s← random()/(maxnum+1)×n+1

3: U ←{s}
4: T ← /0

5: while (U! =V ) do

6: choose point i ∈U

7: mincost← ∞

8: for k ∈V −U do

9: if cost(i,k)< mincost then

10: mincost← cost(i,k)
11: j← k

12: end if

13: end for

14: T ∪{(i, j)}
15: U ∪{ j}
16: end while

17: return T

18: end function

19:

20: function GENERATEPOPULATION(V , N)

21: for i← 1 to N do

22: T ←PRIMALGORITHM(V )

23: P∪{T}
24: end for

25: return P

26: end function

The excellence of XSMT is determined by the total wire length. The smaller the wire length is, the174

higher the excellence of XSMT will be. Therefore, fitness value measured by XSMT-MoDDE is total175

wire length of particle. The fitness function of XSMT-MoDDE is shown in Formula 5.176

f itness(Tx) = ∑ei∈Tx
length(ei) (5)

Initialization177

Property 3. Prim algorithm can search an edge subset, which not only includes all the vertices in a178

connected graph, but also minimizes the sum of the weights of all the edges in subset. Selecting different179

starting points can get the same weight but different edge subsets. Prim algorithm is used to initialize180

population, so that particles in population have diversity and the solution space can be reduced at the181

same time.182

Traditional DE algorithm directly uses Formula 1 to initialize the population. However, for XSMT,183

if the random strategy is used to initialize each particle (i.e., randomly select a point as root, and use184

backtracking method to randomly select edges to build a legal tree), will lead to the problem that the185

solution space is too large to converge well. Therefore, this paper uses Prim algorithm to construct186

Minimum Spanning Tree (MST) to initialize population. The weight of each edge in MST is determined187

by Manhattan distance between each two pins. Each particle randomly selects a starting point s to generate188

a MST and randomly select a connection method for each edge of MST.189

The relevant pseudo code is shown in Algorithm 1, where T is edge set of MST, s is starting point,190

U is point set of MST, V is pin set, P is population, and N is population size. From Lines 1-18 is the191

function to generate MST. Lines 2-3 randomly select a starting point s and add it to the set U . Line 4192

initializes the edge set T . Line 6 selects a visited point i from the set U , and Line 7 sets the minimum193

cost to infinity. Lines 8-13 select a unvisited point j from the adjacent points of point i, the edge i j with194
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(a) Connection method mutation

(b) Topology mutation

Figure 4. Two ways of mutation

the least cost will be selected and added to set T , and the point j is marked as visited and added to set195

U . The MST algorithm ends when the set U is the same as the set V , and Line 17 returns a randomly196

generated MST. Lines 21-24 construct the population, and the initial particle is an MST generated by197

function PRIMALGORITHM.198

Elite selection and cloning strategy199

Property 4. This strategy proposes two particle mutation strategies based on set, which can mutate elite200

particles in a very short time. The elite particles are cloned and mutated, and the optimal particle is201

selected based on greedy strategy to construct a elite buffer with high quality in a short time.202

Brief description203

The elite selection and cloning strategy consists of four steps: selection, cloning, mutation, and extinction.204

Part of particles in the population are selected as elite particles, and then the elite particles are cloned to205

form cloned population. Cloned particles randomly mutate into mutated particles. Mutated particles are206

selected to enter the elite buffer according to extinction strategy. The elite buffer has the same size as the207

population and participates in the subsequent process of DE.208

The elite selection and cloning strategy can effectively expand the search range of DDE, improve the209

global search ability of the algorithm, avoid falling into local peaks to a certain extent, and prevent the210

algorithm from premature convergence.211

Algorithm flow212

(1) Selection: Sort population according to fitness value, and select the first n particles to form an elite213

population, n = k×N. k is elite ratio, and the best result can be obtained when k is selected as 0.2 after214

experimental verification.215

(2) Cloning: Clone the particles of the elite population to form a cloned population C. The number of216

cloned particles is calculated according to Formula 6.217

Ni = round

(

N

i

)

(6)
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Algorithm 2 Elite selection and cloning strategy

Require: P, N

Ensure: E

1: function SELECTION(P)

2: n← k×N

3: S← /0

4: H← heap(P)
5: for i← 1 to n do

6: S∪H.top()
7: end for

8: return S, n

9: end function

10:

11: function CLONEMUTATIONANDEXTINCTION(S, n)

12: E← /0

13: for i← 1 to n do

14: M← /0

15: for j← 1 to n/i do

16: method← random(0,1)
17: if method == 0 then m← connection method mutation()
18: else m← topology mutation()
19: end if

20: M∪m

21: end for

22: H1← heap(M)
23: H2← heap(P)
24: if H1.top()< H2.top() then E ∪H1.top()
25: end if

26: end for

27: return E

28: end function

where i is rank of the particle in original population, and round() is rounding down function.218

(3) Mutation: The mutation strategy adopts connection method mutation or topology mutation, and219

two strategies are shown in Figure 4. Each cloned particle is assigned to a mutation strategy to form a220

mutated particle.221

For particles that adopt connection method, randomly select a edges, and the value of a is determined222

according to the number of edges, as shown in Formula 7, where n is the number of pins. Then change223

the connection method of the selected edge.224

a = max

{

1,round

(

n−1

10

)}

(7)

For particles that adopt topology mutation, one edge is randomly disconnected in XSMT to form225

two sub-XSMTs, and then respectively select a point from the two sub-XSMTs to connect. This process226

adopts the idea of Disjoint Set Union (DSU) to ensure that a legal tree is obtained after mutation.227

(4) Extinction: Select the trial elite particle mbest with the best fitness value in the mutated population.228

If f (mbest) is better than f (gbest), then mbest will be added to the elite buffer, and all other particles will229

die, otherwise, all particles in the mutation population will die. If the elite buffer is full, the particle with230

the worst fitness value will be popped and new particle will be pushed.231

The pseudo code of the elite selection and cloning strategy is shown in Algorithm 2, where S represents232

elite population, M represents mutated population, the inputs are Population P and its size, and the output233

E represents the elite buffer. Lines 1-9 are selection function, Line 2 calculates the number n of elite234

particles, Line 3 initializes the Set S, Line 4 establishes a minimum heap according to the fitness value of235

8/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:02:57834:0:2:NEW 11 Feb 2021)

Manuscript to be reviewedComputer Science



the population particles, and Lines 5-6 take n elite particles from the top of the minimum heap in turn.236

Lines 11-28 are the processes of cloning, mutation and extinction. Line 12 initializes Set E, Line 14237

initializes Set M, Line 15-20 are cloning and mutation process, Line 15 clones elite particles, Line 16238

selects a mutation strategy randomly, and Line 20 adds mutated elite particles to Set M. Lines 22-23239

construct two minimum heaps through Set P and Set M. Line 24 compares the tops of the two minimum240

heaps to determine whether the trial elite particles are saved or died.241

Novel multiple mutation strategy242

Property 5. The three novel mutation strategies proposed in this paper introduce the idea of set operations.243

Under the premise of reasonable computing time, through adjusting edge set of current particle and edge244

set of other particle, some substructures in XSMT are changed to search for a better combination of245

substructures.246

In DE algorithm, there are six commonly used mutation strategies (Epitropakis et al., 2011), and each247

strategy uses different basis vectors and differential vectors. The mutation formulas are shown below.248

V
g
i = Xr1

g +F(Xr2
g−Xr3

g) (8)

V
g
i = Xr1

g +F1(Xr2
g−Xr3

g)+F2(Xr4
g−Xr5

g) (9)

V
g
i = Xbest

g +F(Xr1
g−Xr2

g) (10)

V
g
i = Xbest

g +F1(Xr1
g−Xr2

g)+F2(Xr3
g−Xr4

g) (11)

V
g
i = X

g
i +F(Xbest

g−X
g
i ) (12)

V
g
i = Xr0

g +F1(Xbest
g−Xr0

g)+F2(Xr1
g−Xr2

g) (13)

where X
g
r represents a random particle in population, X

g
best represents the global optimal solution, and F249

represents learning factor.250

Two operating rules251

In XSMT-MoDDE algorithm, a particle represents a XSMT. Addition and subtraction operations in252

the above mutation formulas cannot be directly used in discrete problems. This paper defines two new253

calculation methods (Definition 6-7).254

A is the edge set of particle X1, B is the edge set of particle X2, and the full set is A∪B. There are two255

definitions as follows:256

Definition 6. A⊙B. ⊙ is expressed as finding the symmetric difference of A and B, which is (A∪B)−257

(A∩B), as shown in Figure 5(a).258

Definition 7. A⊕B. First calculate Set C, C = A−B, and then add the edges of Set B to Set C until Set259

C can form a legal tree, as shown in Figure 5(b).260

Three mutation strategies261

In Mutation Strategy 1, basis vector is selected as current particle, and there are two differential vectors.262

The differential vector of the first stage is generated by the difference between the current particle and the263

corresponding local historical optimal particle, and Particle T is obtained by Formula 14. The differential264

vector in the second stage is generated by the difference between Particle T and the global optimal particle,265

and target mutated Particle V
g
i is obtained by Formula 15.266

T = X
g
i ⊕F

(

X
g
pbest ⊙X

g
i

)

(14)

V
g
i = T ⊕F

(

X
g
gbest ⊙T

)

(15)

In Mutation Strategy 2, basis vector is still current particle, and there are two differential vectors.267

The differential vector in the first stage is generated by the difference between random particle and the268

corresponding local historical optimal particle, and Particle T is calculated by Formula 16. The differential269

vector in the second stage is generated by the difference between the random particle and global optimal270

particles, and target mutated Particle V
g
i is obtained by Formula 17.271
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(a) A⊙B

(b) A⊕B

Figure 5. Operation process of two new operators

T = X
g
i ⊕F

(

X
g
pbest ⊙Xg

r

)

(16)

V
g
i = T ⊕F

(

X
g
gbest ⊙Xg

r

)

(17)

In Mutation Strategy 3, basis vector is current particle, and the differential vector is generated by the272

difference between the current particle and random particle in the population, and the mutated Particle V
g
i273

is obtained by Formula 18.274

V
g
i = X

g
i ⊕F

(

X
g
i ⊙Xg

r

)

(18)

Mutation Strategy 1 can make particles obtain the partial structure of global optimal particle and the275

historical local optimal particle, and inherit the characteristics of the two optimal particles, which is a276

greedy strategy. The implementation of Mutation Strategy 3 can expand the search space and make the277

mutation direction completely get rid of the structure of the optimal particles, which is suitable for the278

early stage of iteration and increases the exploration ability of the algorithm. The exploratory ability of279

Mutation Strategy 2 is between Mutation Strategy 1 and Mutation Strategy 3.280

In multiple mutation strategy, the iterative process is divided into two stages by setting a threshold.281

Three mutation strategies in the early stage are selected with equal probability, and the Mutation Strategy282

3 is cancelled in the later stage. The pseudo-code of multiple mutation strategy is shown in Algorithm283

3, where P represents population, N represents the size of the population, m represents the number of284

iterations, t represents threshold, and V represents mutated population. Line 5 judges whether the current285

iteration is in the early stage of the iteration. If it is in the early stage of the iteration, Mutation Strategy 1,286

Mutation Strategy 2, and Mutation Strategy 3 are adopted. Line 6 determines whether the current iteration287

is in the later stage of the iteration. If it is in the latter stage, Mutation Strategy 1 and Mutation Strategy 2288

are adopted.289

Adaptive learning factor290

Property 6. Learning factor is a key parameter to determine the performance of DDE algorithm, which291

has a decisive influence on the exploitation and exploration ability of algorithm. This paper proposes an292

adaptive learning factor based on set operation for the first time to effectively balance the search ability293

of XSMT-MoDDE algorithm.294
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Algorithm 3 Multiple mutation strategy

Require: P, N, m, e

Ensure: V

1: function MUTIMUTATION(P, N, m, t)

2: V ← /0

3: for i← 1 to m do

4: for j← 1 to N do

5: if i <= t×N then s← random(1,2,3)
6: else s← random(1,2)
7: end if

8: if s == 1 then v←Mutation1(P[ j])
9: else if s == 2 then v←Mutation2(P[ j])

10: else if s == 3 then v←Mutation3(P[ j])
11: end if

12: V [ j]← v

13: end for

14: end for

15: return V

16: end function

Operating rule for learning factors295

As shown in Formula 2, the learning factor F acts on the difference vector and controls the global search296

capability of DDE algorithm (Wang et al., 2014; Gong et al., 2010; Brest et al., 2006). In discrete297

problems, simple multiplication operation cannot be used. This paper redefines the ∗ operation in Formula298

2.299

Definition 8. F ∗
(

X
g
best ⊙X

g
r

)

F < 1. Randomly eliminate n edges {e1,e2, ...,en} from the edge set of300

difference particles, where ei ∈ X
g
best and ei /∈ X

g
i , and the value of n is calculated by Formula 19.301

Definition 9. F ∗
(

X
g
best ⊙X

g
r

)

F > 1. Randomly eliminate n edges {e1,e2, ...,en} from the edge set of302

difference particles, where ei ∈ X
g
i and ei /∈ X

g
best , and the value of n is calculated by Formula 20.303

Definition 10. F ∗
(

X
g
best ⊙X

g
r

)

F = 1. No changes are made to the edge set.304

n = round
(

(1−F)×|Xg
best |

)

(19)

n = round
(

(F−1)×|Xg
i |
)

(20)

where |X | represents the number of edge of Particle X .305

Adaptive update process306

Each Particle Xi corresponds to the adaptive learning factor Fi, which is initialized to 1. After each307

selection operation, the Parameter Fi is updated.308

(1) Calculate reference Parameter r, r← k× fbest +1, where k is 0.001 and fbest is the fitness value of309

the global optimal particle;310

(2) Calculate difference value ∆ between fitness value fi of X
g
i and fitness value fbest of X

g
best ;311

(3) Update Fi, the update formula is as follows:

Fi =

{

Fi +0.05 ∆ > r

Fi−0.05 ∆≤ r
(21)

When the fitness value fi is close enough to fbest , reduce Fi to preserve its structure to a greater extent,312

otherwise, increase Fi to expand the global search capability.313
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Algorithm 4 Refining strategy

Require: X , n

Ensure: R

1: function REFINING(X , n)

2: R← /0

3: for i← 1 to n do

4: d←CalculateDegree(Xi)
5: Length← 0

6: Substructure← /0

7: for j← 1 to 4d do

8: s← GetSubstructure()
9: l← GetCommonWireLength()

10: if l > Length then

11: Substructure← s

12: Length← l

13: end if

14: end for

15: for edge in Substructure do

16: if edge not in R then

17: R∪ edge

18: end if

19: end for

20: end for

21: return R

22: end function

Refining strategy314

Property 7. Refining strategy minimizes wire length of XSMT under the determined topology within a315

reasonable time.316

There may still be space for optimization for the optimal particles at the end of iteration. In order to317

search for a better result, a refining strategy is proposed. The steps of algorithm are as follows:318

(1) Calculate degree of each Point pi in the optimal particle. The degree is defined as the number of319

edges connected to point, denoted as di;320

(2) There are 4 kinds of edges in X-architecture. If the degree of Point pi is di, there are 4di types of321

substructures corresponding to the point. The set of all substructures corresponding to Point pi is S, and322

edge Set E is obtained when the substructures corresponding to Points p1− pi−1 have been determined.323

Calculate common wire length l between Substructure si in Set S and Set E, select Substructure si324

corresponding to the largest l, and add the edges of si to the Set E. The algorithm ends until all points325

have been visited.326

The pseudo code of the refining strategy algorithm is shown in Algorithm 4, where X represents the327

target particle obtained by the XSMT-MoDDE algorithm, n represents the point number of XSMT, and R328

represents the refined particle. Line 2 initializes Set R. Lines 3-20 search for the optimal substructure329

corresponding to each point. Line 4 calculates the degree of Point pi, Line 5 initializes maximum common330

wire length, and Line 6 initializes the optimal substructure set. Lines 7-14 calculate common wire length331

and update the largest common wire length. Lines 15-19 store the edges in the optimal substructure into332

Set R.333

Related parameters334

The main parameters of the algorithm in this paper include population size n, iteration times m, threshold335

t, learning factor F , and crossover probability cr.336

In the proposed algorithm, n is 50, m is 500, and t is 0.4. The adaptive strategy of learning factor F337

has been described in detail in Section 3.6. The crossover probability cr also adopts the adaptive strategy,338

which is as follows:339
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Figure 6. Algorithm flowchart.

cri =

{

crl +(cru− crl)
fi− fmin

fmax− fmin
fi > f

crl else
(22)

where cri=0.1, cru=0.6, fi represents the fitness value of the current particle, fmin represents the minimum340

historical fitness value, fmax represents the maximum historical fitness value, and f represents the average341

historical fitness value.342

The algorithm flow of XSMT-MoDDE343

The algorithm flow chart of XSMT-MoDDE is shown in Figure 6, and the detailed flow is as follows:344

(1) Initialize parameters.345

(2) Use Prim algorithm to initialize population.346

(3) Check the current stage: early stage or late stage of iteration.347

(4) Select a mutation strategy from the corresponding mutation strategy pool according to the current348

stage.349

(5) Obtain the trial particles according to the crossover operator.350

(6) Obtain the next generation of particles according to the selection operator.351

(7) Adopt elite selection and cloning strategy, and update the elite buffer after four steps of selection,352

clone, mutation and extinction.353

(8) Check the number of iterations, and end the iteration if the termination condition is met, otherwise,354

return to Step (3).355

(9) At the end of XSMT-MoDDE algorithm, a refining strategy is adopted to obtain the target solution.356

Complexity analysis of XSMT-MoDDE algorithm357

Property 8. When the population size is m and the number of pins is n, the time complexity of one358

iteration is O(mnlogn).359
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Complexity analysis of multiple mutation operator360

The mutation process is divided into two stages. First, difference vector is constructed, and then difference361

vector and the basis vector are used to construct the trial particles.362

Construction of difference vector: Sort the edges of two edge sets according to the number of edge363

start point, and use binary search to construct the non-common edges. The complexity of this process is364

O(nlog(n)), and the non-common edge set is the difference vector.365

Construction of mutation particle: Construct the difference set of basis vector and difference vector366

according to the above-mentioned similar idea. Then the edges in the difference set are stored in DSU,367

and edges are randomly selected from difference vector to be added to DSU until a complete tree is368

constructed. The time complexity of this process is O(nlog(n)).369

Complexity analysis of elite selection and cloning strategy370

A minimum heap is established according to the fitness value of particles, and the heap top is selected for371

cloning each time. The time complexity required for this process is O(n).372

The mutation process adopts connection method mutation and topology mutation. The connection373

method mutation selects two different edges randomly from the edge set to modify the connection374

method of the edges. The time complexity required is O(1). In topology mutation, one edge is randomly375

disconnected to form two sub-XSMTs, which are recorded using the DSU. It takes O(nlog(n)) time to376

construct two sub-XSMTs with DSU, and randomly select one point from each of two sub-XSMTs to377

establish connection, this process takes O(1) time.378

The particles obtained by the elite selection and cloning strategy need to be stored in an elite buffer379

with a size of m. The population particles and the particles of elite buffer participate in mutation, crossover,380

and selection operations together.381

Complexity analysis of refining strategy382

The degree of Point i is recorded as di. We always keep di within 4, even if there is a minimum probability383

greater than 4, only four connected edges will be considered in refining strategy. The adjacent edges of a384

point select a connection method respectively to form a substructure. An X-architecture edge has four385

selection methods, so one point corresponds to 4di substructures, where 4di ≤ 256.386

Refining strategy takes out the optimal particle constructed by XSMT-MoDDE algorithm, enumerates387

substructures for each point of the particle, and obtain the substructure with the largest common wire388

length. So for the case of n points, the required time is ∑
n
i=1

(

di×4di
)

.389

EXPERIMENTAL RESULTS390

The proposed XSMT-MoDDE has been implemented in C++ language on a windows computer with 3.5391

GHz Intel CPU. To compare the experimental results fairly, we run all programs in the same experimental392

environment and use the same benchmarks from GEO and IBM. The population size and iteration size of393

all heuristic algorithms are set to 50 and 500 respectively. Calculation formula of optimization rate is394

shown in Formula 23.395

rate =
b−a

b
×100% (23)

where a is the experimental result of the XSMT-MoDDE algorithm, and b is the experimental result of396

other algorithms.397

Verify the effectiveness of multi-strategy optimization398

Experiment 1: In order to verify the effectiveness of the multi-strategy optimization DDE algorithm in399

constructing XSMT, this experiment will compare the results of XSMT-MoDDE algorithm and XSMT-400

DDE algorithm. Experimental results are shown in Table 2 and Table 3. Table 2 is the optimization401

results of wire length, and Table 3 is the optimization results of standard deviation. The results show that402

multi-strategy optimization can achieve an average wire length optimization rate of 2.35% and a standard403

deviation optimization rate of 95.69%. This experiment proves that multi-strategy optimization has a404

powerful effect on wire length reduction, and at the same time greatly increases the stability of DDE.405
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Circuit Pins XSMT-DDE XSMT-MoDDE Reduction(%)

1 8 16956 16900 0.33%

2 9 18083 18023 0.33%

3 10 19430 19397 0.17%

4 15 25728 25614 0.44%

5 20 32434 32171 0.81%

6 50 49103 48090 2.06%

7 70 57386 56397 1.72%

8 100 70407 68917 2.12%

9 400 145183 139871 3.66%

10 410 146680 141571 3.48%

11 500 160031 154406 3.51%

12 1000 232057 220577 4.95%

Average 1.97%

Table 2. Average wire length optimization results of multi-strategy optimization

Circuit Pins XSMT-DDE XSMT-MoDDE Reduction(%)

1 8 56 0 100.00%

2 9 58 0 100.00%

3 10 42 0 100.00%

4 15 198 10 94.95%

5 20 343 51 85.13%

6 50 1036 147 85.81%

7 70 1082 102 90.57%

8 100 1905 279 85.35%

9 400 3221 120 96.27%

10 410 3222 178 94.48%

11 500 3193 139 95.65%

12 1000 3977 106 97.33%

Average 93.80%

Table 3. Standard deviation optimization results of multi-strategy optimization

Circuit Pins XSMT-DDE Refining Reduction(%)

1 8 16900 16900 0.00%

2 9 18023 18023 0.00%

3 10 19397 19397 0.00%

4 15 25614 25624 -0.04%

5 20 32171 32091 0.25%

6 50 48090 48090 0.00%

7 70 56397 56105 0.52%

8 100 68917 68457 0.67%

9 400 139871 138512 0.97%

10 410 141571 140359 0.86%

11 500 154406 152649 1.14%

12 1000 220577 217060 1.59%

Average 0.50%

Table 4. Average wire length optimization results of refining strategy

15/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:02:57834:0:2:NEW 11 Feb 2021)

Manuscript to be reviewedComputer Science



Circuit Pins XSMT-DDE Refining Reduction(%)

1 8 0 0 -

2 9 0 0 -

3 10 0 0 -

4 15 10 8 20.00%

5 20 51 22 56.86%

6 50 147 119 19.05%

7 70 170 136 20.00%

8 100 279 187 32.97%

9 400 120 57 52.50%

10 410 178 56 68.54%

11 500 139 50 64.03%

12 1000 115 113 1.74%

Average 37.30%

Table 5. Standard deviation optimization results of refining strategy

Circuit Pins
Mean value Reduction(%)

DDE ABC GA MoDDE DDE ABC GA

1 8 16956 16918 16918 16900 0.33% 0.00% 0.00%

2 9 18083 18041 18041 18023 0.33% 0.10% 0.10%

3 10 19430 19696 19696 19397 0.17% 1.52% 1.52%

4 15 25728 25919 25989 25624 0.40% 1.14% 1.40%

5 20 32434 32488 32767 32091 1.06% 1.22% 2.06%

6 50 49103 48940 48997 48090 2.06% 1.74% 1.85%

7 70 57386 57620 57476 56105 2.23% 2.63% 2.39%

8 100 70407 70532 70277 68457 2.77% 2.94% 2.59%

9 400 145183 141835 141823 138512 4.59% 2.40% 2.40%

10 410 146680 143642 143445 140359 4.31% 2.29% 2.15%

11 500 160031 156457 156394 152649 4.61% 2.43% 2.39%

12 1000 232057 222547 222487 217060 5.90% 2.47% 2.44%

Average 2.40% 1.74% 1.77%

Table 6. Comparison results of average wire length in GEO dataset

Circuit Pins
Best value Reduction(%)

DDE ABC GA MoDDE DDE ABC GA

1 8 16918 16918 16918 16900 0.11% 0.11% 0.11%

2 9 18041 18041 18041 18023 0.10% 0.10% 0.10%

3 10 19415 19696 19696 19397 0.09% 1.52% 1.52%

4 15 25627 25627 25897 25605 0.09% 0.09% 1.13%

5 20 32209 32344 32767 32091 0.37% 0.78% 2.06%

6 50 47987 48637 48783 47975 0.03% 1.36% 1.66%

7 70 56408 57227 57445 55919 0.87% 2.29% 2.66%

8 100 68829 70382 70092 68039 1.15% 3.33% 2.93%

9 400 141967 141490 141467 138382 2.53% 2.20% 2.18%

10 410 144033 143310 143282 140179 2.68% 2.18% 2.17%

11 500 156950 156034 156110 152591 2.78% 2.21% 2.25%

12 1000 226654 222262 222285 216824 4.34% 2.45% 2.46%

Average 1.26% 1.55% 1.77%

Table 7. Comparison results of best wire length in GEO dataset
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Circuit Pins
Standard deviation Reduction(%)

DDE ABC GA MoDDE DDE ABC GA

1 8 56 0 0 0 100.00% - -

2 9 58 0 0 0 100.00% - -

3 10 42 0 0 0 100.00% - -

4 15 198 148 46 8 95.96% 94.59% 82.61%

5 20 343 118 45 22 93.59% 81.36% 51.11%

6 50 1036 242 133 119 88.51% 50.83% 10.53%

7 70 1082 195 140 136 87.43% 30.26% 2.86%

8 100 1905 69 112 187 90.18% -171.01% -66.96%

9 400 3221 200 170 57 98.23% 71.50% 66.47%

10 410 3222 146 122 56 98.26% 61.64% 54.10%

11 500 3193 160 133 50 98.43% 68.75% 62.41%

12 1000 3977 131 107 113 97.16% 13.74% -5.61%

Mean 95.65% 33.52% 28.61%

Table 8. Comparison results of standard deviation in GEO dataset

Circuit Nets Pins
Value Reduction(%)

SAT KNN MoDDE SAT KNN

ibm01 11507 44266 61005 61071 56080 8.07% 8.17%

ibm02 18429 78171 172518 167359 154868 10.23% 7.46%

ibm03 21621 75710 150138 147982 133999 10.75% 9.45%

ibm04 26263 89591 164998 164828 149727 9.26% 9.16%

ibm06 33354 124299 289705 280998 256674 11.40% 8.66%

ibm07 44394 164369 368015 368015 335556 8.82% 8.82%

ibm08 47944 198180 431879 413201 371948 13.88% 9.98%

ibm09 53039 187872 418382 417543 382282 8.63% 8.44%

ibm10 64227 269000 588079 589102 532644 9.43% 9.58%

Mean 10.05% 8.86%

Table 9. Comparison results of wire length in IBM dataset

Verify the effectiveness of refining strategy406

Experiment 2: In order to verify the effectiveness of the refining strategy, this experiment will compare407

the results of refined XSMT-MoDDE algorithm and XSMT-MoDDE algorithm. The experiment result408

is shown in Table 4 and Table 5. Table 4 is the optimization results of wire length, and Table 5 is the409

optimization results of standard deviation. The results show that refining strategy can achieve an average410

wire length optimization rate of 0.50% and a standard deviation optimization rate of 37.30%. From411

the experimental results and the above complexity analysis, it can be seen that after XSMT-MoDDE412

algorithm is over, refining strategy only takes a short time to obtain a lot of optimization of wire length413

and standard deviation. Regardless of whether refining strategy is added or not, both can always obtain414

accurate solutions in circuits with less than 10 pins. Refining strategy has more significant optimization415

effects in larger circuits.416

Algorithm comparison experiment417

Experiment 3: To compare the performance of XSMT-MoDDE algorithm with other heuristic algorithms,418

we compare the results of XSMT constructed by MoDDE algorithm, DDE algorithm, Artificial Bee419

Colony (ABC) algorithm, and Genetic Algorithm (GA). The experimental results are shown in Table 6,420

Table 7, and Table 8. XSMT-MoDDE compares with XSMT-DDE, XSMT-ABC, and XSMT-GA, the421

average wire length is reduced by 2.40%, 1.74%, and 1.77%, the optimal wire length is reduced by 1.26%,422

1.55%, and 1.77%, and the standard deviation is reduced by 95.65%, 33.52%, and 28.61%. Experimental423

results show that XSMT-MoDDE is better than XSMT-DE, XSMT-ABC, and XSMT-GA in both the424

wire length and standard deviation indicators. Compared with other algorithms, this algorithm still has425

excellent stability on the basis of having better wire length results.426
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Experiment 4: In the stage of global routing, there are tens of thousands of nets on the circuit board,427

and pins inside net need to be interconnected. This paper uses XSMT-MoDDE algorithm to optimize wire428

length of global routing. This experiment adopts the benchmark provided by IBM, and XSMT-MoDDE429

algorithm, SAT algorithm, and KNN algorithm are used to construct XSMT. The experimental results are430

shown in Table 9. Compared with SAT and KNN, XSMT-MoDDE optimizes wire length by 10.05% and431

8.86% respectively. Experimental results show that XSMT-MoDDE can greatly shorten the wire length in432

the construction of multi-nets XSMT problem, and provide effective guidance for global routing.433

(a) Steiner tree with 500 pins

(b) Steiner tree with 1000 pins

Figure 7. Steiner tree generated by XSMT-MoDDE.

Finally, for a better understanding the results of XSMT-MoDDE algorithm, we use Matlab to simulate434

the final XSMT diagrams. We choose Circuit 11 and Circuit 12 in Table 7 as representatives, as shown in435

Figure 7(a) and 7(b).436
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CONCLUSIONS437

This paper designs four optimization strategies. The first three optimization strategies are used to438

strengthen DDE algorithm, and the fourth optimization strategy is used to reduce the wire length of final439

particle to the greatest extent.440

Elite selection and cloning strategy expands the search range and enhances the diversity of the441

population particles. The elite particles are cloned and mutated, and the most excellent particle is442

selected greedily. This strategy enables the algorithm to quickly converge to a better state. Novel443

multi-mutation strategy introduces the idea of set operation. Through the interaction between edge sets,444

the corresponding shape of XSMT is changed. Three mutation strategies have different exploitation445

and exploration capabilities, and the three strategies are used alternately to avoid the algorithm from446

converging to the local peak prematurely. Adaptive learning factor dynamically adjusts and retains the447

ratio between the current particle edge set and the optimal particle edge set. Effectively improve global448

exploitation and local exploitation capabilities, and seek a balance between random strategy and greedy449

strategy.450

XSMT-MoDDE algorithm proposed in this paper uses three indicators to measure algorithm results451

which are average wire length, optimal wire length, and standard deviation as evaluation. The proposed452

algorithm has achieved better optimization results compared with other algorithms. Moreover, XSMT-453

MoDDE has a stronger optimization ability in circuits with large-scale circuits. It is better than the results454

of the SAT and KNN algorithms in the case of multi-nets. Therefore, XSMT-MoDDE algorithm has good455

application prospect in the stage of global routing.456
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