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ABSTRACT
Traffic flow prediction is the foundation of many applications in smart cities, and
the granular precision of traffic flow prediction has to be enhanced with refined
applications. However, most of the existing researches cannot meet these requirements.
In this paper, we propose a spatial-temporal attention based fusion network (ST-AFN),
for lane-level precise prediction. This seq2seq model consists of three parts, namely
speed process network, spatial encoder, and temporal decoder. In order to exploit the
dynamic dependencies among lanes, attention mechanism blocks are embedded in
those networks. The application of deep spatial-temporal information matrix results in
progresses in term of reliability. Furthermore, a specific ground lane selection method
is also proposed to ST-AFN. To evaluate the proposed model, four months of real-
world traffic data are collected in Xiaoshan District, Hangzhou, China. Experimental
results demonstrate that ST-AFN can achieve more accurate and stable results than
the benchmark models. To the best of our knowledge, this is the first time that a deep
learning method has been applied to forecast traffic flow at the lane level on urban
ground roads instead of expressways or elevated roads.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science
Keywords Attention Mechanism, Spatial-temporal network, Lane-level traffic flow prediction

INTRODUCTION
Short-term traffic flow forecasting analyzes the historical data to complete the prediction
of future traffic conditions (Kong et al., 2021). It can well fulfill various requirements in a
smart city (Kong et al., 2020b; Kong et al., 2020a), such as travel route guidance, congestion
relief, and road planning (Do et al., 2019).With the rapid development of AI and connected
vehicle technology, smart cities push for higher-precision and fine-grained requirements
(Kong et al., 2020b; Kong et al., 2020a) for the traffic flow predictions.

Lane-level traffic forecasting is developed from traditional prediction, which utilizes
lanes parameters instead of whole road segments (Shen, Zhao & Kong, 2021). It can not only
make the prediction more refined, but also lay the foundation for subsequent advanced
applications such as high-precision navigation, unmanned vehicle technologies, and
cooperative vehicle infrastructure system (Liao et al., 2018). Even though it is one of the
key issues of Intelligent Transportation System (ITS), it is often overlooked (Liu, Zhou &
Li, 2019). According to statistics, lane-level predictions only account for less than 10% of
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the total (Gu et al., 2019). Apart from the difficulty in obtaining lane-based data, the main
reason is themistaken assumption that different lanes have similar traffic patterns. Recently,
some studies have proved the independence of lanes (Daganzo, 2002). The real-world data
collected by us strongly supports this theory. As shown in Fig. 1A, lane 2 and lane 3 are
the two straight lanes under the same junction and the difference in average traffic volume
between them can be up to 21.34%. Figure 1B shows that the lane with the highest traffic
volume (lane 3) is 2.63 times the lane with the lowest volume (lane 4). Compared to road
sections or road networks, lanes are more susceptible to interference, tending to show
different states when being affected by accidents, bad weather, and other factors.

Recently, several research groups have studied the lane traffic models and prediction in
deep learning methods. Gu et al. (2019) applied entropy-based gray correlation to analyze
the dependency between lanes by employing the network structure of Long Short-Term
Memory (LSTM) and Gate Recurrent Unit. Ke et al. (2020) expanded each lane data into
each channel matrix, as the input of Convolutional Neural Networks (CNN), and then
obtained the final result after fusion. Xie et al. (2019) utilized Deep Believe Networks
(DBN) and LSTM to build a vehicle lane change model that includes lane change decision
and lane change implementation. There are still some limitations with these studies: firstly,
the traffic volume on the low-speed ground roads is smaller and the speed of vehicles is
relatively slower when compared with highways. Due to the complex topographic road
structures and various traffic signal schemes, there exist more diversified traffic patterns
(Kamal, Hayakawa & Imura, 2020). Secondly, in the forecasting, the state of a traffic node
is related to its own historical situation and neighboring nodes. The processing of temporal
and spatial sequence cannot be done through simple parallel analysis or linear fusion. How
to deal with it still remains a thorny issue.

In this paper, we present a spatial–temporal attention mechanism based fusion network
(ST-AFN) to address these issues. The contributions of this study mainly involve the
following three aspects:

• ST-AFN uses the bidirectional LSTM as the basic unit, and is designed with a structure
of seq2seq. Spatial attention blocks and temporal attention blocks are embedded in the
encoder network and decoder network respectively. The blocks solve the problem of
long-distance dependence efficiently in parallel, and capture deep level characteristics.
Specially, the output matrix of the speed process network is fused with the result of
spatial encoder to construct the information matrix. Continued analysis of this matrix
can lead to the final volume prediction results.
• Based on the traffic volume, vehicle speeds and complex road structures, we consider
the relationship between lanes in detail and adopt a novel ground road lane selection
strategy.
• Real-world traffic data verifies that ST-AFN outperforms the four baseline methods
(including the state of the art lane-level forecasting method FDL), in both accuracy and
stability.
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Figure 1 Average traffic volume of each lane during the week. (A) The differences in traffic condition
between two straight lanes. (B) Differences in traffic condition between four lanes under the same inter-
section.

Full-size DOI: 10.7717/peerjcs.470/fig-1

RELATED WORKS
Throughout the history of traffic flow prediction, the methods can be roughly divided into
three categories: parametric, non-parametric, and deep learning (Xiang, Lu & Liu, 2011;
Lint & Hinsbergen, 2012). Parametric methods (e.g., Autoregressive Integrated Moving
Average mode, Linear regression model) are based on the assumption that traffic runs
smoothly, a deterministic model structure is established, and that the various parameters in
the structure are determined by processing real data (Lippi, Bertini & Frasconi, 2013; Chan,
Dillon & Singh, 2012). However, these models depend on the assumption of stationary,
cannot reflect the nonlinearity and uncertainty characteristics of traffic data (Zhao et al.,
2019). Non-parametric methods (e.g., Support Vector Machines, Markov model) can
be more flexible due to their variable structure and parameters to cope with all kinds of
unexpected situations in traffic (Hinsbergen et al., 2011;Wu, Wei & Su, 2003).

As one of the branches ofmachine learning, deep learning has promoted the development
of various researches with its strong learning ability and excellent portability (LeYun,
Bengio & Hinton, 2015; Kong et al., 2019). Wu et al. (2018) trained the traffic data in three
categories: hourly, daily, andweekly with a fully connected neural network in turn, and then
fused those outputs to obtain the final result. Liu et al. (2019a) and Liu et al. (2019b) utilized
a deep residual network, and proposed a Traffic State Index to measure the congestion of
a region. Li et al. (2018) modeled the vehicle driving as a random diffusion process on a
directed graph, introduced a diffusion convolutional recurrent neural network and achieved
accurate prediction results. Zhao et al. (2019) combined Gate Recurrent Unit (GRU) and
Graph Convolution Network (GCN): used GRU to process time dependence and GCN
to process spatial dependence, finally completed the sub-region traffic flow prediction. In
addition to traffic flow forecasting, deep learning is also widely used in other areas of urban
computing. Liu et al. (2019a) and Liu et al. (2019b) presented a graph processing based
traffic estimation system. The system decomposed the numerous computations involved in
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non-linear models, and used crowd density and vehicle to predict city scale traffic patterns.
Zhang, Zhang & Qi (2017) designed the residual network to model the temporal proximity
and periodicity. The output of two units were aggregated, and were given different weights.
Wang et al. (2017) proposed an automobile demand model. This model consisted of three
residual sub-networks, which were used to analyze weather data, traffic data, and order
data. Tong et al. (2017) used taxi trajectory data to forecast taxi demand. Shen et al. (2019)
used Siamese CNN for multi-pedestrian tracking.

Attention mechanism was first applied to the research of natural language processing
(NLP) (Bahdanau, Cho & Bengio, 2015). It emphasizes the reasonable allocation of limited
computing power when facing problems (Chaudhari et al., 2019). Due to the excellent
effect, this mechanism has made breakthroughs in NLP (Maharjan et al., 2018), and
computer vision (CV) (Li et al., 2019). At the same time, attention mechanism is also
introduced in transportation research. Guo et al. (2019) added attention blocks to GCN,
and fused three subnet’s output to obtain the final prediction result. Liu et al. (2019a) and
Liu et al. (2019b) expanded a variety of machine learning result vectors into amulti-channel
spatio-temporal matrix and used attention when calculating the weights between channel.
Hao, Lee & Zhao (2019) used the attention mechanism twice in the encoder and decoder,
and used the embedding layer to combine external factors such as weather and emergencies.
Zhang et al. (2019) used GCN to extract spatial features, then inputted the features into the
seq2seq model, the attention blocks were embedded in the encoder.

Problem statement
Before ST-AFN is introduced in detail, this section will describe the specific ground road
lane selection strategy and traffic flow prediction problem.

Definition 1: Lane Selection. In the previous lane-level traffic flow prediction research,
the experimental data came fromhigh-ways or elevated freeways.Under this road condition,
following is the corresponding solution: when on high-ways or elevated freeways, the long
and straight roads are divided into multiple sub-sections based on the sensors in the
main line and the ramp as shown in Fig. 2. There are often some shortcomings in the
corresponding strategies under this research background: firstly, the width of the ramp is
narrow, which easily becomes a bottleneck in the morning and evening peaks with dense
traffic. Existing strategy does not consider a large number of inflow and outflow vehicles
in the ramp (as shown by the red arrows in Fig. 2) which may lead to inaccurate results.
Secondly, due to the limitation of the research background, the experiment can only use a
single straight flow lane as the research object. It has poor scalability and limited practical
application range. In comparison, urban ground roads have the characteristics of a higher
proportion of total road mileage, wider coverage area, and more complex traffic patterns
(Kamal, Hayakawa & Imura, 2020). However, there is still no mature and efficient lane
selection strategy for ground roads.

Considering the above research strategies and the characteristics of the ground road
network, this paper proposes the selection strategy shown in Fig. 3. On the ground roads
in urban areas, the intersections are highly correlated. The basis for selecting the lanes
with intersections alone is sufficient to support the subsequent prediction. This method
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Figure 2 Lanes selection in previous studies.
Full-size DOI: 10.7717/peerjcs.470/fig-2

Figure 3 Our specific lanes selection. The candidate lanes participate in the training of the neural net-
work, and the target lanes are used as the training targets.

Full-size DOI: 10.7717/peerjcs.470/fig-3

not only takes the adjacent lanes below the same intersection into consideration, but also
selects lanes in the upstream and downstream intersections, including straight, and often
overlooked left-turn and right-turn lanes. This strategy is based on the physical connection
structure of the road, and perfectly captures the information in lanes. In this way, it not
only can improve the prediction accuracy, but also broaden the application range.

Definition 2: Flow Prediction. After the lane traffic data is collected, we divide the
training data set into n parts at fixed time intervals. For convenience, this article records
the total number of lanes under k intersections as m. Each lane has h- dimensional
attributes. The traffic characteristic parameters can be denoted by an n×h×mmatrix T±.
In detail T+q denotes the forward volume, and T+s denotes forward speed. The predicted
goal can be described as:[
X q+
n+1,X

q+
n+2,...,X

q+
n+τ

]
= f
(
g
(
T+q
)
⊕p

(
T+s
))

(1)
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where g is the encoding processing function, p is the speed processing function, f is the
final decoding and output function, X q+ is the lane volume value, τ is the forecast time
length.

ST-AFN framework
ST-AFN is mainly composed of three parts: deep speed processing network, the spatial
encoder, and the temporal decoder. Deep bidirectional LSTM are connected in series to
form the speed processing network. The encoder with the spatial attention blocks are
utilized to analyze the spatial characteristics of the traffic parameters. Then the output of
the above two networks are merged to build the information matrix which is the input of
decoder. After the decoder extracting temporal feature, we use full connected layer (FC)
to complete the final prediction, as shown in Fig. 4. The following will introduce each
network in order.

Speed process network
The current traffic situation of the road section is closely related to its upstream and
downstream sections. The upstream traffic flows toward the downstream section, and the
state of the downstream section (such as congestion) will gradually accumulate, which
in turn will impact the upstream traffic flow. In the direction of the time dimension,
bidirectional LSTM is superimposed and fused by forward LSTM and backward LSTM.
While overcoming the problems of gradient disappearance and gradient explosion, it also
considers the forward and backward propagation of sequential data.

As shown in the Fig. 5,
←

h
ul

ve is derived from the forward LSTM, and
→

h
ul

ve is derived from
backward LSTM. They represent the forward hidden state and backward hidden state in
u-th unit. Correspondingly,

→
c
ul
ve and

←
c
ul
ve represent the forward cell state and backward cell

state respectively. After each subunit completes forward and backward propagation,
→

h
ul

ve

and
←

h
ul

ve are concatenated to form hulve .

Hu
ve =W u

ve · [h
u1
ve ,h

u2
ve ,...,h

um
ve ]

T
+buve (2)

where huve is the result of splicing hulve (l = 1,2,...,m), and then it is changed linearly to
get the final hidden state Hu

ve .W
u
ve is the weight matrix and buve is the bias term. Cu

ve is
calculated at the same time, representing the final cell state. Then Cu

ve and Hu
ve are used for

initialization in the next unit, and are collected to build the context vector.

The spatial encoder
When predicting traffic flow, the processing methods of time dependence and space
dependence directly affect the accuracy of the experimental results. The application of
attention mechanism can help networks to accurately analyze the dependencies between
lanes at each moment in real time. After selecting the target lane, it pays more attention
to lanes with high correlation, reduces the weight value of irrelevant lanes, and efficiently
allocates weights dynamically and optimally in a parallel strategy. The proposed encoder
network is shown in the Fig. 6.
The encoder with embedded spatial attention mechanism blocks is composed of another

bidirectional LSTM network. The spatial blocks in the unit can be summarized as: firstly
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Figure 4 The structure of ST-AFN.
Full-size DOI: 10.7717/peerjcs.470/fig-4

Figure 5 Speed process unit.
Full-size DOI: 10.7717/peerjcs.470/fig-5

we transform query Qi
e , key K

i
e , and value V i

e to get Q̂i
e , K̂

i
e , and V̂ i

e . Secondly, we calculate
the dot product and use Softmax function to normalize it. Finally, we get the weights. The
attention mechanism formula in i-th spatial unit is:

e ji = tanh
(
W i

ae ·

[
H i−1

qe ,C
i−1
qe ,X

q+j
i

]
+biae

)
(3)
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Figure 6 Spatial encoder unit.
Full-size DOI: 10.7717/peerjcs.470/fig-6

where H i−1
qe is the final hidden state of i−1- th spatial unit, C i−1

qe is the final cell state. X
qj
i

represents the volume of j- th lane in current unit. W i
ae and biae respectively represent the

weight item and bias item, tanh is one of the activation functions.
Now, we have obtained e ji for each lane. Then a softmax function is used for the

normalization, and get attention weight αji for each candidate lane. Finally we weight the

original data X
q+j
i with αji to get X̂ q+

i , which will be the input data of i- th Spatial Unit.

The temporal decoder
The temporal attention mechanism blocks are embedded in the decoder network, they are
employed to distinguish the importance of each period and assign the temporal weights.
Context vector θ is the input of the decoder network. As shown in Fig. 7, speed encoded
consists of hidden layers of each subunit in the speed processing neural network. Similarly,
volume encoded consists of hidden layers of each subunit in the encoder neural network.
The batch_size in the figure means the number of batches per training, num_layer is
the number of network loop iterations, T is the time step required for prediction, and
input_size represents the number of lanes.

Hqe =
[
H 1

qe,H
2
qe,...,H

n
qe

]
Hve =

[
H 1

ve,H
2
ve,...,H

n
ve
]
θ =Wqv ·

[
Hve,Hqe

]
+bqv (4)
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Figure 7 The context vector.
Full-size DOI: 10.7717/peerjcs.470/fig-7

where Hn
qe and Hn

ve is the final hidden state in each unit of speed process network and the
encoder network respectively. Hve and Hqe are the matrices formed by the final hidden
state.Wqv is the weight item and bqv is the bias item in the linear transform.

As shown in the Fig. 8, the input of the i′- th temporal unit is θi′ .Wemark the final hidden
state and final cell state as H i′−1

qd and C i′−1
qd respectively. Temporal attention mechanism

formula can be written as:

dki′ = tanh
(
W i′

ad ·
[
H i′−1

qd ,C i′−1
qd ,θ ki′

]
+bi

′

ad

)
(5)

where W i′
ad is the weight matrix and bi

′

ad is the bias item, which are all the learnable
parameters.

After obtaining dki′ for each time, we apply Softmax function to normalize it, and get
attention weight βk

i′ . Finally we weight the original data θi′ with β
k
i′ to get θ̂i′ . Then θ̂i′ is

used together with historical real traffic flow of target lane y i
′

his to get ŷ i
′

his:

ŷ i
′

his=W i′
f ,d

[
θ̂i′

y this

]
+bi

′

f ,d (6)

According to the above method, each unit in decoder network iteratively allocates temporal
weights until the N - th unit. N is the size of the dimension of θ(excluding the temporal
dimension). Finally, we concatenate HN

qd and θ̂N , and feed the matrix into fully connected

(FC) layer to get the result of predicted traffic volume qi
′
+τ

tag :

qi
′
+τ

tag =WN
fd

[
θ̂N

HN
qd

]
+ b̂Nfd (7)

The training process
In the training process of ST-AFN, training data are normalized and scrubbed to make
up each batch, and the learning rate is adjusted using ReduceLROnPlateau: the maximum
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tolerance threshold is set, and the learning rate is dynamically adjusted downward using
the loss value in each epoch as an index. The specific process is as follows:

Code 1. The training method of ST-AFN

Evaluation
In this chapter, we use the real-world traffic data to evaluate the proposed ST-AFN and
the benchmark algorithms. The experiments run on 64G Ubuntu 18.04 system, which is
equipped with Intel Xeon Silver and NVDIA Quadro M4000. The hyperparameters in each
experimental group were set uniformly: the learning rate is set to 0.001, batch size is set to
128, the epoch size is set to 100.

Data set
The real traffic data required for the experiment are collected in Xiaoshan District,
Hangzhou, China from July 1, 2017 to October 1, 2017, for a total of 123 days. These
data are collected by surveillance cameras at various intersections. The main format of
the original data is shown in Table 1 (At a 4-lane intersection, lane 1 usually refers to the
left-turn or U-turn lane, and lane 4 is the right-turn lane. Similarly, at a 5-lane intersection,
lane 5 is the right turn lane).

Because the original data are relatively scattered, we filter out the required vehicles based
on the location attributes of the vehicle’s departure time and the camera location, and
eliminate the error data (the departure time is earlier than the entry time, the license plate
number is empty, etc.). The distance is a fixed value, and the vehicle travel time can be
obtained from the entry and departure time. What’s more, the average speed is calculated
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Figure 8 Temporal decoder unit.
Full-size DOI: 10.7717/peerjcs.470/fig-8

by dividing the distance between intersections by the driving time. Then we filter out the
data of each lane in each intersection.

As shown in Fig. 9A, each lane under the intersection of Tonghui Road-Changyuan
Road and the intersection of Shixin Road-Boxue Road is used as the target lane in the two
experiments, and the remaining lanes under the road participated in the experiment as
candidate lanes. Data is counted at five-minute intervals (sum the flow in five minutes and
average the speed), so each detector can generate 288 records per day. Then we draw a curve
according to the obtained characteristics parameters to judge the noise points and make
it as smooth as possible. A large amount of data is sufficient to support the training and
testing of the model. In order to reduce the interference caused by noisy data, abnormal
points are repaired by adjacent normal records. Then the StandardScaler method is applied
to the repaired data.

The data of Xiaoshan District, Hangzhou is used as the main experimental data and
to prove ST-AFN’s portability, we collect real traffic data from Qingdao for verification.
The data is provided by the traffic big data competition held in Qingdao in October 2019.
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Table 1 The format of the original data.

Column name Annotate

vehicleID License plate
entryTime Entry time of the vehicle
leaveTime Leave time of the vehicle
vehicleType Vehicle type
cameraID The id of camera
cameraPos Place where the camera is placed
laneID Lane number the vehicle travels on
turnID Steering of the vehicle

Figure 9 Location of experimental data. (A) Two experimental sections in Xiaoshan District, Hangzhou.
(B) An experimental section in Licang District, Qingdao.

Full-size DOI: 10.7717/peerjcs.470/fig-9

The original data is mainly composed of laneID, speed, cameraPos, timestamp, etc., from
which we selected an arterial with different directions and adjacencies as the data set. The
processing strategy is similar to the above, data is counted at five-minute intervals.

As shown in Fig. 9B, each lane under the intersection of Jinshui Road-Dongchuan Road
is used as the target lane.

The lanes selected for each of the three experimental datasets are presented in Table 2,
arranged from top to bottom in the order in which they connect each road in a north-south
direction. And in the Jinshui Road experiment set, they are arranged form left to right.
The intersections where the target lanes are located in each experiment are marked by ‘*’
(e.g., *Changyuan Road-N), and the N, E, and W after the intersections are directional
characters (e.g., -N for the North intersection, -N&E&W for the North, East, and West
intersections).

Baseline methods
To compare with our model, serval parametric, non-parametric, and neural network
models were selected as baseline methods (including a state of the art lane-level forecasting
method).

• SVR: Support vector regression is a common method in traffic flow prediction. As an
important branch of support vectormachines, their difference is mainly in the evaluation
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Table 2 The list of selected lanes.

Experiment sets Name of lanes Number of lanes Lane flow

Zhenning Road-N&E&W 5 Left, Straight, Right
Jianshe4 Road-N&E&W 5 Left, Straight, Right

Tonghui Road *Changyuan Road-N 4 Left, Straight, Right
Jianshe2 Road-N&E&W 4 Left, Straight, Right
Jianshe1 Road-N 2 Straight
Jianshe2 Road-N&E&W 4 Left, Straight, Right
Jianshe1 Road-N&E&W 4 Left, Straight, Right

Shixin Road *Boxue Road-N 4 Left, Straight, Right
Jincheng Road-N&E&W 5 Left, Straight, Right
Shanyin Road-N 3 Straight
Tongchuan Road-N&E&W 5 Left, Straight, Right
Hanchuan Road-N&E&W 3 Left, Straight, Right

Jinshui Road Dongchuan Road-N 5 Left, Straight, Right
Xichuan Road-N&E&W 3 Left, Straight, Right
Longchuan Road-N 2 Straight

index. The optimal hyperplane in SVM allowsmultiple categories to be the farthest apart,
while the optimal hyperplane for SVR is the one that minimizes the sum of deviations
of all sample points
• ARIMA: Autoregressive integrated moving average is one of the time series forecasting
methods. It contains an auto regressive block and a moving average block.
• LSTM: LSTM composed of input gates, output gates, and forget gates is an improved
version of Recurrent Neural Network (RNN).
• TM-CNN: TM-CNN (Ke et al., 2020) refers a two-stream multi-channel convolutional
neural network. Firstly the authors convert traffic speed data and volume data into
matrices. Then they expand each lane data into each channel matrix, as the input of
CNN. And obtain the final result after fusion.
• FDL: FDL (Gu et al., 2019) refers a fusion deep learning model. Firstly, entropy-based
gray relational analysis method is utilized to judge the dependency between lanes. Then
they utilize the LSTM-GRU structure network to complete the lane-level speed forecast.
It is one of state of the art models in lane level prediction.

Performance metric
In this study, we evaluate the prediction results with Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE).

MAE =
1
N

N∑
i=1

∣∣ŷi−yi∣∣ (8)

RMSE =

√√√√ 1
N

N∑
i=1

(
ŷi−yi

)2 (9)
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MAPE =
100%
N

N∑
i=1

∣∣∣∣ ŷi−yiyi

∣∣∣∣ (10)

whereN is the number of forecast targets, yi is the history value and ŷi is the forecast result.

RESULT
Table 3 shows the experimental results. As can be seen, ST-AFN achieves the lowest RMSE
(mean 2.541), MAE (mean 1.379), and MAPE (mean 9.720) which are much lower than
baseline methods. The traditional machine learning method SVR cannot cope with this
problem well, with average RMSE, average MAE, and average MAPE of 5.073, 3.913, and
14.482, respectively. The bad performance of time series method ARIMA indicates that
the spatial dependency is as important as temporal dependency during the predictions
and simple model structures cannot handle the complex pattern recognition between
lanes. The single network LSTM perform better than ARIMA with average RMSE, average
MAE, and average MAPE of 4.273, 2.866, and 13.368, respectively. The ST-AFN* (without
speed-processing neural network) does not exceed FDL, which justifies the need for fusion
of speed characteristic parameters and traffic flow characteristic parameters. The state of
the art method, FDL, achieves accurate predictions with average RMSE, average MAE, and
average MAPE of 2.772, 1.633, and 13.333, respectively.

The difference in traffic flow between weekdays and weekends is obvious, for example
the peak trend is obvious in the morning and evening on weekdays, while the traffic flow
is large throughout the day on weekends. We divide the data set into a training set and
a test set at a ratio of 7:3. The test set has a total of 37 days, including 27 weekdays and
10 weekends. Table 4 shows the ST-AFN’s performances. It can be obtained from the
results. Although the difference is small, ST-AFN has achieved better prediction results on
weekdays when the morning and evening peaks are obvious.

We use the data set from Jinshui Road, Qingdao to prove ST-AFN’s portability. The
data is provided by the big data competition held in Qingdao in October 2019. In this data
set, compared with the state of the art lane-level forecasting method FDL, ST-AFN achieves
the same better results as before. This proves the great portability of ST-AFN. There are
three main reasons in our opinion. Firstly, we have developed a processing strategy for
traffic data in a standard format. Secondly, the specific lane selection strategy is based on
the traffic volume, vehicle speed and complex road structures. Last, ST-AFN has a strong
self-learning ability and can achieve a high accuracy rate after training with temporal series
data and spatial series data. The performance of ST-AFN under sparse data conditions
remains to be discussed. As shown in Table 5.

In the field of natural language processing, the seq2seq architecture is usually used in
real-time translation tasks due to its rapidity (Maharjan et al., 2018). And the attention
mechanism emphasizes that when facing a series of problems, it is more reasonable
to allocate limited computing power, filter out high-value information, and improve
processing efficiency (Han et al., 2020). It can get a relatively large accuracy improvement
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Table 3 Comparison among different models.

Algorithm Error Index Tonghui/Shixin-L1 Tonghui/Shixin-L2 Tonghui/Shixin-L3 Tonghui/Shixin-L4

MAE 4.064 3.733 3.687 4.168
SVR RMSE 4.807 5.09 5.26 5.136

MAPE 14.847 13.926 14.367 14.798
MAE 3.845 3.793 3.856 3.488

ARIMA RMSE 4.821 4.955 5.178 4.899
MAPE 13.845 14.718 14.296 14.323
MAE 3.054 2.987 2.576 2.845

LSTM RMSE 3.746 4.547 4.824 3.977
MAPE 12.798 12.854 13.452 14.369
MAE 2.265 2.077 1.732 2.184

ST-AFN* RMSE 3.456 3.848 3.125 3.282
MAPE 13.063 11.985 12.457 12.783
MAE 1.665 1.548 1.618 1.826

TM-CNN RMSE 3.635 3.320 3.159 3.516
MAPE 13.153 12.018 11.784 12.438
MAE 1.793 1.615 1.488 1.634

FDL RMSE 2.715 2.571 2.943 2.858
MAPE 11.578 11.454 10.636 11.662
MAE 1.484 1.346 1.228 1.465

ST-AFN RMSE 2.533 2.422 2.701 2.517
MAPE 10.136 9.415 9.351 9.976

Table 4 Comparison of the results in weekdays and weekends.

Lane ID Weekdays Weekends

MAE RMSE MAPE MAE RMSE MAPE

Tonghui/Shixin-L1 1.473 2.527 10.114 1.506 2.596 10.328
Tonghui/Shixin-L2 1.291 2.375 9.435 1.416 2.630 9.256
Tonghui/Shixin-L3 1.214 2.617 9.304 1.311 2.820 9.483
Tonghui/Shixin-L4 1.494 2.413 10.038 1.402 2.314 9.866

with a relatively small time consumption. Figure 9 shows the situation of each epoch during
training.

It can be seen from Fig. 10 that three algorithms have completed training after 50
epochs. TM-CNN (in blue) improves quickly at the beginning, but its training is completed
relatively early, and the final loss value is higher. ST-AFN’s training requires more epochs
and achieves the best results. Figures 10A and 10B represent the results of Shixin Road and
Tonghui Road respectively.

Figure 11 and Table 6 show the training time of threemodels. Due to its seq2seq structure
and attention module, ST-AFN training speed is slightly faster than FDL based on the
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Table 5 Comparison of the results in Jinshui Road.

Algorithm Error Index Jinshui-L1 Jinshui-L2 Jinshui-L3 Jinshui-L4 Jinshui-L5

MAE 2.085 2.430 1.817 2.522 2.211
TM-CNN RMSE 5.241 21 4.043 4.253 \2 4.350 4.520

MAPE 12.436 12.133 11.763 12. 158 12.371
MAE 1.812 1.745 1.684 1.783 1.812

FDL RMSE 4.832 3.840 3.675 4.603 4.563
MAPE 12.732 11.989 11.816 12.564 11.866
MAE 1.552 1.420 1.394 1.432 1.534

ST-AFN RMSE 3.425 3.156 2.935 3.526 4.106
MAPE 11.953 10.843 10.849 11.616 11.340

Figure 10 The situation of each epoch during training. (A) Training losses of Tonghui road. (B) Train-
ing losses of Shixin road.

Full-size DOI: 10.7717/peerjcs.470/fig-10

Table 6 Comparison among different models in training time.

Algorithm Tonghui Road Shixin Road

TM-CNN 190.54 s 204.37 s
FDL 133.99 s 145.72 s
ST-AFN 127.36 s 136.84 s

gray correlation mechanism. TM-CNN takes longer because of its frequent convolution
operation.

Figures 12, 13 show that ST-AFN outperforms the state of art model FDL on the
prediction of traffic flow in each lane on a certain day. In the morning and evening peaks,
this superiority is more obvious.

The attention result of ST-AFN is shown in the Figs. 14 and 15. In this picture, the y-axis
represents the time intervals, and points on the x-axis represent the lanes. In detailed, we
use the following lane sorting rules: Lanes closer to the target lane are assigned smaller
values. If the distances are equal, it follows the order of upstream and downstream.
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Figure 11 The training time of three models. (A) The training time of Tonghui road. (B) The training
time of Shixin road.

Full-size DOI: 10.7717/peerjcs.470/fig-11

Figure 12 Comparison of ST-AFNwith FDL on each lane (Tonghui Road). (A) The experimental result
of Lane 1. (B) The experimental result of Lane 2. (C) The experimental result of Lane 3. (D) The experi-
mental result of Lane 4.

Full-size DOI: 10.7717/peerjcs.470/fig-12

The darker the color of each point in the figure means that it achieves a greater weight
score. From the result we can mainly summarize that the closer the time, the closer
the distance, the greater the weight value will be. For the same distance, the upstream
lane has a greater weight of influence compared to the downstream lane. Moreover, in
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Figure 13 Comparison of ST-AFNwith FDL on each lane (Shixin Road). (A) The experimental result of
Lane 1. (B) The experimental result of Lane 2. (C) The experimental result of Lane 3. (D) The experimen-
tal result of Lane 4.

Full-size DOI: 10.7717/peerjcs.470/fig-13

this experiment, the temporal dependency plays a more important role than the spatial
dependency.

CONCLUSION
In this paper, we integrate attention mechanism with deep learning techniques to yield the
spatial–temporal attention mechanism based fusion network (ST-AFN). Furthermore, a
specific ground road lane selection method is also proposed to ST-AFN. The experimental
results show that out model outperforms than the previous state of the art algorithms in
lane-level traffic prediction.
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Figure 14 The attention result of ST-AFN (Tonghui Road). (A) The attention result of Lane 1. (B) The
attention result of Lane 2. (C) The attention result of Lane 3. (D) The attention result of Lane 4.

Full-size DOI: 10.7717/peerjcs.470/fig-14
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Figure 15 The attention result of ST-AFN (Shixin Road). (A) The attention result of Lane 1. (B) The at-
tention result of Lane 2. (C) The attention result of Lane 3. (D) The attention result of Lane 4.
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