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Drug repositioning methods attempt to identify novel therapeutic indications for marketed
drugs. Strategies include the use of side-effects to assign new disease indications, based
on the premise that both therapeutic effects and side-effects are measurable physiological
changes resulting from drug intervention. Drugs with similar side-effects might share a
common mechanism of action linking side-effects with disease treatment, or may serve as
a treatment by “rescuing” a disease phenotype on the basis of their side-effects; therefore
it may be possible to infer new indications based on the similarity of side-effect profiles.
While existing methods leverage side-effect data from clinical studies and drug labels,
evidence suggests this information is often incomplete due to under-reporting. Here, we
describe a novel computational method that uses side-effect data mined from social media
to generate a sparse undirected graphical model using inverse covariance estimation with
l1-norm regularization. Results show that known indications are well recovered while
current trial indications can also be identified, suggesting that sparse graphical models
generated using side-effect data mined from social media may be useful for computational
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Abstract 1

Drug repositioning methods attempt to identify novel therapeutic indications for mar- 2

keted drugs. Strategies include the use of side-effects to assign new disease indications, 3

based on the premise that both therapeutic effects and side-effects are measurable physi- 4

ological changes resulting from drug intervention. Drugs with similar side-effects might 5

share a common mechanism of action linking side-effects with disease treatment, or may 6

serve as a treatment by “rescuing” a disease phenotype on the basis of their side-effects; 7

therefore it may be possible to infer new indications based on the similarity of side-effect 8

profiles. While existing methods leverage side-effect data from clinical studies and drug 9

labels, evidence suggests this information is often incomplete due to under-reporting. 10

Here, we describe a novel computational method that uses side-effect data mined from 11

social media to generate a sparse undirected graphical model using inverse covariance 12

estimation with `1-norm regularization. Results show that known indications are well 13

recovered while current trial indications can also be identified, suggesting that sparse 14

graphical models generated using side-effect data mined from social media may be useful 15

for computational drug repositioning. 16

Introduction 17

Drug repositioning is the process of identifying novel therapeutic indications for marketed 18

drugs. Compared to traditional drug development, repositioned drugs have the advan- 19

tage of decreased development time and costs given that significant pharmacokinetic, 20

toxicology and safety data will have already been accumulated, drastically reducing the 21

risk of attrition during clinical trials. In addition to marketed drugs, it is estimated 22

that drug libraries may contain upwards of 2000 failed drugs that have the potential 23

to be repositioned, with this number increasing at a rate of 150-200 compounds per 24

year [1]. Repositioning of marketed or failed drugs has opened up new sources of revenue 25

for pharmaceutical companies with estimates suggesting the market could generate 26

multi-billion dollar annual sales in coming years [2,3]. While many of the current suc- 27

cesses of drug repositioning have come about through serendipitous clinical observations, 28

systematic data-driven approaches are now showing increasing promise given their ability 29

to generate repositioning hypotheses for multiple drugs and diseases simultaneously 30

using a wide range of data sources, while also incorporating prioritisation information to 31

further accelerate development time [4]. Existing computational repositioning strategies 32

generally use similar approaches but attempt to link different concepts. They include 33
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the use of transcriptomics methods which compare drug response gene-expression with 34

disease gene-expression signatures [5–9], genetics-based methods which connect a known 35

drug target with a genetically associated phenotype [10–14], network-based methods 36

which link drugs or diseases in a network based on shared features [15–19], and methods 37

that use side-effect similarity to infer novel indications [20–27]. 38

39

Drug side-effects can be attributed to a number of molecular interactions including 40

on or off-target binding, drug-drug interactions [28,29], dose-dependent pharmacokinet- 41

ics, metabolic activities, downstream pathway perturbations, aggregation effects, and 42

irreversible target binding [20, 30]. While side-effects are considered the unintended 43

consequence of drug intervention, they can provide valuable insight into the physiological 44

changes caused by the drug that are difficult to predict using pre-clinical or animal 45

models. This relationship between drugs and side-effects has been exploited and used 46

to identify shared target proteins between chemically dissimilar drugs, allowing new 47

indications to be inferred based on the similarity of side-effect profiles [20]. One ratio- 48

nale behind this and related approaches is that drugs sharing a significant number of 49

side-effects might share a common mechanism of action linking side-effects with disease 50

treatment - side-effects essentially become a phenotypic biomarker for a particular dis- 51

ease [21,25]. Repositioned drugs can also be said to “rescue” a disease phenotype, on 52

the basis of their side-effects; for example, drugs which cause hair growth as a side-effect 53

can potentially be repositioned for the treatment of hair loss, while drugs which cause 54

hypotension as a side-effect can be used to treat hypertension [21]. Examples of drugs 55

successfully repositioned based on phenotypic rescue that have made it to market include 56

exenatide, which was shown to cause significant weight loss as a side-effect of type 2 57

diabetes treatment, leading to a trial of its therapeutic effect in non-diabetic obese 58

subjects [31, 32], minoxidil which was originally developed for hypertension but found to 59

cause hair growth as a side-effect, leading to its repositioning for the treatment of hair 60

loss and androgenetic alopecia [33, 34], and, perhaps most famously, sildenafil citrate 61

which was repositioned while being studied for the primary indication of angina to the 62

treatment of erectile dysfunction [35]. 63

64

Existing repositioning methods based on side-effects, such as the work of Campillos 65

et al. [20] and Yang and Agarwal [21], have used data from the SIDER database [36], 66

which contains side-effect data extracted from drug labels, largely collected from clinical 67

trials during the pre-marketing phase of drug development. Other resources include 68

Meyler’s Side Effects of Drugs [37], which is updated annually in the Side Effects of 69

Drugs Annual [38], and the Drugs@FDA database [39], while pharmacovigilance au- 70

thorities attempt to detect, assess and monitor reported drug side-effects post-market. 71

Despite regular updates to these resources and voluntary reporting systems, there is 72

evidence to suggest that side-effects are substantially under-reported, with some esti- 73

mates indicating that up to 86% of adverse drug reactions go unreported for reasons 74

that include lack of incentives, indifference, complacency, workload and lack of training 75

among healthcare professionals [40–43]. Side-effects reported from clinical trials also 76

have limitations due to constraints on scale and time, as well as pharmacogenomic 77

effects [44]. A number of cancer drug studies have also observed that women are often 78

significantly under-represented in clinical trials, making it difficult to study the efficacy, 79

dosing and side-effects of treatments which can work differently in women and men; 80

similar problems of under-representation also affect paediatrics, as many drugs are only 81

ever tested on adults [45]. 82

83

Recently, efforts to mine user-generated content and social media for public-health 84

issues and side-effects have shown promising performance, demonstrating correlations 85
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between the frequency of side-effects extracted from unlabelled data and the frequency 86

of documented adverse drug reactions [46]. Despite this success, a number of significant 87

natural language processing challenges remain. These include dealing with idiomatic 88

expressions, linguistic variability of expression and creativity, ambiguous terminology, 89

spelling errors, word shortenings, and distinguishing between the symptoms that a drug 90

is treating and the side-effects it causes. Some of the solutions proposed to deal with 91

these issues include the use of specialist lexicons, appropriate use of semantic analysis, 92

and improvements to approximate string matching, modeling of spelling errors, and 93

contextual analysis surrounding the mentions of side-effects [46,47], while maintaining 94

a list of symptoms for which a drug is prescribed can help to eliminate them from the 95

list of side-effects identified [48]. Although much of the focus has explored the use of 96

online forums where users discuss their experience with pharmaceutical drugs and report 97

side-effects [49], the growing popularity of Twitter [50], which at the time of writing has 98

over 300 million active monthly users, provides a novel resource upon which to perform 99

large-scale mining of reported drug side-effects in near real-time from the 500 millions 100

tweets posted daily [51]. While only a small fraction of these daily tweets are related to 101

health issues, the sheer volume of data available presents an opportunity to bridge the 102

gap left by conventional side-effects reporting strategies. Over time, the accumulation of 103

side-effect data from social media may become comparable or even exceed the volume 104

of traditional resources, and at the very least should be sufficient to augment existing 105

databases. Additionally, the cost of running such a system continuously is relatively 106

cheap compared to existing pharmacovigilance monitoring, presenting a compelling 107

economic argument supporting the use of social media for such purposes. Furthermore, 108

the issues related to under-representation described above may be addressed. 109

110

Freifeld et al. [52] presented a comparison study between drug side-effects found 111

on Twitter and adverse events reported in the FDA Adverse Event Reporting System 112

(FAERS). Starting with 6.9 million tweets, they used a set of 23 drug names and a list 113

of symptoms to reduce that data to a subset of 60,000 tweets. After manual examina- 114

tion, there were 4,401 tweets identified as mentioning a side-effect, with a Spearman 115

rank correlation found to be 0.75. Nikfarjam et al. [53] introduce a method based on 116

Conditional Random Fields (CRF) to tag mentions of drug side-effects in social media 117

posts from Twitter or the online health community DailyStrength. They use features 118

based on the context of tokens, a lexicon of adverse drug reactions, Part-Of-Speech 119

(POS) tags and a feature indicating whether a token is negated or not. They also used 120

embedding clusters learned with Word2Vec [54]. They reported an F1 score of 82.1% 121

for data from DailyStrength and 72.1% for Twitter data. Sarker and Gonzalez [55] 122

developed classifiers to detect side-effects using training data from multiple sources, 123

including tweets [56], DailyStrength, and a corpus of adverse drug events obtained from 124

medical case reports. They reported an F1 score of 59.7% when training a Support 125

Vector Machine (SVM) with Radial Basis Function (RBF) kernel on all three datasets. 126

Recently, Karimi et al. [57] presented a survey of the field of surveillance for adverse 127

drug events with automatic text and data mining techniques. 128

129

In this study, we describe a drug repositioning methodology that uses side-effect data 130

mined from social media to infer novel indications for marketed drugs. We use data from 131

a pharmacovigilance system for mining Twitter for drug side-effects [58]. The system 132

uses a set of cascading filters to eliminate large quantities of irrelevant messages and 133

identify the most relevant data for further processing, before applying a SVM classifier 134

to identify tweets that mention suspected adverse drug reactions. Using this data we 135

apply sparse inverse covariance estimation to construct an undirected graphical model, 136

which offers a way to describe the relationship between all drug pairs [59–61]. This is 137
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achieved by solving a maximum likelihood problem using `1-norm regularization to make 138

the resulting graph as sparse as possible, in order to generate the simplest graphical 139

model which fully explains the data. Results from testing the method on known and 140

proposed trial indication recovery suggest that side-effect data mined from social media 141

in combination with a regularized sparse graphical model can be used for systematic 142

drug repositioning. 143

144

Methods 145

Mining Twitter for drug side-effects 146

We used the SoMeDoSEs pharmacovigilance system [58] to extract reports of drug side- 147

effects from Twitter over a 6 month period between January and June 2014. SoMeDoSEs 148

works by first applying topic and volume filters to identify Tweets that contain keywords 149

relating to drugs, are written in English, are not re-tweets and do not contain a hyperlink 150

to a web page, since these posts are typically commercial offerings. Side-effect were 151

then mapped to an entry in the FDA Adverse Event Reporting System. Tweets that 152

pass these filters are then classified by a linear SVM to distinguish those that mention a 153

drug side-effect from those that do not. The SVM classifier uses a number of natural 154

language features including unigrams and bigrams, part-of-speech tags, sentiment scores, 155

text surface features, and matches to gazetteers related to human body parts, side-effect 156

synonyms, side-effect symptoms, causality indicators, clinical trials, medical professional 157

roles, side effect-triggers and drugs. 158

159

For each gazetteer, three features were created: a binary feature, which is set to 1 if 160

a tweet contains at least one sequence of tokens matching an entry from the gazetteer, 161

the number of tokens matching entries from the gazetteer, and the fraction of charac- 162

ters in tokens matching entries from the gazetteer. For side-effect synonyms we used 163

the Consumer Health Vocabulary (CHV) [62], which maps phrases to Unified Medical 164

Language System concept universal identifiers (CUI) and partially addresses the issue 165

of misspellings and informal language used to discuss medical issues in tweets. The 166

matched CUIs were also used as additional features. 167

168

To develop the system, 10,000 tweets which passed the topic and volume filters were 169

manually annotated as mentioning a side-effect or not. Using a split of 8,000 tweets 170

for training, 1,000 for development, and 1,000 for testing, the SVM classifier that used 171

all the features achieved a precision of 55.0%, recall of 66.9%, and F1 score of 60.4% 172

when evaluated using the 1,000 test tweets. This is statistically significantly higher 173

than the results achieved by a linear SVM classifier using only unigrams and bigrams as 174

features (precision of 56.0%, recall of 54.0% and F1 score of 54.9%). One of the sources 175

of false negatives was the use of colloquial and indirect expressions by Twitter users to 176

express that they have experienced a side-effect. We also observed that a number of 177

false positives discuss the efficacy of drugs rather than side-effects. 178

Twitter data 179

Over the 6 month period, SoMeDoSEs typically identified ∼700 tweets per day that 180

mentioned a drug side-effect, resulting in a data set of 620 unique drugs and 2196 unique 181

side-effects from 108,009 tweets, once drug synonyms had been resolved to a common 182

name using World Drug Index [63] and drugs with only a single side-effect were excluded. 183

We were also careful to remove indications that were falsely identified as side-effects 184
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using drug indications from Cortellis Clinical Trials Intelligence [64]. We used this data 185

to construct a 2196 row by 620 column matrix of binary variables X, where x ∈ {0, 1}, 186

indicating whether each drug was reported to cause each side-effect in the Twitter data 187

set. 188

189

Calculating the sample covariance matrix 190

Using this data, we are able to form the sample covariance matrix S for binary variables 191

as follows [65], such that element Si,j gives the covariance of drug i with drug j : 192

Si,j =
1

n− 1

n∑
k=1

(xki − x̄i)(xkj − x̄j)

=
1

n− 1

n∑
k=1

xkixkj − x̄ix̄j

(1)

where x̄i = 1
n

∑n
k=1 xki and xki is the k-th observation (side-effect) of variable (drug) 193

Xi. It can be shown than the average product of two binary variables is equal to their 194

observed joint probabilities such that: 195

1

n− 1

n∑
k=1

xkixkj = P (Xj = 1|Xi = 1) (2)

196

where P (Xj = 1|Xi = 1) refers to the conditional probability that variable Xj equals 197

one given that variable Xi equals one. Similarly, the product of the means of two binary 198

variables is equal to the expected probability that both variables are equal to one, under 199

the assumption of statistical independence: 200

x̄ix̄j = P (Xi = 1)P (Xj = 1) (3)

201

Consequently, the covariance of two binary variables is equal to the difference between 202

the observed joint probability and the expected joint probability: 203

Si,j = P (Xj = 1|Xi = 1)− P (Xi = 1)P (Xj = 1) (4)

204

Our objective is to find the precision or concentration matrix θ by inverting the sample 205

covariance matrix S. Using θ, we can obtain the matrix of partial correlation coefficients 206

ρ for all pairs of variables as follows: 207

ρi,j = − θi,j√
θi,iθj,j

(5)

208

The partial correlation between two variables X and Y given a third, Z, can be defined as 209

the correlation between the residuals Rx and Ry after performing least-squares regression 210

of X with Z and Y with Z, respectively. This value, denotated ρx,y|z, provides a measure 211
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of the correlation between two variables when conditioned on the third, with a value 212

of zero implying conditional independence if the input data distribution is multivariate 213

Gaussian. The partial correlation matrix ρ, however, gives the correlations between all 214

pairs of variables conditioning on all other variables. Off-diagonal elements in ρ that 215

are significantly different from zero will therefore be indicative of pairs of drugs that 216

show unique covariance between their side-effect profiles when taking into account (i.e. 217

removing) the variance of side-effects profiles amongst all the other drugs. 218

Shrinkage estimation 219

For the sample covariance matrix to be easily invertible, two desirable characteristics 220

are that it should be positive definite, i.e. all eigenvalues should be distinct from zero, 221

and well-conditioned, i.e. the ratio of its maximum and minimum singular value should 222

not be too large. This can be particularly problematic when the sample size is small 223

and the number of variables is large (n < p) and estimates of the covariance matrix 224

become singular. To ensure these characteristics, and speed up convergence of the 225

inversion, we condition the sample covariance matrix by shrinking towards an improved 226

covariance estimator T, a process which tends to pull the most extreme coefficients 227

towards more central values thereby systematically reducing estimation error [66], using 228

a linear shrinkage approach to combine the estimator and sample matrix in a weighted 229

average: 230

S′ = αT + (1− α)S (6)

231

where α ∈ {0, 1} denotes the analytically determined shrinkage intensity. We apply the 232

approach of Schäfer and Strimmer, which uses a distribution-free, diagonal, unequal 233

variance model which shrinks off-diagonal elements to zero but leaves diagonal entries 234

intact, i.e. it does not shrink the variances [67]. Shrinkage is actually applied to the 235

correlations rather than the covariances, which has two distinct advantages: the off- 236

diagonal elements determining the shrinkage intensity are all on the same scale, while 237

the partial correlations derived from the resulting covariance estimator are independent 238

of scale. 239

Graphical lasso for sparse inverse covariance estimation 240

A useful output from the covariance matrix inversion is a sparse ρ matrix containing 241

many zero elements, since, intuitively, we know that relatively few drug pairs will share 242

a common mechanism of action, so removing any spurious correlations is desirable and 243

results in a more parsimonious relationship model, while the non-zero elements will 244

typically reflect the correct positive correlations in the true inverse covariance matrix 245

more accurately [68]. However, elements of ρ are unlikely to be zero unless many elements 246

of the sample covariance matrix are zero. The graphical lasso [60, 61, 69] provides a way 247

to induce zero partial correlations in ρ by penalizing the maximum likelihood estimate 248

of the inverse covariance matrix using an `1-norm penalty function. The estimate can 249

be found by maximizing the following log-likelihood using the block coordinate descent 250

approach described by Friedman et al. [60]: 251

log det θ − tr(S′θ)− λ‖θ‖1 (7)

252

Here, the first term is the Gaussian log-likelihood of the data, tr denotes the trace 253
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operator and ‖θ‖1 is the `1-norm - the sum of the absolute values of the elements of 254

θ, weighted by the non-negative tuning paramater λ. The specific use of the `1-norm 255

penalty has the desirable effect of setting elements in θ to zero, resulting in a sparse 256

matrix, while the parameter λ effectively controls the sparsity of the solution. This 257

contrasts with the use of an `2-norm penalty which will shrink elements but will never 258

reduce them to zero. While this graphical lasso formulation is based on the assumption 259

that the input data distribution is multivariate Gaussian, Banerjee et al. showed that the 260

dual optimization solution also applies to binary data, as is the case in our application [61]. 261

262

It has been noted that the graphical lasso produces an approximation of θ that is 263

not symmetric, so we update it as follows [70]: 264

θ ← (θ + θT )

2
(8)

265

The matrix ρ is then calculated according to Equation 5, before repositioning predictions 266

for drug i are determined by ranking all other drugs according to their absolute values 267

in ρi and assigning their indications to drug i. 268

Results and Discussion 269

Recovering known indications 270

To evaluate our method we have attempted to predict repositioning targets for indications 271

that are already known. If, by exploiting hindsight, we can recover these, then our method 272

should provide a viable strategy with which to augment existing approaches that adopt 273

an integrated approach to drug repositioning [19]. Figure 1a shows the performance 274

of the method at identifying co-indicated drugs at a range of λ values, resulting in 275

different sparsity levels in the resulting ρ matrix. We measured the percentage at which 276

a co-indicated drug was ranked amongst the top 5, 10, 15, 20 and 25 predictions for the 277

target drug, respectively. Of the 620 drugs in our data set, 595 had a primary indication 278

listed in Cortellis Clinical Trials Intelligence, with the majority of the remainder being 279

made up of dietary supplements (e.g. methylsulfonylmethane) or plant extracts (e.g. 280

Agaricus brasiliensis extract) which have no approved therapeutic effect. Rather than 281

removing these from the data set, they were left in as they may contribute to the partial 282

correlation between pairs of drugs that do have approved indications. 283

284

Results indiciate that the method achieves its best performance with a λ value of 285

10−9 where 42.41% (243/595) of targets have a co-indicated drug returned amongst 286

the top 5 ranked predictions (Figure 1a). This value compares favourably with both 287

a strategy in which drug ranking is randomized (13.54%, standard error ±0.65), and 288

another in which drugs are ranked according to the Jaccard index (28.75%). In Ye 289

et al. [27], a related approach is used to construct a repositioning network based on 290

side-effects extracted from the SIDER database, Meyler’s Side Effects of Drugs, Side 291

Effects of Drugs Annual, and the Drugs@FDA database [36–39], also using the Jaccard 292

index as the measure of drug-drug similarity. Here, they report an equivilent value of 293

32.77% of drugs having their indication correctly predicted amongst the top 5 results. 294

While data sets and underlying statistical models clearly differ, these results taken 295

together suggest that the use of side-effect data mined from social media can certainly 296

offer comparable performance to methods using side-effect data extracted from more 297

conventional resources, while the use of a global statistical model such as the graphical 298
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Figure 1. Recovery of known indications (a) Percentage at which a co-indicated drug
is returned amongst the top 5, 10, 15, 20 and 25 ranked predictions for a given target,
at different λ values - the parameter that weights the `1-norm penalty in the graphical
lasso (Equation 7) (b) Sparsity of ρ matrix at different λ values, i.e. the number of
non-zero elements in the upper triangle divided by (n2 − n)/2.

lasso does result in improved performance compared to a pairwise similarity coefficient 299

such as the Jaccard index. 300

301

To further investigate the influence of the provenance of the data, we mapped our 302

data set of drugs to ChEMBL identifiers [71,72] which we then used to query SIDER 303

for side-effects extracted from drug labels. This resulted in a reduced data set of 229 304

drugs, in part due to the absence of many combination drugs from SIDER (e.g. the 305

antidepressant Symbyax which contains olanzapine and fluoxetine). Using the same 306

protocol described above, best performance of 53.67% (117/229) was achieved with a 307

slightly higher λ value of 10−6. Best performance on the same data set using side-effects 308

derived from Twitter was 38.43% (88/229), again using a λ value of 10−9, while the 309

randomized strategy achieved 12.05% (standard error ±1.14), indicating that the use 310

of higher quality side-effect data from SIDER allows the model to achieve better per- 311

formance than is possible using Twitter data. Perhaps more interestingly, combining 312

the correct predictions between the two datasources reveals that 30 are unique to the 313

Twitter model, 59 are unique to the SIDER model, with 58 shared, supporting the use 314

side-effect data mined from social media to augment conventional resources. 315

316

We also investigated whether our results were biased by the over-representation 317

of particular drug classes within our data set. Using Using Cortellis Clinical Trials 318

Intelligence, we were able to identify the broad class for 479 of the drugs (77.26%) in 319

our data set. The five largest classes were benzodiazepine receptor agonists (3/14 drugs 320

returned amongst the top 5 ranked predictions), analgesics (6/12), H1-antihistamines 321

(8/11), cyclooxygenase inhibitors (9/11), and anti-cancer (2/11). This indicates that the 322

over-representation of H1-antihistamines and cyclooxygenase inhibitors did result in a 323

bias, and to a lesser extent analgesics, but that the overall effect of these five classes was 324

more subtle (28/59 returned amongst the top 5 ranked predictions, 47.46%). 325

326

The best performance of our approach at the top 5 level is achieved when the resulting 327

ρ matrix has a sparsity of 35.59% (Figure 1b and Figure 2) which both justifies the 328

use of the `1-norm penalized graphical lasso, and generates a graphical model with 329

approximately a third of the parameters of a fully dense matrix, while the comparable 330

performance at λ values between 10−12 and 10−7 also indicates a degree of robustness to 331
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Figure 2. The overall layout of the side-effect network. Drugs are yellow, connecting
edges are green. The layout is performed using a relative entropy optimization-based
method [73]. In total, there are 616 connected nodes, with each having an average of
267 neighbours. Painkillers such as paracetamol and ibuprofen have the highest number
of connections (587 and 585, respectively), which corresponds to them having the
largest number of unique side-effects (256 and 224) reported on Twitter. The strongest
connection is between chondroitin and glucosamine (partial correlation coefficient (PCC)
0.628), both of which are dietary supplements used to treat osteoarthritis, closely followed
by the antidepressant and anxiolytic agents phenelzine and tranylcypromine (PCC 0.614).

the choice of this parameter. Beyond the top 5 ranked predictions, results are encouraging 332

as the majority of targets (56.02%) will have a co-indicated drug identified by considering 333

only the top 10 predictions, suggesting the method is a feasible strategy for prioritisation 334

of repositioning candidates. 335

Predicting proposed indications of compounds currently in clini- 336

cal trials 337

While the previous section demonstrated our approach can effectively recover known 338

indications, predictions after the fact are - while useful - best supported by more forward- 339

looking evidence. In this section, we use clinical trial data to support our predictions 340

where the ultimate success of our target drug is still unknown. Using Cortellis Clinical 341

Trials Intelligence, we extracted drugs present in our Twitter data set that were currently 342

undergoing clinical trials (ending after 2014) for a novel indication (i.e. for which they 343

were not already indicated), resulting in a subset of 277 drugs currently in trials for 397 344

indications. Figure 3 shows the percentage at which a co-indicated drug was ranked 345

amongst the top 5, 10, 15, 20 and 25 predictions for the target. Similar to the recovery 346

of known indications, best performance when considering the top 5 ranked predictions 347

was achieved with a λ value of 10−9, resulting in 16.25% (45/277) of targets having a 348

co-indicated drug, which again compares well to a randomized strategy (5.42%, standard 349

error ±0.32) or a strategy using the Jaccard index (10.07%). 350

351

Recovery of proposed clinical trial indications is clearly more challenging than known 352

indications, possibly reflecting the fact that a large proportion of drugs will fail during 353

trials and therfore many of the 397 proposed indications analysed here will in time prove 354

false, although the general trend in performance as the sparsity parameter λ is adjusted 355

tends to mirror the recovery of known indications. Despite this, a number of interesting 356

predictions with a diverse range of novel indications are made that are supported by 357
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Figure 3. Recovery of proposed clinical trial indications. Percentage at which a co-
indicated drug is returned amongst the top 5, 10, 15, 20 and 25 ranked predictions for a
given target, at different λ values.

experimental and clinical evidence; a selection of 10 of the 45 drugs where the trial 358

indication was correctly predicted are presented in Table 1. We further investigated three 359

repositioning candidates with interesting pharmacology to understand their predicted 360

results. 361
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Drug Current indication New indication Evidence PCC Rank ID Title

ramelteon insomnia bipolar I disorder ziprasidone 0.197 2 6991 Ramelteon for the Treatment of Insomnia
and Mood Stability in Patients With Eu-
thymic Bipolar Disorder

denosumab osteoporosis breast cancer capecitabine 0.133 3 85503 Pilot Study to Evaluate the Impact of Deno-
sumab on Disseminated Tumor Cells (DTC)
in Patients With Early Stage Breast Cancer

meloxicam inflammation non-Hodgkin lymphoma rituximab 0.131 1 176379 A Phase II Trial Using Meloxicam Plus Fil-
grastim in Patients With Multiple Myeloma
and Non-Hodgkins Lymphoma

sulfasalazine rheumatoid arthritis diarrhea loperamide 0.106 5 155516 Sulfasalazine in Preventing Acute Diarrhea
in Patients With Cancer Who Are Under-
going Pelvic Radiation Therapy

pyridostigmine myasthenia gravis cardiac failure digitoxin 0.100 4 190789 Safety Study of Pyridostigmine in Heart
Failure

alprazolam anxiety disorder epilepsy clonazepam 0.097 4 220920 Staccato Alprazolam and EEG Photoparox-
ysmal Response

oxytocin Prader-Willi syn-
drome

schizophrenia chlorpromazine 0.096 3 163871 Antipsychotic Effects of Oxytocin

interferon alfa leukemia thrombocythemia hydroxyurea 0.094 3 73064 Pegylated Interferon Alfa-2a Salvage Ther-
apy in High-risk Polycythemia Vera (PV)
or Essential Thrombocythemia (ET)

etomidate general anesthesia depression trazodone 0.091 5 157982 Comparison of Effects of Propofol and Eto-
midate on Rate Pressure Product and Oxy-
gen Saturation in Patients Undergoing Elec-
troconvulsive Therapy

guaifenesin respiratory tract in-
fections

rhinitis ipratropium 0.090 5 110111 The Effect of Oral Guaifenesin on Pediatric
Chronic Rhinitis: a Pilot Study

Table 1. Predicted indications for drugs currently in clinical trials. A selection of drugs which are currently in clinical trials for a new indication,
and have a co-indicated drug (“Evidence”) ranked amongst the top 5 predictions. “PCC” is the absolute partial correlation coefficient, “ID” is the
Cortellis Clinical Trials Intelligence identifier. Average PCC scores for co-indicated drugs ranked amongst the top 5, 10, 15, 20 and 25 positions
were 0.162, 0.0804, 0.0620, 0.0515, and 0.0468, respectively.11/22
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Figure 4. Predicted repositioning of oxytocin (red) for the treatment of schizophrenia
based on its proximity to the schizophrenia drug chlorpromazine (grey). Drugs in the
graph are sized according to their degree (number of edges), while the thickness of a
connecting edge is proportional to the partial correlation coefficient between the two
drugs. The graph layout is performed by Cytoscape [81] which applies a force-directed
approach based on the partial correlation coefficient. Nodes are arranged so that edges
are of more or less equal length and there are as few edge crossings as possible. For
clarity, only the top ten drugs ranked by partial correlation coefficient are shown.

Oxytocin 362

Oxytocin is a nonapeptide hormone that acts primarily as a neuromodulator in the brain 363

via the specific, high-affinity oxytocin receptor - a class I (Rhodopsin-like) G-protein- 364

coupled receptor (GPCR) [74]. Currently, oxytocin is used for labor induction and the 365

treatment of Prader-Willi syndrome, but there is compelling pre-clinical evidence to 366

suggest that it may play a crucial role in the regulation of brain-mediated processes 367

that are highly relevant to many neuropsychiatric disorders [75]. A number of animal 368

studies have revealed that oxytocin has a positive effect as an antipsychotic [76,77], while 369

human trials have revealed that intranasal oxytocin administered to highly symptomatic 370

schizophrenia patients as an adjunct to their antipsychotic drugs improves positive and 371

negative symptoms significantly more than placebo [78,79]. These therapeutic findings 372

are supported by growing evidence of oxytocin’s role in the manifestation of schizophrenia 373

symptoms such as a recent study linking higher plasma oxytocin levels with increased 374

pro-social behavior in schizophrenia patients and with less severe psychopathology in 375

female patients [80]. The mechanisms underlying oxytocin’s therapeutic effects on 376

schizophrenia symptoms are poorly understood, but its ability to regulate mesolimbic 377

dopamine pathways are thought to be responsible [75]. Here, our method predicts 378

schizophrenia as a novel indication for oxytocin based on its proximity to chlorpromazine, 379

which is currently used to treat schizophrenia (Figure 4). Chlorpromazine also modulates 380

the dopamine pathway by acting as an antagonist of the dopamine receptor, another 381

class I GPCR. Interestingly, the subgraph indicates that dopamine also has a high 382

partial correlation coefficient with oxytocin, adding further support to the hypothesis 383

that oxytocin, chlorpromazine and dopamine all act on the same pathway and therefore 384

have similar side-effect profiles. Side-effects shared by oxytocin and chlorpromazine 385

include hallucinations, excessive salivation and anxiety, while shivering, weight gain, 386

abdominal pain, nausea, and constipation are common side-effects also shared by other 387

drugs within the subgraph. Currently, larger scale clinical trials of intranasal oxytocin 388

in schizophrenia are underway. If the early positive results hold up, it may signal the 389

beginning of an new era in the treatment of schizophrenia, a field which has seen little 390

progress in the development of novel efficacious treatments over recent years. 391
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Figure 5. Predicted repositioning of ramelteon (red) for the treatment of bipolar I
disorder based on its proximity to ziprasidone (grey). Along with ziprasidone, phenelzine,
milnacipran and tranylcypromine are all used to treat mood disorders.

Ramelteon 392

Ramelteon, currently indicated for the treatment of insomnia, is predicted to be useful 393

for the treatment of bipolar depression (Figure 5). Ramelteon is the first in a new 394

class of sleep agents that selectively binds the MT1 and MT2 melatonin receptors 395

in the suprachiasmatic nucleus, with high affinity over the MT3 receptor [82]. It is 396

believed that the activity of ramelteon at MT1 and MT2 receptors contributes to its 397

sleep-promoting properties, since these receptors are thought to play a crucial role in 398

the maintenance of the circadian rhythm underlying the normal sleep-wake cycle upon 399

binding of endogenous melatonin. Abnormalities in circadian rhythms are prominent 400

features of bipolar I disorder, with evidence suggesting that disrupted sleep-wake circadian 401

rhythms are associated with an increased risk of relapse in bipolar disorder [83]. As 402

bipolar patients tend to exhibit shorter and more variable circadian activity, it has been 403

proposed that normalisation of the circadian rhythm pattern may improve sleep and 404

consequently lead to a reduction in mood exacerbations. Melatonin receptor agonists such 405

as ramelteon may have a potential therapeutic effect in depression due to their ability 406

to resynchronize the suprachiasmatic nucleus [84]. In Figure 5, evidence supporting the 407

repositioning of ramelteon comes from ziprasidone, an atypical antipsychotic used to 408

treat bipolar I disorder and schizophrenia [85]. Ziprasidone is the second-ranked drug 409

by partial correlation coefficient; a number of other drugs used to treat mood disorders 410

can also be located in the immediate vicinity including phenelzine, a non-selective 411

and irreversible monoamine oxidase inhibitor (MAOI) used as an antidepressant and 412

anxiolytic, milnacipran, a serotonin–norepinephrine reuptake inhibitor used to treat 413

major depressive disorder, and tranylcypromine, another MAOI used as an antidepressant 414

and anxiolytic agent. The co-location of these drugs in the same region of the graph 415

suggests a degree of overlap in their respective mechanistic pathways, resulting in a 416

high degree of similarity between their side-effect profiles. Nodes in this subgraph also 417

have a relatively large degree indicating a tighter association than for other predictions, 418

with common shared side-effects including dry mouth, sexual dysfunction, migraine, and 419

orthostatic hypotension, while weight gain is shared between ramelteon and ziprasidone. 420

Meloxicam 421

Meloxicam, a nonsteroidal anti-inflammatory drug (NSAID) used to treat arthritis, is 422

predicted to be a repositioning candidate for the treatment of non-Hodgkin lymphoma, 423
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Figure 6. Predicted repositioning of meloxicam (red) for the treatment of non-Hodgkin
lymphoma based on its proximity to rituximab (grey).

via the mobilisation of autologous peripheral blood stem cells from bone marrow. By in- 424

hibiting cyclooxygenase 2, meloxicam is understood to inhibit generation of prostaglandin 425

E2, which is known to stimulate osteoblasts to release osteopontin, a protein which 426

encourages bone resorption by osteoclasts [86,87]. By inhibiting prostaglandin E2 and 427

disrupting the production of osteopontin, meloxicam may encourage the departure of 428

stem cells, which otherwise would be anchored to the bone marrow by osteopontin [88]. 429

In Figure 6, rituximab, a B-cell depleting monoclonal antibody that is currently indicated 430

for treatment of non-Hodgkin lymphoma, is the top ranked drug by partial correlation, 431

which provides evidence for repositioning to this indication. Interestingly, depletion of B- 432

cells by rituximab has recently been demonstrated to result in decreased bone resorption 433

in patients with rheumatoid arthritis, possibly via a direct effect on both osteoblasts 434

and osteoclasts [89,90], suggesting a common mechanism of action between meloxicam 435

and rituximab. Further evidence is provided by the fifth-ranked drug clopidogrel, an an- 436

tiplatelet agent used to inhibit blood clots in coronary artery disease, peripheral vascular 437

disease, cerebrovascular disease, and to prevent myocardial infarction. Clopidogrel works 438

by irreversibly inhibiting the adenosine diphosphate receptor P2Y12, which is known to 439

increase osteoclast activity [91]. Similarly to the ramelteon subgraph, many drugs in the 440

vicinity of meloxicam are used to treat inflammation including diclofenac, naproxen (both 441

NSAIDs) and betamethasone, resulting in close association between these drugs, with 442

shared side-effects in the subgraph including pain, cramping, flushing and fever, while 443

swelling, indigestion, inflammation and skin rash are shared by meloxicam and rituximab. 444

445

While the side-effects shared within the subgraphs of our three examples are commonly 446

associated with a large number of drugs, some of the side-effects shared by the three 447

drug pairs such as hallucinations, excessive salivation and anxiety are somewhat less 448

common. To investigate this relationship for the data set as a whole, we calculated 449

log frequencies for all side-effects and compared these values against the normalized 450

average rank of pairs where the side-effect was shared by both the query and target 451

drug. If we assume that a higher ranking in our model indicates a higher likelihood of 452

drugs sharing a protein target, this relationship demonstrates similar properties to the 453

observations of Campillos et al. [20] in that there is a negative correlation between the 454

rank and frequency of a side-effect. The correlation coefficient has a value of -0.045 which 455

is significantly different from zero at the 0.001 level, although the linear relationship 456

appears to break down where the frequency of the side-effect is lower than about 0.025. 457
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Conclusions 458

In this study, we have used side-effect data mined from social media to generate a 459

sparse graphical model, with nodes in the resulting graph representing drugs, and edges 460

between them representing the similarity of their side-effect profiles. We demonstrated 461

that known indications can be inferred based on the indications of neighbouring drugs 462

in the network, with 42.41% of targets having their known indication identified amongst 463

the top 5 ranked predictions, while 16.25% of drugs that are currently in a clinical trial 464

have their proposed trial indication correctly identified. These results indicate that the 465

volume and diversity of drug side-effects reported using social media is sufficient to be of 466

use in side-effect-based drug repositioning, and this influence is likely to increase as the 467

audience of platforms such as Twitter continues to see rapid growth. It may also help 468

to address the problem of side-effect under-reporting. We also demonstrate that global 469

statistical models such as the graphical lasso are well-suited to the analysis of large 470

multivariate systems such as drug-drug networks. They offer significant advantages over 471

conventional pairwise similarity methods by incorporating indirect relationships between 472

all variables, while the use of the lasso penalty allows a sparse, parsimonious model to 473

be generated with fewer spurious connections resulting in a simpler theory of relationships. 474

475

While our method shows encouraging results, it is more likely to play a role in drug 476

repositioning as a component in an integrated approach. Whether this is achieved 477

by combining reported side-effects with those mined from resources such as SIDER, 478

or by using predictions as the inputs to a supervised learning algorithm, a consensus 479

approach is likely to achieve higher performance by incorporating a range of different 480

data sources in addition to drug side-effects, while also compensating for the weaknesses 481

of any single method [19]. Limitations of our method largely stem from the underlying 482

Twitter data [58]. Only a small fraction of daily tweets contain reports of drug side- 483

effects, therefore restricting the number of drugs we are able to analyse. However, given 484

that systems such as SoMeDoSEs are capable of continuously monitoring Twitter, the 485

numbers of drugs and reported side-effects should steadily accumulate over time. 486

487

To address this, in the future it may be possible to extend monitoring of social media 488

to include additional platforms. For example, Weibo is a Chinese microblogging site akin 489

to Twitter, with over 600 million users as of 2013. Clearly, tools will have to be adapted to 490

deal with multilingual data processing or translation issues, while differences in cultural 491

attitudes to sharing medical information may present further challenges. Extensions 492

to the statistical approach may also result in improved performance. Methods such 493

as the joint graphical lasso allow the generation of a graphical model using data with 494

observations belonging to distinct classes [92]. For example, two covariances matrices 495

generated using data from Twitter and SIDER could be combined in this way, resulting 496

in a single model that best represents both sources. An extension to the graphical lasso 497

also allows the decomposition of the sample covariance graph into smaller connected 498

components via a thresholding approach [93]. This leads not only to large performance 499

gains, but significantly increases the scalability of the graphical lasso approach. 500

501

Another caveat to consider, common to many other repositioning strategies based 502

on side-effect similarity, is that there is no evidence to suggest whether a repositioning 503

candidate will be a better therapeutic than the drug from which the novel indication was 504

inferred. While side-effects can provide useful information for inferring novel indications, 505

they are in general undesirable and need to be balanced against any therapeutic benefits. 506

Our model does not attempt to quantify efficacy or side-effect severity, but it might 507

be possible to modify the natural language processing step during Twitter mining in 508

order to capture comparative mentions of side-effects, since tweets discussing both the 509
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therapeutic and side-effects of two related drugs are not uncommon. Incorporating this 510

information into our model may allow a more quantitative assessment of the trade-off 511

between therapeutic and side-effects to be made as part of the prediction. 512
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59. Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection
with the lasso. The Annals of Statistics. 2006;p. 1436–1462.

60. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics. 2008 Jul;9(3):432–441.

19/22

PeerJ Comput. Sci. reviewing PDF | (CS-2015:09:6894:1:1:CHECK 18 Dec 2015)

Manuscript to be reviewedComputer Science

http://dl.acm.org/citation.cfm?id=1869961.1869976
http://twitter.com/
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
http://dx.doi.org/10.1007/s40264-014-0155-x
http://dx.doi.org/10.1007/s40264-014-0155-x
http://doi.acm.org/10.1145/2719920


61. Banerjee O, El Ghaoui L, d’Aspremont A. Model selection through sparse maxi-
mum likelihood estimation for multivariate gaussian or binary data. The Journal
of Machine Learning Research. 2008;9:485–516.

62. Zeng QT, Crowell J, Divita G, Roth L, Browne AC. Identifying Consumer-Friendly
Display (CFD) Names for Health Concepts. In: AMIA Annual Symposium
Proceedings; 2005. p. 859–863. Available from: http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC1560732/.

63. Thomson Reuters World Drug Index;. Accessed: 2015-04-30. http:

//thomsonreuters.com/en/products-services/pharma-life-sciences/

life-science-research/world-drug-index.html/.

64. Thomson Reuters Cortellis Clinical Trials Intelligence;. Accessed: 2015-04-30.
http://go.thomsonreuters.com/cti/.

65. Allen MP. Covariance and linear independence. Understanding Regression Analysis.
1997;p. 31–35.

66. Ledoit O, Wolf M. Honey, I shrunk the sample covariance matrix. UPF Economics
and Business Working Paper. 2003;(691).
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