
Enhancing semantic belief function to
handle decision conflicts in SoS using
k-means clustering
Eman K. Elsayed1,2,*, Ahmed Sharaf Eldin Ahmed3,4 and Hebatullah
Rashed Younes3,*

1Mathematical and Computer Science Department, Faculty of Science, Al-Azhar University (Girls
Branch), Cairo, Egypt

2Computer Science Department, Faculty of Information Technology, Misr University for Science
and Technology (MUST), Giza, Egypt

3 Information Technology Department, Faculty of Information Technology and Computer
Science, Sinai University, Arish, Egypt

4 Information Systems Department, Faculty of Computers and Artificial Intelligence, Helwan
University, Cairo, Egypt

* These authors contributed equally to this work.

ABSTRACT
Background: The endeavouring to offer complex special functions from individual
systems gave rise to what is known as the System of Systems (SoS). SoS co-integrating
systems together while allowing for absorbing more systems in the future. SoS as
an integrated system simplifies operations, reduces costs, and ensures efficiency.
However, conflict may result while co-integrating systems, violating the main
benefits of SoS. This paper is concerned with enhancing the time required to detect
and solve such conflicts.
Methods: We adopted the k-means clustering technique to enhance the detection
and solving of conflict resulting while co-integrating new systems into an existing
SoS. Instead of dealing with SoS as a single entity, we partition it into clusters. Each
cluster contains nearby systems according to pre-specified criteria. We can consider
each cluster a Sub SoS (S-SoS). By doing so, the conflict that may arise while co-
integrating new systems can be detected and solved in a shorter time. We propose the
Smart Semantic Belief Function Clustered System of Systems (SSBFCSoS), which is
an enhancement of the Ontology Belief Function System of Systems (OBFSoS).
Results: The proposed method proved the ability to rapidly detect and resolve
conflicts. It showed the ability to accommodate more systems as well, therefore
achieving the objectives of SoS. In order to test the applicability of the SSBFCSoS and
compare its performance with other approaches, two datasets were employed. They
are (Glest & StarCraft Brood War). With each dataset, 15 test cases were examined.
We achieved, on average, 89% in solving the conflict compared to 77% for other
approaches. Moreover, it showed an acceleration of up to proportionality over
previous approaches for about 16% in solving conflicts as well. Besides, it reduced the
frequency of the same conflicts by approximately 23% better than the other method,
not only in the same cluster but even while combining different clusters.

Subjects Algorithms and Analysis of Algorithms, Software Engineering
Keywords System of Systems (SoS), Component Systems (CS), Conflict, Clustering, k-means

How to cite this article Elsayed EK, Ahmed ASE, Younes HR. 2021. Enhancing semantic belief function to handle decision conflicts in SoS
using k-means clustering. PeerJ Comput. Sci. 7:e468 DOI 10.7717/peerj-cs.468

Submitted 4 November 2020
Accepted 13 March 2021
Published 7 April 2021

Corresponding author
Hebatullah Rashed Younes,
heba.rashed@su.edu.eg

Academic editor
Muhammad Asif

Additional Information and
Declarations can be found on
page 31

DOI 10.7717/peerj-cs.468

Copyright
2021 Elsayed et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.468
mailto:heba.�rashed@�su.�edu.�eg
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.468
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
Recently, and according to systems, it has been proven that in order to create a powerful,
co-integrated, and multitasking system, an individual system will not be sufficient
(Boehm & Lane, 2007; Robinson, Pawlowski & Volkov, 2003; Viana, Zisman & Bandara,
2017). Therefore, to achieve such a system, some systems must be co-integrated together
in a System of Systems (SoS) (Spanoudakis & Zisman, 2001). SoS is a set of dedicated
systems that have fetched their abilities to create a new complicated system, providing
more performance and services than individual systems (Popper et al., 2004).
Organizations are continually facing challenges to co-integrate new Component Systems
(CS) and update existing systems while under threats, restricted budget, and uncertainty
(Agarwal, Dagli & Pape, 2016). Both complexity and uncertainty are inherent features
of infrastructure SoS, which can drive the operation of such systems away from their
intended purposes (Peculis & Shirvani, 2017).

It is necessary for a successful system to accurately define the interests, objectives,
and requirements of its components, therefore, there are some limitations. SoS has
been facing different challenges due to the configuration and functions of the systems that
make SoS up. One of such challenges is managing goals to make an appropriate decision
on SoS.

CS that participates in SoS arrangements might cause conflicting individual objectives
among themselves. As well as, the emergence of conflicting objectives between the entire
SoS, it is CS (Sage, 2003).

Our objective is to have more CS within a single SoS; however, such systems must be
harmonious. A conflict is an issue that occurs between two or more systems in SoS,
and it represents a fundamental issue that has been extensively discussed for SoS. Such
an issue might be security, pattern, classifications, or decision. Resolving the conflict does
not occur through one stage but more. First, identify and detect the conflict, then diagnose
to fix it appropriately (Ramsbotham, Miall & Woodhouse, 2011).

Multi-systems conflicts are a generalisation of a single systems conflict problem for
more than one system, hence, in SoS, the more CS, the more conflicts. Several algorithms
have been proposed to deal with conflicts among CS in SoS, of which most deal with any
CS in SoS as a single system. In such cases, the aim is finding a conflict resolution for
different systems, guaranteeing that the given solution is optimal, and managing to handle
a specified number of CS.

This paper aims to find a better solution to the conflict problem. Better solutions are
usually applied when SoS CS are individuals. The mission is to attract and contain more
SoS and get better conflict resolution out of treating SoS CS as a joint system in clusters,
and in turn, the concept of clustering, and time reduction is important from a semantic
point of view.

Clustering is a learning method that organises objects that are with similarities in one
or more features into clusters (Mokhtarpour & Stracener, 2014), aiming to isolate objects
with similar traits and assign them into clusters. Consequently, eventually, each cluster
should include identical items which are different from those of other clusters.

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 2/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Clustering algorithms are unsupervised pattern-learning algorithms (Wu et al., 2020)
without prior information, through creating smaller clusters with high intergroup
dissimilarities and intragroup similarities. A large number of these algorithms found.
Hierarchical, Partitional, and Bayesian are popular ones. This kind was purposefully
chosen since SoS is a learned-system, and unsupervised learning as a learning technique
has permitted the model to work with its discovery information; mainly deals with
unclassified data.

The proposed approach aimed to adopt as many CS as possible into clusters, and to, get
such clusters to form a significant SoS. Successful harmonisation of CS together in an SoS
requires quick and appropriate handling of conflicts.

There are some contributions to this paper as follows:

� Introduction of a new method to add more systems to SoS.

� Improving the handling techniques of the issues especially conflicts.

� Illustration of the potential of the proposed method to group more systems into clusters
in what resembles Sub SoSs (S-SoSs) within a large main SoS named General SoS
(G-SoS).

� Demonstration of how the clustering method was more appropriate to cover objectives
and influence results, that is not in attracting more systems, but rather in reducing the
number of conflicts, which has, in turn, led to more time reduction enhanced the overall
results.

This paper is organised as follows;
Part 1 covers a brief review of the conflicts in SoS, categorises all existing work into some

main categories (Decision, design, security and code), orders the different approaches
for solving this problem, then, in turn, displays some clustering techniques with related
works. The main focus was on the method, which has been developed for use.

Part 2 presents a way to attract more system and optimise conflict resolution in SoS,
explains the new algorithm (SSBFCSoS) that divided into two parts (levels). The single CS
has initialised with their default (working) task, which may contain conflicts, then use
k-means clustering to make them S-SoSs for the G-SoS.

BACKGROUND AND RELATED WORKS
The System of Systems (SoS) includes complex components and complex calculations
(Gorod et al., 2014), with challenges of which the most significant are design, development,
and decision. The detailed intricate design of SoS requires managing its CS to take
advantage of it, which in turn necessitates CS interoperability rather than compatibility
with diverse assets (Luzeaux, 2014; Lane & Boehm, 2019), which does not usually fit
the operational needs of the large SoS. CS of SoS must be able to exchange data or
information among themselves, either for its purposes or for integration and fusion among
them, and eventually the exchange process between the architecture of different systems,
that may cause design conflicts.

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 3/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

A survey in 2010 (Engineering, 2010) explained the information and construction of
SoS from an engineering standpoint, combining various designs of CS that often cause
conflicts. The methods used often create conflicts as well, and clarify how data managed
between CS and how to face conflicts, through discovering another source of data in
the event of a conflict. Such process presented a new conflict if no other source was
available, rather than a solution to the conflict, contrary to what our research paper has
provided, as in using BF to review source reliability, depending upon the trusted source
system.

Various security priorities of multiple CS in SoS can cause conflicts (Bodeau, 1994),
therefore, the available security mechanisms may not meet specific SoS security
requirements, leading to a more complex task of integrating and architecture SoS (Maier,
1998). If a particular system has to interact securely with another CS system, its security
architecture may have to deal with different authentication mechanisms, presenting a
security challenge in the SoS.

Some security issues of CS that make-up SoS have been discussed according to the
characteristics of SoS (Madan, 2015), among which is integrating the different security
structures of the CS (Chiprianov et al., 2014), which requires high characteristics of the SoS
to maintain the system, and guaranteeing the services despite some security problems, in
terms of networks and others.

The research (Ki-Aries et al., 2018) discussed an approach that coordinates the concepts
of SoS for analysing security conflicts, depending on the independent collaboration of
CS in SoS. The research has explained that unknown information elements have frequently
impeded the risk assessment and decision-making regarding SoS. Contrary to our research,
where the BF equation has been used for this, to verify that—assumed unknown—
information, which has enabled us to make an appropriate decision for SoS, regardless of
security conflicts either in this or other research.

The conflict-resolution algorithm has been introduced for multi-agent systems related
to relationships of different types and values (Garanina, Sidorova & Anokhin, 2015) to
obtain conflict-free factors and solve ontology-based ambiguity in analysing the natural
language text. The algorithm has relied on an agent weighting conflict resolution. Contrary
to our research, which has relied on the decision weight and both its accuracy and
reliability, leading to more comfortable and faster processing of complex systems since
it depends on addressing the conflicting data rather than the system or agent.

For systems containing databases, the time factor is essential, therefore as per the
research (Ahmed, Salem & Saleh, 2015), more time may be needed to obtain data from the
site, especially from a distance. The process of clustering has helped to address this
challenge. The concept was reducing a large number of databases through clustering, as
proposed by the research, for both distribute data and systems, reducing the number
of conflicts within SoS, and reducing the mass conflict, according to the reliability estimate.
It includes performance improvement and decision-making while saving time.

Researchers (Wu et al., 2020) have proposed a clustering algorithm evaluation
model to assess conflicting performance, to reconcile the differences in the evaluation
performance of these algorithms. These conflicts have been shown during the process of

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 4/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

integrating the information during the decision-making process. Moreover, the proposed
model can reconcile conflicting evaluation performance to reach a collective agreement in
the complex decision-making environment.

Researchers have used the algorithm k-means to reduce the data dimensions (Idrees &
Gomaa, 2020), proposing a two pillars method. The first pillar is to define the consistency
of traits more precisely, as in the aspect of applying clustering techniques to remove
less likely features.

Based on the kernel k-mean clustering algorithm, a proposed study (Muflikhah et al.,
2020) has shown that the algorithm could detect disease. Two types of datasets were
extracted from DNA lysis and grouped into two groups using the kernel k-mean
algorithm, then the classifier was applied to each group. When datasets aggregated, each
group has significant similarities in characteristics. The block dependent classification
contains more support vectors than the no-group category. Block quality also affects
detection performance.

CLUSTERING AND ITS TECHNIQUES
Clustering is a significant unsupervised learning problem, which draws references from
datasets consisting of input data without specific responses, and is used as a process to find
meaningful structures (Rokach & Maimon, 2005).

There are no specific criteria for exemplary assembly, however, it depends on the
appropriate standards for users to meet their needs. For instance, in our method, we have
worked on finding representatives for Homogeneous Groups for better performance
and adopted clustering to reduce working all systems together. Contrary to our approach,
the previous techniques have detected conflicts on all CS of SoS, while we have used
clustering to divide these CS into small clusters, leading to not only more systems
attraction, but better performance and conflict resolution.

Clustering methods are divided into three parts

a) Hierarchical: The algorithms of this technique depend on finding its clusters using
pre-created ones. It can be either agglomerative or divisive (Rokach & Maimon, 2005).
Agglomerative (bottom-up) starts with each object as a separate cluster and then merges
them into larger clusters while Divisive (top-down) begins with the whole set, then
divides it into smaller clusters.

b) Partitional: The algorithms here define all clusters then use the Divisive algorithms
technique for grouping. It contains many techniques as Model-Based, Graph-Theoretic,
and Spectral. Besides, Centroid techniques to which the k-means algorithm belongs.
Clustering deals mostly with data segmentation within mega systems. Contrary to
our research paper, which depends on dividing the systems within SoS rather than the
data, the k-mean technique has been used for the clustering process. As a partitional
algorithm, it starts with a fixed number of clusters. After determining the number of
clusters, the class of object n is determined (Rokach & Maimon, 2005), then assigned
to the nearest cluster centre. The centres of mass k are then re-estimated assuming that

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 5/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

the above memberships are valid. This process is repeated until n-objects membership
does not change in the last iteration.

c) Bayesian: The algorithms of this technique generate posterior distribution to collect all
data partitions. It has two algorithms decision Based and Nonparametric.

SMART SEMATIC BELIEF FUNCTION CLUSTERED SYSTEM
OF SYSTEMS METHOD (SSBFCSOS)
The ability of SoS to perform large tasks lies in coordinating its CS as a single system.
The more the SoS can assemble more systems and do this coordination, the better.
Obtaining the optimum decision from all systems while maintaining security is the goal of
SoS. SoS is constructed from many CS, which conflicts among them cause SoS to be
inefficient. In 2019, researchers (Younes, Ahmed & Elsayed, 2019) have adopted a method
to get the best Decision for SoS while avoiding conflicts between CS. The algorithm
used was ontology with the Belief Function equation that modified to suit systems.
Learning has limited SoS capacity to obtain the best results, since during running, and
when CS reaches a specified number, SoS gets more time to handle conflicts. As a
learned-system, it represents a challenge, so, an SSBFCSoS algorithm that depends on the
clustering idea was suggested.

The handled clustering technique for SoS in SSBFCSoS
Clustering is the idea for SSBFCSoS to divide CS, not data into clusters. We have primarily
relied on the use of the k-means method, and a combination of this method and another
agglomerative method (bottom-up). According to the used k-means method; defining
each cluster according to its properties requires creating clusters that share common
properties. We adopted an idea that depends on the location of the CS systems, hence each
cluster contains nearby systems according to pre-specified criteria.

While in the case of partitional clustering k-means, the k partitions created containing n
objects, each partition represents a cluster created, where k � n, attempting to divide
items into clusters based on some evaluation criteria. A specific number of clusters
k determined by a set of centroids (initially assigning a centroid to each cluster) where
C ¼ C1; . . . ;Ckf g. The centroid calculation for each cluster according to the mean Mk

of all the objects Nk that belong to this cluster as in Eq. (1).

Mk ¼ 1
Nk

XNk

q¼1
X qð Þ (1)

The members define each centre. Moreover, if the properties are incompatible, re-merge
them again with any other appropriate cluster. Furthermore, this matter is repeated until
each object belongs to a suitable cluster. Moreover, the stability of the clusters and
their centres occurs without change. Each cluster is to be considered as Sub SoS (S-SoS)
that contain systems as objects.

Determining the appropriate S-SoS to belong to a particular system depends on how
close the traits are between systems of the same S-SoS. The primary is the close locations

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 6/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

between systems in each of S-SoS. The k-means algorithmmeasures the extent of similarity
by calculating distance. Both distance and similarity are related. Distance measure
determines the similarity between items and affects the shape of clusters, a smaller distance
between two objects results in more similarity.

Initialising S-SoSs is achieved by picking one point per the first S-SoS randomly as an
initial centroid point, then k� 1 for the other S-SoSs; each centroid point is as far away as
possible from the previous centroid ones.

Depending on the k-means method (Solanki & Pittalia, 2016), the distance is calculated
between each system of the S-SoS to every centroid initialised. Based on the values found,
systems are assigned to the centroid with the lowest distance.

There are four types of distances to form clusters to measure as follows.

Euclidean distance measure
Assuming that there are two systems p and q, the Euclidean distance is a standard straight
line between them. The calculation is according to Eq. (2).

d ¼
ffiXn
i¼1

qi � pið Þ2
s

(2)

Squared Euclidean distance measure
It is identical to the Euclidean distance measure but does not take the square root.

d ¼
Xn
i¼1

qi � pið Þ2 (3)

Manhattan distance measure
The absolute difference between the two systems sum computed, coordinates are shown in
Eq. (4). It is the distance between two systems measured along axes at right angles.

d ¼
Xn
i¼1

qx � pxj j þ qy � py
�� �� (4)

Cosine distance measure
The angle cosine between the two systems vectors is determined in the space of dimension
n, as in Eq. (5), considering that pi and qi are components of vector p and q.

d ¼
Pn�1

i¼0 qi � piPn�1
i¼0 qi2 �

Pn�1
i¼0 pi2

(5)

To form clusters (S-SoSs), first, random points as S-SoS called centroids are assigned.
Second, assign each system to the closest S-SoS centroid by implementing a Euclidean
distance (the system distance to centroid). Third, identify the new centroids by taking the

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 7/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

average of the assigned systems points, then continue to repeat the second and third steps
until convergence is achieved.

It is the first part of the SSBFCSoS algorithm. Conflicts are detected and addressed
within each subsystem in the OBFSoS algorithm (Younes, Ahmed & Elsayed, 2019), then
comes the second part of the clustering method; aggregating all S-SoSs into G-SoS, in
stages that mainly depend on the number of S-SoSs.

The last part of the clustering method in SSBFCSoS belongs to the agglomerative
hierarchical algorithm, through the bottom-up process. This algorithm is based on finding
the distance from the closest pair of S-SoS via the distance between the two centroids
d S SoSABð Þ. Assuming that the two closest clusters are S-SoS (A) and S-SoS (B), the newly
formed cluster would be S-SoS (AB). Reset centroid for the new cluster, and update
the distance matrix for these two clusters, giving only a distance between the new S-SoS
(AB) and the other remaining clusters, then calculate the average distance between two
clusters as the average distance between all systems as in Eq. (6), where dik represents
the distance (similarity). N SSoSABð Þ and d S SoSCð Þare numbers of systems in clusters A, B,
and C.

dððS SoSABÞÞC ¼
P

i

P
k dik

NðS SoSABÞNS SoSC
(6)

Finally, detect conflicts inside the new cluster and address them using OBFSoS, then
iterate these steps until all clusters merged into a single one called General SoS (G-SoS) so
that all systems in G-SoS after the algorithm are terminated.

PROPOSED METHOD
The proposed method SSBFCSoS considers an enhancement of the OBFSoS method
(Younes, Ahmed & Elsayed, 2019). Both methods have adopted the concept of better
decision making for SoS by addressing conflicts between CS. The proposed SSBFCSoS
method consists of three phases, summarised in Fig. 1.

The first phase deals with k-means, one of the clustering techniques for dividing CS
into groups. Such groups use Java Format, Packages in Glest Game and StarCraft Brood
War packages. The requirements are; processor Intel(R) Core (TM) i5-6200U CPU @ 2.30
GHz 2.40 GHz, RAM 8.00 GB and platform is 64-bit Windows 10 operating system,
×64-based processor.

The second phase presents the reversal of Glest and StarCraft Brood War code
generating into OWL Ontologies of all systems in each cluster, together with merging the
OWL ontologies for conflict detection and decision making for each S-SoS. Plus, StarCraft
Brood War is converting.

The third phase conflict detection of conflicts while merging the S-SoSs using another
type of clustering technique; getting G-SoS better decision.

Coordinating systems with common characteristics using Ontology is easier (Gutierrez,
2018), where avoiding conflicts resulting from similar systems components. The Belief
Function (BF) equation assumes in the OBFSoS algorithm, which used for the SSBFCSoS

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 8/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

method as well. BF primary use is enabling the measurement of conflict weight, and the
probability of decision making.

The algorithm is in three parts, two of which are for the clustering processes and the
third is for conflict resolution within each cluster summarised in Algorithm 1, which
presents the pseudo-code for SSBFCSoS, depending on using two clustering methods; the
(k-means) method and the (bottom-up) agglomerative method.

The first phase specifies the maximum number of desired systems (si) in each cluster
and the number of desired clusters (Cl), then, after determining the number of clusters
to be divided for the systems to enter, centroids are were chosen randomly, including
the rest of the systems in the clusters, hence, calculating the distance (dsi) for connecting
each system in the cluster with the closest centroids.

Calculating the distance according to the location of each system is performed by several
methods. Euclidean distance measurement is the adopted method (Eqs. (2) and (3)),
since it was more suitable for the homogeneous cases applied, because of the distance
calculation based on the raw inputs.

Figure 1 The proposed method. Full-size DOI: 10.7717/peerj-cs.468/fig-1

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 9/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-1
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Algorithm 1 Smart Sematic Belief Function Clustered System of Systems (SSBFCSoS).

1. Input

si s1; s2; . . . ; snð Þ i ¼ 2; . . . :; nð Þ // Number of desired systems in each cluster

Cl c1; c2; . . . ; crð Þ l ¼ 1; 2; . . . :; rð Þ // Number of desired clusters

2. C ¼ 0 // Cluster Index

3. ClusteredSystems ¼ 0

4. for each unclustered sið Þ
5. si RandomSystems (i, n) // Choose system at random

6. Cl si // Make this random system as first cluster center

7. C þþ // initialize new cluster

8. ClusteredSystems þþ
9. for l 2 . . . r do // loop over the rest of the centres

10. for i 1 . . . n do // loop over the systems

11. dsi mini, 1ksqrðdsi � dclcent Þk2 // Compute the distance to the closest centre

12. Add si to the cluster Cl // Systems enter the closest centroid Clusters

13. end for

14. for i 1 . . . n do // loop over the systems again

15. cl d2n=
P

i d
2
i‘ // Compute a distribution proportional

16. end for

17. Recalculate centroids

18. Cr sn // Draw systems to each cluster from distance

19. end for

20. if (ClusteredSystems ¼ sn)

break; // Clustering is complete

21. Implement OBFSoS Algorithm between generated clusters results // OSoSx

22. for l ¼ 1 : r do // Clusters

23. Implement OBFSoS for each cluster

24. end for

25. Get output from OBFSoS Xij , wij // Decision & Weight

26. ðXijÞnew Xij ; ðwijÞnew wij; ðXijÞold 0; ðwijÞold 0

27. for x ¼ 1; 3; 4; . . . : ; r do // General SoS

28. if ðwijÞnew > ðwijÞold
29. GSoSXij ðXijÞnew
30. ðXijÞold ðXijÞnew
31. else if ðwijÞold > ðwijÞnew
32. GSoSXij ðXijÞold
33. else // ðwijÞold ¼ ðwijÞnew
34. GSoSXij ðXijÞold ðXijÞnew

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 10/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

The primary advantage of the Euclidean method is that the distance between any two
systems is not affected by adding new systems to the analysis, which may be outliers,
however, distances can be significantly affected by differences in scale between the
dimensions over which distances calculated. For example, if a dimension denotes the
length measured in centimetres, it is preferred not to convert it to another scale, as the
resulting Euclidean can be significantly affected. Euclidean distance gives the best result
(Singh, Yadav & Rana, 2013).

J ¼
Xr

l¼1

Xn
i¼1
ks lð Þ

i � Clk2 (7)

Equation (7) calculates the distance for systems, considering r number of clusters, n
number of systems si case i and Cl the centroid for cluster l. J is an objective function
where, ks jð Þ

i � Clk2 represent the distance function.
After determining the inputs, all systems are considered part of a cluster (S-SoS), and

the selection of the cluster depends on the centroid focal point closest to it. One system in
two clusters is not allowed at the same time.

After organising the clusters, each cluster will be addressed as a separate system, so that
each cluster will resolve conflicts between the CS, obtaining the best decision and observing
all the regulations and tasks related to it. All this is achieved in parallel to the clusters
S-SoSs.

Algorithm 1 (continued).

35. ðXijÞold ðXijÞnew
36. end for

37. A set of n systems for each cluster

38. for i ¼ 1 : n do

39. for j ¼ 1 : n do

40. d i; jð Þ ¼ distance function c ið Þ; c jð Þð Þ
41. end for

42. pair ið Þ ¼ min d i; j ¼ 1 : nð Þð Þ
43 end for

44. for k ¼ 1 : n do

45. MSSoS ¼ pair ið Þ
46. Get min distance MSSoS; SSoSð Þ
47. MSoS ¼ merge MSSoS&SSoSð Þ
48. back to step 13

49. end for

50. GSoS ¼ MSoS

Output GSoSXij

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 11/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

The second phase is the OBFSoS method role, which primarily depends on addressing
conflicts and obtaining the best decision. In this method, weight is relied upon because
the system relies on more data for decision-making, this means that it examines more data
to make the right decision. The requirement is to obtain a system decision with the most
considerable value for weight, suppose the weight values are equal in more than one
system. In this case, the solution is either merging the decisions or leaving the decision to
the user.

The output variable of the OBFSoS method is Xij for optimising decision making for
SoS, the weight variable wij. Xij represents each cluster decision. wij represents the
weight of this decision. Each cluster as a part of General SoS (G-SoS) needs the output
maintained while prioritising conflict issues according to SoS requirements, putting into
consideration that decision-making precedes delegation decisions.

The third phase includes obtaining the information required from each cluster Xij and
wij, followed by entering into the final stage of Algorithm 1, to obtain the best Decision

regarding G-SoS. This is the stage of comparing the obtained results from the OBFSoS
algorithm, comparing the effects and weights of all decisions to enable the G-SoS to obtain
the optimal decision.

Another kind of cluster approach has been adopted to finally integrate the S-SoSs into a
single SoS (G-SoS). At the end of the algorithm SSBFCSoS, the two closest clusters (S-SoS)
are identified by calculating min distance d i; jð Þ, then merging them with the OBFSoS
algorithm as in MSSoS. Then, although the weights of each S-SoS are preserved, conflicts
were detected in the new S-SoSs that merged; a sequence repeated until a G-SoS idealised
decision is reached.

There is only one particular case. where there are two groups of equal weights; the two
clusters decisions are combined allowing the human element to intervene and reach the
right decision.

CASE STUDY 1 (GLEST)
SSBFCSoS, as an algorithm represented in this paper, applies to many systems states.
One of these instances and the experimental setup used for our empirical analysis is
described. This case has been selected and set up to match previous work (Younes, Ahmed
& Elsayed, 2019). Ontology is useful for systems with similar components. Such systems
can be called homogeneous systems. One of these homogeneous systems is gaming.
The system does not just mean having software, but rather hardware and software,
in addition to the human component and the communication between all of these
components. This online connexion can be in the case of online games, provided that every
player with all these components is considered a system.

The choice was an action-based RTS (Real-Time Strategy) game called Glest
(Dimitriadis, 2009). Several actions in the game represent data flows, and each group of
actions belongs to a category. It is impossible to deal with layers of the same name without
conflict. The similarity of names between categories does not necessarily indicate the
similarity of the data.

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 12/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Such similarity and the resulting conflict caused by it have to be avoided, which is the
ultimate role of Ontology, depending on the semantic comparison, which differentiates
between the classes meanings of the same name and content with a different owner.
It is also necessary for SoS to determine the most appropriate decisions. It is for SoS to
perform its duties to the fullest.

The systems deal with more than one stage, of which one is the resulting resolution for
each cluster S-SoS. The other step is to obtain the final decision resulting from G-SoS.
The goal is to determine the winner as a decision, however, the first stage of its decision
is the trade-off between winning and action, as in every cluster that plays as an S-SoS
has two directions. Suppose each entry system for this S-SoS plays as a separate system, the
S-SoS waits for the decision of which systems to be the winner.

Moreover, more than one system within this group played as multiple, here the action
differentiated as a decision. Any action is the right one, and the winning decisions are
compared to others inside the cluster. The better the number of points paid, the better the
decision. The points here represent the data flow; consequently, the validity of the data.

The faster the SoS, the better. So the individual system is handled as an intelligent agent,
to save time because intelligence allows the system to avoid its mistakes, repeating them,
and repeated conflicts.

CASE STUDY 2 (STARCRAFT BROOD WAR)
The StarCraft Brood War (Dor, 2014) RTS game applied the same rules as Glest. The main
focus of this paper will be the final calculations of the conflict and resolution. The conflict
of the Brood War represents the differences between players of each cluster of G-SoS,
to evaluate the solution selection mechanism for it depending on Algorithm 1.

RESULTS AND DISCUSSION
Glest
Both SSBFCSoS and OBFSoS have been implemented. For SSBFCSoS, the systems were
divided into clusters. SSBFCSoS is very effective. The two algorithms are based on ontology
and BF use. However, SSBFCSoS with this clustering still outperforms OBFSoS in
many scenarios.

Each attempt begins with three clusters, and each cluster includes 15–30 systems ranges.
The formation of clusters depends on the location of the systems, according to system IP
with a time limit of 120 s for both algorithms sets, which is for the OBFSoS algorithm
to define conflicts between systems. For SSBFCSoS, the time for each cluster is to identify
the systems involved to get conflicts. If an algorithm lacks the ability to resolve an issue
within the time limit, it stops, and the failure returned. The goal here is to study the
behaviour of the two algorithms for a specific number of systems.

Table 1 shows the number of conflicts generated for SSBFCSoS compared to OBFSoS
averaged 70 systems. For ten attempts, in the case of SSBFCSoS, the number of conflicts for
the input systems is recorded, with a success rate more than the OBFSoS algorithm.

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 13/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Figure 2 shows the conflict rate for SSBFCSoS compared to OBFSoS, which appears for
60 s by the algorithms for several systems. In these minor problems, SSBFCSoS is inferior
in conflict rate to OBFSoS, having a slight advantage.

Different algorithms give an instance of a problem with a certain number of si systems.
The runtime also gives to two algorithms. Each algorithm is given 300 s to resolve the
conflicts it encountered. SSBFCSoS divides these systems into S-SoS (clusters) and
implements the algorithm associated with each sub-problem separately. Only final results
for the SSBFCSoS and OBFSoS algorithms are presented.

There is a sequence in the comparison values between SSBFCSoS and OBFSoS in
resolving conflicts regarding decision, design, security, and code. For the first method
SSBFCSoS with each cluster value before and after resolving conflicts for all Tables 2, 3, 4,

Table 1 Glest # of conflicts rate generated for SSBFCSoS vs. OBFSoS.

Glest simulation attempts # of conflicts

SSBFCSoS OBFSoS

1 54 131

2 47 125

3 45 120

4 38 115

5 34 107

6 30 102

7 25 95

8 19 88

9 17 82

10 15 70

54
47 45

38 34 30 25
19 17 15

131
125 120 115

107 102
95

88
82

70

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

G

le
st

 C
on

fli
ct

s

SSBFCSoS OBFSoS

Figure 2 Conflict rate in Glest for SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-2

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 14/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-2
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

and 5, in contrast to the other method OBFSoS in which the conflicts and the resolution for
the whole SoS are without clustering.

The decision is to determine which system got the best points to win the game. That is
with regards to systems such as an RTS game as the Glest, as a result of making the
right decisions. As part of the algorithm, BF is used for the validity of action sources for

Table 2 Glest conflict rate in decisions generated before and after implementing the SSBFCSoS vs. OBFSoS algorithms.

Glest simulation
attempts

SSBFCSoS OBFSoS

Conflicts rate for systems n = 70, Run time = 300 s

Before method After method #Conflicts before
method

#Conflicts after
method

Clusters conflicts in decision # Conflicts Clusters conflicts in decision # Conflicts

C1 C2 C3 C1 C3 C3

1 0.250 0.350 0.400 0.370 0.200 0.300 0.300 0.296 0.397 0.366

2 0.250 0.375 0.375 0.340 0.188 0.313 0.375 0.298 0.408 0.360

3 0.267 0.400 0.333 0.333 0.133 0.267 0.267 0.222 0.417 0.350

4 0.333 0.333 0.333 0.316 0.167 0.250 0.250 0.211 0.417 0.339

5 0.273 0.273 0.455 0.324 0.091 0.182 0.364 0.206 0.411 0.346

6 0.222 0.222 0.556 0.300 0.111 0.111 0.333 0.133 0.422 0.343

7 0.500 0.167 0.333 0.240 0.333 0.167 0.167 0.160 0.421 0.326

8 0.250 0.250 0.500 0.211 0.250 0.000 0.250 0.105 0.398 0.341

9 0.667 0.000 0.333 0.176 0.333 0.000 0.000 0.059 0.415 0.341

10 0.333 0.333 0.333 0.200 0.000 0.000 0.333 0.067 0.414 0.357

Table 3 Glest conflict rate in a design generated before and after implementing the SSBFCSoS vs. OBFSoS algorithms.

Glest simulation
attempts

SSBFCSoS OBFSoS

Conflicts rate for systems n = 70, Run time = 300 s

Before method After method #Conflicts before
method

#Conflicts after
method

Clusters conflicts in design #Conflicts Clusters conflicts in design #Conflicts

C1 C2 C3 C1 C2 C3

1 0.308 0.231 0.462 0.241 0.231 0.154 0.308 0.167 0.282 0.260

2 0.273 0.273 0.455 0.234 0.182 0.182 0.364 0.170 0.280 0.264

3 0.250 0.417 0.333 0.267 0.167 0.250 0.250 0.178 0.275 0.250

4 0.300 0.400 0.300 0.263 0.200 0.200 0.200 0.158 0.278 0.243

5 0.222 0.444 0.333 0.265 0.111 0.333 0.111 0.147 0.290 0.252

6 0.375 0.375 0.250 0.267 0.375 0.125 0.125 0.167 0.284 0.235

7 0.286 0.571 0.143 0.280 0.143 0.286 0.000 0.120 0.305 0.242

8 0.000 0.333 0.667 0.316 0.000 0.167 0.167 0.105 0.295 0.250

9 0.400 0.600 0.000 0.294 0.200 0.200 0.000 0.118 0.293 0.244

10 0.250 0.500 0.250 0.267 0.000 0.250 0.000 0.067 0.286 0.243

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 15/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

each system (player), and using a fewer number of right actions with the same result giving
the player the right to win the opponent, even if their points are equal, thus, the decision to
win.

Table 2 shows the rate of conflicts in the decisions and their solutions between
SSBFCSoS and OBFSoS. The number of attempts denotes the simulation attempts column.

Table 4 Glest conflict rate in code generated before and after implementing the SSBFCSoS vs. OBFSoS algorithms.

Glest simulation
attempts

SSBFCSoS OBFSoS

Conflicts rate for systems n = 70, Run time = 300 s

Before method After method #Conflicts before
method

#Conflicts after
method

Clusters conflicts in code #Conflicts Clusters conflicts in code #Conflicts

C1 C2 C3 C1 C2 C3

1 0.417 0.250 0.333 0.222 0.250 0.167 0.167 0.130 0.153 0.145

2 0.333 0.333 0.333 0.255 0.083 0.167 0.167 0.106 0.152 0.136

3 0.455 0.273 0.273 0.244 0.182 0.091 0.091 0.089 0.150 0.125

4 0.300 0.300 0.400 0.263 0.100 0.100 0.200 0.105 0.139 0.122

5 0.333 0.222 0.444 0.265 0.111 0.111 0.111 0.088 0.140 0.121

6 0.250 0.375 0.375 0.267 0.125 0.125 0.125 0.100 0.137 0.127

7 0.375 0.250 0.375 0.320 0.125 0.000 0.125 0.080 0.126 0.116

8 0.167 0.667 0.167 0.316 0.000 0.167 0.000 0.053 0.148 0.125

9 0.400 0.600 0.000 0.294 0.000 0.200 0.000 0.059 0.146 0.110

10 0.000 0.400 0.600 0.333 0.000 0.000 0.200 0.067 0.157 0.114

Table 5 Glest conflict rate in security generated before and after implementing the SSBFCSoS vs. OBFSoS algorithms.

Glest simulation
attempts

SSBFCSoS OBFSoS

Conflicts rate for systems n = 70, Run time = 300 s

Before method After method #Conflicts before
method

#Conflicts after
method

Clusters conflicts in security #Conflicts Clusters conflicts in security #Conflicts

C1 C2 C3 C1 C2 C3

1 0.444 0.222 0.333 0.167 0.333 0.111 0.222 0.111 0.168 0.153

2 0.375 0.375 0.250 0.170 0.250 0.250 0.125 0.106 0.160 0.152

3 0.286 0.286 0.429 0.156 0.143 0.143 0.286 0.089 0.158 0.142

4 0.500 0.500 0.000 0.158 0.333 0.333 0.000 0.105 0.165 0.130

5 0.400 0.200 0.400 0.147 0.200 0.200 0.200 0.088 0.159 0.131

6 0.200 0.400 0.400 0.167 0.200 0.200 0.000 0.067 0.157 0.127

7 0.750 0.250 0.000 0.160 0.250 0.250 0.000 0.080 0.147 0.126

8 0.000 0.667 0.333 0.158 0.000 0.333 0.000 0.053 0.159 0.125

9 0.500 0.250 0.250 0.235 0.250 0.000 0.000 0.059 0.146 0.122

10 0.667 0.000 0.333 0.200 0.000 0.000 0.000 0.067 0.143 0.114

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 16/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

For SSBFCSoS, the number of desired clusters is indicated by Cl. For the given number of si
systems (70), the best-performing algorithm result is given in bold as in SSBFCSoS.

In Table 2, the values that resulted from applying clustering through SSBFCSoS has
shown better results. Attempt 5, for instance, shows the decrease of the conflicts percentage
to 0.206 for all the clusters in SSBFCSoS compared to 0.346 for the other method.
The results have progressed to reach 0.067 for SSBFCSoS compared to 0.357 for OBFSoS
for the last attempt.

Figure 3 illustrates the rate of remaining conflicts in decisions while resolving the
SSBFCSoS and OBFSoS algorithms. It illustrates how SSBFCSoS encounters more conflicts
on time, and is, therefore, more suitable for SoS than OBFSoS.

Compared to OBFSoS, the SSBFCSoS algorithm curve shows that the rate of conflicts
decreases sequentially, as shown in Fig. 3, due to the clustering of conflict handling.
The system is an intelligent, learned system that avoids the same conflicts encountered in
earlier attempts. It appears, as shown in Table 1, that applying the algorithm SSBFCSoS,
the total number of conflicts decreases as the number of attempts increases, so the
relationship here is considered inverse.

The system design is the general structure of the system. The parts that this system
consists of include units, interfaces, and data. As a system, the game also has a pattern or
design. Furthermore, from it, the incompatibility between the structure of two systems
(two games) or more, is what calls for design conflicts. Although systems are homogenous,
different versions of the game can cause such design conflicts. The same thing may cause
code conflicts, as well.

The goal is to make the right decision to determine the winning player and also collect
points. In case there are design conflicts between two or more systems, the right decision
cannot be made, because of the incompatibility between the design of the two systems.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10

snoisiced
ni

et arstcilfno
Ctsel

G

SSBFCSoS OBFSoS

Figure 3 Glest conflict rate in decisions after implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-3

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 17/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-3
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

According to the rules, to determine the best work, the environment should be equal,
since incompatible environments lead to design conflicts, depending on the different
versions of the game. If Algorithm is used, SSBFCSoS determines the compatibility. BF also
returns to the game source to verify this.

Table 3 displays the rate of conflicts in design with its solutions between SSBFCSoS
and OBFSoS. For example, in the last attempt, conflicts in the design percentage reached a
ratio of 0.067 in SSBFCSoS compared to 0.243 in OBFSoS, which is considered a good
result, as shown in Table 3 that almost all the conflicts in two clusters were dealt with
against one conflict in the last cluster concerning method SSBFCSoS. While OBFSoS
needed a longer time to reach the same results. The clustering process dealt with conflicts
in parallel, thus it consumed less time than without it.

Figure 4 illustrates the rate of remaining conflicts in design after they encountered,
during the process of resolving the SSBFCSoS and OBFSoS algorithms. It describes how
SSBFCSoS faces more conflicts than OBFSoS in a limited time.

In Table 4, the results of the comparison of SSBFCSoS and OBFSoS shown in the
code conflicts. In addition to clarifying the clusters, each cluster is presented separately
before and after applying the SSBFCSoS algorithm. SSBFCSoS was able to face conflicts
almost double the other method. Whereas for SSBFCSoS, the conflict ratio has decreased
to about 0.067 compared to 0.114 for OBFSoS. Either way, it consumed about the same
time and could be less.

Figure 5 shows the sequence of results for both algorithms to resolve conflicts in
code. The higher the number of attempts, the better the outcome for each algorithm,
however, algorithm SSBFCSoS still produces significantly better results as in the figure.

In regards to priority for each system, it may be a security priority. Some systems
place security at the top of their interests, according to their goals. In this paper, the
systems are gaming systems. Moreover, the game has an online version, therefore, security

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

ngised
ni

etarstcilfno
Ctsel

G

SSBFCSoS OBFSoS

Figure 4 Glest conflict rate in design after implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-4

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 18/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-4
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

becomes essential. The importance of security lies in its influence on the decision of our
SoS. So, it is considered working for security if it affects the decision because getting a
better decision is the first and primary goal.

The score has to be confirmed to determine who won, which is why, in this case, not all
players can enter the game until they pass the registration rules. That is to achieve the
security requirement. For that, Table 5 records the evolution in the number of conflicts
in security. In Table 5, SSBFCSoS achieved good results in facing security conflicts as much
as possible. The conflicts ratio was at attempt 7 was about 0.080 and 0.126 for OBFSoS for
the same attempt.

Figure 6 shows the rate of development of security conflicts after applying methods,
showing satisfactory results by the SSBFCSoS in comparison to OBFSoS.

Table 6 shows the conflict rate resolved by the algorithms, and the time takes for each
algorithm to obtain these solutions. We have reached a better SSBFCSoS algorithm to
get good results, which consumes a shorter time. As shown in Table 6, the first attempt, the
resolving conflicts percentage for the SSBFCSoS has reached 0.296 within approximately
281 s, while OBFSoS achieved 0.076 within 300 s. As for the last attempt, the rate of
resolving conflicts has reached 0.733 for the SSBFCSoS within 113 s, while OBFSoS has
achieved about 0.171 within 0.276 s.

These rates show in Fig. 7, which reflects the rate of the conflicts resolved.
Figure 8 shows a comparison of the time taken for each algorithm to obtain solutions,

proving that the SSBFCSoS algorithm is the best in terms of time consumption.

STARCRAFT BROOD WAR
To evaluate the StarCraft Brood War, the conflict resolution rates in the cases under
consideration generated by SSBFCSoS and OBFSoS are calculated and listed in Table 7.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10

edoc
ni

etarstcilfnoctsel
G

SSBFCSoS OBFSoS

Figure 5 Glest conflict rate in code after implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-5

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 19/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-5
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

For decision conflicts appearance as in attempt 9, the SSBFCSoS has reached 0.250
compared to 0.394 by OBFSoS. For design conflicts appearance as in attempt 8, the
SSBFCSoS has reached 0.250 compared to 0.287 by OBFSoS. As for security conflicts in the
same attempt, SSBFCSoS has reached 0.167 compared to 0.204 by OBFSoS.

Table 8, shows that SSBFCSoS has achieved superiority over OBFSoS in terms of conflict
resolution in SoS.

Table 8 presents the number of conflicts generated for SSBFCSoS compared to
OBFSoS with an average of 100 systems for G-SoS. SSBFCSoS divides these systems into
3 clusters (S-SoSs), with the number of systems ranging from 25 to 36 per cluster.
Each algorithm is allowed 400 se to resolve the conflicts encountered.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10

ytiruceS
ni

etarstcilfno
Ctsel

G

SSBFCSoS OBFSoS

Figure 6 Glest conflict rate in security after implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-6

Table 6 Glest # of resolved conflicts rate generated SSBFCSoS vs. OBFSoS with consumed time.

Glest simulation attempts SSBFCSoS OBFSoS

Time Rate Time Rate

1 0.296 281.11 0.076 300.00

2 0.319 270.59 0.088 300.00

3 0.422 262.28 0.133 288.89

4 0.421 214.67 0.165 278.26

5 0.471 204.44 0.15 283.49

6 0.533 180.39 0.167 277.78

7 0.560 161.40 0.189 270.18

8 0.684 161.85 0.159 280.30

9 0.706 122.34 0.183 272.36

10 0.733 113.58 0.171 276.19

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 20/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-6
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Table 8 shows only the final result for the three merged clusters in decision, design,
code and security conflicts. At attempt 8, the percentage of conflicts after applying
SSBFCSoS has reached 0.208 compared to 0.389 for OBFSoS in decision conflicts.
In design, conflicts have reached 0.185 for SSBFCSoS compared to 0.242 for OBFSoS in
attempt 7. In attempt 9, the SSBFCSoS conflict ratio has reached 0.100 compared to 0.154
for OBFSoS in terms of security, and the code conflicts ratio has reached 0.100 for
SSBFCSoS compared to 0.163 for OBFSoS.

Figure 9 shows the improvement in the conflicts rate in decisions for SoS achieved by
SSBFCSoS in comparison to that achieved by OBFSoS.

Figure 10 shows that the conflicts in the design reduced by using SSBFCSoS better than
OBFSoS.

1 2 3 4 5 6 7 8 9 10
SSBFCSoS 0.296 0.319 0.422 0.421 0.471 0.533 0.56 0.684 0.706 0.733
OBFSoS 0.076 0.088 0.133 0.165 0.15 0.167 0.189 0.159 0.183 0.171

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

etarstcilfnoc
devlosertsel

G

SSBFCSoS OBFSoS

Figure 7 Glest resolved conflict rate after implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-7

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10

 gnivloser ni etar e
mit de

musnoc tsel
G

co
nf

lic
ts

SSBFCSoS OBFSoS

Figure 8 Glest Time Consumed in Conflicts Resolving during implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-8

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 21/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-7
http://dx.doi.org/10.7717/peerj-cs.468/fig-8
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Figure 11 with almost the same conflict rate for SSBFCSoS and OBFSoS. However,
SSBFCSoS can resolve more conflicts than OBFSoS.

The curve in Fig. 12 illustrates the code conflicts of the two methods.
Table 9 shows the rate of addressing conflicts of the SoS in the ratio of both SSBFCSoS

and OBFSoS along with the time taken. In attempt 7, the percentage of solutions achieved
by SSBFCSoS has reached 0.333 within 127 s compared to a ratio of 0.70 within 317
seconds for OBFSoS.

Table 7 StarCraft Brood War Conflicts rate generated for SSBFCSoS vs. OBFSoS.

StarCraft Brood War
simulation attempts

SSBFCSoS OBFSoS

Conflicts rate for systems n = 100, Run time = 400 s

Conflicts ratio Conflicts ratio

Decision Design Security Code Decision Design Security Code

1 0.343 0.239 0.209 0.209 0.364 0.283 0.192 0.162

2 0.322 0.254 0.203 0.220 0.385 0.275 0.181 0.159

3 0.314 0.255 0.216 0.216 0.390 0.273 0.174 0.163

4 0.319 0.255 0.191 0.234 0.383 0.272 0.185 0.160

5 0.317 0.268 0.195 0.220 0.396 0.268 0.181 0.154

6 0.303 0.242 0.212 0.242 0.396 0.273 0.180 0.151

7 0.333 0.222 0.222 0.222 0.398 0.273 0.172 0.156

8 0.333 0.250 0.167 0.250 0.435 0.287 0.204 0.074

9 0.250 0.300 0.200 0.250 0.394 0.279 0.173 0.154

10 0.278 0.278 0.222 0.222 0.402 0.278 0.186 0.134

Table 8 StarCraft Brood War Resolved Conflicts generated after implementing the SSBFCSoS vs. OBFSoS.

StarCraft Brood War simulation
attempts

SSBFCSoS OBFSoS

Conflicts rate for systems n = 100, Run time = 400 s

Resolved conflicts ratio Resolved conflicts ratio

Decision Design Security Code Decision Design Security Code

1 0.269 0.224 0.164 0.149 0.343 0.258 0.177 0.157

2 0.254 0.220 0.169 0.153 0.352 0.264 0.181 0.159

3 0.255 0.235 0.157 0.157 0.355 0.250 0.163 0.163

4 0.255 0.234 0.149 0.149 0.352 0.241 0.167 0.167

5 0.268 0.195 0.146 0.122 0.362 0.248 0.161 0.161

6 0.212 0.182 0.152 0.121 0.367 0.245 0.158 0.158

7 0.222 0.185 0.148 0.111 0.375 0.242 0.156 0.156

8 0.208 0.208 0.125 0.083 0.389 0.259 0.176 0.167

9 0.100 0.200 0.100 0.100 0.365 0.240 0.154 0.163

10 0.056 0.056 0.111 0.111 0.309 0.227 0.155 0.144

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 22/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Figure 13 shows the extent to which SSBFCSoS was better than OBFSoS in terms of
addressing conflicts, and its rate has reached 67% in attempt 10 compared to 17% for
OBFSoS.

Figure 14 Compares the time spent for each method, showing the advantage of
SSBFCSoS in saving time at a rate of more than three times the time consumed by OBFSoS.

Each of the two systems revealed the number of conflicts. The results indicated the
progress of SSBFCSoS, which has reached this success thanks to the division of inputs
from the systems to fall under the name clusters S-SoS. It also shows an apparent effect on

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

ni
etarstcilfnocra

W
door

BtfarcratS
de

ci
si

on

SSBFCSoS OBFSoS

Figure 9 StarCraft BroodWar Conflicts rate in decisions after implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-9

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

ni
etarstcilfnocra

W
door

BtfarcratS
de

si
gn

SSBFCSoS OBFSoS

Figure 10 StarCraft Brood War Conflicts rate in design after implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-10

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 23/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-9
http://dx.doi.org/10.7717/peerj-cs.468/fig-10
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

the proper use of time. Focusing on time is essential in exceptional cases, such as the
systems to which it was applied.

Comparing the two methods SSBFCSoS and OBFSoS
Experience clearly shows that there is no established law for making a better Decision for
SoS. However, the performance of each of the applied algorithms depends on the features
of the conflicts.

At the beginning of the application, a certain number—three—of clusters are identified,
with each cluster containing 20 to 35 systems, ultimately reaching about 70 or 100 systems.
Time is set to approximately 120 s to identify conflicts, and about 300 s to address

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.200

1 2 3 4 5 6 7 8 9 10

ni
etarstcilfnocra

W
door

BtfarcratS
se

cu
rit

y

SSBFCSoS OBFSoS

Figure 11 StarCraft BroodWar Conflicts rate in security after implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-11

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

1 2 3 4 5 6 7 8 9 10

ni
etarstcilfnocra

W
door

BtfarcratS
co

de

SSBFCSoS OBFSoS

Figure 12 StarCraft Brood War Conflicts rate in code after implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-12

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 24/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-11
http://dx.doi.org/10.7717/peerj-cs.468/fig-12
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

those conflicts. These features can be of conflict type and number of systems that have
conflict at the same time, in addition to the number of conflicts encountered during the
solution process.

Each algorithm has its method depending on the case. Nevertheless, through research, a
method of evaluating the performance of each algorithm has been proposed. So, we
present the following general trends that we observed:

� The algorithm SSBFCSoS outperforms the other algorithm in most cases with an
unlimited number of systems.

� The longer the time is taken by algorithm OBFSoS, the better-achieved results, but to a
limited number of systems only.

Table 9 StarCraft Brood War resolved conflict rate generated after implementing the SSBFCSoS vs.
OBFSoS with consumed time.

StarCraft Brood War simulation attempts SSBFCSoS OBFSoS

Rate Time Rate Time

1 0.194 369.15 0.066 399.28

2 0.203 251.26 0.044 377.43

3 0.196 198.5 0.070 370.44

4 0.213 189.34 0.074 355.31

5 0.268 158.55 0.067 341.37

6 0.333 131.51 0.072 335.58

7 0.333 127.28 0.070 317.08

8 0.375 101.45 0.009 304.21

9 0.500 98.56 0.077 299.25

10 0.667 87.54 0.165 289.11

1 2 3 4 5 6 7 8 9 10
SSBFCSoS 0.194 0.203 0.196 0.213 0.268 0.333 0.333 0.375 0.500 0.667
OBFSoS 0.066 0.044 0.070 0.074 0.067 0.072 0.070 0.009 0.077 0.165

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

ra
W

door
BtfarcratS

re
so

lv
ed

 c
on

fli
ct

s
ra

te

SSBFCSoS OBFSoS

Figure 13 StarCraft Brood War resolved conflict rate after implementing SSBFCSoS vs. OBFSoS.
Full-size DOI: 10.7717/peerj-cs.468/fig-13

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 25/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-13
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

� As for the clusters in algorithm SSBFCSoS, the systemmust not be part of more than one
cluster simultaneously.

� The game running online, allows the system to exit and enter more than once. It could
create a repeated conflict, especially in security.

� Although the algorithm system SSBFCSoS is a learned system. However, it can
seriously increase in some attempts over others in conflicts for the previously mentioned
reasons.

� Continuous attempts with algorithm SSBFCSoS reduce the number of conflicts and the
time taken to resolve conflicts.

� There is a constant conflict despite repeated attempts, which requires user intervention
to get the appropriate and better decision. Therefore, a significant percentage of about
20% of the unresolved conflicts was required for user intervention.

Figure 15 shows the number of systems and clusters and the conflict resolution rate.
The number of clusters was set proportional to the number of systems, creating a
direct relationship; the more systems and clusters, the more satisfactory the results. Should
we let the system limit the number of clusters? If we leave it open, it is possible to create
semi-empty clusters containing only two or three systems. So, we tried to define the
systems. During implementation, we found that if the average number of systems within
each cluster was 10% of the total number of systems, the results were very appropriate,
and the time was right. Also, if the average systems for each cluster are 25–30, the results
are perfect.

Also, we found a second situation during implementation where two or more systems
(players) play with the multiplayer system, as in the two systems produce one combined
decision. First, we need to compare procedures by OBFSoS algorithm, then compare
their decisions. We have two parts to compare the procedures for obtaining the highest
points first and determining the best procedure for obtaining higher points for their group,
then compare the decisions to get an ideal decision. And then they entered as part of the
S-SoS and so on.

Comparing clustering methods k-means and agglomerative
(bottom-up)
We made a statistic that compared two clustering algorithms, namely k-means and
agglomerative (bottom-up). The two algorithms were compared in the second case study;
StarCraft Brood War. We made this statistic on different numbers of systems, as shown in
Table 10. We were beginning with fewer systems, ending with more. We recorded the
values after seven attempts. Concerning the algorithm k-means, we specified the
number of clusters as 5 clusters. Contrary to k-means, the number of clusters in
agglomerative (bottom-up) is not determined, but each system is considered as a separate
cluster until several clusters formed. The same distance measurement is used for the
k-means.

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 26/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

In Table 10 for case 7 with 110 systems as inputs, k-means achieved a conflict
resolution rate of about 90% compared to about 69% for the agglomerative
(bottom-up). These results took about 279 seconds for the k-means compared to 790 s for
the other one.

Figure 16 clarifies the comparison curve between the two-clustering methods k-means
and agglomerative (bottom-up) so that k-means showed excellent results better than the
other method.

0

50

100

150

200

250

300

350

400

600 800 1000 1200 1400

C
on

fli
ct

s r
at

e

Systems numbers

3 4 5 6 7 8 9 10 11 12

Figure 15 Resolved conflicts rate for SSBFCSoS with different cluster numbers and systems.
Full-size DOI: 10.7717/peerj-cs.468/fig-15

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10

 etar e
mit de

mus noc ra
W door

B tfarcratS
stcilfnoc gnivloser ni

SSBFCSoS OBFSoS

Figure 14 StarCraft Brood War Time consumed in conflicts resolving during implementing
SSBFCSoS vs. OBFSoS. Full-size DOI: 10.7717/peerj-cs.468/fig-14

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 27/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-15
http://dx.doi.org/10.7717/peerj-cs.468/fig-14
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Figure 17 gave a curve for the time consumed for each method to obtain these results,
showing a significant difference in the time taken between the two methods, with k-means
saving time while preserving its results better than the other method.

Generally, the k-means algorithm is easy to implement and more suitable with big data
such as SoS (Nasraoui & N’Cir, 2019).

Comparison between the k-means algorithm and some clustering
algorithms
The choice of the k-mean algorithm as a clustering technique for optimising SSBFCSoS
is supported. SoS features are a combination of some IoT features and some of the big data,

Table 10 StarCraft Brood War resolving conflicts rate generated after implementing the SSBFCSoS
method using k-means clustering vs. Agglomerative (bottom-up) with consumed time.

systems k-means Agglomerative (bottom-up)

Rate Time Rate Time

20 0.846 60.42 0.692 99.52

35 0.778 99.38 0.704 161.55

65 0.895 121.05 0.667 232.32

80 0.855 196.57 0.696 333.33

95 0.884 241.47 0.663 423.45

110 0.899 279.42 0.687 789.50

130 0.888 329.36 0.664 953.36

140 0.876 373.16 0.664 1,696.17

170 0.884 406.38 0.661 1,900.53

190 0.891 539.47 0.652 2,884.42

0.846
0.778

0.895 0.855 0.884 0.899 0.888 0.876 0.884 0.891

0.692 0.704 0.667 0.696 0.663 0.687 0.664 0.664 0.661 0.652

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 35 65 80 95 110 130 140 170 190

stcilfnoc
devloserra

w
doorbtfarcrat S

ra
te

Systems numbers

k-means Agglomerative (bottom-up)

Figure 16 StarCraft Brood War resolved conflicts rate generated implementing the SSBFCSoS using
k-means clustering vs. Agglomerative (bottom-up).

Full-size DOI: 10.7717/peerj-cs.468/fig-16

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 28/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-16
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

therefore, we need a clustering algorithm with the following features for the fusion into
SSBFCSoS:

� Dealing with huge datasets such as k-means, CURE, BIRCH and CHAMELEON (Sanse &
Sharma, 2015), STING (Oyelade et al., 2016), Agglomerative, and HASTREAM
(Nasraoui & N’Cir, 2019). We display the data size criteria in the second column Table 11.

� Low time consumption. K-means is a very fast algorithm reducing the overall consumed
time (Nasraoui & N’Cir, 2019).

� Not requiring special hardware as all chosen algorithms in Table 11.

� Scalability, the k-means algorithm is at the forefront of scalability as for SoS (Sholla
et al., 2017).

� Accepting overlapping clusters, which is the effect on conflict solution. k-means is one of
the algorithms that do not accept overlap between clusters (Khanmohammadi,
Adibeig & Shanehbandy, 2017) as well as OPTICS (Mirzaie et al., 2015), HASTREAM
and Liar Tree (Nasraoui & N’Cir, 2019), While algorithms C-means (He et al., 2018),
SOM (Sarlin & Eklund, 2011) and K-Medoids (Arora & Varshney, 2016) accept
overlapping. This comparison is in column four, Table 11.

� General implementation feasibility, as a trend in 2021 Artificial Intelligence utilises deep
learning in clustering big data but that need proper hardware and cloud system, and
applying to a certain application with the training dataset. K-means is easily applied to
any general SoS application, and can easily be applied to devices with available medium
capabilities as well. Finally, k-means is still one of the top five clustering algorithms
(Bangui, Ge & Buhnova, 2018).

For these reasons, the k-means algorithm was the base of our proposed algorithm
SSBFCSoS. We have compared k-means distance functions (Conclusions), then adopted a
more appropriate specific measurement method as explained.

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200

stcilfnoc
gnivloserra

w
doorbtfarcratS

co
ns

um
ed

 ti
m

e

Systems numbers

k-means Agglomerative (bottom-up)

Figure 17 StarCraft Brood War Time consumed in conflicts resolving during implementing
SSBFCSoS using k-means vs. Agglomerative (bottom-up) clustering techniques.

Full-size DOI: 10.7717/peerj-cs.468/fig-17

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 29/34

http://dx.doi.org/10.7717/peerj-cs.468/fig-17
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

CONCLUSIONS
Increasing the SoS capacity to accommodate more systems results in some issues
among the SoS Components systems. Conflict is one of these issues. This paper focused on
how to enhance the speed of detection and solution of conflicts that may arise while
integrating new systems into an existing SoS.

We presented a method based on the use of the k-means clustering technique. Each
cluster contains nearby systems according to pre-specified criteria. We can consider each
cluster a Sub SoS (S-SoS) which in turn form the major SoS. We proposed the Smart
Semantic Belief Function Clustered System of Systems (SSBFCSoS) which is an
enhancement of the Ontology Belief Function System of Systems (OBFSoS). The proposed
method proved the ability to detect and solve conflicts.

In order to test the applicability of the SSBFCSoS and compare its performance with
other approaches, two well-known datasets were employed. They are (Glest & StarCraft
Brood War). With each dataset, 15 test cases were examined. Considering that each testing
was after every ten attempts of learning. To evaluate the proposed method, we applied
it to homogeneous systems cases. The Glest game for a sample of about 70 systems divided
into three clusters (S-SoSs). StarCraft Brood War was selected for a sample of about
100 systems divided into three clusters (S-SoSs). Furthermore, we have picked these
cases specifically for the application because we intend to use homogeneous states.

Using clustering techniques showed better performance ratios. The proposed method
(SSBFCSoS) demonstrated the time-reducing effect of SoS activities with the early
detection of conflicts to be dealt with. We adopted an essential type of conflict, which is the
struggle to obtain the optimal Decision for SoS. As a learned system, it avoids similar
conflicts during attempts. It also helped to improve results and allowed us to deal with
more CS in SoS with saving much time.

Table 11 Comparison between the k-means algorithm and some clustering algorithms.

Algorithm Dataset
size

Scalability Overlapping Clusters
(Conflicts)

Time
Consuming

Adapting with
SoS/IoT

k-means Huge Yes No Low Yes

K-medoids Small No Yes High No

CLARA Huge Yes No Medium Yes

Agglomerative
(bottom-up)

Huge Yes No High Yes

STING Huge No – Medium Yes

c-means Medium Yes Yes High No

BIRCH Huge Yes – High No

CURE Huge Yes – High Yes

CHAMELEON Huge Yes No High No

OPTICS Small No No Medium Yes

HASTREAM Huge Yes No High No

Liar Tree Small No No High No

SOM Small No Yes High Yes

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 30/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Two types of clustering algorithms have been tried; k-means and agglomerative
(bottom-up). The algorithm k-means was adopted for SSBFCSoS for its better results,
not only in terms of resolving conflicts but for the less time, it took as well.

In many cases, clustering results enabled the SSBFCSoS to check the conflict state while
still handling conflict optimally. We achieved, on average, 89% in solving the conflict
compared to 77% of the other well-known approaches. Moreover, it showed an
acceleration of up to proportionality over previous approaches for about 16% in solving
conflicts as well. It also reduces the frequency of the same conflicts by approximately 23%
better than the other method, not only in the same cluster but even while combining
different clusters. Eventually; the positive effect of the clustering process has appeared, the
number of Component Systems (CS) has almost tripled compared to other methods while
preserving integration and conflict resolution.

Future work
The evaluation of this approach appears promising, but scalability issues remain to
addressed. Consequently, future business trends should include developing more specific
technologies to define conflict for larger quantities of systems and rules of conflicts.
Besides, dealing with heterogeneous systems such as those found in smart cities. It can also
be used as the classification method developed for different types of conflicts to provide
orderly results to the user.

We used the k-means technique which depends on identifying the desired number of
clusters before initiating the clustering process. We found that when some new systems are
added to the already existing SoS, the system may belong to an S-SoS far from the one
closest to it. That deviates us from the idea that we relied on in classification to some
extent. This would prompt us to try different clustering techniques in the future.

Finally, the application on different numbers of systems within more than one method
of clustering shows another issue; which is how to reach the ideal number of systems
within each cluster.

Implementation showed that when the number of systems within one cluster reaches
a specific number, the SoS becomes ideal in achieving its goals, which is evidently, the ideal
number of clusters to achieve the SoS goal. This opens up another avenue for research
on the same issue for future work. Besides, we will put a competitive study with Artificial
Intelligence clustering techniques for the generalisation of our proposed method
(SSBFCSoS) in the future as well.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 31/34

http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Author Contributions
� Eman K. Elsayed conceived and designed the experiments, performed the experiments,
analysed the data, authored or reviewed drafts of the paper, and approved the final draft.
� Ahmed Sharaf Eldin Ahmed conceived and designed the experiments, authored or
reviewed drafts of the paper, and approved the final draft.
� Hebatullah Rashed Younes conceived and designed the experiments, performed the
experiments, analysed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Codes are available in the Supplemental Files. The Supplemental Files show the code of
the games systems that used in clustering techniques for SoS.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.468#supplemental-information.

REFERENCES
Agarwal S, Dagli CH, Pape LE. 2016. Computational intelligence based complex adaptive system-

of-system architecture evolution strategy. In: Complex Systems Design & Management. Springer,
119–132.

Ahmed H, Salem R, Saleh S. 2015. Clustering algorithm for distributed real-time database sites.
International Journal of Computers and Information 4(1):11–20 DOI 10.21608/ijci.2015.33957.

Arora P, Varshney S. 2016. Analysis of k-means and k-medoids algorithm for big data. Procedia
Computer Science 78(3):507–512 DOI 10.1016/j.procs.2016.02.095.

Bangui H, Ge M, Buhnova B. 2018. Exploring big data clustering algorithms for internet of things
applications. In: IoTBDS.

Bodeau DJ. 1994. System-of-systems security engineering. In: Tenth Annual Computer Security
Applications Conference. Piscataway: IEEE.

Boehm B, Lane JA. 2007. Using the incremental commitment model to integrate system
acquisition, systems engineering, and software engineering. CrossTalk 19(10):4–9.

Chiprianov V, Gallon L, Munier M, Aniorte P, Lalanne V. 2014. The systems-of-systems
challenge in security engineering. In: Groupement De Recherche CNRS du Génie de la
Programmation et du Logiciel. 163.

Dimitriadis VK. 2009. Reinforcement learning in real time strategy games case study on the free
software game glest. Department of Electronic and Computer Engineering Technical University
of Crete, China.

Dor S. 2014. The heuristic circle of real-time strategy process: a starcraft: brood war case study.
Game Studies 14(1):148.

Engineering Do S. 2010. Systems engineering guide for system of systems. Defense research and
engineering. Vol. 20301–3040. Washington, D.C: Pentagon, 17.

Garanina N, Sidorova E, Anokhin S. 2015. Conflict resolution in multi-agent systems with typed
connections for ontology population. In: International Andrei Ershov Memorial Conference on
Perspectives of System Informatics. Springer.

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 32/34

http://dx.doi.org/10.7717/peerj-cs.468#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.468#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.468#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.468#supplemental-information
http://dx.doi.org/10.21608/ijci.2015.33957
http://dx.doi.org/10.1016/j.procs.2016.02.095
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

Gorod A, White BE, Ireland V, Gandhi SJ, Sauser B. 2014. Case studies in system of systems,
enterprise systems, and complex systems engineering. Boca Raton: CRC Press.

Gutierrez R. 2018. A requirement ontology to guide the analysis of system life cycle processes.
Montréal: Concordia University.

He X, Guo K, Liao Q, Yan Q. 2018.Overlapping community detection algorithm based on spectral
and fuzzy C-means clustering. In: CCF Conference on Computer Supported Cooperative Work
and Social Computing. Springer.

Idrees AM, Gomaa WH. 2020. A proposed method for minimizing mining tasks’ data
dimensionality. International Journal of Intelligent Engineering and Systems 3(2):182–195.

Khanmohammadi S, Adibeig N, Shanehbandy S. 2017. An improved overlapping k-means
clustering method for medical applications. Expert Systems with Applications 67(14):12–18
DOI 10.1016/j.eswa.2016.09.025.

Ki-Aries D, Faily S, Dogan H, Williams C. 2018. Assessing system of systems security risk and
requirements with OASoSIS. In: 2018 IEEE 5th International Workshop on Evolving Security &
Privacy Requirements Engineering (ESPRE). Piscataway: IEEE.

Lane JA, Boehm B. 2019. Systems of systems thinking. In: Systems Engineering in Context.
Springer, 553–564.

Luzeaux D. 2014. SoS and large-scale complex systems architecting. In: Complex Systems Design &
Management. Springer, 39–49.

Madan BB. 2015. System of systems security. In: Modeling and Simulation Support for System of
Systems Engineering Applications. 565.

Maier MW. 1998. Architecting principles for systems-of-systems. Systems Engineering: The Journal
of the International Council on Systems Engineering 1(4):267–284.

Mirzaie M, Barani A, Nematbakkhsh N, Beigi M. 2015.OverDBC: a new density-based clustering
method with the ability of detecting overlapped clusters from gene expression data. Intelligent
Data Analysis 19(6):1311–1321 DOI 10.3233/IDA-150784.

Mokhtarpour B, Stracener J. 2014. Application of a clustering technique in identifying the best
System of Systems (SoS) during development. In: 2014 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). Piscataway: IEEE.

Muflikhah L, Widodo W, Mahmudy WF, Solimun S. 2020. A support vector machine based on
kernel k-means for detecting the liver cancer disease. International Journal of Intelligent
Engineering and Systems 13(3):293–303.

Nasraoui O, N’Cir C-EB. 2019. Clustering methods for big data analytics. In: Techniques,
Toolboxes and Applications. Vol. 1. Cham: Springer, 91–113 DOI 10.1007/978-3-319-97864-2.

Oyelade J, Isewon I, Oladipupo F, Aromolaran O, Uwoghiren E, Ameh F, Achas M, Adebiyi E.
2016. Clustering algorithms: their application to gene expression data. Bioinformatics and
Biology Insights 10:237–253.

Peculis R, Shirvani F. 2017. Infrastructure system of systems integrity. In: International
Symposium for Next Generation Infrastructure, 264–303. Available at http://ro.uow.edu.au/cgi/
viewcontent.cgi?article=1258&context=smartpapers.

Popper SW, Bankes SC, Callaway R, DeLaurentis D. 2004. System of systems symposium: Report
on a summer conversation. Arlington: Potomac Institute for Policy Studies, 320.

Ramsbotham O, Miall H, Woodhouse T. 2011. Contemporary conflict resolution, Polity.
Available at https://books.google.com.eg/books?hl=en&lr=&id=71b9UMgPgbwC&oi=
fnd&pg=PR1&dq=Ramsbotham,+O.,+H.+Miall+and+T.+Woodhouse+(2011).+Contemporary
+conflict+resolution,+Polity.&ots=aEYLrz0IeG&sig=7CQ4aEHK9FZMezSrk5pumQ-

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 33/34

http://dx.doi.org/10.1016/j.eswa.2016.09.025
http://dx.doi.org/10.3233/IDA-150784
http://dx.doi.org/10.1007/978-3-319-97864-2
http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1258&context=smartpapers
http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1258&context=smartpapers
https://books.google.com.eg/books?hl=en&lr=&id=71b9UMgPgbwC&oi=fnd&pg=PR1&dq=Ramsbotham,+O.,+H.+Miall+and+T.+Woodhouse+(2011).+Contemporary+conflict+resolution,+Polity.&ots=aEYLrz0IeG&sig=7CQ4aEHK9FZMezSrk5pumQ-WzF8&redir_esc=y#v=onepage&q=Ramsbotham%2C%20O.%2C%20H.%20Miall%20and%20T.%20Woodhouse%20(2011).%20Contemporary%20conflict%20resolution%2C%20Polity.&f=false
https://books.google.com.eg/books?hl=en&lr=&id=71b9UMgPgbwC&oi=fnd&pg=PR1&dq=Ramsbotham,+O.,+H.+Miall+and+T.+Woodhouse+(2011).+Contemporary+conflict+resolution,+Polity.&ots=aEYLrz0IeG&sig=7CQ4aEHK9FZMezSrk5pumQ-WzF8&redir_esc=y#v=onepage&q=Ramsbotham%2C%20O.%2C%20H.%20Miall%20and%20T.%20Woodhouse%20(2011).%20Contemporary%20conflict%20resolution%2C%20Polity.&f=false
https://books.google.com.eg/books?hl=en&lr=&id=71b9UMgPgbwC&oi=fnd&pg=PR1&dq=Ramsbotham,+O.,+H.+Miall+and+T.+Woodhouse+(2011).+Contemporary+conflict+resolution,+Polity.&ots=aEYLrz0IeG&sig=7CQ4aEHK9FZMezSrk5pumQ-WzF8&redir_esc=y#v=onepage&q=Ramsbotham%2C%20O.%2C%20H.%20Miall%20and%20T.%20Woodhouse%20(2011).%20Contemporary%20conflict%20resolution%2C%20Polity.&f=false
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

WzF8&redir_esc=y#v=onepage&q=Ramsbotham%2C%20O.%2C%20H.%20Miall%20and%20T.
%20Woodhouse%20(2011).%20Contemporary%20conflict%20resolution%2C%20Polity.&f=false.

Robinson WN, Pawlowski SD, Volkov V. 2003. Requirements interaction management. ACM
Computing Surveys 35(2):132–190 DOI 10.1145/857076.857079.

Rokach L, Maimon O. 2005. Clustering methods. In: Maimon O, Rokach L, eds. Data Mining and
Knowledge Discovery Handbook. Boston: Springer, 321–352.

Sage AP. 2003. Conflict and risk management in complex system of systems issues. In: SMC'03
Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics.
Conference Theme-System Security and Assurance (Cat. No. 03CH37483). Piscataway: IEEE.

Sanse K, Sharma M. 2015. Clustering methods for big data analysis. International Journal of
Advanced Research in Computer Engineering & Technology 4(3):642–648.

Sarlin P, Eklund T. 2011. Fuzzy clustering of the self-organizing map: some applications on
financial time series. In: International Workshop on Self-Organizing Maps. Springer.

Sholla S, Kaur S, Begh GR, Mir RN, Chishti MA. 2017. Clustering internet of things: a review.
Journal of Science and Technology: Issue on Information and Communications Technology
3(2):21–27 DOI 10.31130/jst.2017.61.

Singh A, Yadav A, Rana A. 2013. K-means with three different distance metrics. International
Journal of Computer Applications 67(10):13–17.

Solanki K, Pittalia P. 2016. Review of face recognition techniques. International Journal of
Computer Applications 133(12):20–24 DOI 10.5120/ijca2016907994.

Spanoudakis G, Zisman A. 2001. Inconsistency management in software engineering: survey and
open research issues. In:Handbook of Software Engineering and Knowledge Engineering: Volume
I: Fundamentals, World Scientific. 329–380.

Viana T, Zisman A, Bandara AK. 2017. Identifying conflicting requirements in systems of
systems. In: 2017 IEEE 25th International Requirements Engineering Conference (RE).
Piscataway: IEEE.

Wu W, Xu Z, Kou G, Shi Y. 2020. Decision-making support for the evaluation of clustering
algorithms based on MCDM. Complexity 2020(2):1–17.

Younes HR, Ahmed ASE, Elsayed EK. 2019. Enhancement belief function with ontology to solve
the conflict for the system of systems. International Journal of Intelligent Engineering and
Systems 12:100–113.

Elsayed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.468 34/34

https://books.google.com.eg/books?hl=en&lr=&id=71b9UMgPgbwC&oi=fnd&pg=PR1&dq=Ramsbotham,+O.,+H.+Miall+and+T.+Woodhouse+(2011).+Contemporary+conflict+resolution,+Polity.&ots=aEYLrz0IeG&sig=7CQ4aEHK9FZMezSrk5pumQ-WzF8&redir_esc=y#v=onepage&q=Ramsbotham%2C%20O.%2C%20H.%20Miall%20and%20T.%20Woodhouse%20(2011).%20Contemporary%20conflict%20resolution%2C%20Polity.&f=false
https://books.google.com.eg/books?hl=en&lr=&id=71b9UMgPgbwC&oi=fnd&pg=PR1&dq=Ramsbotham,+O.,+H.+Miall+and+T.+Woodhouse+(2011).+Contemporary+conflict+resolution,+Polity.&ots=aEYLrz0IeG&sig=7CQ4aEHK9FZMezSrk5pumQ-WzF8&redir_esc=y#v=onepage&q=Ramsbotham%2C%20O.%2C%20H.%20Miall%20and%20T.%20Woodhouse%20(2011).%20Contemporary%20conflict%20resolution%2C%20Polity.&f=false
http://dx.doi.org/10.1145/857076.857079
http://dx.doi.org/10.31130/jst.2017.61
http://dx.doi.org/10.5120/ijca2016907994
http://dx.doi.org/10.7717/peerj-cs.468
https://peerj.com/computer-science/

	Enhancing semantic belief function to handle decision conflicts in SoS using k-means clustering
	Introduction
	Background and related works
	Clustering and its techniques
	Smart sematic belief function clustered system of systems method (ssbfcsos)
	Proposed method
	Case study 1 (glest)
	Case study 2 (starcraft brood war)
	Results and discussion
	Starcraft brood war
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

