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ABSTRACT
Recently, manufacturing firms and logistics service providers have been encouraged
to deploy the most recent features of Information Technology (IT) to prevail in the
competitive circumstances of manufacturing industries. Industry 4.0 and Cloud
manufacturing (CMfg), accompanied by a service-oriented architecture model, have
been regarded as renowned approaches to enable and facilitate the transition of
conventional manufacturing business models into more efficient and productive
ones. Furthermore, there is an aptness among the manufacturing and logistics
businesses as service providers to synergize and cut down the investment and
operational costs via sharing logistics fleet and production facilities in the form of
outsourcing and consequently increase their profitability. Therefore, due to the
Everything as a Service (XaaS) paradigm, efficient service composition is known to be
a remarkable issue in the cloud manufacturing paradigm. This issue is challenging
due to the service composition problem’s large size and complicated computational
characteristics. This paper has focused on the considerable number of continually
received service requests, which must be prioritized and handled in the minimum
possible time while fulfilling the Quality of Service (QoS) parameters. Considering
the NP-hard nature and dynamicity of the allocation problem in the Cloud
composition problem, heuristic and metaheuristic solving approaches are strongly
preferred to obtain optimal or nearly optimal solutions. This study has presented an
innovative, time-efficient approach for mutual manufacturing and logistical service
composition with the QoS considerations. The method presented in this paper is
highly competent in solving large-scale service composition problems time-efficiently
while satisfying the optimality gap. A sample dataset has been synthesized to evaluate
the outcomes of the developed model compared to earlier research studies. The
results show the proposed algorithm can be applied to fulfill the dynamic behavior of
manufacturing and logistics service composition due to its efficiency in solving time.
The paper has embedded the relation of task and logistic services for cloud service
composition in solving algorithm and enhanced the efficiency of resulted matched
services. Moreover, considering the possibility of arrival of new services and demands
into cloud, the proposed algorithm adapts the service composition algorithm.
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INTRODUCTION
Recently, rivalry economic circumstances have compelled manufacturing industries to
take advantage of modern Information Technology (IT) to reinforce their manufacturing
processes’ capabilities and enhance their profitability (Kang et al., 2016; Lasi et al.,
2014). Enormous research studies have tackled this issue to improve and optimize the
operations’ efficiency and productivity. Particularly, considering the emergence of new
manufacturing paradigms such as Cloud manufacturing and Industry 4.0 has resulted in
virtualized factories and outsourcing mechanisms (Tao et al., 2017; Wang et al., 2019;
Li et al., 2010). These paradigms are realized in acquiring services, which have shaped the
new business models of manufacturing systems and transformed them from process/
product-oriented systems to service-oriented ones (Saldivar et al., 2015; Delaram &
Valilai, 2018;Wu et al., 2013). In addition, pooling manufacturing and logistics capabilities
has been found to reduce operational and investment expenses and hence increased profit
(Kang et al., 2016).

In recent years, Industry 4.0 and Cloud manufacturing, accompanied by the Service
Oriented Architecture (SOA), have been profoundly regarded as essential means to
facilitate the transition from conventional manufacturing system to efficient, modern, and
decentralized system (Saldivar et al., 2015; Valilai & Houshmand, 2015; Tao & Qi, 2019).
The fundamental methodology of service provision, which Cloud manufacturing works
upon, is that the entire supply network is deemed the aggregation of modules and blocks
that can be outsourced and provided in perhaps diversely located service points and
fulfilled by different service providers. These service providers will then collaborate to
fulfill an order by collaborating their resources (Tao et al., 2017; Zhu et al., 2020c). This
service composition approach for fulfilling complicated orders is believed to result in
higher quality, productivity, and versatility (Lasi et al., 2014; Saldivar et al., 2015; Tao & Qi,
2019).

Cloud manufacturing, is mainly referred to and elaborated with the help of the
Everything as a Service (XaaS) concept. This concept persuades service providers to deploy
the most state-of-the-art high-tech and cybernetics, namely Internet of Things (IoT)
and Blockchain (Zhu et al., 2020c; Li, Barenji & Huang, 2018; Zhu et al., 2020b). On the
other hand, this enables clients to access a wide range of services to select from and
compose them to fit best their requirements (Saldivar et al., 2015; Qi & Tao, 2019). Since
this service composition problem is discussed as NP-hard (Delaram & Valilai, 2018),
heuristic and metaheuristic methods are strongly preferred to obtain the optimal or
nearly optimal solutions in a short solving time. However, considering the dynamic
characteristics of services, the challenge will grow. This study is dedicated to introducing a
real-time service assignment framework, considering the Quality of Services (QoS) as a top
priority, also considering logistical issues besides manufacturing services. The impulsive
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variations in the inputs, such as the quantity of the operations/demands and the Quality of
Services, or any unforeseen hindrances due to the manufacturing facilities, are considered
dynamic (Wang et al., 2020; Zhou & Yao, 2017). The dynamic nature of the problem
can lead to complications and imperfections in the Cloud manufacturing service
composition. This paper significantly focuses on handling the new service requests
in manufacturing and logistics service composition problem in the pre-specified
time-intervals that occur while solving the problem. Furthermore, this article has studied
the latest relevant research studies in the Cloud manufacturing service-composition
problem to justify the research gap. In addition, the simultaneous logistical and
manufacturing service-composition has been considered in this research. The paper has
proposed an innovative solution for solving time with particular attention to large-sized
problems and also the necessity for re-scheduling the newly received service requests.

LITERATURE REVIEW
The paper first studies the most recent dominant research studies, which focus on Cloud
manufacturing service composition in large-scale problems focusing on solving efficiency.
Aghamohammadzade and Valilai tackled the service composition problem via a
decentralized peer-to-peer strategy in the Cloud manufacturing environment utilizing
Blockchain named Block-SC. In their approach, the problem is broken into a number of
sub-problems, each including a part of the total service required and to be solved by a
different solver. Solvers are supposed to find the fittest solution, the one with the minimum
global cost and service time (Aghamohammadzadeh & Fatahi Valilai, 2020). In addition,
one key thing in this regard is to curb the number of customers lost during the
procedure due to the method’s restrictions. This issue is of great importance since failing to
respond to and satisfying the customers is equivalent to losing eminence and prestige in
the marketplace. Although they considered the Cloud manufacturing environment’s
dynamicity, solved the problem at an acceptable time, and tried to localize the service
providers, they did not consider the QoS and the transportation service.

Liang et al. introduced PD-DQN—a Deep Reinforcement Learning (DRL) algorithm—

which utilizes the basic Deep Q-Network (DQN) in the Cloud manufacturing
environment, together with the dueling architecture, as well as the prioritized replay
mechanism (Liang et al., 2021). In their approach, the Quality of Service and
transportation are also regarded. Moreover, it is capable of learning optimal and nearly
optimal solutions with no need for any foreknowledge or adjustment of hyper-parameters.
In their work, they modeled the service-composition process into a Markovian Process.
The results proved that the algorithm is highly efficient, effective, and flexible to
dynamicity and the problem’s size. In conclusion, they focused on Cloud Manufacturing
Service Composition (CMfg-SC), and the dynamic nature of the problem, logistics, and
QoS was considered in their proposed method. Besides, they measured the performance of
their algorithm. However, no runtime evaluation was conducted.

Wang et al. presented an approach under Service Composition Exception Handling
Adaptive Adjustment (SCEHAA) (Wang et al., 2020). They believed that service
composition in Cloud manufacturing has some imperfections in dealing with unexpected,

Sadeghi Aghili et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.461 3/30

http://dx.doi.org/10.7717/peerj-cs.461
https://peerj.com/computer-science/


irregular situations such as machinery break down, decrease or increase in service
requirement, changes in the quality of provided services, and so, which are interpreted to
dynamicity. They innovated a method utilizing the improved Ant Colony Optimization
Algorithm (ACO), which is claimed to successfully deal with all these exceptional
circumstances by adjusting time boundaries and operational and non-operational costs, as
well as observing the Quality of Service in a manner that still optimal solutions are
achieved. The adjustment process is committed to deadlines, and the algorithm is of high
convergence. Nevertheless, they considered the productivity, logistic service, and
dynamicity of the problem and carried out experiments that showed their algorithm needs
fewer iterations than opponent algorithms. There was no execution time evaluation
included.

Zhu et al. (2020a) introduced a modified Artificial Bee Colony (ABC) algorithm with
enhancements on the bee exploring mechanism called Multiple Improvement Strategies
based Artificial Bee Colony algorithm (MISABC). They believed that the ABC algorithm
was convenient to apply and of few parameters with acceptable results, amply utilized
in Cloud manufacturing service composition. However, in large-sized problems, there
have been complications and deficiencies. These deficiencies were tackled via approaches
namely Differential Evolution (DES) that accelerated the algorithm’s convergence,
Oscillation Strategy with classical Trigonometric Factor (TFOS), Different Dimensional
Variation Learning Strategy (DDVLS) along with Gaussian Distribution Strategy (GDS) to
make a better chance to achieve a global optimum. Nonetheless, they had conducted
experiments that showed their algorithm solutions were mostly better than Particle Swarm
Optimization (PSO), classic Artificial Bee Colony (ABC), and Differential Evolution (DE);
they neither considered logistics nor QoS in their research. Also, there was no record
of runtime evaluation found.

Wang et al. (2018) optimized the Cloud manufacturing service-composition using a
Two-stage Biogeography-Based Optimization algorithm (TBBO), characterized by being
immediate, quality-concerned, and suited to handle a particular dynamic condition. It
works as follows. First, the service composition problem is solved, and the optimal solution
is attained (stage one). When the service composition system faces an unanticipated
demand, the problem is resolved according to the new requirements, so the service is
re-composed (considered stage two). In order to fulfill the deadlines for the current
demands, as well as the new ones, they propose two different methods. The first one is here
briefly referred to as Vertical Collaboration, and the second one is called Speed up Strategy.

In a conventional Cloud manufacturing service-composition, an operation is
accomplished via horizontal cooperation between upstream and downstream services in a
supply chain, and each service is assigned to only one operation. On the opposite,
according to the vertical collaboration method, each sub-operation is allocated to a
number of services that enable saving performing time. In the Speed Selection-based
Recomposition (SSR) method, it is supposed that the machinery is potentially capable of
working faster or handling more operations than are scheduled for. This extra capacity is
counted on in re-composition to fulfill the newly added tasks. Although they considered
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the dynamic nature of Cloud manufacturing, the logistics were still not considered, and
there was no runtime evaluation included.

Liu et al. (2013) improvised a Multi-Composition for Each Task (MCET). They joined
the unavailing compound system to form a consolidated system to enable performing
multiple-operation manufacturing tasks. This system guarantees the global quality to the
required level. A Hybrid-Operator-based Matrix Coded Genetic Algorithm (HO-MCGA)
is exploited in their approach, which achieved more enhanced fitness results compared
to MCGA using simplex-operator. They also considered neither the logistics nor the
dynamicity of the problem. However, according to their results, the fitter solutions were
achieved; it was mostly slower than MCGA (up to 30% in some cases).

Liu et al. (2016) were among the first researchers who addressed multiple task service
allocation and scheduling in the cloud environment. A distinct point in their research
is that dynamicity with reference to abrupt changes such as service accessibility was
regarded. Moreover, resource and time-sharing among individual service providers, as well
as logistics, were taken into consideration. Even though they developed such a great
model that considered all the major issues like logistic services, QoS, and the problem's
dynamic nature, there is no report on run time evaluation. They should have considered at
least one algorithm to solve a problem to verify the performance of the developed model.

Que et al. proposed an innovative Manufacturers to Users (M2U) model for the
cloud environment to provide a solution to the core Manufacturing Service Composition
Optimal Selection (MSCOS) problem, which exploited a modified flexible Information
Entropy Immune Genetic Algorithm (IEIGA) (Que et al., 2018). This model that was
meant to apply to process industries uses some essential Quality of Service indices—time,
reliability, cost—each was associated with an influence coefficient yielded by a
combination assignment method. The experiments verified the presented method of a
higher quality of performance regarding large-sized MSCOS problems compared to the
Standard Genetic Algorithm (SGA) and Immune Genetic Algorithm (IGA). However, the
numerical results showed that IEIGA had a better performance considering the results’
quality; their conducted results showed that the IEIGA needs more time than SGA (Almost
five times more). Again, logistics was not considered.

Zhou & Yao (2017) presented a context-aware Artificial Bee Colony (caABC) algorithm
based on service characteristics in the cloud environment enhanced by the Differential
Evolution so-called DE-caABC, which is intended to improve the exploration method of
the algorithm. They tackled prevailing deficiencies in CMfg service-composition methods,
which can be summarized as lack of flexibility regarding dynamic situations such as
newly-acquired services or operations, service failures, changes in Quality of Service and
so, that may happen during the scheduling and assignment process, complications in
handling large-sized problems, and the service domain features that can impact the
performance of service-composition like correlation, similarity and so. Nevertheless, they
considered dynamic QoS, and results showed that the quality of their proposed
method’s solution overcomes GA, DE, ACO, ABC, and PSO in most cases. The conducted
runtime evaluation showed that it needed almost twice as much time in comparison with
pure GA. What is more, transportation services were not considered.
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Zheng, Feng & Tan (2016) tried a consolidated service selection method that enables
clients to receive optimal services. They developed a model of Cloud manufacturing based
on the Quality of Service preference. Knowing that the Quality of Services available in
CMfg is varied and fuzzy, a model using Fuzzy Theory as its basis is produced to determine
the Quality of Service. The Particle Swarm Optimization (PSO) algorithm is exploited to
attain the optimal solution. However, they conducted a model that considered QoS
preferences and transportation; they did not consider the problem’s dynamic nature. They
also conducted a runtime and fitness evaluation, but no comparison with other popular
algorithms was presented.

Tao et al. described Service Composition Optimal-Selection (SCOS) as NP-hard, erratic,
and dynamic, which needed careful consideration in CMfg (Tao et al., 2013). Therefore,
they proposed an alternative algorithm, called Full Connection-based Parallel Adaptive
Chaos Optimization with Reflex Migration (FC-PACO-RM). The latter was deployed to
upgrade the quality and efficiency of the solution. Moreover, roulette wheel selection
and adaptive chaos optimization were utilized as their searching method, together
with Full-connection Parallelization in the Island model. In addition, full connection
topology-based on coarse-grained parallelization and MPI collective communication was
utilized to enhance their search efficiency. While they focused on SCOS and measured
their algorithm’s performance, the logistics were not considered. Moreover, even though
the algorithm showed a better fitness value comparing to GA, CGA, and CO, it did not
outweigh GA in runtime.

Akbaripour et al. proposed new Mixed-Integer Programming (MIP) models to solve
service composition problem in cloud manufacturing regarding QoS and Transportation.
Their model consists of four basic building blocks, namely sequential, parallel, loop,
and selective. They tried different transportation scenarios and concluded that a
combination of Hub-and-Spoke and direct transportations yields the optimum time and
cost solution. According to their study, including transportation leads to a significant
increase in time and cost (Akbaripour et al., 2018). They found optimal solutions with
acceptable runtime for small to medium-sized problems. However, they did not investigate
any large-sized problems. What is more, according to their paper, the dynamic nature of
the CMfg problem was not considered in their research.

Zhou et al. proposed an algorithm to solve the logistics service scheduling problem with
the main focus of reducing the average task delivery time. They simulated four scenarios
including, Total Time-based Logistic Scheduling (TTLS), Fastest Logistics Strategy
(FLS), Nearest Logistics Strategy (NLS), and Random Logistics Strategy (RLS). Their study
revealed that TTLS obtains the shortest time, while NLS and RLS have almost similar
results, and FLS results in the worst delivery time (Zhou, Zhang & Fang, 2020).
Nonetheless, they presented a method to shorten the delivery time, cost optimization and
QoS considerations were not of their concern. Moreover, there is no evidence of
comparing their model’s performance against any of the well-known algorithms like GA.

Lartigau et al. (2015) proposed an enhanced ABC algorithm. Their study included
the impact of transportation and QoS. They defined a fitness function that consisted of the
price, time, availability, maintainability, reliability, and ecological impact of the
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production, giving each one a degree of importance. They developed a comprehensive
model with realistic concerns and claimed that their enhanced ABC has better runtime
than PSO or GA. They reached the optimal solution for small-sized problems; however,
only nearby solutions could be obtained for bigger problems. They suggested tuning
the algorithm’s parameters using Artificial Neural Networks (ANN) to improve the quality
of the solution. However, since the tuning runtime was not included in their study, it is
difficult to compare the runtime’s overall performances. They utilized Java Genetic
Algorithms Package (JGAP), but they did not state what languages were used to implement
the two other algorithms. As different programming languages’ performance can affect the
runtime, it can not be concluded that their enhanced ABC is always better than GA
(Lartigau et al., 2015).

Table 1 also compares the aforementioned research studies. As observed, the focus
on considering logistics and manufacturing services with their dynamic behavior in
multi-window planning has not been considered in the literature. This issue will be the
focus of this paper. The paper has proposed a framework to help the service composition
problem while fulfilling the dynamic service or demand behavior.

THE PRESENTED MODEL FOR DYNAMIC MUTUAL
LOGISTIC AND MANUFACTURING SERVICE COMPOSITION
As previously mentioned, the Cloud manufacturing paradigm provides a solution to
coordinate non-centralized resources and services through the XaaS approach. This
paradigm intends to attain better performance in terms of productivity and efficiency.
Nonetheless, minimizing the matching time of the logistics and manufacturing parts of the
system—to obtain a coordinated system with the highest possible quality—is a significant
challenge. Furthermore, the problem’s dynamic nature must be considered as a
tremendously challenging issue, which means a new task could be added to the existing
ones at any time during the process that may lead to resolving the remaining part of the
scheduling problem.

Although extensive research has been conducted on single and multiple task scheduling
problems in cloud computing, the fact that distinguishes Cloud Manufacturing from
Cloud Computing is that both logistic and manufacturing planning have to be considered
at the same time, which adds to the complexity of the problem. The other aspect that
makes the present study distinct is that—unlike the prior studies—it provides a
mathematical model for the Cloud manufacturing service composition problem to solve
this scheduling problem. The service composition problem in Cloud Manufacturing is
recognized by previous researchers as strongly NP-Hard (Delaram & Valilai, 2018; Que
et al., 2018). Moreover, finding the appropriate solution will be a great challenge regarding
the Cloud manufacturing system’s large size. The contribution of this study is to tackle
both logistic and manufacturing services allocation exploiting a heuristic method to
solve the service composition problem applied to real dynamic large-scale problems.

Considering the complex nature of this assignment-scheduling problem, firstly, the
problem was simplified. Therefore, an appropriate choice seemed to be an extended
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Table 1 Research studies comparison.

Research Contribution Large Scale Service
Selection Method

Transportation
services

Problem
Dynamicity

QoS

Aghamohammadzadeh
& Fatahi Valilai (2020)

A novel Cloud manufacturing
service composition
platform enabled by
Blockchain technology

Block-chain based method
called Block-SC

✓

Liang et al. (2021) Logistics-involved QoS-aware
service composition in
Cloud manufacturing with
deep reinforcement learning

Deep Reinforcement
Learning algorithm
called PD-DQN

✓ ✓ C/P/R/T

Wang et al. (2020) An effective adaptive
adjustment method for
service composition
exception handling in Cloud
manufacturing

improved ant colony
optimization algorithm
called SCEHAA

✓ ✓ C/P/T

Zhu et al. (2020a) A Novel Service Composition
Algorithm for Cloud-Based
Manufacturing
Environment

Multiple Improvement
Strategies based Artificial
Bee Colony algorithm
(MISABC)

✓

Wang et al. (2018) Urgent task-aware Cloud
manufacturing service
composition using two-
stage biogeography-based
optimization

A two-stage biogeography-
based optimization
algorithm (TBBO)

✓ C/R/T

Liu et al. (2013) Study on multi-task-oriented
services composition and
optimization with the
‘Multi-Composition for
Each Task’ pattern in Cloud
manufacturing systems

Hybrid-Operator based
Matrix Coded Genetic
Algorithm (HO-MCGA)

C/T

Liu et al. (2016) An Extensible Model for
Multitask-Oriented Service
Composition and
Scheduling in Cloud
manufacturing

✓ C/R/T

Que et al. (2018) Improved adaptive immune
genetic algorithm for
optimal QoS-aware service
composition selection in
Cloud manufacturing

information entropy
immune genetic
algorithm (IEIGA)

✓ C/R/T

Zhou & Yao (2017) DE-caABC: differential
evolution enhanced context-
aware artificial bee colony
algorithm for service
composition and optimal
selection in Cloud
manufacturing

differential evolution
enhanced context-aware
artificial bee colony
algorithm
(DE-caABC)

✓ A/P/T/W

Zheng, Feng & Tan
(2016)

A fuzzy QoS-aware resource
service selection considering
design preference in Cloud
manufacturing system

Particle Swarm
Optimization

✓ A/C/R/T/W
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version of the Assignment Problem (AP). In this model, the (manufacturing) services were
assigned to fulfill the sub-operations of each operation. Also, the transportation services
were programmed to carry semi-manufactured parts between service points located in
different places. All the unfinished services and new service demands were dealt with and
re-scheduled at the pre-specified scheduling horizons. “Mathematical Model” is dedicated
to an overview of Delaram and Valilai’s proposed model (Delaram & Valilai, 2018), on
which this research will extend. Their presented model considers only a one-time window
for service composition. It assumes the system’s static behavior and can not react to
the dynamic arrival or modifications of services and demands. The paper will extend the
model for enabling the fulfillment of dynamic behavior of service and demands. Afterward,
in “The Presented Algorithm for Solving the Model Considering Runtime and
Dynamicity”, the proposed algorithm will be explained.

Table 1 (continued)

Research Contribution Large Scale Service
Selection Method

Transportation
services

Problem
Dynamicity

QoS

Tao et al. (2013) FC-PACO-RM: A parallel
method for service
composition optimal-
selection in Cloud
manufacturing system

Adaptive Chaos
Optimization and Full-
Connection
Parallelization in the
Island model

✓ C/E/M/R/S/T/Z

Akbaripour et al. (2018) Cloud manufacturing service
selection optimization and
scheduling with
transportation
considerations: mixed-
integer programming
models

Mixed-Integer
Programming

✓ ✓ C/Q/T

Zhou, Zhang & Fang
(2020)

Logistics service scheduling
with manufacturing
provider selection in cloud
manufacturing

✓

Lartigau et al. (2015) Cloud manufacturing service
composition based on QoS
with geo-perspective
transportation using an
improved Artificial Bee
Colony optimisation
algorithm

Artificial Bee Colony
Algorithm

✓ A/E/C/M/R/T

This Research Dynamic Mutual
Manufacturing and
Transportation Routing
service selection for Cloud
manufacturing with Multi-
Period Service-Demand
matching

Genetic Algorithm ✓ ✓ C/P/Q/T

Note:
A: Service Availability, C: Cost, E: Energy, I: Cooperation intensity, M: Maintainability, P: Performance, Q: Quality, R: Reliability, S: Function Similarity, T: Time,
U: Usability, W: Reputation, X: Credibility, Y: Composability, Z: Trust
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Mathematical model
Based on extending the model proposed by Delaram & Valilai (2018), The objective
function is primarily defined as a cost-minimization function, which includes operational
and logistical costs. The acceptable solution could be considered the one that fulfills
production needs as well as the QoS standard criteria.

Assumedly, there are S service points to perform different operations to complete the
sub-operations of an operation. Index l 2 1; 2; 3; . . . ; Lf g indicates operations
performed at each service point, given that n is the number of the operations, which are
accessible at a particular instant in the Cloud manufacturing environment, and
On 2 O1; . . . ; On; . . . ; ONf g represents the nth received operation out of total N
operations. Each operation should be decomposed into sub-operations to be scheduled and
carried out in the Cloud manufacturing platform.

In Cloud manufacturing, two different situations are presumable. In the first state, since
two following sub-operations of an operation are accomplished at the same service point
or station, no transportation occurs. While in the second state, logistical scheduling is
required, as the sub-operations of the operation have to be performed at different
locations. However, this assumption is not required in cloud computing, which leads to a
notable difference between the two paradigms of Cloud manufacturing and cloud
computing. As stated earlier, the objective function—cost-minimization function—is
composed of operational costs and logistical costs. Here the operational costs are assumed
to be only influenced by the operation performing time, where the distance between the
service points exclusively determines the logistical costs. Table 2 exhibits the description of
variables and parameters:

minx ¼
X
n2N

X
l 2Ln

X
s2S

PClnsclns þ
X
m2M

X
n2N

X
s; s0 2 S
s 6¼ s0

X
l2Ln

TCm s; s0ð Þq
n l; lþ1ð Þ
m s; s0ð Þ (1)

Xs:t:
s2S

rlns ¼ Vln 8l 2 Ln; 8n 2 N (2)

rlns þ r lþ1ð Þns0 � 1 �
X
m2M

qn l; lþ1ð Þ
m s; s0ð Þ 8l 2 Ln; 8n 2 N; 8s; s0 2 S (3)

qn l; lþ1ð Þ
m s; s0ð Þ ; rlns ¼ 0; 1f g 8l 2 Ln; 8n 2 N; 8m 2 M; 8s; s0 2 S (4)

the above equations demonstrate the model.
Equation (1) models the cost minimization function (objective function), wherein the

first expression represents the operational performing costs, while the second part
corresponds to the logistical costs. Equation (2) guarantees that each sub-operation is
carried out only in one service point and only once if the lth sub-operation is required for
operation n. Equation (3) constrains the logistic service to only one service if any logistic
service is required between two service points to fulfill two following sub-operations.
Equation (4) assures that all variables are binary.
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The presented algorithm for solving the model considering runtime
and dynamicity
This paper suggests a customized genetic algorithm approach considering the NP-
Hardness of this problem to deal with the challenge of providing a time-efficient solution.

Algorithm’s inputs
In “Distance Matrix” to “Number of Allowed Gene Values Matrix”, the input parameters
suited to the problem nature are described; further on, the proposed algorithm to solve the
problem will be presented in “Solution Algorithm”. Also, Fig. 1 depicts the Algorithm’s
flowchart to simplify following the proposed algorithm’s steps.

Distance matrix

To model large-sized problems, service points are assumingly distributed/located in a great
many cities. The Distance Matrix is filled with the distances between pairs of cities defined
as service points. However, the Euclidean distances between the cities are simply taken
as the distances between cities. They are calculated, having the cities' coordinates, and put
in the Distance Matrix.

Table 2 Denotation of the parameters and variables.

Indexes Description

l Sub operation number, l 2 Ln

m Transportation service number, m 2 M

n Operation number, n 2 N

s service point number, s 2 S

Parameters Description

TCm s;s0ð Þ transportation service m’s cost between service point s and s0,
TCm s; s0ð Þ ¼ tcmdss0 ($)

PClns the performance cost of subtask SOln in service point s,
($)

dss0 Distance between service points s and s0 (mile)

tlns Operation performing time SOln in service point s (hour)

qs Service quality of service point s (%)

opclns The operation performing cost SOln in service point s ($ per hour)

lcm The cost of transportation service m ($ per mile)

SOln lth sub-operation of the nth operation

Ok nth operation

Vln a binary parameter, Vln ¼ 1, if operation n needs sub-operation l, otherwise Vln ¼ 0.

Variables Description

rlns a binary variable, rlns ¼ 1, if sub-operation l for operation n in service point s is to be
fulfilled, otherwise rlns ¼ 0.

qn l; lþ1ð Þ
m s; s0ð Þ

a binary variable, qn l; lþ1ð Þ
m s; s0ð Þ ¼ 1, if transportation service m between two service points s

and s′ for proceeding from sub-operation l to l+1 for operation n is needed, otherwise

qn l; lþ1ð Þ
m s; s0ð Þ ¼ 0.
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Figure 1 The flowchart of the algorithm. Full-size DOI: 10.7717/peerj-cs.461/fig-1
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Operations matrix

Sub-operations form the rows of this matrix, while the operations form the columns. An
element of the matrix is one only if the operation needs the corresponding sub-operation;
otherwise, it is zero.

Time and cost matrixes

In the two matrixes, rows stand for sub-operations, while columns stand for cities
(service points). The Time Matrix is filled with the performing time for each sub-operation
in the corresponding city, and the Cost Matrix consists of the performing cost of each
operation in each city. Nonetheless, if a city does not supply a service(sub-operation), both
performing time and cost are presumed infinity.

Productivity matrix

The Productivity Matrix is a one-row matrix whose columns represent the cities. Each
element of this matrix refers to the Quality of Service offered in each city stated as a
percentage.

Operation/sub-operation matrix

The Operation/Sub-operation Matrix is one of the essentials of the model. In this matrix,
the column numbers refer to the operation numbers and the number of the sub-operation
of the respective operation. Hence, the operation number is calculated from formula 5,
in which the column number is divided by the maximum number of the sub-operations;
after subtracting a very small number from the result, this figure is rounded up.

operation number ¼
�

column number
maximum number of the sub operations

� 0:001

�
(5)

For example, if each operation has a maximum number of ten sub-operations, then for
the fifteenth column, it results in d1510 � 0:001e ¼ 2.

That indicates this sub-operation belongs to the second operation.
Moreover, as displayed in Eq. (6), the sub-operation number of each operation is (a)

equal to the remainder of division (the column number to the maximum number of sub-
operations) if it is not zero, (b) equal to the maximum number of sub-operations where the
remainder is zero.

sub operation number ¼ mod

�
column index

maximum number of sub operations

�
ðaÞ

maximum number of sub operations ðbÞ

8<
: (6)

Considering the aforementioned example:

mod
15
10

� �
¼ 5

Here are two more examples: the number of the operations and sub-operations for
columns 73 and 20 were calculated as follows.

d73=10 � 0:001e ¼ 7
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mod
73
10

� �
¼ 3

d20=10 � 0:001e ¼ 2

mod
20
10

� �
¼ 0 ! 10

Allowed gene values matrix

This is a matrix with the maximum number of the cities (service points) as the number of
rows and the columns representing operation/sub-operations. As the first step to form this
matrix, a zero matrix with the appropriate dimensions is built. Secondly, the (index)
number of every city that offers the required service/operation is inserted into the matrix,
initiating with the first row in an ascending manner. Apparently, if some cities do not
provide a specific sub-operation, the corresponding operation/sub-operation rows will
remain zero.

Number of allowed gene values matrix

It is also a one-row matrix whose columns denote the operation/sub-operations and
contains the number of cities where an operation/sub-operation can be performed. The
pseudo-codes for “Allowed Gene Values Matrix” and “Number of Allowed Gene Values
Matrix” can be found in Fig. 2.

Solution algorithm
As stated earlier, one of the major concerns of the present study is to tackle the dynamic
nature of service composition allocation in the Cloud manufacturing environment.
Unanticipated situations such as unforeseen changes in the quality or quantity of the
required services, machinery non-fulfillment, or so, that may happen during the algorithm

Figure 2 Allowed gene values and number of allowed gene values pseudo-code.
Full-size DOI: 10.7717/peerj-cs.461/fig-2
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runtime, can seriously impact the scheduled services. In this study, an iterative approach is
featured to address one of the dynamic situations: newly required services.

In this approach, the problem is reconsidered in pre-specified time intervals, and all the
unfinished operations are re-scheduled, as well as recently added demands.

Therefore, after steps “Distance Matrix” to “Operation/Sub-operation Matrix” are
executed, the following steps will be repeated for every run until the stopping condition
(a particular number of runs or pre-specified runtime) is fulfilled.

This section is devoted to different parts of the main algorithm and the according
pseudo-codes. The main pseudo-code could be found in Fig. 3.

Generating the Allowed Gene Values and Number of Allowed Gene Values Matrixes
According to “Allowed Gene Values Matrix” and “Number of Allowed Gene Values

Matrix”, the Allowed Gene Values Matrix and the Number of Allowed Gene Values Matrix
are generated considering the incomplete operations. Then the Genetic Algorithm will be
executed as demonstrated in “Initial Population Generation” to “Mutation, Mutation
Mask, Mutant Chromosomes Matrix”.

Figure 3 The main algorithm pseudo-code. Full-size DOI: 10.7717/peerj-cs.461/fig-3
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Initial population generation

The initial population generation matrix dimensions are as follows: the size of the initial
population (chromosomes) is taken as the number of rows, and the number of the
operations multiplied by the maximum number of sub-operations (operation/
sub-operation) as the number of columns. First, a zero matrix with the above dimensions is
generated.

Then, for each gene in the matrix, if the respective sub-operation is required for a
specific operation, the number of the cities which supply the specified sub-operation of this
operation is derived from the Number of Allowed Gene Values Matrix. Next, a city is
randomly picked from the corresponding column (sub-operation of the specified
operation) from the Allowed Gene Values Matrix. This procedure is repeated for the whole
matrix. The pseudo-code is displayed in Fig. 4.

Chromosome cost calculation

After the cities are assigned to the required sub-operations, the costs have to be calculated
by multiplying the sub-operation performing time in a particular city by the sub-operation
performing cost, and then divided by the service quality in that city (service point).
The pseudo-code is displayed in Fig. 5.

Likewise, the transportation service cost is yielded by multiplying the distance between the
specified cities (service points) by a presumed expense, a constant currency unit per mile
(in this study, it is 0.3). Ultimately, each chromosome's total cost, which is the sum
of performing costs and transportation costs, is calculated and saved in the Final Cost Matrix.

Figure 4 The pseudo-code of the initial population generation.
Full-size DOI: 10.7717/peerj-cs.461/fig-4

Sadeghi Aghili et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.461 16/30

http://dx.doi.org/10.7717/peerj-cs.461/fig-4
http://dx.doi.org/10.7717/peerj-cs.461
https://peerj.com/computer-science/


Cross over

Selection probability matrix

Amongst the various approaches of selecting parents from chromosomes, we preferred a
rank-based selection method. The Selection Probability Matrix is a one-column matrix,
with the rows as many as the population number that contains digit one in each cell.
After that, the selection probability of each chromosome is yielded in the following
manner:

First, each chromosome’s rank is identified regarding the cost calculated and saved in
the Final Cost Matrix. Secondly, a weight factor, between zero and one, is powered to
the chromosome’s rank. Eventually, all the yielded values are divided by the total sum of all
the matrix’s calculated values, which results in normalized values less than one.

Accumulative selection probability

In this matrix, to work out each cell’s value (chromosome), from Selection Probability
Matrix, all prior cells’ selection probabilities are added up and stored in this cell. Therefore,
the first cell’s content is the selection probability of the first element of the Selection
Probability Matrix. Figure 6 displays the pseudo-code of “Selection Probability Matrix”
and “Accumulative Selection Probability”.

Figure 5 Chromosome cost calculation pseudo-code. Full-size DOI: 10.7717/peerj-cs.461/fig-5
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Rank-based selection

Selected indexes matrix and parents matrices

The Uniform Crossover function exploited in this research is carried out as follows. In the
beginning, the Selected Indexes Matrix with only one column, and the number of the
rows equal to the population size is generated. Initially, all the values are set zero. Secondly,
the population size is derived based on randomly generated figures between zero and
one. Next, the Accumulative Selection Probability Matrix is referred to; as soon as a row
whose number is greater than the randomly generated number, the row number is put
in the matrix, respectively. Lastly, the chromosomes are rearranged according to these
indexes, forming the Parents Matrix, wherein the chromosomes with even indexes are
known as the first parent, while the odd ones form the second parent. The pseudo-code is
illustrated in Fig. 7.

Uniform cross over, cross over mask and offspring matrices

After creating the Parents Matrixes, the next step is building up a Crossover Matrix,
wherein the number of rows equates to half the number of population and columns equals

Figure 6 Selection probability and accumulative selection probability pseudo-code.
Full-size DOI: 10.7717/peerj-cs.461/fig-6

Figure 7 Select randomly by accumulative probs pseudo-code.
Full-size DOI: 10.7717/peerj-cs.461/fig-7
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the number of operations multiplied by the sub-operations. This matrix only contains
ones and zeros, which are randomly put in the cells. Then the offsprings are generated
in the following manner. Firstly, the first offspring receives the second parent's
chromosomes, while the second offspring receives all the first parent's chromosomes. Next,
the Crossover Matrix genes are once modified for the first offspring and then for the
second one. The procedure is as follows: the corresponding row in the Crossover Matrix is
checked; if it is zero, then the current value is kept; if it is one, it takes the other parent's
gene’s value. Finally, both offsprings rewritten in the Chromosomes Matrix are subjected
to mutation. The pseudo-code is shown in Fig. 8.

Mutation, mutation mask, mutant chromosomes matrix

After the Mutation Mask Matrix is generated, with the population size as the number of
rows and the number of operations timed the number of sub-operations as the number of
the columns, it is filled with randomly generated figures from zero to one. Afterward,
the random values greater than the mutation parameter are set zero, or else are put one.
Afterward, each gene is checked out. If the respective figure in the Number of Allowed
Genes Matrix is greater than one, it will be modified. A figure from the allowed values
column of the Allowed Genes Matrix values substitutes it; otherwise, the value is
maintained. The pseudo-code could be found in Fig. 9.

Seeking the best chromosome

After the Genetic Algorithm is thoroughly executed, the solution associating with the
minimum cost is considered the best solution (yielded by the algorithm). As is explained in
“Initial Population Generation”, this chromosome is now a single-rowed matrix whose
columns are equal to the product of operations by sub-operations. This chromosome is
later reshaped into the Operations Matrix as clarified in “Operation/Sub-Operation” and
“Operations”.

Calculation of fulfilled sub-operations, updating the operations matrix, finished operations

matrix, list of the finished operations of each run

When a chromosome is reshaped into the form of the Operations Matrix, the sub-
operations are examined in the specified time interval to see if their scheduling was
completed or still in progress. Thus, the performing time of each operation’s sub-operation
is extracted from the Time Matrix and then subtracted from the specified time interval one

Figure 8 Uniform CrossOver pseudo-code. Full-size DOI: 10.7717/peerj-cs.461/fig-8
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after another until the result turns smaller than zero, which means there is no time left
for any other sub-operations. Next, each of the operations whose scheduling is completed
in the interval is set zero in the Operations Matrix; in other words, they are eliminated
from the Operations Matrix.

Furthermore, all the finished sub-operations in each time interval (at each run) are
stored in a matrix named Finished Operation Matrix. The dimensions of this matrix are
like the new version of the Operation Matrix and are initially filled with zeros. When the
Operations Matrix is filled with the finished sub-operations, the matrix generated at
each run is saved in the Finished operations’ List.

Appending new operations to the existing ones

After updating the Operations Matrix, the new operations are simply appended to the end
of the Operations Matrix. Since synthetic data is used in this study, recent operations are
generated and appended to the matrix, as described in this section.

Calculation of the number of fulfilled operations and the total cost

The different stages of the algorithm will keep running until the stopping condition is met.
The scheduled operations’ costs are worked out according to the Chromosome Cost
Calculation after the algorithm stops running. The number of scheduled operations and
sub-operations will also be extracted from the Finished operations’ List.

ILLUSTRATIVE CASE STUDY
As was mentioned earlier, one of the main concerns of the present study is solving
dynamic, large-sized service composition problems, including logistics, maintaining the
Quality of Service at a desirable level. Thus, in this chapter, the results yielded by exploiting
the improvised algorithm (mentioned in “The Presented Algorithm for Solving the Model
Considering Runtime and Dynamicity”) are illustrated and discussed.

Figure 9 Mutation pseudo-code. Full-size DOI: 10.7717/peerj-cs.461/fig-9
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First, in “Assessment of the Genetic Algorithm Performance”, the genetic algorithm's
performance as the main core of the Dynamic Service Composition Algorithm is
explicated. Next, in “The Performance Assessment of the Dynamic Service Composition
Algorithm”, the performance of the Dynamic Service Composition Algorithm is assessed.

Assessment of the genetic algorithm performance
The synthetic data for operations and sub-operations is randomly generated according to
“Distance Matrix” to “Productivity Matrix” that is available through the repository at
DOI 10.6084/m9.figshare.14229299.v1 to solve the sample problems. In order to solve the
large-sized problems, which is the main contribution of this paper, a number of cities across

Figure 10 The depiction of the sample problem solved by the developed algorithm (Number of Operations, Number of Sub-operations,
Number of planned Sub-operations, Number of Totally planned operations). (A) 5,25,14,1; (B) 6,30,21,2; (C) 7,35,31,4; (D) 8,40,38,6;
(E) 9,45,43,8. Full-size DOI: 10.7717/peerj-cs.461/fig-10

Sadeghi Aghili et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.461 21/30

https://dx.doi.org/10.6084/m9.figshare.14229299.v1
http://dx.doi.org/10.7717/peerj-cs.461/fig-10
http://dx.doi.org/10.7717/peerj-cs.461
https://peerj.com/computer-science/


the country (Iran) are considered as the service points. The Euclidian distance between pairs of
cities calculated using the geographical coordinates is regarded as the distance between the
service points and stored in the Distance matrix. A sample problem of five different operations,
each consisting of 20 sub-operations and 20 cities as service-points, is demonstrated in Fig. 10.

Furthermore, to solve such problems by the Genetic Algorithm, the main parameters,
namely the initial population, the number of generations, the cross over influence
coefficient, and the mutation rate, have to be determined. Moreover, each of these
parameters has to be optimized according to the size of the problem. In this research, the
Taguchi method was exploited to yield the parameters’ optimal values, which resulted in
the following values:

1. The size of the population is set 720 chromosomes.

2. The crossover influence coefficient is assumed to be 0.98.

3. The mutation rate: this parameter is supposed to enhance the algorithm's performance
by exploring the unchecked areas of the solution space; a high rate of mutation may
result in unwanted random explore. Hence, a value as small as 0.002 is selected as the
rate of mutation in this study.

4. The number of iterations is the stopping condition of the Genetic Algorithm, which in
this example is set to 90. The Genetic Algorithm would end after completing 90
iterations.

Figure 11 Parameter tuning using Taguchi method for the synthetic problem with five operations,
20 sub-operations for each operation, and 20 cities. Full-size DOI: 10.7717/peerj-cs.461/fig-11
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The Taguchi approach utilized Minitab 19 Statistical Software. According to Minitab’s
Instructions for the design of experiments in the Taguchi method, three levels -shown
in Fig. 11—were taken for each parameter. Regarding the experiments designed in Minitab
and the values taken by the software, GA was executed, and the resulting values for total
costs were inserted into the software as their responses. The parameters’ optimal values
yielded this way are demonstrated in Fig. 11. As could also be observed in Table 3, the

Figure 12 Parameter tuning with loops for the synthetic problem with five operations, 20 sub-operations for each operation and 20 cities.
(A) Number of Iterations. (B) Population Size. (C) Crossover Influence Coefficient. (D) Rate of Mutation.

Full-size DOI: 10.7717/peerj-cs.461/fig-12

Table 3 Taguchi response table for means.

Level Number of iteration Population size Crossover influence coefficient Rate of mutation

1 13,732 13,728 13,738 13,818

2 13,720 13,722 13,712 13,612

3 13,720 13,722 13,722 13,742

Delta 12 7 27 207

Rank 3 4 2 1

Sadeghi Aghili et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.461 23/30

http://dx.doi.org/10.7717/peerj-cs.461/fig-12
http://dx.doi.org/10.7717/peerj-cs.461
https://peerj.com/computer-science/


parameters produced by the Minitab software are listed from the most to the least sensitive
to change as following: RateOfMutation, CrossoverInfluenceCoefficient,
NumberOfIterations, and PopulationSize. Finally, as illustrated in Fig. 11, the results are
almost stable for NumberOfIteration and PopulationSize after reaching their optimal
values, showing very little change. The GA algorithm was executed with higher values for
the two latter parameters to ensure that these two parameters’ yielded values are optimal.
The results were still stable, as could be seen in Fig. 12.

Each sample problem presented in this section has once been resolved by the software
LINGO 18.0, and secondly, by the improvised algorithm of this study utilizing MATLAB
2017b programming engine. All the executions were performed on a Windows
10 × 64 -operated computer with an Intel Core i5 CPU and a RAM of 8 GB.

Three sets of synthetic data for operations/sub-operations were randomly created, as
mentioned before, to assess the precision and speed of the Genetic Algorithm. The
hardship of the problems increases in an ascending manner from problem no.1 to no.3.

The average outcomes for ten runs of each sample problem are summarized in Table 4.
In Table 4, the ‘Problem’ column indicates the problem number. The ’Operation’,
‘Sub-operation’, ‘City’ column respectively show the number of operations, the number of
sub-operations of each operation, and the number of the cities serving as service points.
Also, the contents of the ‘optimal-S’ column are the optimal values yielded by LINGO,
where the ‘estimated-S’ holds the values calculated by the Genetic Algorithm for the
objective function. The differences between the above values are stored in the ‘error’

Table 4 The comparison between the solution obtained by the developed genetic algorithm and the exact solution.

Operation, sub-Operation, City Problem Optimal-S Estimated-S Error Error portion (%) Optimization-T Estimation-T Time portion

5, 5, 5 1 2,648.63 2,648.63 0.00 0 0.28 0.03 10.73

2 5,944.42 5,944.42 0.00 0 0.35 0.03 11.67

3 6,653.88 6,653.88 0.00 0 0.4 0.04 10.8

5, 10, 10 1 5,086.08 5,145.03 58.95 1.16 31 0.34 104.47

2 7,352.66 7,409.04 56.38 0.77 72 0.09 774.91

3 7,652.32 7,714.85 62.53 0.82 88.50 0.18 824.63

10, 10, 10 1 11,999.47 12,656.17 656.70 5.47 202.44 0.23 876.62

2 14,248.72 14,322.24 73.52 0.52 272.87 0.23 1,197.53

3 14,200.75 14,303.49 102.7 0.72 315.21 0.26 1,229.19

5, 10, 20 1 4,252.04 4,289.83 37.79 0.89 344.37 0.11 3.260.95

2 5,497.294 5,543.21 45.91 0.84 968.98 0.13 7.458.84

3 5,866.17 5,925.18 59.00 1.01 1,657.37 0.14 1,2370.32

5, 20, 10 1 13,512.96 13,805.60 292.64 2.17 326.92 0.40 814.79

2 15,803.26 16,137.08 333.82 2.11 342.99 0.36 952.62

3 16,573.11 17,243.44 670.33 4.04 707.85 0.56 1,299.41

5, 20, 20 1 11,392.82 11,875.55 482.7 4.24 4,949.27 0.55 9,038.46

2 13,045.16 13,580.50 535.34 4.10 10,389.29 0.71 15,005.82

3 14,366.02 14,899.99 533.97 3.72 72,934.85 0.71 106,263.78
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column. The ‘error portion’ column indicates the ratio of the ‘error‘ contents divided by
the optimal values obtained by LINGO. The ‘optimization-T’ column has the LINGO
performing time consumed to yield the optimal solution, as long as the ‘estimation-T’
exhibits the time the presented Genetic Algorithm took to achieve the optimal or near-
optimal solution. Lastly, the ‘time portion’ column indicates the ratio of the performing
times of the two methods. (LINGO performing time to the presented Genetic Algorithm).

Apparently, from the results, the solution obtained by the developed Genetic Algorithm
presented by this study is near-optimal by an acceptable tolerance, and the problem is
solved remarkably faster than LINGO. As a matter of fact, the optimum solution yielded by
the presented algorithm is almost instant, which means the algorithm overcomes the
classical approaches by distinction.

The performance assessment of the dynamic service composition
algorithm
In addition, to compare the two approaches clearly, the performing time of LINGO to find
the optimal solution was defined as the basis of the comparison so that this performing
time is set as the stopping condition for the proposed Dynamic Service Composition
Algorithm.

A problem of five operations, five sub-operations for each operation, and five cities
(service points) are assumed for simplicity. This problem has a medium level of complexity
among the three aforementioned problems (problem number two). So, the algorithm
performing time is 0.35 s, and the scheduling time interval is considered ten units of time.
The results yielded from the algorithm's execution at each run are demonstrated in
Figs. 10A–10E. The algorithm started with five operations, then at each run, one operation
was added to the previous ones. In Fig. 10, the rows represent the operations, and the
columns indicate sub-operations. Moreover, the golden boxes depict the scheduled
sub-operations in the current time interval. The white boxes show the unplanned
sub-operations in the current time interval (the sub-operations that exceed the time
interval), as long as the grey boxes exhibit the sub-operations planned in the previous time
intervals. In addition, if an operation’s scheduling was finished in the current time interval,
a golden box, and providing that the whole operation’s scheduling was completed in
the previous runs, a grey box covers the whole sub-operations of that operation. As
manifested in Fig. 10, the algorithm was executed five times and finally completely
scheduled eight operations out of nine and 43 sub-operations out of 45 in the specified
time interval.

Moreover, as Table 4 demonstrates, the optimal solution of this problem in the static
mode costs 5,944.42 units of currency; in contrast, solving the same problem in a similar
time interval in dynamic mode costs 8,277.89 units of currency; nevertheless, 18 sub-
operations more than the static mode were scheduled. So, the cost per sub-operation for
LINGO is 237.7768, where it is 192.5091 for the proposed GA, which means that LINGO
is 1.24 times costlier, as shown in the column ‘LINGO to Alg. Cost Portion’. In other
words, as long as a part of the cost forms the income of the service providers, it is claimed
that the proposed algorithm not only handled a greater number of the requests in a similar
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time interval, which is one of the satisfaction factors of the clients but also could create
higher revenue. A comparison between the algorithm's outcomes using LINGO in the
static mode and the developed algorithm in dynamic mode is presented in Table 5. All the
comparisons are carried out on a problem with a medium level of complexity.

In Table 5, the ‘Operation’, ‘Sub-operation’ and ‘City’ respectively indicate the number
of operations, sub-operations, and cities. The ‘LINGO Total Cost’ column contains the
optimal cost of performing services reported by LINGO. The ‘Alg. Operations Done’, ‘Alg.
Sub-operations Done’ and ‘Alg. Total Cost’ show the number of the operations wholly
scheduled, the number of the sub-operations scheduled, and the sub-operations'
performing cost in the LINGO performing time for the size of the problem specified in
column ‘Operation, Sub-operation, City’, respectively. In columns ‘Operation Portion’
and ‘Sub-operation Portion’, the proportion of wholly scheduled operations by the
proposed GA to the LINGO’s number of the operations and the proportion of scheduled
sub-operations by the proposed GA to the LINGO’s total number of sub-operations are
demonstrated respectively. The ‘LINGO Cost Per Sub-operation’ and ‘Alg. Cost Per
Sub-operation’ columns represent the performance cost per each sub-operation for
LINGO and the proposed GA, respectively, where the ‘LINGO to Alg. Cost Portion’ shows
the proportion of the two mentioned columns. The ‘LINGO Sub-operation Loss’, and ‘Alg.
Total Operations’ contain the number of the sub-operations that were not received or
scheduled by LINGO, and the total number of the operations received by the dynamic
algorithm, respectively. Finally, the ‘Alg. Portion of Done Operations’ column shows the
proportion of wholly scheduled operations to the total number of the operations received
by the dynamic algorithm. According to Table 5, the developed dynamic algorithm
shows better performance, and in all the samples achieved remarkably better performance
and revenue.

CONCLUSION
In recent years, manufacturing industries have been encouraged to deploy Information
Technology paradigms to survive the rivalry circumstances of manufacturing competitive
environments. Industry 4.0 and Cloud manufacturing, accompanied by a service-oriented
architecture model, have been regarded as the most recent IT paradigms that enable
and facilitate conventional manufacturing models' transition into more efficient and

Table 5 The comparison between the static and dynamic algorithms.

Operation,
Sub-
operation,
city

LINGO
total cost

Alg.
operations
done

Alg.
sub-
operations
done

Alg.
total cost

Operation
portion

Sub-
operation
portion

LINGO
cost per
sub-
operation

Alg. cost
per sub-
operation

LINGO to
Alg. cost
portion

LINGO
Sub-
operation
Loss

Alg.
Total
Operations

Alg.
Portion
of Done
Operations

5, 5, 5 5,944.42 8 43 8,277.89 1.6 1.72 237.7768 192.5091 1.24 18 9 88.89%

5, 10, 10 7,352.66 135 1,228 176,195.28 27 24.56 147.0532 143.4815 1.02 130 140 96.42%

10, 10, 10 11,999.47 251 2,517 287,260.77 25.1 25.17 119.9947 114.1282 1.05 2,417 254 98.82%

5, 10, 20 5,497.29 489 4,896 464,214.64 97.8 97.92 109.9458 94.8151 1.16 4,846 491 99.59%

5, 20, 10 16,137.08 200 4,012 520,010.90 40 40.12 161.3708 129.6139 1.25 3,912 205 97.56%
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productive digitalized models. The XaaS (Everything as a Service), based on a decentralized
manufacturing focus, enables clients to acquire required services and resources in
digitalized clouds. These clouds consist of geographically distributed manufacturing and
logistics service providers, which can be reached through modern IT capabilities such as
IoT. These services can be composed to fulfill the complex requirements of manufacturing
and logistics services. Therefore, efficient service composition is a remarkable topic in
Cloud manufacturing due to the large size and operational complications, mainly caused
by a large number of continually received service requests having to be prioritized and
handled in the minimum possible time, observing the quality of the composing service.
Heuristic and metaheuristic solving approaches are strongly preferred to obtain optimal or
nearly optimal solutions considering the NP-hard nature and dynamicity of the allocation
problem in the cloud.

This study has presented an innovative, time-efficient approach for dynamic
manufacturing and logistics service composition with the QoS considerations. The method
presented in this paper has applied a heuristic approach by considering the
interdependencies among manufacturing and logistics services. It has modified the
evolution phase in solving the service composition by tuning the generation of new
solution alternatives. The results have shown that the proposed algorithm is highly
competent in solving large-scale problems dynamically, efficiently, almost instantly, with
sufficient optimality. The present research also has proposed an algorithm to treat the
dynamic behavior of manufacturing and logistics services. It enables the service
composition model to consider the addition of new services and demands to service pools.
The proposed model adopts the service composition model to include the newly
introduced demands and fulfill them through the current service composition solution.
This capability has not been approached in the literature of service composition models.
However, it is necessary for the XaaS framework, since the arrival of new service or
demand instances is inevitable and should be considered through the service composition
algorithm. Future research studies are strongly recommended to consider the other
dynamic events in the manufacturing service composition problem like the disruptions
in service fulfillment. Also, expanding the QoS function to consider the midterm
decision-making criteria like reliability and reputation is strongly recommended. The
research studies for modeling cloud manufacturing scenarios of dynamic behaviors of
service providers and demanders, considering the new insight proposed in this paper to
fulfill the dynamic ecosystem of service composition, especially by applying reinforcement
learning concepts are strongly proposed.
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