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Cervical cancer is the fourth leading cause of cancer-related deaths in women, especially
in low to middle-income countries. Despite the outburst of recent scientific advances, there
is no totally effective treatment, especially when diagnosed in an advanced stage.
Screening tests, such as cytology or colposcopy, have been responsible for a substantial
decrease in cervical cancer deaths. Cervical cancer automatic screening via Pap smear is a
highly valuable cell imaging-based detection tool, where cells must be classified as being
within one of a multitude of ordinal classes, ranging from abnormal to normal. Current
approaches to ordinal inference for neural networks are found to not sufficiently take
advantage of the ordinal problem or to be too uncompromising. A non-parametric ordinal
loss for neuronal networks is proposed that promotes the output probabilities to follow a
unimodal distribution. This is done by imposing a set of different constraints over all pairs
of consecutive labels which allows for a more flexible decision boundary relative to
approaches from the literature. Our proposed loss is contrasted against other methods
from the literature by using a plethora of deep architectures. A first conclusion is the
benefit of using non-parametric ordinal losses against parametric losses in cervical cancer
risk prediction. Additionally, the proposed loss is found to be the top-performer in several
cases. The best performing model scores an accuracy of 75.6% for 7 classes and 81.3% for
4~classes.
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ABSTRACT9

Cervical cancer is the fourth leading cause of cancer-related deaths in women, especially in low to

middle-income countries. Despite the outburst of recent scientific advances, there is no totally effective

treatment, especially when diagnosed in an advanced stage. Screening tests, such as cytology or

colposcopy, have been responsible for a substantial decrease in cervical cancer deaths. Cervical cancer

automatic screening via Pap smear is a highly valuable cell imaging-based detection tool, where cells

must be classified as being within one of a multitude of ordinal classes, ranging from abnormal to normal.

Current approaches to ordinal inference for neural networks are found to not sufficiently take advantage

of the ordinal problem or to be too uncompromising. A non-parametric ordinal loss for neuronal networks

is proposed that promotes the output probabilities to follow a unimodal distribution. This is done by

imposing a set of different constraints over all pairs of consecutive labels which allows for a more flexible

decision boundary relative to approaches from the literature. Our proposed loss is contrasted against

other methods from the literature by using a plethora of deep architectures. A first conclusion is the

benefit of using non-parametric ordinal losses against parametric losses in cervical cancer risk prediction.

Additionally, the proposed loss is found to be the top-performer in several cases. The best performing

model scores an accuracy of 75.6% for 7 classes and 81.3% for 4 classes.
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INTRODUCTION25

The survival rate for women with cervical cancer is disturbing – in the USA, the 5-year survival rate for26

all women with cervical cancer is just 66% and is responsible for around 10 deaths per week in women27

aged 20 to 39 years (Siegel et al., 2020). The main factor for the high mortality rate is the asymptomatic28

characteristic of cervical cancer in its initial stages, which justifies the need for early diagnosis. Screening29

tests have been responsible for a strong decrease in cervical cancer deaths. The screening programs are30

implemented in most developed countries and the process includes Human papillomavirus (HPV) test,31

cytology test (or Pap smear), colposcopy, and biopsy (WHO, 2019). HPV is a group of viruses known to32

influence the risk of cervical cancer – some types of HPV viruses produce dysplastic changes in cells that33

can progressively lead to the development of cancer (WHO, 2019).34

A cervical cytology test is used to detect potentially abnormal cells from the uterine cervix. These35

premalignant dysplastic changes of cells are classified in progressive stages: 7 stages by the World36

Health Organization classification (WHO) system or 4 stages by The Bethesda classification system37

(TBS) (DeMay, 2007).38

The risk of developing cancer is especially pronounced for the later stages. Therefore, distinguishing39

between the stages can be crucial for diagnosis. Yet, most of the literature focuses on binary classification40

(normal or abnormal), ignoring the fine-grained classification of cervical cells into different stages.41

The classification of observations into naturally ordered classes, as the stages of the premalignant42

dysplastic changes, are traditionally handled by conventional methods intended to classify nominal classes43

where the order relation is ignored. This paper introduces a new machine learning paradigm intended for44

multi-class classification problems where the classes are ordered. A non-parametric loss for ordinal data45

classification is proposed whose goal is to promote unimodality in the prediction distributions produced46
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Table 1. The 7 Different Pap Smear Classes in the Herlev dataset.

WHO TBS Type of cell Quantity

N
o

rm
a

l 1 1 Superficial squamous epithelial 74 cells

2 1 Intermediate squamous epithelial 70 cells

3 1 Columnar epithelial 98 cells

A
b

n
o

rm
a

l 4 2 Mild squamous non-keratinizing dysplasia 182 cells

5 3 Moderate squamous non-keratinizing dysplasia 146 cells

6 3 Severe squamous non-keratinizing dysplasia 197 cells

7 4 Squamous cell carcinoma in situ intermediate 150 cells

by the neural network; e.g., it would be inconsistent to predict that stage 1 and stage 3 are both more47

likely than stage 2. Yet, this loss is more flexible than other losses from the literature that force a binomial48

distribution in the output (Costa and Cardoso, 2005). This loss is also contrasted with the standard49

cross-entropy loss and networks that predict classes in the form of an ordinal encoding (Cheng et al.,50

2008). The Herlev dataset, which comprises 917 images of individual cervical cells in different stages51

of the disease, is used in the experiments (Jantzen and Dounias, 2006) together with a plethora of CNN52

architectures.53

In the next section, the problem and dataset at hand are presented. Other work for Pap smear cell54

classification is then reviewed in the “Related Work” section. The proposed loss is elaborated on the55

“Proposal” section, and the experimental details are described in “Experiments” with results and discussion56

presented in “Results”. The study finished with a “Conclusion” section.57

BACKGROUND58

According to the WHO classification system, there are seven different types of Pap smear cells in cervical59

cancer progression. This system assumes the existence of three different types of normal cells and four60

different types of abnormal cells. From suspicious cells to carcinoma in situ (CIS), the premalignant61

dysplastic changes of cells include four stages, which are mild, moderate, severe dysplasia, and carcinoma62

in situ (Suhrland, 2000). However, nowadays, the most used classification system is the TBS classification63

system, which is widely accepted by the medical society. According to the TBS system, the Pap smear64

cells can be divided into four classes: normal, Low-grade Squamous Intraepithelial Lesion (LSIL),65

High-grade Squamous Intraepithelial Lesion (HSIL), and Carcinoma in situ (Nayar and Wilbur, 2015).66

The different stages of cervical cytology abnormalities are associated with different morphological67

changes in the cells including the cytoplasm and nucleus. However, the small visual differences between68

some stages of cervical cells make the construction of a multi-class autonomous classification system a69

real challenge.70

The dataset used in this work is the Herlev Dataset, which is a publicly available dataset1 collected at71

the Herlev University Hospital (Denmark) using a digital camera and microscope with an image resolution72

of 0.201 µm per pixel (Jantzen and Dounias, 2006). The preparation of the specimens followed the73

traditional Pap smear and Pap staining. To amplify the certainty of diagnosis, two cytotechnicians and74

a doctor characterized the cervical images in the Herlev dataset into seven classes. The Herlev dataset75

is composed of a total of 917 images of individual cervical cells. Each image contains ground truth76

segmentation and classification label. Table 1 shows the nomenclature of the 7 different classes from the77

dataset, wherein classes 1–3 correspond to types of normal cells and classes 4–7 to different levels of78

abnormal cells. Illustrations of these classes are then displayed in Table 2.79

In most cases, the abnormal cells present a nucleus size bigger than healthy cells. However, the80

difference between the normal columnar nucleus and severe and/or carcinoma nucleus is not easy to81

differentiate, which makes the classification between these different types of cells a challenge.82

There is some imbalance in the class distribution of the dataset: 8%, 7%, 11%, 19%, 16%, 22%, and83

17%, whereas 14% would be expected if the distribution was uniform.84

1http://mde-lab.aegean.gr/index.php/downloads
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Table 2. Image examples of the 7 Different Pap Smear Classes in the Herlev dataset.

Normal Abnormal

W
H

O
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

T
B

S

k = 1 k = 2 k = 3 k = 4

RELATED WORK85

In most literature, the classification of Pap smear images consists of a binary separation between nor-86

mal and abnormal cell (two classes), using different methodologies such as Support Vector Machines87

(SVM) (Chen et al., 2014; Chankong et al., 2014; Kashyap et al., 2016; Bora et al., 2017), k-Nearest88

Neighbours (kNN) (Chankong et al., 2014; Bora et al., 2017; Marinakis et al., 2009; Fekri Ershad, 2019),89

Fuzzy c-Means Algorithm (FCM) (Chankong et al., 2014; William et al., 2019), k-Means clustering (Paul90

et al., 2015), Artificial Neural Networks (ANN) (Chankong et al., 2014), and, more recently, Convolutional91

Neural Networks (CNN) (Zhang et al., 2017; Lin et al., 2019; Kurnianingsih et al., 2019).92

However, all this work consists of binary classification, which is useful for screening, but not enough93

for a confident diagnosis. Fewer works explore the multi-class classification of cervical cells on the94

Herlev dataset. Chankong et al. (2014) proposed a multi-class automatic cervical cancer cell classification95

system using different classifiers, such as FCM, ANN, and kNN. However, this system is based only on 996

cell-based features. The approach applies feature extraction from the nucleus and cytoplasm in each image97

and requires manual selection of the best threshold to minimize the error when applying the classifier to98

construct the cell mask. More recently, Kurnianingsih et al. (2019) perform feature extraction in a more99

autonomous way using a CNN. The use of a CNN simplifies the pre-processing steps that were necessary100

for the approach by Chankong et al. Ghoneim et al. (2019) proposed a new approach for multi-class101

cervical cancer cell detection and classification, using in the first step, CNNs to extract deep-learned102

features and in the second step, extreme learning machine (ELM)-based classifiers to classify the input103

cell images. Lin et al. (2019) proposed a new CNN-based method that combines cell image appearance104

with cell morphology for multi-class classification of cervical cells in the Herlev dataset. In all these105

cases, cross-entropy is adopted for ordinal data classification.106

Assume that examples in a classification problem come from one of K classes, labelled from C (1) to107

C (K), corresponding to their natural order in ordinal classes, and arbitrarily for nominal classes.108

Cross-Entropy (CE): Traditionally, a CNN would perform multi-class classification by minimizing

cross-entropy, averaged over the training set,

CE(yn, ŷn) =−
K

∑
k=1

ynk log(ŷnk),

where yn = [yn1 · · ·ynk · · ·ynK ]∈RK represents the one-hot encoding of the class of the n-th observation and109

ŷn = [ŷn1 · · · ŷnk · · · ŷnK ] ∈ RK is the output probability vector given by the neural network for observation110

n. Note that ynk ∈ {0,1}, ŷnk ∈ [0,1] and ∑
K
k=1 ynk = ∑

K
k=1 ŷnk = 1.111

However, CE has limitations when applied to ordinal data. Defining k⋆n ∈ {1, · · · ,K} as the index of

the true class of observation xn (the position where ynk = 1), it is then clear that

CE(yn, ŷn) =− log(ŷnk⋆n
).

Intuitively, CE is just trying to maximize the probability in the output corresponding to the true class,112

ignoring all the other probabilities. For this loss, an error between classes C (1) and C (2) is treated as the113

same as an error between C (1) and C (K), which is undesirable for ordinal problems.114

Furthermore, the loss does not constrain the model to produce unimodal probabilities, so inconsisten-115

cies can be produced such as ŷn j > ŷnℓ < ŷni, even when 1 ≤ j < ℓ < i ≤ K. It would be preferable for116

output probabilities to follow a unimodal distribution, as depicted by Figure 1.117
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(a) A bimodal distribution
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(b) A unimodal distribution

Figure 1. Probabilities produced by two different models for observation n. CE is unable to distinguish

both scenarios, setting the same loss for both. For ordinal problems, a unimodal distribution, peaking in

the true class, is, arguably, preferable. In this example, k⋆n = 3 is the assumed true class.

Cross-entropy is a fair approach for nominal data, where no additional information is available.118

However, for ordinal data, the order can be explored to further regularize learning.119

Ordinal Encoding (OE): A model agnostic way to introduce ordinality is by training binary classifiers,120

in the form of an ensemble, where each classifier tries to distinguish between each pair of adjacent classes,121

C (i) and C (i+1) (Frank and Hall, 2001). An adaptation for neural networks consists of training a single122

neural network to produce K −1 outputs, where each output makes a binary decision between each pair123

of adjacent classes. The information on the ordinal distribution can, therefore, be encoded in the y labels124

themselves (Cheng et al., 2008).125

In traditional one-hot encoding, classes are encoded using the indicator function ✶(k = k⋆), so that ynm126

is represented by 1 if k = k⋆n and 0 otherwise. In ordinal encoding, classes are encoded using a cumulative127

distribution – the indicator function used is ✶(k < k⋆) so that ynm is represented by 1 if k < k⋆n and 0128

otherwise. Each output represents the incremental neighbor probability, and the inverse operation (during129

inference) is performed by summing up these outputs, pnk = ∑
K−1
m=1 ynm.130

Unimodal (U): Another method to promote ordinality in classification problems consists of constraining131

discrete ordinal probability distributions to be unimodal using binomial or Poisson probability distribu-132

tions:133

→ Binomial Unimodal (BU): One approach is to constrain the output of the network directly, ap-134

proaching the problem under a regression setting. Instead of several outputs, the output predicts a135

single output representing the probability along the classes, with yn = 0 representing k⋆n = 1 and136

yn = 1 representing k⋆n = K (Costa and Cardoso, 2005; Beckham and Pal, 2017). Thus, this model137

has only one output unit as the final layer. The model’s sigmoid output is converted into class138

probabilities using the Binomial probability mass function. The goal of this approach is to maintain139

the ordinality of the classes by applying a parametric model for the output probabilities.140

→ Poisson Unimodal (PU): The Poisson probability mass function (PMF) is used to enforce a discrete141

unimodal probability distribution (Beckham and Pal, 2017). As a final layer, the log Poisson PMF142

transform is applied together with a softmax to normalize the output as a probability distribution.143

The major difference between Costa and Cardoso (2005) and Beckham and Pal (2017) is that Beckham144

and Pal (2017) explore Binomial/Poisson distributions in the context of deep learning (rather than classical145

machine learning approaches), Beckham and Pal (2017) also propose the use of a learnable softmax146

temperature term to control the variance of the distribution. In the experiments, the temperature term (τ)147

was used as a constant value of 1.148

These parametric approaches sometimes sacrifice accuracy to ensure the ordinality assumption. This149

sacrifice might sometimes prove too much, especially given the fact that modern deep learning datasets150

are massive and have a significant number of mislabeled examples. A loss is now proposed to stimulate a151

unimodal output without modifying the network architecture.152

PROPOSAL153

As already explored, CE presents drawbacks when applied to ordinal data. By focusing only on the mode154

of the distribution and ignoring all the other values in the output probability vector, one is not leveraging155

the ordinal information intrinsic to the data.156
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Fixing CE with an Ordinal Loss Term157

A possible fix for CE is to add a regularization term that penalizes the deviations from the unimodal

setting. Defining ✶(x) as the indicator function of x and ReLU(x) = x✶(x > 0) = max(0,x), a tentative

solution for an order-aware loss could be

CO(yn, ŷn) = CE(yn, ŷn)

+λ
K−1

∑
k=1

✶(k ≥ k⋆n)ReLU(ŷn(k+1)− ŷn(k))+λ
K−1

∑
k=1

✶(k ≤ k⋆n)ReLU(ŷn(k)− ŷn(k+1)), (1)

where λ ≥ 0 controls the relative importance of the extra terms favoring unimodal distributions. Predicted

probability values are expected to decrease monotonously as we depart left and right from the true

class. The added terms penalize any deviation from this expected unimodal distribution, with a penalty

proportional to the difference of the consecutive probabilities. The additional terms, although promoting

uni-modality, still allow flat distributions. A generalization of the previous idea is to add a margin of

δ > 0 to the ReLU, imposing that the difference between consecutive probabilities is at least δ . This

leads us to a second CE loss, CO2, suitable for ordinal classes:

CO2(yn, ŷn) = CE(yn, ŷn)

+λ
K−1

∑
k=1

✶(k ≥ k⋆n)ReLU(δ + ŷn(k+1)− ŷn(k))+λ
K−1

∑
k=1

✶(k ≤ k⋆n)ReLU(δ + ŷn(k)− ŷn(k+1)). (2)

A value of δ = 0.05 has been empirically found to provide a sensible margin. This loss is aligned with158

the proposal present in Belharbi et al. (2019).159

Beyond CO2: Ordinal Entropy Loss Function160

In CO2, the CE term by itself is only trying to maximize the probability estimated in the true output161

class (while ignoring the remaining probabilities); the ordinal terms are promoting unimodality but not162

penalizing (almost) flat distributions. This also explains why the ordinal terms by themselves (especially163

the version without margin) are not enough to promote strong learning: the model could converge164

to solutions where the predicted probability in the true class is only slightly above the neighbouring165

probabilities, which will not, most likely, provide a strong generalization for new observations.166

However, the extreme nature of CE, ignoring almost everything in the predicted distribution ŷn is167

equivalent to assuming that the perfect probability distribution is one on the true class and zero everywhere168

else. This assumes a strong belief and dependence on the chosen one-hot encoding, which is often a169

crude approximation to the true probability class distribution. Seldom, for a fixed observation xn, the170

class is deterministically known; rather, we expect a class distribution with a few non-zero values. This is171

particularly true for observations close to the boundaries between classes. A softer assumption is that the172

distribution should have a low entropy, only.173

This leads us to propose the ordinal entropy loss, HO2, for ordinal data as

HO2(yn, ŷn) = H(ŷn)

+λ
K−1

∑
k=1

✶(k ≥ k⋆n)ReLU(δ + ŷn(k+1)− ŷn(k))+λ
K−1

∑
k=1

✶(k ≤ k⋆n)ReLU(δ + ŷn(k)− ŷn(k+1)), (3)

where H(p) denotes the entropy of the distribution p.174

EXPERIMENTS175

Several neural network architectures are now trained using the aforementioned losses for the dataset176

at hand. In this work, it was also evaluated the performance differences between parametric and non-177

parametric losses for ordinal classification (Figure 2). All the experiments are implemented in PyTorch178

and are available online2.179

2https://github.com/tomealbuquerque/ordinal-losses
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Ordinal Losses

Parametric Losses

Binomial Unimodal (BU) Poisson Unimodal (PU)

Non-parametric Losses

Ordinal Encoding (OE) Proposal

CO CO2 HO2

Figure 2. Schematic representation of the used and proposed ordinal losses.

Data Pre-processing180

Given that all images from the Herlev dataset are of different sizes, all images were resized to 224×224181

pixels; however, before the resize of cytological images, a zero-padding must be done to avoid the182

loss of essential information regarding cells shape. The last pre-processing step was to apply the same183

normalization as used by ImageNet (Simonyan and Zisserman, 2014).184

Since the Herlev database has a relatively small number of observations (917), the training dataset185

was augmented by a series of random transformations: 10% of width and height shift, 10% of zoom,186

image rotation, horizontal and vertical flips, and color saturation. These transformations are illustrated in187

Figure 3.

A B C D

Figure 3. Examples of data augmentation on the Herlev database. The original zero-padding image (A)

and random transformations (B–D).

188

Convolutional Neural Networks189

A convolutional neural network (CNN) is a neural network that successively applies convolutions of filters190

to the image. These filters are learned and consist of quadrilateral patches that are convolved across the191

whole input image – unlike previous fully-connected networks, only local inputs are connected at each192

layer. Typically, each convolution is intertwined with downsampling operations, such as max-pooling,193

that successively reduce the size of the original image.194

The final layers are fully-connected and then the final output is processed by a soft-max for multi-class195

problems or a logistic function for binary classification. Dropout was used to reduce overfitting by196

constraining these fully-connected layers (Srivastava et al., 2014).197

Network Architectures198

Two different models were trained and tested in this work for multi-class (4-class and 7-class) classifi-199

cation of Pap smear cells images (Figure 4). Both models were trained and tested with nine different200

convolutional network architectures: AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015),201

MobileNet V2 (Howard et al., 2017), ResNet18 (He et al., 2016), ResNeXt50 32X4D (Xie et al., 2017),202

ShuffleNet V2 X1 0 (Zhang et al., 2018), SqueezeNet1 0 (Iandola et al., 2016), VGG-16 (Simonyan and203

Zisserman, 2014), and Wide ResNet50 2 (Zagoruyko and Komodakis, 2016). The goal of testing these204

different architectures is to evaluate how well the proposed loss behaves in a wide range of architectures.205

These nine different architectures were chosen as they are often used in the literature and came pre-trained206

with PyTorch on ImageNet3. The last block of each architecture was replaced by the following layers:207

3https://pytorch.org/docs/stable/torchvision/models.html
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Figure 4. Schematic representation of the model used for multi-class classification of Pap smear cells.

dropout with p=20%, 512-unit dense layer with ReLU, dropout with p=20%, a 256-wide dense layer208

with ReLU, followed by K output neurons.209

A brief introduction of each architecture is now presented. AlexNet, based on LeNet, formalized210

the Convolutional Neural Network (CNN) as is known today: a series of convolutions intertwined by211

downsampling blocks. Max-pooling was used for downsampling and ReLU was used as the activation212

function. It became famous for winning ImageNet, the first CNN to do so (Krizhevsky et al., 2012). The213

following ImageNet competitions were also won by other CNNs – VGG and GoogLeNet – which were214

evolutions on top of AlexNet that consist mostly of a much higher number of parameters (Simonyan215

and Zisserman, 2014; Szegedy et al., 2015). Then, MobileNet (Howard et al., 2017) introduced hyperpa-216

rameters to help the user choose between latency and accuracy trade-offs. An attempt was then made at217

curbing the number of parameters with ShuffleNet (Zhang et al., 2018) by approximating convolution218

operators using fewer parameters.219

Finally, an attempt was made at curbing the number of parameters, which had been exploding, while220

keeping the accuracy of these early CNNs with SqueezeNet (Iandola et al., 2016).221

In another line of research, ResNet (He et al., 2016) introduced residual blocks whose goal was to222

make the optimization process easier for gradient descent. Each residual block learns a = f (x)+x instead223

of a = f (x). Given that weights are initialized randomly around zero and most activation functions224

are also centred in zero (an exception would be the logistic activation function), then, in expectation,225

all neurons output zero before any training. Therefore, when using residual blocks, at time=0, a = x,226

i.e. activations produce the identity function. This greatly helps gradient descent focus on finding227

improvements (residuals) on top of the identity function. While this model allowed for deeper neural228

networks, each per cent of improved accuracy required nearly doubling the number of layers, which229

motivated WideResNet (Zagoruyko and Komodakis, 2016) and ResNeXt (Xie et al., 2017) to improve the230

residual architecture to improve learning time.231

Training232

The weights of the architectures previously mentioned are already initialized by pre-training on ImageNet.233

Adam was used as the optimizer and started with a learning rate of 10−4. The learning rate is reduced by234

10% whenever the loss is stagnant for 10 epochs. The training process is completed after 100 epochs.235

The dataset was divided into 10 different folds using stratified cross-validation, in order to maintain236

the class ratios. Therefore, the results are the average and deviation of these 10 folds. In the case of the237

proposed loss, the hyperparameter λ is tuned by doing nested k-fold cross-validating using the training238

set (with k=5) in order to create an unbiased validation set.239

Evaluation Metrics240

The most popular classification metric is accuracy (Acc). For N observations, taking ki and k̂i to be the241

label and prediction of the n-th observation, respectively, then Acc = 1
N ∑

N
n=1✶(k̂

⋆
n = k⋆n), where ✶ is the242

indicator function.243
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However, this metric treats all class errors as the same, whether the error is between adjacent classes244

or between classes in the extreme. If we have K classes represented by a set C = {C (1),C (2), . . . ,C (K)},245

then accuracy will treat an error between C (1) and C (2) with the same magnitude as an error between246

C (1) and C (K) which is clearly worse. As an illustration, in a medical setting, a misdiagnosis between247

Stage II and Stage III of a disease, while bad, is not as bad as a misdiagnosis between Healthy and248

Stage III. For that reason, a popular metric for ordinal classification is the Mean Absolute Error (MAE),249

MAE = 1
N ∑i |k

⋆
i − k̂⋆i |. This metric is not perfect since it treats an ordinal variable as a cardinal variable.250

An error between classes C (1) and C (3) will be treated as two times worse than an error between classes251

C (1) and C (2). Naturally, the assumption of cardinality is not always warranted.252

To evaluate the models’ performance, we also used a metric specific for ordinal classification, Uniform253

Ordinal Classification Index (UOC) which considers accuracy and ranking in the performance assessment254

and is also robust against imbalanced classes (Silva et al., 2018). The better the performance, the lower255

the UOC.256

By combining a quality assessment (accuracy) with a quantity assessment (MAE) and also with257

a specific metric for ordinality (UOC) we hope to provide a balanced view of the performance of the258

methods.259

The two other metrics used are the AUC of ROC or AUROC (Area Under the Receiver Operating260

Characteristic) and Kendall’s τ rank correlation coefficient. AUROC measures how well-calibrated are261

the probabilities produced by the model. This first metric is used in the binary classification context (two262

classes) and is extended for multi-class by comparing each class against the rest (one vs rest strategy)263

and performing an overall average, known as macro averaging. On the other hand, Kendall’s Tau is a264

non-parametric evaluation of relationships between columns of ranked data, so it is a measure of ordinal265

association between data. The τ correlation coefficient returns a value that ranges from -1 to 1, with 0266

being no correlation and 1 perfect correlation.267

RESULTS268

The average performance for the 10-folds of nine different architectures are presented in Tables 3–8,269

A1 and A2, for both the 7-class and 4-class classification problems, with the seven different learning270

losses – conventional Cross-Entropy (CE), Binomial Unimodal (BU) (Costa and Cardoso, 2005), Poisson271

Unimodal (PU) (Beckham and Pal, 2017), Ordinal Encoding (OE) (Cheng et al., 2008) and our proposed272

losses (CO, CO2 and HO2), as measured by MAE, accuracy, UOC index and Kendall’s coefficient detailed273

in the previous section. The best models are shown in bold, while italic is used to check for statistical274

similarity between the other models and the best one. A p-value of 0.1 is used with a two-sided paired275

t-test due to the small sample size (10 folds).276

For the 7-class classification problem, Table 3 shows the results for MAE, which confirm the influence277

of ordinal losses in promoting ordinality when comparing to nominal loss (CE). OE loss achieved the best278

performance across the different architectures but it is also notable the good performance of our loss: in279

67% of cases, the models trained with our proposed loss provide better MAE results. The MAE results280

present in Table 3 for 7-class classification are consistent with the 4-class Table 6, with ordinal losses281

winning over nominal CE.282

Table 4 and Table 7 present the accuracy results for 7-class and 4-class classification problems,283

respectively. Regarding this metric, the results between nominal and ordinal losses are more balanced.284

CE loss performance is above ordinal losses in 11% for the 7-class problem and is tied for the 4-class285

problem. This can be explained by the lower role of ordinality in the CE loss, as also confirmed by the286

MAE results. This means that when misclassification occurs, ordinal losses tend to classify Pap smear287

images as being closer to the real class. Results for UOC index (Table 5 and 8) are also consistent with288

the MAE metric, with 78% of the models presenting a lowest UOC index when using the ordinal losses.289

Tables A1 and Table A2 in the appendix present the results for Kendall’s τ coefficient test in 4-class and290

7-class classification problems. These results are also aligned with the results of MAE and UOC metrics:291

the ordinal losses perform better advantage when comparing with nominal CE.292

Adding the margin (CO → CO2) influences positively most of the metrics for 7 and 4 classes. Using293

entropy (CO2 or HO2), instead of cross-entropy, promotes better results on the metrics intrinsically294

connected with ordinality (MAE, UOC and Kendall’s τ coefficient).295

The average results for all losses across the nine different architectures for MAE, accuracy, UOC,296

AUROC, Kendall’s τ coefficient and Gini index metrics are present Tables A3 and A4 in the appendix297
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Table 3. Results in terms of Mean Absolute Error (MAE) for 7 class problem, averaged for 10 folds

(lower is better).

CE BU PU OE CO CO2 HO2

AlexNet 0.46±0.08 0.52±0.09 0.50±0.09 0.44±0.08 0.90±0.19 0.41±0.08 0.45±0.10

GoogLeNet 0.39±0.05 0.41±0.07 0.42±0.08 0.38±0.09 0.53±0.10 0.37±0.07 0.36±0.06

MobileNet v2 0.34±0.05 0.36±0.04 0.31±0.04 0.33±0.05 0.52±0.26 0.34±0.06 0.34±0.05

ResNet18 0.34±0.09 0.36±0.06 0.35±0.06 0.35±0.10 0.49±0.11 0.34±0.07 0.35±0.10

ResNeXt50 32x4d 0.34±0.07 0.33±0.05 0.33±0.03 0.34±0.06 0.41±0.08 0.33±0.06 0.31±0.07

ShuffleNet v2 x1 0 0.41±0.07 0.49±0.07 0.41±0.05 0.38±0.07 0.47±0.08 0.40±0.05 0.38±0.06

SqueezeNet1 0 0.38±0.07 0.45±0.05 0.46±0.07 0.40±0.09 0.97±0.31 0.41±0.08 0.45±0.09

VGG16 0.37±0.09 0.44±0.05 0.44±0.10 0.37±0.06 0.67±0.15 0.36±0.06 0.36±0.07

Wide ResNet50 2 0.33±0.06 0.37±0.05 0.32±0.06 0.30±0.04 0.45±0.13 0.33±0.06 0.35±0.09

Avg 0.37 0.41 0.39 0.36 0.60 0.37 0.37

Winners 1 0 1 1 0 2 4

Table 4. Results in terms of Accuracy for 7 class problem, averaged for 10 folds (higher is better).

CE BU PU OE CO CO2 HO2

AlexNet 71.1±5.1 60.6±3.7 64.8±5.4 70.1±5.1 44.2±7.6 70.8±5.1 67.9±5.4

GoogLeNet 72.5±3.7 66.1±4.3 68.5±4.5 71.5±5.3 59.7±8.2 72.4±4.9 72.4±3.7

MobileNet v2 75.0±4.4 69.0±3.5 74.2±2.8 74.4±3.8 64.4±16.5 73.1±3.7 74.1±3.9

ResNet18 74.4±6.1 69.5±3.7 73.3±4.3 73.6±6.4 64.6±6.5 73.3±4.5 73.3±6.4

ResNeXt50 32x4d 74.4±3.7 72.4±4.3 72.8±2.8 74.0±4.2 68.0±5.9 75.5±3.5 75.7±5.3

ShuffleNet v2 x1 0 71.9±5.5 61.0±4.5 67.7±4.6 70.7±4.9 65.5±4.5 70.7±3.1 71.3±3.7

SqueezeNet1 0 73.0±4.3 63.3±2.4 67.3±3.6 71.8±5.3 40.5±13.3 70.8±4.5 67.1±5.0

VGG16 73.1±4.7 63.9±4.6 67.6±6.2 72.6±3.8 54.4±8.5 71.8±3.3 72.0±3.7

Wide ResNet50 2 75.7±3.2 69.7±3.1 74.5±4.3 76.8±1.9 66.1±7.8 75.6±4.0 74.3±5.7

Avg 73.4 66.2 70.1 72.8 58.6 72.6 72.0

Winners 7 0 0 1 0 0 1

Table 5. Results in terms of Uniform Ordinal Classification Index (UOC) for 7 class problem,

averaged for 10 folds (lower is better).

CE BU PU OE CO CO2 HO2

AlexNet 45.1±6.5 51.7±5.7 49.8±6.6 44.0±6.9 70.3±7.8 42.8±7.3 46.4±7.8

GoogLeNet 38.9±6.0 44.2±5.7 44.6±7.3 39.0±7.2 51.3±9.1 38.8±6.9 38.1±4.7

MobileNet v2 36.0±5.7 39.7±4.9 33.6±4.5 35.4±5.6 46.7±15.0 36.2±6.4 36.2±6.1

ResNet18 36.2±9.3 40.1±5.7 37.2±6.3 37.3±9.1 46.9±6.8 37.1±7.6 37.8±8.7

ResNeXt50 32x4d 36.9±6.8 37.0±5.2 37.6±4.6 36.8±6.1 42.2±6.7 35.3±6.7 34.0±7.2

ShuffleNet v2 x1 0 41.8±7.1 49.6±6.4 43.6±4.9 40.3±6.3 46.3±6.0 42.4±4.1 40.3±4.9

SqueezeNet1 0 40.4±6.0 47.9±3.8 47.5±4.8 42.4±8.1 73.6±13.6 42.7±7.4 46.8±7.0

VGG16 38.5±8.2 47.2±4.9 45.5±8.6 39.0±6.4 60.3±10.0 40.2±6.1 39.6±6.8

Wide ResNet50 2 35.7±5.2 40.8±5.4 35.6±6.3 33.5±4.5 44.2±9.1 34.8±6.5 36.6±8.4

Avg 38.8 44.2 41.7 38.6 53.5 39.0 39.5

Winners 3 0 1 2 0 1 2

bold: best model, italic: statistically similar to best (paired t-test).
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Table 6. Results in terms of Mean Absolute Error (MAE) for 4 class problem, averaged for 10 folds

(lower is better).

CE BU PU OE CO CO2 HO2

AlexNet 0.31±0.06 0.32±0.04 0.28±0.04 0.29±0.06 0.47±0.19 0.29±0.05 0.31±0.06

GoogLeNet 0.24±0.04 0.25±0.03 0.25±0.05 0.24±0.05 0.38±0.17 0.22±0.05 0.25±0.06

MobileNet v2 0.22±0.06 0.21±0.03 0.24±0.05 0.22±0.06 0.23±0.04 0.24±0.05 0.22±0.05

ResNet18 0.24±0.03 0.26±0.05 0.24±0.05 0.22±0.04 0.29±0.11 0.22±0.04 0.26±0.06

ResNeXt50 32x4d 0.21±0.03 0.22±0.04 0.23±0.03 0.20±0.04 0.28±0.07 0.21±0.03 0.22±0.05

ShuffleNet v2 x1 0 0.28±0.05 0.33±0.05 0.27±0.05 0.31±0.06 0.36±0.09 0.28±0.06 0.28±0.04

SqueezeNet1 0 0.28±0.06 0.30±0.05 0.30±0.06 0.27±0.07 0.66±0.17 0.29±0.04 0.31±0.05

VGG16 0.27±0.06 0.28±0.06 0.26±0.05 0.24±0.03 0.53±0.18 0.26±0.05 0.27±0.05

Wide ResNet50 2 0.23±0.05 0.22±0.04 0.20±0.06 0.22±0.05 0.43±0.22 0.21±0.05 0.22±0.03

Avg 0.25 0.27 0.25 0.24 0.40 0.25 0.26

Winners 0 1 3 4 0 1 0

Table 7. Results in terms of Accuracy for 4 class problem, averaged for 10 folds (higher is better).

CE BU PU OE CO CO2 HO2

AlexNet 76.1±3.8 72.8±2.7 75.7±4.0 76.8±3.6 63.9±12.5 75.9±3.5 74.9±3.9

GoogLeNet 79.9±1.8 78.3±2.6 77.3±3.1 79.2±4.0 69.4±12.0 80.0±3.8 78.4±4.0

MobileNet v2 81.8±4.3 80.7±2.5 78.8±3.4 81.2±4.9 79.8±3.7 79.2±3.2 80.8±3.7

ResNet18 79.8±2.6 77.2±2.3 78.5±4.1 80.7±4.1 75.2±8.4 80.4±3.8 78.0±4.3

ResNeXt50 32x4d 82.0±3.1 80.0±3.5 79.5±3.2 82.3±4.3 76.2±5.1 80.8±2.8 79.9±3.9

ShuffleNet v2 x1 0 77.1±3.7 72.1±3.5 76.1±3.5 75.0±4.4 70.4±6.6 76.9±3.9 76.2±2.3

SqueezeNet1 0 77.2±4.2 73.5±3.1 74.9±5.1 77.3±5.3 49.9±12.2 75.5±3.3 74.3±4.5

VGG16 77.9±4.8 74.4±4.7 77.5±3.8 79.4±2.5 58.1±11.8 77.0±3.9 77.4±3.7

Wide ResNet50 2 80.8±3.2 79.3±3.3 82.2±4.2 81.0±3.9 64.0±15.3 81.3±4.2 80.6±2.6

Avg 79.2 76.5 77.8 79.2 67.4 78.5 77.8

Winners 2 0 1 5 0 1 0

Table 8. Results in terms of Uniform Ordinal Classification Index (UOC) for 4 class problem,

averaged for 10 folds (lower is better).

CE BU PU OE CO CO2 HO2

AlexNet 38.2±5.1 39.5±3.4 37.1±4.3 37.0±4.9 52.7±14.2 37.4±5.8 38.9±5.8

GoogLeNet 31.6±3.1 31.7±3.6 34.4±5.6 32.5±5.7 44.7±14.6 30.8±5.5 32.9±6.3

MobileNet v2 30.1±6.9 29.2±3.7 32.8±5.2 30.6±7.5 31.0±4.8 32.5±5.5 30.5±5.4

ResNet18 31.4±4.6 33.1±3.7 32.3±5.5 29.4±6.0 36.7±11.0 30.3±4.1 33.2±6.7

ResNeXt50 32x4d 28.7±4.7 29.8±4.9 32.0±3.9 27.5±5.3 35.9±4.8 28.8±4.6 31.0±5.2

ShuffleNet v2 x1 0 35.8±5.3 38.6±4.7 36.7±4.4 39.0±6.5 43.5±9.0 36.4±6.9 35.9±4.7

SqueezeNet1 0 36.6±5.8 37.3±4.3 38.2±6.8 35.3±6.9 65.1±9.4 37.6±4.1 39.6±4.6

VGG16 35.3±6.4 36.2±6.4 34.6±4.7 32.3±3.8 55.1±10.5 34.7±5.5 35.1±6.0

Wide ResNet50 2 30.2±5.7 29.9±4.9 28.2±5.0 30.5±6.2 47.7±14.4 29.1±5.6 30.7±4.3

Avg 33.1 33.9 34.0 32.7 45.8 33.1 34.2

Winners 1 1 1 5 0 1 0

bold: best model, italic: statistically similar to best (paired t-test).
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Predicted

A
ct

u
al

1 2 3 4 5 6 7

1 89 10 0 0 0 0 0

2 11 87 1 0 0 0 0

3 0 0 90 1 2 3 3

4 0 0 0 82 12 3 1

5 0 0 0 24 57 13 3

6 0 0 4 8 9 62 15

7 0 0 2 0 2 15 79

(a) Lin et al. (2019)

Predicted

A
ct

u
al

1 2 3 4 5 6 7

1 93 6 0 0 0 0 0

2 8 87 2 1 0 0 0

3 0 0 88 2 1 6 2

4 0 0 1 71 17 6 1

5 0 0 3 19 58 15 2

6 0 0 1 7 10 68 13

7 0 0 2 0 3 18 75

(b) Proposal

Figure 5. Comparison of state-of-the-art confusion matrix (7 classes) against WideResNet50 trained

using the HO2 loss.
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Figure 6. Probability distribution for WideResNet50 contrasting losses CE (solid line) and HO2 (dashed

line).

for 7 and 4 class classification respectively. Both tables present the results using the classical mode298

(softmax) to aggregate the probabilities and also using mean (expectation trick) (Beckham and Pal, 2017).299

Concerning the sparsity of the prediction probabilities, as measured by the Gini index, it is notable that,300

as the loss is made more ordinal-aware, the predicted probabilities tend to be more spread across the301

classes. This can also be seen in Figure 6. Interestingly, the OE distribution is almost identical to the CE302

distribution and has been omitted from the figure for legibility.303

On average, in most metrics, non-parametric losses outperformed parametric losses. This difference304

can be justified with the greater flexibility in boundary decisions provided by non-parametric losses. OE,305

CO2 and HO2 provided better results across the different metrics when comparing to BU and PU.306

Most work from the literature concerns the binary case using the Herlev dataset (normal vs abnormal);307

only a couple concern themselves with the 7-class and 4-class ordinal classification problem. Table 9308

contrasts the best performing models from two recent works against the proposed method. In our case,309

the non-parametric loss (CO2) was able to beat the state-of-the-art nominal-class approaches by 11.1% (7310

classes) and by 10% (4 classes) in the accuracy metric. Furthermore, the confusion matrices in Figure 5311

contrast the proposal against Lin et al. (2019).312

There are classes of cells easier to classify than others, as shown by the confusion matrix in Figure 5 (b).313

Columnar cells are sometimes inappropriately classified as severe dysplasia cells since severe dysplasia314

cells have similar characteristics in appearance and morphology with columnar cells (e.g., small cytoplasm,315

dark nuclei).316

The main challenge occurs in the classification of abnormal cells (i.e., mild dysplasia, moderate317

Table 9. Accuracy comparison of different models with literature for 7 and 4 classes.

7 classes 4 classes

Accuracy (%) Accuracy (%)

Jantzen et al. 61.1 –

Lin et al. 64.5 71.3

Proposal 75.6 81.3
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dysplasia, severe dysplasia, and carcinoma) where the characteristics of these kinds of cells are very318

similar. The fact is that the abnormal classes correspond to different levels of evolution of structures, with319

a progressive change in their characteristics which leads them to present characteristics common to two320

levels, being a hard task even for cytopathologists to classify them correctly. Thus, the right multi-class321

classification of abnormal cells is highly desirable and with substantial clinical value.322

Finally, the influence of the losses on the output probabilities is illustrated in Figure 6 when predicting323

two classes for the 7-class case. Contrasting this to Figure 1, it is clear that the proposed loss tends to324

promote a unimodal distribution of probabilities relative to the CE loss, which tends to maximize the325

probability in the output corresponding to the true class and ignore all the other probabilities distribution,326

and even in contrast to OE.327

CONCLUSION328

Comparing ordinal deep learning approaches on cervical cancer data, non-parametric losses achieved329

better results when comparing with parametric losses. This type of loss does not limit the learned330

representation to a specific parametric model, which allows, during the training, to explore different and331

larger spaces of solutions avoiding ad hoc choices.332

A new non-parametric loss is proposed for multi-class Pap smear cell-classification based on con-333

volutional neural networks. This new loss demonstrated to be competitive with state-of-the-art results334

and more flexible than existing deep ordinal classification techniques that impose uni-modality in the335

probability distribution. The use of the proposed loss in training popular architectures from the literature336

outperforms the state-of-the-art nominal-class approaches by over 10%.337

Furthermore, the proposed loss is a convenient way of introducing ordinality to the optimization338

problem without the major changes in architecture or data format required by other techniques from339

the literature. On the other hand, the proposed loss requires two new hyperparameters. However, the340

suggested values have been found to be robust. While motivated by this dataset, the proposed loss could341

potentially be used by other applications of ordinal classification.342

In any case, there is a lot to improve in the multi-class classification of cervical cells to achieve343

better accuracy since results are still short of 75.6% accuracy. The Herlev data set is mainly composed344

of expert-selected “typical” cells, however, in real-life circumstances, data is more complex because a345

cytology image contains lots of cells and not only a single cropped cell, so further work is needed before346

moving the results of this work to practice. Another important detail is the effect of overlapping nuclei347

and cell clumps, which has not been taken into account in this work. The presence of artefacts on the348

images also interferes with classification accuracy.349
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APPENDIX444

Some extra results are made available in this appendix.445

Table A1. Results in terms of Kendall’s τ for 7 class problem, averaged for 10 folds (higher is better).

CE BU PU OE CO CO2 HO2

AlexNet 75.9±4.1 76.9±4.8 74.5±5.8 77.9±4.8 57.3±9.3 79.9±4.7 77.5±5.5

GoogLeNet 80.9±2.7 81.9±4.1 79.3±4.4 81.9±4.3 76.9±4.0 81.7±4.2 82.8±3.7

MobileNet v2 83.2±2.9 84.5±1.9 85.6±2.5 84.4±2.1 75.6±11.5 83.7±3.2 83.8±3.0

ResNet18 83.1±5.1 84.7±3.1 83.4±3.0 83.5±4.9 76.9±5.1 83.8±4.0 83.4±5.1

ResNeXt50 32x4d 83.2±4.5 85.2±2.8 84.7±1.4 83.2±3.6 81.5±3.4 84.0±3.6 85.4±3.1

ShuffleNet v2 x1 0 78.8±4.0 78.9±3.6 80.9±2.4 81.7±3.1 77.8±4.5 80.1±2.6 81.6±3.4

SqueezeNet1 0 81.0±3.9 80.4±2.6 77.0±4.0 79.6±5.1 54.1±14.6 79.4±4.1 78.1±4.8

VGG16 81.6±5.1 81.3±2.2 78.3±6.4 81.9±3.5 68.8±6.9 82.6±3.2 82.8±4.6

Wide ResNet50 2 83.4±3.1 83.8±2.8 84.9±3.4 85.9±2.7 79.8±6.1 84.1±3.6 82.7±4.3

Avg 81.2 82.0 80.9 82.2 72.1 82.2 82.0

Winners 1 1 1 2 0 1 3

Table A2. Results in terms of Kendall’s τ for 4 class problem, averaged for 10 folds (higher is better).

CE BU PU OE CO CO2 HO2

AlexNet 73.9±6.3 75.4±4.0 77.4±3.8 76.0±5.7 58.7±19.3 76.5±5.7 75.0±5.9

GoogLeNet 80.3±4.2 81.3±3.0 80.4±4.9 81.2±4.4 70.1±14.2 82.5±4.2 80.2±5.1

MobileNet v2 81.3±5.1 83.9±2.0 81.3±3.7 81.8±6.2 82.3±3.7 80.4±4.3 82.3±4.4

ResNet18 81.0±2.7 80.3±4.4 81.2±4.4 82.8±3.5 77.5±7.7 82.5±3.2 79.5±5.1

ResNeXt50 32x4d 83.2±3.1 83.2±2.9 81.8±2.8 84.3±3.4 78.1±5.1 83.9±2.4 82.3±3.9

ShuffleNet v2 x1 0 77.1±4.7 76.1±3.7 78.8±4.1 74.8±6.2 71.1±9.1 77.3±5.6 78.0±4.5

SqueezeNet1 0 76.2±5.2 77.5±4.5 75.8±5.6 78.2±5.9 48.5±11.0 76.6±3.8 74.8±3.8

VGG16 77.9±5.4 79.2±4.5 80.0±4.4 81.0±2.4 63.2±10.3 79.2±4.2 78.3±5.4

Wide ResNet50 2 81.7±4.6 83.4±2.8 84.4±4.6 82.2±5.1 67.8±18.6 83.2±4.3 82.6±2.8

Avg 79.2 80.0 80.1 80.2 68.6 80.3 79.2

Winners 0 1 3 4 0 1 0

bold: best model, italic: statistically similar to best (paired t-test).
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Table A3. Aggregate results for 7 class problem, averaged for 10 folds.

CE BU PU OE CO CO2 HO2

Mode

UOC 38.8±7.5 44.2±7.2 41.1±7.7 38.6±7.5 53.5±14.7 39.0±7.3 39.5±8.1

MAE 0.37±0.08 0.41±0.09 0.40±0.10 0.36±0.08 0.60±0.26 0.37±0.07 0.37±0.09

Accuracy 73.4±4.8 66.2±5.5 71.5±4.9 72.8±5.1 58.6±13.4 72.6±4.5 72.0±5.6

Kendall’s τ 81.2±4.7 82.0±4.2 80.0±5.8 82.2±4.5 72.1±12.4 82.2±4.2 82.0±4.9

ROC AUC 95.9±1.4 93.0±2.2 95.5±1.4 95.5±1.5 82.3±9.9 94.5±1.8 93.9±1.9

Gini 85.1±0.2 64.0±1.6 84.8±0.5 84.8±0.4 28.2±33.3 50.1±6.3 45.0±4.2

Mean

UOC 39.2±7.4 42.1±7.5 41.7±8.2 39.7±7.4 75.9±20.6 79.8±4.9 83.7±1.7

MAE 0.37±0.08 0.39±0.08 0.39±0.09 0.37±0.08 1.17±0.50 0.91±0.13 1.03±0.04

Accuracy 72.1±5.1 67.7±5.8 70.1±5.6 71.6±5.1 33.6±19.9 28.3±5.4 25.0±3.1

Kendall’s τ 82.3±4.3 82.5±4.1 80.9±5.5 82.6±4.3 nan±nan 78.3±3.6 76.0±3.2

ROC AUC 95.9±1.4 93.0±2.2 95.5±1.4 95.5±1.5 82.3±9.9 94.5±1.8 93.9±1.9

Gini 85.1±0.2 64.0±1.6 84.8±0.5 84.8±0.4 28.2±33.3 50.1±6.3 45.0±4.2

Table A4. Aggregate results for 4 class problem, averaged for 10 folds.

CE BU PU OE CO CO2 HO2

Mode

UOC 33.1±6.3 33.9±5.9 33.6±5.7 32.7±7.0 45.8±14.9 33.1±6.3 34.2±6.4

MAE 0.25±0.06 0.27±0.06 0.25±0.06 0.24±0.06 0.40±0.20 0.25±0.06 0.26±0.06

Accuracy 79.2±4.1 76.5±4.5 78.7±4.0 79.2±4.8 67.4±13.7 78.5±4.2 77.8±4.3

Kendall’s τ 79.2±5.5 80.0±4.7 79.7±5.4 80.2±5.8 68.6±15.7 80.3±5.1 79.2±5.4

ROC AUC 94.5±1.7 92.7±1.9 94.6±1.5 94.5±1.7 83.5±10.5 93.2±2.1 92.9±2.0

Gini 74.3±0.3 58.4±2.0 74.2±0.4 74.2±0.3 31.5±31.4 44.5±16.3 36.6±11.2

Mean

UOC 33.4±6.3 34.2±5.8 34.0±5.9 33.2±7.1 57.0±17.3 52.2±13.5 58.4±8.5

MAE 0.25±0.06 0.26±0.05 0.25±0.06 0.25±0.07 0.50±0.20 0.42±0.14 0.47±0.09

Accuracy 78.5±4.4 77.0±4.2 77.8±4.4 78.4±5.1 54.7±17.8 60.1±13.4 54.6±9.3

Kendall’s τ 79.7±5.1 80.4±4.6 80.1±4.9 80.5±5.8 63.8±16.6 73.4±7.3 70.5±5.6

ROC AUC 94.5±1.7 92.7±1.9 94.6±1.5 94.5±1.7 83.5±10.5 93.2±2.1 92.9±2.0

Gini 74.3±0.3 58.4±2.0 74.2±0.4 74.2±0.3 31.5±31.4 44.5±16.3 36.6±11.2

bold: best model, italic: statistically similar to best (paired t-test).

15/15PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:53280:3:0:NEW 24 Feb 2021)

Manuscript to be reviewedComputer Science


