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ABSTRACT
Diabetes is one of the most prevalent diseases in the world, which is a metabolic
disorder characterized by high blood sugar. Diabetes complications are leading to
Diabetic Retinopathy (DR). The early stages of DR may have either no sign or cause
minor vision problems, but later stages of the disease can lead to blindness. DR
diagnosis is an exceedingly difficult task because of changes in the retina during
the disease stages. An automatic DR early detection method can save a patient's
vision and can also support the ophthalmologists in DR screening. This paper
develops a model for the diagnostics of DR. Initially, we extract and fuse the
ophthalmoscopic features from the retina images based on textural gray-level
features like co-occurrence, run-length matrix, as well as the coefficients of the
Ridgelet Transform. Based on the retina features, the Sequential Minimal
Optimization (SMO) classification is used to classify diabetic retinopathy. For
performance analysis, the openly accessible retinal image datasets are used, and the
findings of the experiments demonstrate the quality and efficacy of the proposed
method (we achieved 98.87% sensitivity, 95.24% specificity, 97.05% accuracy on
DIARETDB1 dataset, and 90.9% sensitivity, 91.0% specificity, 91.0% accuracy on
KAGGLE dataset).

Subjects Bioinformatics, Computer Vision
Keywords Diabetic Retinopathy, Fundus image, Textural features, Image processing, Continous
Ridgelet transform

INTRODUCTION
The World Health Organization (WHO) assesses that 347 million people currently suffer
from diabetes and that in 2030 this disease will be the seventh leading reason for death
in the world (Murugan, 2019). Over the years, diabetes patients will usually exhibit
deviations from the retina norm, causing an issue called diabetic retinopathy (DR). It is a
serious cause of visual loss, including blindness. It involves type 1 and type 2 diabetes
complications. DR is caused by impaired blood vessels in the retina. Ophthalmologists
diagnosis DR by studying exacting and time-intensive images of the retinal fundus.
Automating DR diagnosis will reduce the pressure on ophthalmologists to concentrate on
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vulnerable patients and allow further medical screening (Umapathy et al., 2019). Retinal
lesions such as hemorrhages (HRs), micro-aneurysms (MAs), and hard exudates (HE)
can be used to identify DR affected retinal images. Figure 1 shows the retinal features.

There are usually two types of DR, such as Proliferative DR (PDR) and
Non-Proliferative DR (NPDR). As new blood vessels develop on the surface of the retina,
PDR has the elements of neovascularization and vitreous fluid hemorrhage and can bleed.
But there are no signs in NPDR and it can only are identified by the retinal image
(Gharaibeh, 2016). The fundus images are graded by the clinical specialist as the normal
retina, mildly affected, moderately affected, and severely affected NPDR retina and PDR
retina (shown in Fig. 2).

The typical retina image does not display any signs of DR characteristics, including
retinal lesions, while blood vessels are clear without any leakage. In the case of mild
NPDR, the micro-aneurysms are observed. During the moderate NPDR, there are
microaneurysms, hemorrhages, damaged exudates, and blood vessels that can expand and
distort. One of the signs will recognize severe NPDR: blockage of certain blood vessels
in retinas, development of new blood vessels. The PDR damaged retina has the
consequences of forming new blood vessels, which are neovascularization of an abnormal
nature. It is developed at the back of the eye; as a result, the vision is blurry; it can burst or
bleed (Li & Li, 2013).

Many automatic DR detection techniques (Argade et al., 2015; Chetoui, Akhloufi &
Kardouchi, 2018; Lam et al., 2018) were proposed. One of the main challenges with DR
diagnosis is that at its early level, it is impossible to recognize the signs. When it goes
beyond the advanced level, it can lead to vision failure entirely. There are other approaches

Figure 1 Illustration of retinal image features. Image credit: DIARETDB1. © Tomi Kauppi, Valentina
Kalesnykiene, Joni-Kristian Kamarainen, Lasse Lensu, Iiris Sorri, Asta Raninen, Raija Voutilainen, Juhani
Pietilä, Heikki Kälviäinen, and Hannu Uusitalo. Full-size DOI: 10.7717/peerj-cs.456/fig-1
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developed to diagnose DR and its intensity rating as a problematic activity for its earlier
identification. Several strategies were implemented to diagnose the difficulty in its early
stages to address this challenge. Having the methods reliable, precise, and cost-effective is
incredibly critical.

The principal cause of mortality for people living with diabetes is cardiovascular disease
(CVD). While diabetes was previously considered a risk similar to CVD, the variability
of this risk is gradually being recognized, with recent guidance available explicitly targeting
diabetic patients providing risk evaluation (Ho et al., 2017). The inclusion of retinopathy
can mean a more negative cardiovascular risk profile for people with type 2 diabetes.
It is understood that diabetics with retinopathy are at risk to have associated cardiovascular
disease factors, such as obesity and dyslipidemia, relative to those without retinopathy,
which can all increase their risk of cardiovascular disease (Klein et al., 2002). Retinopathy is
related to an increased risk of CVD in people with diabetes (Cheung et al., 2013). In
addition to these qualitative measures of microvascular pathology, novel indices of
microvascular injury such as improvements in the retinal vascular caliber can currently be
assessed using computer-assisted systems from the same retinal photographs (Ikram et al.,
2013). Research also demonstrates that certain tests of microvascular disruption are
consistent with CVD not just in the common people (McGeechan et al., 2008), and in
cronies with diabetes. It indicates the retinal tests taken from retinal images, representing
systemic properties of microvascular disease.

Retinal fundus images were often used to detect retinal diseases. Diabetic retinopathy
disorders are observed by image processing algorithms. For the identification of hard
exudates, cotton dots, hemorrhage, and microaneurysm lesions that arise in the initial
stages of the disease, an algorithm focused on retinal image processing techniques and
a decision support system was built in Akyol, Bayir & Sen (2017). Park & Summons
(2018) implemented an effective method for automatically detecting MAs in a retinal
photograph. The approach is based on an automated wavelet transformation and the
decision tree (C4.5) algorithm, which distinguishes cases of DR and non-DR. In RGB
retinal images, this employs both red and green channel data to detect tiny MAs and
obtains the image parameters. Random Forest (RF) was used in Roychowdhury & Banerjee
(2018) to identify retina anomalies caused by Diabetic Retinopathy. A collection of
mathematical and geometric features has been derived from photographs in the archive

Figure 2 Five stages of diabetic retinopathy in fundus images: (A) without DR, (B) mild, (C)
moderate, (D) severe, (E) PDR. Image credit: DIARETDB1. © Tomi Kauppi, Valentina Kalesnykiene,
Joni-Kristian Kamarainen, Lasse Lensu, Iiris Sorri, Asta Raninen, Raija Voutilainen, Juhani Pietilä,
Heikki Kälviäinen, and Hannu Uusitalo. Full-size DOI: 10.7717/peerj-cs.456/fig-2
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that represent the various physical manifestations of the disorder. Machine learning
classification can aid a physician by providing an idea of the severity of the disease. The
work in Bhaskaranand et al. (2016) addressed an automatic DR screening method and
extended it to automatic microaneurysm (MA) turnover prediction, a possible DR risk
biomarker. The DR testing method systematically investigates color retinal fundus
photographs from a patient experience for the specific DR pathologies and gathers the
details from all the pictures corresponding to patient experience to produce a suggestion
for patient monitoring. The MA estimating method aligns retinal images from a
patient’s various experiences, locates MAs, and conducts MA dynamics examination to
determine recent, recurrent, and incomplete maps of lesions and predict MA turnover.

A method of identification for the five intensity stages of diabetic retinopathy has been
developed in Abbas et al. (2017) without taking preprocessing using features derived
from a semi-supervised deep-learning algorithm. The work in Gharaibeh et al. (2018)
suggested an efficient form of image analysis to diagnose diabetic retinopathy diseases
from photographs of the retinal fundus. The following procedures are used for diabetic
retinopathy diagnosis: pre-processing, optical disk identification and elimination,
segmentation, and elimination of the blood vessels, removal of the fovea, and isolation
of features, feature selection, and classification. In Gayathri et al. (2020), the author
focused on extracting Haralick and Anisotropic Dual-Tree Complex Wavelet Transform
features from retinal fundus images that can conduct accurate DR classification. This
characteristic is based on second-order data, and the positional characteristics in
photographs are accurately identified by wavelet transform features.

The work in Wang & Yang (2017) suggested a method of deep learning for the
identification of interpretable diabetic retinopathy. The interpretable visual function of the
proposed approach is accomplished by introducing the activation of the regression map
after the convolutional networks’ global averaging pooling layer. This model will find a
retina image's discriminative regions to display a particular area of concern in terms of
its intensity level. Gargeya & Leng (2017) built and tested a data-driven, deep learning
method as a novel diagnostic tool for DR detection. The algorithm evaluated and labeled
images from the color fundus as normal or having DR, identifying particular events of
patient comparison. The work in Dutta et al. (2018) suggested an automated information
model that classifies DR’s primary antecedents. This model was equipped with three forms
of neural network backpropagation, and Deep Convolutional Neural Network (CNN).

Any retinopathy diagnostics model must measure the weights that give the patient's eye
intensity level. The primary difficulty of this analysis is the exact judgment of thresholds
for each functional level. Weighted Fuzzy C-means algorithm was used to define target
level thresholds. The model should help determine the right degree of seriousness in
diabetic retinopathy photos. Orujov et al. (2020) adopted a fuzzy-based edge detection
method to segment blood vessels in retinal images, which can be adopted for retinopathy
detection. Karthiyayini & Shenbagavadivu (2020) adopted association rule mining for
disease diagnostics from retinal images.

The Deep Learning algorithms are effective in evaluating the properties of blood
pressure, fluid loss, exudates, hemorrhages, and micro-aneurysms as well as other

Ramasamy et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.456 4/21

http://dx.doi.org/10.7717/peerj-cs.456
https://peerj.com/computer-science/


structural features of biomedical images (Khan et al., 2020; Sahlol et al., 2020; Sahlol et al.,
2020). Feature fusion is an important technique employed for pattern recognition in
images. Feature fusion can be employed to fuse both manual (handcrafted) features and
features extracted from inner layers of deep neural networks (Woźniak & Połap, 2018; Afza
et al., 2021; Nisa et al., 2020). The advantages of feature fusion allow to achieve more
robust and accurate performance.

This paper aims at the detection of DR determined from retinal fundus images. The
contribution of this paper is as follows. At first, the ophthalmoscopic characteristics are
derived from the photographs of the retina, as well as extracting local binary sequence,
gray-level co-occurrence vector, run length, and adding certain morphological operations.

The novelty of our proposed method is the use of the SMO classification algorithm,
which has not been done before for DR recognition.

The remainder of this paper is structured as follows. The “Materials and methods”
section described the datasets used and the methodology applied. The “Results” section
evaluates the results of the proposed methods. The “Conclusion” section summarizes
the paper.

MATERIALS AND METHODS
This section explicitly details the processing of the diabetic retinopathy through the
fusion of features from gray level co-occurrence matrix (GLCM) and gray level run length
matrix (GLRLM) and Continuous Ridgelet Transform (CRT). Specific problems regarding
feature extraction approaches are examined, and the proposed scheme is refined.

Materials
The data image collection used for this analysis consists of photographs previously
identified as normal (without DR) images and abnormal (DR) images with different stages
like mild, moderate, and severe. Two openly accessible datasets such as DIARETDB1
(DIARETDB1, 2007) and KAGGLE (Kaggle Dataset, 2019) are collected. The DIARETDB1
contains 89 fundus color images (size of 1500 � 1152). According to the experts who
partake in the assessment, 84 images are assigned as DR, and the remaining 5 images are
normal. The fundus images were taken using the identical optical fundus camera with
different exposure settings for a similar 50-degree field of view. This collection of data is
referred to as "fundus images calibration stage 1."

The other retina data is extracted from Kaggle, which are retina scan images at APTOS
2019 Blindness Detection dataset. These images have a size of 224� 224 pixels so that they
can be conveniently used with several pre-trained neural network models. This dataset
contains 5 categories of colored fundus images: No DR, Mild, Moderate, Severe, and PDR.

Methods
This section explains the overall general workflow (shown in Fig. 3), and also explains the
features used for detecting DR. Premature clinical symptoms of diabetic retinopathy
consist of microaneurysms, hemorrhages of dots, spots of cotton wool, blots, and
intraretinal microvascular anomalies (IRMAs). Table 1 shows the clinical features of DR.

Ramasamy et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.456 5/21

http://dx.doi.org/10.7717/peerj-cs.456
https://peerj.com/computer-science/


Microaneurysms and dot hemorrhages occur on the fundus as small lesions that
characterize the ballooning of capillaries in which the vessel wall is weakened by the lack of
pericyte protection and/or glial attachment. Hemorrhages and fluid release from
microaneurysms contribute to intermittent edema which may leave heavy deposits of
lipoproteins (“exudates”) in the retinal neuropile before reabsorbed (Lechner, O’Leary &
Stitt, 2017).

Grey level co-occurrence matrix (GLCM)
The GLCM defines the texture relationship between pixels by executing an action in the
images based on the second-order statistics. For this operation, normally two pixels are
used. The GLCM calculates the frequency defined by the variations of these pixel intensity
values, which reflects the pixel-pair occurrence creation (Sastry et al., 2012). The GLCM
features are described as a matrix having the same number of rows and columns as the grey
features in the image. Based on their location, all pixel pairs can differ. Such matrix

Figure 3 Overview of the proposed methodology workflow.
Full-size DOI: 10.7717/peerj-cs.456/fig-3

Table 1 Ophthalmoscopic features for retina disease symptoms.

Retina disease symptoms Ophthalmoscopic features

No retinopathy
Mild
Moderate
Severe
Proliferative diabetic retinopathy

-
Microaneurysms
Retinal hemorrhage, Hard exudates
Hemorrhage, venous beading, intraretinal microvascular anomalies
Neovascularization, vitreous hemorrhage
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components include the mathematical probability values of second-order, based on the
rows and columns gray color. The transient matrix is very big if the intensity values are
large (Mohanaiah, Sathyanarayana & GuruKumar, 2013). The GLCM size depends on the
values of gray level retained by an image.

Assign Img be an image withN gray levels, anN-by-N dimensional matrix would be the
GLCM for the image. At position ði; jÞ, this GLCM tracks the number of times two levels
of intensity i and j co-occur at orientation h in the image Img at distance d. The GLCM
of an image Img with rows, columns and offset ðx; yÞ, can be characterized as

GLCMx;y i;jð Þ ¼
Xrow
a¼1

Xcol
b¼1

1; if Img a; bð Þ¼ i and Img aþ x; bþ yð Þ¼ j
0; otherwise

; (1)

GLCM is expected to keep the probability of co-occurrence of any two intensities, rather
than the count. And the GLCM values are translated to show probabilities. To that effect,
to determine estimates, the number of times a given mixture of intensities occurs is
determined by the overall number of potential results. A GLCM is converted into
approximate probabilities as follows:

P i; jð Þ ¼ coInteni;jPgr
i¼1

Pgr
j¼1 coInteni;j

(2)

here i and j is the row and column, coInteni;j represents the count of co-occurrences of
intensity values i and j, and gr is the total number of intensity values (Do-Hong, Le-Tien &
Bui-Thu, 2010).

The GLCM features used in this work are: autocorrelation, correlation, cluster shade,
cluster prominence, contrast, difference entropy, dissimilarity, difference variance, energy,
entropy, homogeneity, information measure of correlation, maximum probability,
inverse difference, sum of average, sum of entropy, sum of squares variance, and sum of
variance.

Gray level run length matrix (GLRLM)
GLRLM is a model representing texture that finds out the spatial plane characteristics of
each pixel using high-order statistics. In GLRLM, statistics involved are the number of
gray level value pairs and their length of runs in a region of interest (ROI). A gray level run
is a group of pixels with the same value of the gray level, spread in the ROI in consecutive
and collinear directions. The number of pixels is the length of gray level run in that
particular set. Therefore, such a set is defined by a gray level value and the length of a gray
level running mutually. GLRLM is a type of two-dimensional histogram in the structure of
a matrix that records all the different combinations of gray level values and gray level.

The gray level values and runs are conventionally indicated as row and column
keys, respectively, of the matrix, thus the ði; jÞ-th matrix value determines the count
of combinations whose gray level value is i and whose run length is j. Four major
directions are typically known, i.e., horizontal (0°), vertical (90°), diagonal (135°), and anti-
diagonal (45°).
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Suppose Pij is the ði; jÞ-th GLRLM point. Additionally, Nr is used to indicate the set of
dissimilar run lengths that currently exist in the ROI, and Ng is used to indicate the set of
different gray shades. Then at last N be the cumulative number of pixels in the ROI.

N ¼
X
i2Ng

X
j2Nr

jPi;j (3)

Table 2 shows the formulas for the GLRLM features, where:

Nve ¼
X
i2Ng

X
j2Nr

Pij (4)

Continuous ridgelet transform (CRT)
The idea of the latter is to display linear features image to point using Radon transform and
the subsequent use of wavelet transformations. The result of this operation is an effective
representation of two-dimensional functions with piecewise smooth areas separated by
linear plots. The main difference between ridge functions and wavelet functions are that
ridgelets are two-dimensional inseparable functions and determine not only the
parameters of scale and shift but also their orientation in space (Candès, 1999). The CRT of
function f ðxÞ is defined as

Table 2 Summary of gray-level run length matrix (GLRLM) features.

GLRLM features Formula

Short Run Emphasis (SRE) P
i2Ng

P
j2Nr

Pij
j2 =Nve

Long Run Emphasis (LRE)
P
i2Ng

P
j2Nr

j2Pij=Nve

Gray Level Non-uniformity (GLN) P
i2Ng

P
j2Nr

Pij

 !2

=Nve

Run Length Non-uniformity (RLN) P
j2Nr

P
i2Ng

Pij

 !2

=Nve

Run Percentage (RP)
P
i2Ng

P
j2Nr

Pij=N

Low Gray Level Run Emphasis (LGRE) P
i2Ng

P
j2Nr

Pij
i2 =Nve

High Gray Level Run Emphasis (HGRE)
P
i2Ng

P
j2Nr

i2Pij=Nve

Short Run Low Gray Level Emphasis (SRLGE) P
i2Ng

P
j2Nr

Pij
i2j2=Nve

Short Run High Gray Level Emphasis (SRHGE) P
i2Ng

P
j2Nr

i2Pij
j2 =Nve

Long Run Low Gray Level Emphasis (LRLGE) P
i2Ng

P
j2Nr

j2Pij
i2 =Nve

Short Run High Gray Level Emphasis (LRHGE)
P
i2Ng

P
j2Nr

i2j2Pij=Nve
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Rða; b; hÞ ¼
Z

wa;b;hðxÞf ðxÞdx (5)

where wa;b;h are the ridgelets defined by

wa;b;hðxÞ ¼ a�1=2wððx1 cos hþ x2 sin h� bÞ=aÞ (6)

here, w �ð Þ is the smoothly decaying function.
In images, CRT can be calculated via Radon transform (RT). RT of a two-dimensional

object f is the set of line integrals indexed by ðh;etÞ 2 ½0; e2pÞ given by

Rf ðh; tÞ ¼
Z

f ðx1; x2Þdðx1 cos hþ x2 sin h� tÞdx1dx2 (7)

where d is the Dirac distribution. Then CRT applies a 1-D wavelet transform to the
projections of the RT as follows:

Rða; b; hÞ ¼
Z

Rf ðh; tÞa�1=2wðt � b=aÞdt (8)

The Ridglet transform scheme is shown in Fig. 4. The main stages of its implementation
are as follows:

1. Calculation of direct two-dimensional transformation Fourier (FFT2D).

2. The application of forward Fourier transform from the rectangular grid of coordinates
to the polar grid using the interpolation operation coefficients of the Fourier transform.

3. The use of the inverse one-dimensional transform Fourier (IFFT1D) to each line of the
obtained polar Noah grid. The result of this operation is the Radon transform
coefficients.

4. Application to the plane of the Radon transform of the one-dimensional wavelet
transform (WT1D) along with a variable that determines the angle of the line produces
the ridgelet coefficients.

Diabetic retinopathy detection
This section explains the proposed methodology for diabetic retinopathy detection.
Figure 5 shows the proposed diabetic retinopathy detection.

Preprocessing is the initial step of the image processing techniques. It is used to enhance
the image quality which gives clear visualization. The preprocessing consists of image
conversion, filtering, morphological operation, and segmentation. The retina images
provided by ophthalmologists in the public repositories are shown in color format. The
retina image is divided into the following channels in the image conversion step: Red,
Green, and Blue (Fig. 6). The green channel image is taken for the next process due to the
high contrast.
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Figure 5 Diabetic retinopathy detection architecture. Image credit: DIARETDB1. © Tomi Kauppi,
Valentina Kalesnykiene, Joni-Kristian Kamarainen, Lasse Lensu, Iiris Sorri, Asta Raninen, Raija Vouti-
lainen, Juhani Pietilä, Heikki Kälviäinen, and Hannu Uusitalo.

Full-size DOI: 10.7717/peerj-cs.456/fig-5

Figure 4 A schematic representation of Continuous Ridgelet transform.
Full-size DOI: 10.7717/peerj-cs.456/fig-4
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Image filtering is used to denoising the image. It is the method of eliminating noise from the
retina images. Laplacian filter is used for image denoising. The Laplacian of an image
shows regions with an accelerated change in intensity and is an example of a second-order or
second type of enhancement derivatives. The discovery of the fine details of an image is
especially good. A Laplacian operator can improve any function that has a sharp discontinuity.
The Laplacian Lðx; eyÞ of an image with pixel intensity Iðx;eyÞ is defined as follows:

L x; yð Þ ¼ @2I
@x2

þ @2I
@y2

(9)

Morphological processing of images is a range of non-linear operations associated with
the structure or morphology of features in an image. This technique investigates an image
called a structuring feature with a specific outline or blueprint. The structuring factor is
located in the picture at all possible positions and is contrasted with the respective pixel
neighborhood (Indumathi & Sathananthavathi, 2019). A morphological closure procedure
is performed to clear the main blood vessels. Next, we perform binarization and noise
reduction by setting a threshold to remove the isolated pixels. The morphological top and
bottom hat transform are applied for basic segmentation. The top-hat transform can be
used to improve contrast with non-uniform illumination in a grayscale setting. The
transform will distinguish tiny light objects in an image, too. The transformation of the
bottom hat can be used to locate size pits in a grayscale image. Binarization is used to
identify blood vessels and regions of the candidate (1), and other background regions (0).
By eliminating the isolated pixels with a neighborhood associated value below 25, the noise
components that appear identical to MAs can be effectively eliminated from the binarized
image. Figures 7 and 8 show the preprocessing result of normal and DR images.

Feature extraction
Texture in feature extraction is the key characteristic of an image. Numerous methods for
texture analysis are introduced in various fields of study. We use a fusion of textural GLCM
and GLRLM features and Ridgelet Transform features.

Figure 6 Red, green and blue (RGB) color channels of a fundus image: (A) input image, (B) red
channel, (C) green channel, (D) blue channel. Image credit: DIARETDB1. © Tomi Kauppi, Valen-
tina Kalesnykiene, Joni-Kristian Kamarainen, Lasse Lensu, Iiris Sorri, Asta Raninen, Raija Voutilainen,
Juhani Pietilä, Heikki Kälviäinen, and Hannu Uusitalo. Full-size DOI: 10.7717/peerj-cs.456/fig-6
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Image classification
This is the last stage of the recognition process in diabetic retinopathy disease. After
extraction of features, the retina fundus image is classified as normal, or DR. SMO
(Sequential Minimal Optimization) is a straightforward algorithm that uses only two
Lagrange multipliers at each iteration to move the chunking process to the nearest possible
expression. It determines the optimal value for these multipliers and updates the SVM
until it fixes the whole QP problem. The benefit of SMO is that the optimization sub-
problem can be solved analytically with two Lagrange multipliers.

Detection of the diagnostic induced disease has its limits. When a device is prepared for
a classification task, the issues are different. It would be able to work automatically by
providing the system with proper classification instructions, which will have better
classification performance. This study uses the SMO algorithm for classifying the DR.

EXPERIMENTAL RESULTS
Performance measures
The performance analysis of the proposed system is explained in this section. The DR
detection is implemented using MATLAB 2019b (MathWorks Inc., MA, USA). This work
is evaluated based on Sensitivity, Specificity, Accuracy and F-score computed as follows:

Sensitivity ðSEÞ¼ TP
TPþ FN

�100%

Figure 7 Preprocessed result of normal retina image: (A) input image, (B) green channel,
(C) histogram enhanced, (D) filtered image, (E) after bottom hat transform, (F) after top hat
transform, (G) blood vessels segmented, (H) contours enhanced. Image credit: DIARETDB1.
© Tomi Kauppi, Valentina Kalesnykiene, Joni-Kristian Kamarainen, Lasse Lensu, Iiris Sorri, Asta
Raninen, Raija Voutilainen, Juhani Pietilä, Heikki Kälviäinen, and Hannu Uusitalo.

Full-size DOI: 10.7717/peerj-cs.456/fig-7

Ramasamy et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.456 12/21

http://dx.doi.org/10.7717/peerj-cs.456/fig-7
http://dx.doi.org/10.7717/peerj-cs.456
https://peerj.com/computer-science/


Specificity ðSPÞ¼ TN
TNþ FP

�100% (10)

AccuracyðACCÞ ¼ TPþ TN
N

�100%

F� scoreðFÞ ¼ 2TP
2TPþ FPþ FN

Here TP is a count of true positive class (normal retina), TN is the count of true negative
class (DR). FP is the count of false-positive (normal retina predicted as DR). FN is the
count of false-negative class (DR is predicted as the normal retina).

RESULTS AND COMPARISON
The feature extraction time of the two data set is shown in Tab. 3, while the DR recognition
results are shown in Tab. 4. The feature extraction time from the DIARETDB1 and
KAGGLE databased is about 2–2.5 min., which make the proposed method usable for real-
time clinical applications. The proposed method has achieved an accuracy of 97.05%,
sensitivity of 98.87%, and specificity 95.24% on the DIARETDB1 dataset. On the KAGGLE
dataset, the proposed method achieved an accuracy of 91.0%, sensitivity of 90.9%, and
specificity of 91.0%. The results for both datasets are summarized as classification
confusion matrices in Fig. 9.

Figure 8 Preprocessed result of diabetic retinopathy image: (A) input image, (B) green channel, (C)
histogram enhanced, (D) filtered image, (E) after bottom hat transform, (F) after top hat transform,
(G) blood vessels segmented, (H) contours enhanced. Image credit: DIARETDB1. © Tomi Kauppi,
Valentina Kalesnykiene, Joni-Kristian Kamarainen, Lasse Lensu, Iiris Sorri, Asta Raninen, Raija Vouti-
lainen, Juhani Pietilä, Heikki Kälviäinen, and Hannu Uusitalo.

Full-size DOI: 10.7717/peerj-cs.456/fig-8
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We compare our results with the results of other authors, which used a wide variety of
techniques from handicraft feature extraction and heuristic optimization methods to
deep learning networks, achieved on the same datasets. The comparison is presented in
Tabs. 5 and 6. Other authors have employed a wide variety of machine learning, deep
learning and heuristic optimization techniques.

On the DIARETDB1 dataset, (Das, Dandapat & Bora, 2019) used contrast sensitivity
index (CSI), Shannon entropy, multi-resolution (MR) inter-band eigen features and
intra-band energy. (Long et al., 2019) used Fuzzy C-means clustering (FCM) and SVM
classifier. (Mateen et al., 2020) employed feature fusion from Inception-v3, ResNet-50,
and VGGNet-19 deep convolutional models. (Pruthi, Khanna & Arora, 2020) used a
nature-inspired Glowworm Swarm Optimization algorithm. (Sharif et al., 2020)
adopted Histogram orientation gradient (HOG) and local binary pattern (LBP) feature
fusion combined with Decision Tree (DT) classifier. (Zago et al., 2020) used a custom
fully patch-based CNN. Chetoui and (Chetoui & Akhloufi, 2020) used an extended
Inception-Resnet-v2 network fine-tuned by cosine annealing strategy. Alaguselvi and

Table 3 Feature extraction time for DIARETDB1 and KAGGLE datasets.

Dataset Feature extraction time (s)

DIARETDB1 131.56

KAGGLE 159.19

Table 4 Performance evaluation metrics for DIARETDB1 and KAGGLE datasets.

Dataset SE (%) SP (%) ACC (%) F-score

DIARETDB1 98.87 95.24 97.05 0.969

KAGGLE 90.9 91.0 91.0 0.909

Figure 9 Confusion matrices for diabetic retinopathy recognition: (A) DIARETDB1 dataset, (B)
KAGGLE datasets. Full-size DOI: 10.7717/peerj-cs.456/fig-9
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(Alaguselvi & Murugan, 2020) used morphological operation, matched filter, Principal
Component Analysis (PCA), edge finding by ISODATA, and convex hull transform. On
the KAGGLE dataset, (Bodapati et al., 2020) used ConvNet features and Deep Neural
Network (DNN) for classification. (Li et al., 2019) employed DCNN as feature extractors
and SVM for classification. (Mateen et al., 2019) used pretrained CNN model (Inception-
v3, Residual Network-50, and Visual Geometry Group Network-19) feature fusion
followed by the softmax classifier. (Nazir et al., 2019) used tetragonal local octal patterns
and Extreme Learning Machine (ELM). (Qummar et al., 2019) used an ensemble of
Resnet50, Inceptionv3, Xception, Dense121, and Dense169 deep network models. (Sudha &
Ganeshbabu, 2021) adopted the VGG-19 model combined with structure tensor for
enhancing local patterns of edge elements and active contours approximation for lesion
segmentation. (Vaishnavi, Ravi & Anbarasi, 2020) used Contrast-limited adaptive histogram

Table 6 Comparison of performance evaluation results for KAGGLE dataset.

Reference Method SE
(%)

SP
(%)

ACC
(%)

(Bodapati et al., 2020) ConvNet features & deep neural network (DNN) – – 80.96

(Li et al., 2019) DCNN features + SVM – – 86.1

(Mateen et al., 2019) VGG-19 features, singular value decomposition (SVD) – – 98.34

(Nazir et al., 2019) Tetragonal local octal patterns & extreme learning machine (ELM) – – 99.6

(Qummar et al., 2019) Ensemble of Resnet50, Inceptionv3, Xception, Dense121, Dense169 models – 95 80.8

(Sudha & Ganeshbabu, 2021) VGG-19 model, structure tensor and active contour approximation 98.83 96.76 98.28

(Vaishnavi, Ravi & Anbarasi,
2020)

Contrast-limited adaptive histogram equalization (CLAHE) model and AlexNet architecture
with SoftMax layer

92.00 97.86 95.86

(Math & Fatima, 2020) Custom CNN model with fine-tuning 96.37 96.37 –

Proposed A fusion of texture and ridgelet features & SMO 90.9 91.0 91.0

Table 5 Comparison of performance evaluation results for DIARETDB1 dataset.

Reference Method SE
(%)

SP
(%)

ACC
(%)

(Das, Dandapat &
Bora, 2019)

Contrast sensitivity index (CSI), Shannon entropy, multi-resolution (MR) inter-band eigen features
and intra-band energy

– – 85.22

(Long et al., 2019) Fuzzy C-means clustering (FCM) & support vector machine (SVM) 97.5 97.8 97.7

(Mateen et al., 2020) Feature fusion from Inception-v3, ResNet-50, and VGGNet-19 models – – 98.91

(Pruthi, Khanna &
Arora, 2020)

Glowworm Swarm optimization – – 96.56

(Sharif et al., 2020) Histogram orientation gradient (HOG) and local binary pattern (LBP) feature fusion & decision tree
(DT)

98.1 91.8 96.6

(Zago et al., 2020) Custom convolutional neural network (CNN) 90 87 –

(Chetoui & Akhloufi,
2020)

Extended Inception-Resnet-v2 network fine-tuned by cosine annealing strategy 98.8 90.1 97.1

(Alaguselvi &Murugan,
2020)

Morphological operation, matched filter, principal component analysis (PCA), edge detection by
ISODATA, and convex hull transform

99.03 98.37 98.68

Proposed A fusion of texture and ridgelet features & SMO 98.87 95.24 97.05
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equalization (CLAHE) model and AlexNet network architecture with SoftMax layer for
classification. (Math & Fatima, 2020) used a custom CNN architecture with fine-tuning.

Our results demonstrate the competitiveness of our method with the state-of-the-art.
On the DIARETDB1 dataset, our method achieved very good sensitivity, while considering
the accuracy, only the methods of (Long et al., 2019), and (Alaguselvi & Murugan, 2020)
have achieved marginally higher accuracy. However, for disease diagnostics, sensitivity is
more important than accuracy (Loong, 2003). For the KAGGLE dataset, our method has
performed slightly worse, but still achieved an accuracy over 90%, which is in line with
other state-of-the-art DR recognition methods.

DISCUSSION
The proposed method for the detection of diabetic retinopathy using the Ridgelet
Transform and the Sequential Minimal Optimization (SMO) presents an alternative to
recent works based on convolutional networks and deep learning. The achieved results are
competitive with the state-of-the-art results while the common pitfalls of deep learning
methods such as the need for very large datasets for training deep network models as well
as the underfitting and overfitting problems are avoided. Moreover, the results provided by
artificial intelligence methods are not explainable. As a result, any black box diagnostics
systems are not accepted by a professional ophthalmologist in the real world, regardless of
their fine results.

The method presented in this article adopts a traditional approach. However, our
approach is different from other works based on feature creation and classification. The
proposed method also has some limitations as using all textural and Ridgelet features may
include irrelevant features for the task of DR recognition, which can incur larger
computation time, and sometimes even reduce the recognition accuracy. These limitations
could be overcome by further fine-tuning the parameters of SMO technique.

CONCLUSION
The integration of the extracted features using texture analysis methods (GLCM and
GLRLM) and Ridgelet Transform features suggests an automated approach for classifying
Diabetic Retinopathy (DR). The extracted features using the suggested approach are used
for the process of classification using the SMO classifier to identify DR. The results show
that the proposed method is competitive with other state-of-the-art methods on the
DIARETDB1 and KAGGLE datasets (we achieved 98.87% sensitivity, 95.24% specificity,
97.05% accuracy on DIARETDB1 dataset, and 90.9% sensitivity, 91.0% specificity, 91.0%
accuracy on KAGGLE dataset). The obtained results show that image processing
techniques combined with optimization methods can still be competitive to convolutional
network and deep learning based approaches.
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