
AresB-Net: accurate residual binarized
neural networks using shortcut
concatenation and shuffled grouped
convolution
HyunJin Kim

School of Electronics and Electrical Engineering, Dankook University, Yongin, South Korea

ABSTRACT
This article proposes a novel network model to achieve better accurate residual
binarized convolutional neural networks (CNNs), denoted as AresB-Net. Even
though residual CNNs enhance the classification accuracy of binarized neural
networks with increasing feature resolution, the degraded classification accuracy is
still the primary concern compared with real-valued residual CNNs. AresB-Net
consists of novel basic blocks to amortize the severe error from the binarization,
suggesting a well-balanced pyramid structure without downsampling convolution.
In each basic block, the shortcut is added to the convolution output and then
concatenated, and then the expanded channels are shuffled for the next grouped
convolution. In the downsampling when stride >1, our model adopts only the
max-pooling layer for generating low-cost shortcut. This structure facilitates the
feature reuse from the previous layers, thus alleviating the error from the binarized
convolution and increasing the classification accuracy with reduced computational
costs and small weight storage requirements. Despite low hardware costs from the
binarized computations, the proposed model achieves remarkable classification
accuracies on the CIFAR and ImageNet datasets.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning
Keywords Binarized neural network, Convolutional neural network, Image classification,
Residual neural network

INTRODUCTION
Neural networks have achieved significant performance enhancements in many fields,
including computer vision, speech recognition, and natural language processing, etc.
Notably, convolutional neural networks (CNNs) have shown many outstanding
performances in the field of computer vision. Even though it is possible to implement
simple CNNs such as LeNet-5 (LeCun et al., 1998) on embedded devices, more
sophisticated CNNs require high computational costs and large weight storage
requirements, which prevent them from being adopted in lightweight cost-efficient
systems. Various studies try to reduce memory requirements and power consumption at
the expense of the appropriate performance degradation. The network quantization
sacrifices the precision of model parameters and approximates the operations in neural
networks to achieve small memory requirements and power consumption (Wu et al., 2016;
Zhou et al., 2017).

How to cite this article Kim H. 2021. AresB-Net: accurate residual binarized neural networks using shortcut concatenation and shuffled
grouped convolution. PeerJ Comput. Sci. 7:e454 DOI 10.7717/peerj-cs.454

Submitted 25 November 2020
Accepted 2 March 2021
Published 26 March 2021

Corresponding author
HyunJin Kim,
hyunjin2.kim@gmail.com

Academic editor
Hyun Myung

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj-cs.454

Copyright
2021 Kim

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.454
mailto:hyunjin2.�kim@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.454
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Notably, early approaches for the binarized neural network (BNN) models in
Courbariaux, Bengio & David (2015), Courbariaux et al. (2016) and Rastegari et al.
(2016) quantize weights or activations into {+1, −1}, which replaces floating-point
multiplications with binary bitwise operations, thus approximating the floating-point
multiply-accumulate operation using bitwise XNOR and bit counting operations. Besides,
the quantized binary weights can reduce weight storage requirements, which makes
BNNs a highly appealing method for implementing CNNs on embedded systems and
programmable devices (Guo, 2018; Zhou, Redkar & Huang, 2017; Yi, Xiao & Yongjie, 2018;
Liang et al., 2018). Despite many benefits above, the low precision of the binarized
operations in BNNs degrades the classification ability on modern CNNs, thus limiting
their applications. Improved BNN structures have been developed for reducing the gap of
the classification accuracy degraded over real-valued CNNs (Lin, Zhao & Pan, 2017;
Liang et al., 2018; Liu et al., 2018; He et al., 2018; Zhuang et al., 2019; Shen et al., 2019;
Chakraborty et al., 2019; Bethge et al., 2019; Phan et al., 2020; Bethge et al., 2020; Liu et al.,
2020). Besides, new training methods and optimizing tricks for BNNs have been
researched for obtaining better classification accuracy (Alizadeh et al., 2018; Bulat &
Tzimiropoulos, 2019; Zhu, Dong & Su, 2019; Wang et al., 2019; Hubara et al., 2017;
Ghasemzadeh, Samragh & Koushanfar, 2018; Gu et al., 2019; Helwegen et al., 2019; Ding
et al., 2019; Martinez et al., 2020). However, there are still significant accuracy drops
compared with the baseline floating-point models. The insufficient feature resolution from
the binarized convolution layer can be compensated using real-valued shortcuts in Liu
et al. (2018), thus making a noticeable advance in increasing the classification accuracy.
However, it is concerned that the stacking structure of residual convolution layers
accumulates errors from each binarized layer, which can limit the performance of
residual CNNs. The feature reuse of BNNs in Bethge et al. (2019, 2020) concatenates
shortcuts to expand output channel, making features from the shortcut pass to the
next block. These existing methods in Liu et al. (2018) and Bethge et al. (2019) adopt point-
wise convolutions in the channel expansion, which can increase computational costs in
BNNs.

Our approach combines the advantages of the feature resolution enhancement
and feature reuse schemes, eliminating the convolutions in the channel expansion.
The proposed network model called AresB-Net is developed to consider these motivations.
The basic block connects the real-valued shortcut per each binarized convolution layer by
adding the shortcut and concatenating it to output channels. Two different kinds of
shortcuts are mixed for expanding channels. In the downsampling, only the max-
pooling layer is used for obtaining the shortcut. Then, the doubled expanded channels are
shuffled and split for the grouped convolution, so that computational costs are reduced
without downsampling 1 × 1 convolution compared with baseline BNNs. The ratio of
unfiltered features is naturally maintained in the shuffled channels. Similar to the baseline
residual CNNs of He et al. (2016), the proposed basic block are easily stacked to create the
pyramid structure of CNNs. In experiments, with well-known data augmentation and
regularization techniques, this novel BNN structure provides 91.90% and 73.01% Top-1
accuracies with the 18-layered models on the CIFAR-10 and CIFAR-100 datasets

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 2/17

http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

(Krizhevsky, Nair & Hinton, 2014) and 78.15% Top-5 accuracies on the ImageNet dataset
(Russakovsky et al., 2015).

In the following, we introduce several related works and explain our motivation for the
proposed structure. Then, the details of the proposed BNN structure are described. Finally,
experimental results show the classification accuracy and computational cost analysis.

RELATED WORK
Residual CNNs
Between stacked layers in a network model, the skip connection called shortcut can jump
over one or several non-linear activations, so it is summed to the other layer output.
Thus, the shortcut contains unfiltered features from previous layers, which enable the
residual networks to achieve fast training speed with the reduced impact of vanishing
gradients and obtain the benefits from ensemble effects (Veit, Wilber & Belongie, 2016).
In general, there are two different shortcut summing schemes in residual CNNs; (1) adding
the shortcut to each channel without changing the number of output channels (He et al.,
2016): (2) concatenating the shortcut for expanding channels (Huang et al., 2017;
Zhang et al., 2018). Whereas adding the shortcut to the layer output can dilute the
unfiltered features, the channel expansion requires computational costs in the point-wise
convolution between channels. In our study, it is motivated that both features from the two
summing schemes above can be mixed in each block, thus expanding channels without
increasing computational costs.

Several network models using the grouped convolution adopt the residual structure
for summing the shortcut to their basic block. Especially, the shortcut is summed to
the shuffled channels for the grouped convolutions in Zhang et al. (2018). Besides,
MobileNetv2 (Sandler et al., 2018) introduces the inverse residual structure containing
depth-wise convolutions. The works in Zhang et al. (2018) and Sandler et al. (2018) prove
that summing the shortcut to the grouped convolution output obtains considerable
classification accuracy with decreased computational costs. In our proposed block, whereas
the grouped convolution reduces the computational costs for expanded input channels,
the difference from Zhang et al. (2018) and Sandler et al. (2018) is that the features shuffled
from two different residual shortcuts are used in each group.

Binarized CNNs
As the complexity of neural networks increases, large memory requirements and high
computational costs are significant burdens when applying CNNs on edge computing
devices. Notably, increasing multiplications require high power consumptions that
embedded devices cannot accept. BNNs quantize weights (Courbariaux, Bengio & David,
2015) or both weights and activations (Hubara et al., 2016, 2017; Rastegari et al., 2016)
of neural networks into {−1, + 1}. The analysis of the inference step in Rastegari et al.
(2016) shows ≈ 32 × memory saving and ≈ 58 × computation speedup, thus making BNNs
an appealing neural network scheme in embedded systems. However, when applied
directly to the baseline real-valued neural network model, errors from the binarization
degrade the classification accuracy. In Courbariaux, Bengio & David (2015), the training

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 3/17

http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

scheme for BNNs is introduced. In XNOR-Net (Rastegari et al., 2016), the binarized
network structure and convolution with the deterministic scaling factor make significant
classification improvements, which are verified empirically in the residual CNN of
He et al. (2016). Beyond these early works of BNNs, new basic blocks that utilize residual
networks have been developed. Especially, in Liu et al. (2018), each basic residual block has
the real-valued shortcut for skipping only one non-linear activation, which has been
adopted in other BNNs. The grouped convolutions are applied for adopting the binarized
depth-wise separable convolution in He et al. (2018) and Phan et al. (2020). In Bethge et al.
(2019, 2020), shortcut is concatenated to expand channels in dense neural networks.

From these previous works, we conclude that the residual binarized basic blocks have
layered structures different from the real-valued baselines. Our BNN is based on the
shuffled grouped convolution and combines different shortcuts in the residual binarized
blocks, which are discriminated from other residual BNNs. In Bulat & Tzimiropoulos
(2019) and Liu et al. (2020), trainable parameters are used in the activation and scaling.
In Alizadeh et al. (2018), Zhu, Dong & Su (2019), Wang et al. (2019), Hubara et al.
(2017), Ghasemzadeh, Samragh & Koushanfar (2018), Gu et al. (2019); Helwegen et al.
(2019), Ding et al. (2019) and Martinez et al. (2020), the training and optimization
techniques for BNNs have been studied. Even though trainable parameters and optimizing
techniques can be useful in increasing classification accuracy, our method does not
consider any other specific trainable parameters and training techniques.

ARESB-NET: ACCURATE RESIDUAL BINARIZED NEURAL
NETWORK MODEL
The proposed AresB-Net model contains novel basic blocks using residual shortcuts,
expanding channels by adding and concatenating shortcuts. This basic blocks can be
stacked using a pyramid structure. Most CNN structures reduce the width and height of
feature maps and increase the number of channels when they encounter a layer with
downsampling (stride > 1). Because the baseline residual networks (He et al., 2016) and
XNOR ResNet (Rastegari et al., 2016) simply adopt stride = 2 and double channels in
the downsampling, the AresB-Net also follows this pyramidal method using a factor
of 2. In this downsampling, whereas the width and height of features are reduced in half,
the number of channels are doubled. Therefore, the amount of computation on each layer
is kept similar.

This section explains the basic block for this pyramid structure and its binarization of
features and weights. Then, the model structure stacking the basic blocks is described.
Finally, we summarize the training method for the proposed AresB-Net.

Proposed basic block
Figure 1 shows the proposed basic block. Two kinds of shortcut summing for expanding
channels are illustrated: (1) adding the shortcut from the first batch normalization
(BN) to the output of the second BN layer; (2) concatenating the shortcut from the
first BN layer to the output channels. The BinConv3×3 layer stands for the binarized
convolution layer with 3 × 3 sized filter. This concatenated shortcut does not go through

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 4/17

http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

the BinConv3×3 layer, expanding the output channels without additional computational
costs. When stride = 2, the number of output channels from the BinConv3×3 layer is
doubled, and 3 × 3 max-pooling layer is used to make the shortcut. Therefore, the number
of output channels from the first subblock is doubled.

Before forwarding input features into each BinConv3×3 layer, the input channels are
shuffled and then split for the grouped convolution. This basic block uses the shuffle layer
described in Zhang et al. (2018). The input channels contain the features generated
from different types of shortcuts. This shuffling can mix the features from the channels
and divide them into two groups (denoted as g = 2). In this shuffling, the information
crossing input channels is mixed in the next grouped convolution, which is helpful for
removing real-valued 1 × 1 convolution like Zhang et al. (2018). This scheme manages
the ratio of the reused unfiltered features from the previous layers. As the input
features produced from a subblock go though other subblocks, the ratio of unfiltered
features from the subblock decreases. When half of the features produced from a
subblock are concatenated to the output channels of the next subblock, the features are
not unfiltered in the next subblock. We denote the number of features from a subblock
by num(I). In the output channels of the next subblock, numðIÞ

2 features are unfiltered.
As the features go through k subblocks, numðIÞ

2k features are also unfiltered.
The structure with the BN layer before the binary activation follows the baseline work

in He et al. (2016) and Rastegari et al. (2016), where learnable shifting and biasing
parameters γ and β for each channel transform values for determining which value is
binarized into −1 or +1 in the binarized activation. Compared with ResNet (He et al., 2016)

Figure 1 Proposed basic blocks: (A) basic block for stride = 1; (B) basic block for stride = 2.
Full-size DOI: 10.7717/peerj-cs.454/fig-1

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 5/17

http://dx.doi.org/10.7717/peerj-cs.454/fig-1
http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

and XNOR ResNet (Rastegari et al., 2016) models, the proposed model contains doubled
shifting and biasing parameters, which could give more optimizable points in training.

Each BinConv3×3 layer consists of the deterministic binarized activation and
convolution. Let us assume that term I 2 Rc�win�hin denotes the input tensor of a basic
block, where c, win, and hin mean the number of input channels, and the width and height
of a feature map, respectively.

In the first subblock, the deterministic binarized activation sign(I) rounds I
into {−1, +1}c × win × hin. When the weight filter for each input channel has the width of
w and height of h, the real-valued weight filter for an output channel is denoted
asW 2 Rn¼ 1

2 c� w� h, where w ≤ win and h ≤ hin. In the BinConv3×3 layer, w = 3 and h
= 3, respectively. Because the BinConv3×3 layer performs the grouped convolution (g = 2),
1
2 c input channels are adopted in each group.

Depending on the stride, the numbers of output channels from the first subblock are
different. As shown in Fig. 1, whereas the first BinConv3×3 layer of stride = 1 has 1

2 c output
channels, that of stride = 2 has c output channels. When stride = 1, c input channels for
the second subblock are produced by concatenating the shortcut from 1

2 c shuffled input
channels. On the other hand, for stride = 2, 2c input channels are produced for the second
subblock, where c channels from the max-pooling layer are concatenated to produce 2c
channels. By applying stride = 2, the width and height of the feature from the subblock
are win

2 and hin
2 , respectively. In the second subblock, the numbers of input and output

channels are the same. Therefore, the output tensor sizes of stride = 1 and stride = 2 are
c × win × hin and 2c� win

2 � hin
2 , respectively.

In a group of the BinConv3×3 layer, when the numbers of input and output channels
are the same as c

2, the number of parameters for the group convolution can be 1
4 c

2 � w� h.
The total number of parameters for two groups can be 1

2 c
2 � w� h. When the number

of output channels in a group is doubled as c in the first subblock for stride = 2, the
total number of parameters for two groups can be c2 × w × h. Table 1 summarizes the
number of parameters used in weight filters denoted as weight size and output tensor sizes
in basic blocks.

Binarization
When binarizingW with sign(W), only the binary weight B 2 f�1;þ1gn¼ 1

2 c� w� h for
each input channel is used in the inference. In the binarized activation and weights,
function sign(x) is defined as:

x 2 fI;Wg; signðxÞ ¼ þ1 if x � 0
�1 else

�
(1)

Thus, the binarized convolution output is approximated as:

I�W � ðsignðIÞf;signðWÞÞ�a (2)

where a denotes the scaling factor for weights. As shown in Rastegari et al. (2016), the
scaling factor is 1

n, where n ¼ 1
2 c� w� h. Symbols ; and ⊙ mean the convolution using

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 6/17

http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

bitwise XNOR & bit-counting operations and element-wise scalar multiplication,
respectively. After binarizing weights, the multiplication with the binarized activations is
approximated using the bitwise XNOR operation. Because each operand consists of one
bit, the bitwise XNOR operation can perform the parallel multiplication in a bit-level.
The accumulation operation can be replaced by the bit-counting operation. In Eq. (2),
the binarized convolution only adopts the deterministically scaled weights by 1

n. Calculating
the element-wise scaling factor matrix K for I ≈ sign(I) ⊙ K in the inference (Rastegari
et al., 2016) is a significant burden in lightweight BNNs, as described in Bulat &
Tzimiropoulos (2019). Instead, in our design, this convolution output is adjusted by the
learnable affine parameters in the following BN layer.

The erroneous binarized convolution can increase unexpected dying ReLU problems.
Several existing works adopted the learnable leaky activation functions (Gu et al., 2019;
Phan et al., 2020; Martinez et al., 2020). The leaky activation function allows small
negative values when input is less than zero. Therefore, we evaluated whether the leaky
activation function can be suitable for the proposed model. Evaluations were performed by
changing the activation function to the LeakyReLU (Maas, Hannun & Ng, 2013), ReLU
(Nair & Hinton, 2010), parametric ReLU (PReLU) (He et al., 2015) in the AresB-18 model
on the CIFAR-100 dataset. In this evaluation, the negative slope of the LeakyReLU was
fixed as 0.01. Top-1 final test accuracies with the LeakyReLU, ReLU, PReLU were 73.01%,
71.94%, 71.23%, respectively. The evaluation result using the LeakyReLU outperformed
other activation functions, so that we decided that the binarized convolution output passed
through the LeakyReLU layer.

The first BN layer in the second subblock normalizes all features from the first subblock,
where the unfiltered features from previous blocks can be adjusted in this BN layer.
On the other hand, the first subblock does not have the BN as the first layer. We think
that if all features pass through the BN layer in each subblock, errors from the repeated
normalization could have negative effects, which produced 72.95% Top-1 final test
accuracy on the CIFAR-100 dataset in our experiments. When the first subblock did not
adopt the BN layer, 73.01% Top-1 final test accuracy was obtained, so the difference
was not significant. However, additional BN layer increased computational costs, so that
it was expected that there was no need to insert that layer. Therefore, we determine that a
basic block has this BN layer every two subblocks in AresB-Net.

Table 1 Summary of weight and output tensor sizes in basic blocks.

Block type Input tensor size Subblock Weight sizea Output tensor size

stride = 1 c × win × hin First 1
4 c

2 � w� h c × win × hin

Second 1
4 c

2 � w� h c × win × hin

stride = 2 First 1
2 c

2 � w� h 2c� win
2 � hin

2

Second c2 × w × h 2c� win
2 � hin

2

Note:
a Weight size denotes the number of weight filter’s parameters.

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 7/17

http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

Model structure
Figure 2 describes the pyramid structure containing eight basic blocks for the CIFAR
dataset. The dotted box denotes the basic block that consists of two subblocks. Following
the baseline residual networks in He et al. (2016), the basic blocks are stacked. But the
channels are extended without increasing computational costs using the grouped
convolution in the convolution layers. As shown in Fig. 2, the first convolution layer
performs the real-valued convolution using image pixel input data from RGB channels;
other convolutions are binarized. After copying the output of the LeakyReLU layer (Maas,
Hannun & Ng, 2013), the BN layer adjusts the features. In the first subblock of the first
basic block, the channels are not shuffled because the repeated channels contain the
same features. Except for the first real-valued convolution layer, the subblock having a
convolution layer is connected with its shortcut, which is denoted as the rounded red
arrow. The dotted round arrow indicates that the features from the previous basic block
pass through the max-pooling layer with stride = 2, thus making the number of channels
doubled per two basic blocks.

The second subblock of the final basic block does not concatenate the shortcut, so that
the output channels are obtained just by adding the shortcut from the first BN layer to
the output of the second BN layer, so that left channels are used in average pooling in
Fig. 2. Therefore, the number of output channels is the same with that of the baseline
residual networks inHe et al. (2016). After performing the average pooling, the real-valued

Figure 2 Pyramid structured model stacking eight basic blocks denoted as the AresB-18 model for
the CIFAR dataset. The number in the box and term g = 2 denote the numbers of the output channels
and groups in the convolution. Full-size DOI: 10.7717/peerj-cs.454/fig-2

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 8/17

http://dx.doi.org/10.7717/peerj-cs.454/fig-2
http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

linear fully-connected layer makes the image classification result. The model structure for
the ImageNet dataset has the same concept for stacking the basic blocks. The detail
modification for the ImageNet dataset is described in the section of the experimental
results and analysis.

Our model structure expands channels compared with the baseline residual CNNs
(He et al., 2016). Because the grouped convolution is applied to the channel expansion for
concatenating features, there is no increase in computational costs. When stride = 2,
the max-pooling layer obtains the downsampled real-valued features to be concatenated.
Our method does not adopt 1 × 1 binarized convolutions in the downsampled shortcut
to reduce storage size and computational costs. In Rastegari et al. (2016) and Liu et al.
(2018), the downsampled shortcut adopts 1 × 1 real-valued convolutions to preserve
the information between blocks. However, we concern that the real-valued convolutions
in the downsampled shortcut reduce the degree of the binarization in BNNs, which
increases the memory requirements for storing weights. Besides, it is assured that the
computational costs of the max-pooling layer are much smaller than those of 1 × 1 real-
valued convolution.

Training of proposed BNNs
When training our proposed AresB-Net model, weights are binarized in the forward pass
and backward propagation, following the training method described in Rastegari et al.
(2016). In the forwarding pass, the binarized activation and convolution are performed
based on Eqs. (1) and (2). When updating parameters, real values are maintained to keep
the tiny change in parameters. Especially, in the backpropagation, the derivative of the
binary activation using sign() function should be approximated because the ideal derivative
of sign() function is the delta function. Even though it is known that more sophisticate
approximated derivatives such as Liu et al. (2018) can provide better results, we adopt the
baseline straight-through-estimator in Courbariaux et al. (2016) for the training.

EXPERIMENTAL RESULTS AND ANALYSIS
Our proposed model was trained and then tested in terms of image classification
accuracy. In this experiment, the CIFAR (Krizhevsky & Hinton, 2009) and ImageNet
(Russakovsky et al., 2015) datasets were adopted, where different experimental
environments were setup. For apple-to-apple comparison, we adopted commonly used
optimizers such as SGD (stochastic gradient descent) (Bottou, 2010) and ADAM
(Kingma & Ba, 2014) optimizer in this training. Even though we did not apply the specific
training scheme, it was concluded that our model could achieve significant accuracy
enhancements in residual BNNs.

Experiments on CIFAR dataset
In the training and testing, CIFAR-10 and CIFAR-100 datasets were used. The CIFAR
dataset consists of 60,000 32 × 32 colour images, where 50,000 and 10,000 images are used
in the training and test, respectively. Whereas the CIFAR-10 dataset is classified into
10 different classes, the CIFAR-100 dataset has 100 classes containing 600 images for each

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 9/17

http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

class. As the number of classes increased, it is noted that more sophisticate classification
was required.

In our experiments, three different models denoted as the AresB-10, AresB-18, and
AresB-34 models, were trained and then tested, where the AresB-10, AresB-18, and
AresB-34 models stacked 4, 8, and 16 basic blocks, respectively. The structure of the
AresB-18 model is described in Fig. 2. We used SGD optimizer with momentum=0.9
and weight decay=1e−5. Unlike Lin, Zhao & Pan (2017), Liu et al. (2018), Bulat &
Tzimiropoulos (2019) and Martinez et al. (2020), the real-valued pretrained weights for
initializing the models were not adopted, thus starting the training from randomly
initialized weights.

For the data augmentation for input images, 32 × 32 input image was cropped and
horizontally flipped randomly from 40 × 40 padded image (padding = 4). This random
crop and random horizontal flip were applied to the evaluations of the AresB-Net and
other counterparts. Then, the random erasing introduced in Zhong et al. (2017) was
applied in training. However, the data augmentation above was not applied in the testing.
The random erasing was only adopted in the training of the AresB-Net, so that other
counterparts did not use this augmentation technique. For the CIFAR-10 dataset, we ran
the training for 200 epochs with a batch size of 256. The learning rate started at 0.1
and was decayed by multiplying 0.2 at (80, 100, 130, 160) epochs. For the CIFAR-100
dataset, the training was performed for 360 epochs with a batch size of 256, where the
learning rate started at 0.1 and was decayed by multiplying 0.2 at (160, 200, 260, 320)
epochs. For the CIFAR-100 dataset, the dropout (Srivastava et al., 2014) layer was placed
just before the fully-connected layer.

Figure 3 illustrates Top-1 classification accuracies across training epochs on the
CIFAR datasets. The solid and dashed lines represent test and training accuracies,
respectively. In our experiments, the final test accuracy drops from full-precision models
were ranged in 0.91–2.60%. As the number of stacked blocks increased, there were

Figure 3 Training and test classification accuracies across training epochs: (A) training and test Top-
1 accuracies with the AresB-10, AresB-18, and AresB-34 models on the CIFAR-10 dataset; (B)
training and test Top-1 accuracies with the AresB-10, AresB-18, and AresB-34 models on the
CIFAR-100 dataset. Full-size DOI: 10.7717/peerj-cs.454/fig-3

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 10/17

http://dx.doi.org/10.7717/peerj-cs.454/fig-3
http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

additional accuracy enhancements. Compared with the experiments on the CIFAR-10
dataset, classification results were more improved on the CIFAR-100 by increasing the
number of stacked blocks.

In Table 2, the final test accuracies are summarized, comparing with full-precision
counterparts. On the CIFAR-10 dataset, the final test accuracies of the proposed model
were slightly degraded over those of full-precision ResNet models. On the CIFAR-100
dataset, Top-1 accuracy of the AresB-18 model reached up to 73.01%, which degraded the
classification accuracy by only 2.6% compared with the full-precision ResNet-18 model.

The efficiencies of the speedup and storage size were analyzed, assuming the combining
factor between real-value and binary operations as 1

64 (Rastegari et al., 2016). We assumed
that the scaling in the BN layer and non-linear activation (e.g., ReLU) layer for one
element increase FLOPs (floating-point operations per second) by one, respectively.
The FLOPs of each convolution layer were calculated based on Sagartesla (2020). The first
convolution layer with RGB channels inputs and final fully-connected layer were operated
on 32-bit full-precision data. Table 3 summarizes the comparisons with other models
that contain the baseline basic blocks in terms of the speedup and storage size, where
ResNet-18 (He et al., 2016), XNOR-Net-18 (Rastegari et al., 2016), Bi-Real-Net-18 (Liu
et al., 2018) are compared. Because there was no 1 × 1 convolution in the downsampling,
the FLOPs and storage size of our model became the smallest. Besides, TOP-1 test accuracy
increased by 2.07% on the CIFAR-10 dataset. Compared with the theoretical speedup on

Table 2 Summary of test accuracies (%) on CIFAR datasets.

Dataset Model Top-1 Top-5 FP Top-1a FP Top-5a Top-1 gap Top-5 gap

CIFAR-10a AresB-10 90.74 – – – – –

AresB-18 91.90 – 93.02 – 1.12 –

AresB-34 92.71 – 93.62 – 0.91 –

CIFAR-100a AresB-10 69.45 91.70 – – – –

AresB-18 73.01 92.57 75.61 93.05 2.60 0.48

AresB-34 74.73 93.25 76.76 93.37 2.03 0.12

Note:
a Full-precision (denoted as FP) counterparts of the AresB-18 and AresB-34 models are based on the evaluation results of
the ResNet-18 and ResNet-34 models.

Table 3 Comparison with other models containing baseline basic blocks on CIFAR-10 dataset.

Model W/
Ab

Down
samplingc

Top-1
(%)d

Storage
(Mbits)

FLOPS
(×107)

ResNet-18 (He et al., 2016)a 32/32 FPconv 93.02 358 58.6

XNOR-Net-18 (Rastegari et al.,
2016)

1/1 Bconv 89.83 12.9 1.41

Bi-Real-Net-18 (Liu et al., 2018) 1/1 FPconv 89.30 18.2 3.82

AresB-18 1/1 No conv 91.90 12.7 1.36

Notes:
a A ResNet-18 model contains eight basic blocks.
b Terms W and A denote the precision of target weights and activation.
c Prefix FP and B mean the full-precision and binarized 1 × 1 convolutions, respectively.
d Top-1 accuracy indicates the final Top-1 test accuracy on the CIFAR-10 dataset.

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 11/17

http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

ImageNet database in Rastegari et al. (2016), the computation ratio of the first real-
valued convolution layer was lower on the CIFAR dataset. The speedup over real-valued
ResNet-18 was calculated by FLOPSðResNet�18Þ

FLOPSðAresB�18Þ � 44:73� on the CIFAR dataset, which was
smaller than 62.27× speedup on the ImageNet database.

Experiments on ImageNet dataset
The ImageNet dataset (Russakovsky et al., 2015) contains 1.2 million training and
50,000 validation color images classified into 1,000 categories. The image sizes were not
fixed, so that images were resized into 256 × 256 images in the initial conversion.
Then, each image was obtained by cropping the original image in the range of 0.466–0.875
and resized by 224 × 224. After applying the random horizontal flip, images were used
in training. The random erasing in Zhong et al. (2017) was not applied in training,
unlike the cases on the CIFAR dataset. Therefore, the random horizontal flip without the
random erasing described in He et al. (2016) was adopted in the AresB-Net model.
Additionally, the dropout layer was not adopted. When doing inference, 224 × 224 images
were cropped from the center of original images without random flip.

We trained our AresB-10, AresB-18 and AresB-34 models from scratch for 100 epochs
with a batch size of 256. For ADAM optimizer (Kingma & Ba, 2014) with β = (0.9, 0.999),
momentum= 0.9 and weight decay= 1e−5. The initial learning rate lr = 0.1 was decayed
by multiplying 0.1 at (40, 50, 65, 80) epochs. Like ResNet (He et al., 2016), the AresB
model started at the 7 × 7 convolutional layer with channel = 64 and stride = 2, followed by
the 3 × 3 max-pooling layer with stride = 2. The test with the ImageNet validation dataset
adopted only one random crop.

Figure 4 illustrates Top-1 and Top-5 classification accuracies across training epochs
on the Imagenet datasets. The solid and dashed lines represent test and training accuracies,
respectively. The validation images were used to test the trained model. Like the baselined
pyramid structure in He et al. (2016), as the number of stacked blocks increased,
accuracies were enhanced. Compared with the test accuracies in Fig. 3, those of Fig. 4

Figure 4 Training and test classification accuracies across training epochs: (A) training and test
Top-1 accuracy with the AresB-10, AresB-18 and AresB-34 models on the ImageNet dataset;
(B) training and test Top-5 accuracy with the AresB-10, AresB-18, and AresB-34 models on the
ImageNet dataset. Full-size DOI: 10.7717/peerj-cs.454/fig-4

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 12/17

http://dx.doi.org/10.7717/peerj-cs.454/fig-4
http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

were varied smoothly. Finally, Top-1 and Top-5 accuracies were 48.51% and 72.72% with
the AresB-10 model, 54.81% and 78.15% with the AresB-18 model and 58.46% and
81.22%, respectively.

Table 4 summarizes test accuracies and other important characteristics with XNOR-
ResNet-18 (Rastegari et al., 2016), ABC-Net-res18 (Lin, Zhao & Pan, 2017), Bi-Real-Net-18
(Liu et al., 2018), and MoBiNet-k4 (Phan et al., 2020) comparable to our AresB-18 pyramid
structure. In Table 4, FPConv and BConv denote floating-point and binarized 1 × 1
convolutions. Data in (Liu et al., 2018) assumed that XNOR-ResNet-18 adopted
FPConv downsampling, which is referenced in Table 4. Our work outperformed other
works except for Bi-Real-Net-18 that adopted the FPConv downsampling and needed
more massive storage. Compared with results on CIFAR datasets, because the kernel size of
the real-valued first convolution layer increased, the improvements in terms of FLOPS
decreased. In addition, because all models started with real-valued 7 × 7 convolution
layer and ended with real-valued fully connected layer for 1000 labels, the ratio of the
reduced storage by removing the real-valued 1 × convolution also decreased. The
MoBiNet-k4 model (Phan et al., 2020) can reduce FLOPS ≈ 3× over other BNN-based
works. However, the removal of FPConv downsampling reduced storage size significantly
over those of the MoBiNet-k4 model. Therefore, we conclude that AresB-Net can have
merits in reducing storage size with acceptable test accuracies.

Ablation studies
We conducted ablation studies with experimental results on the CIFAR datasets.

� Effects of repeating channels in grouped convolution We performed experiments
to know the effects of the increasing number of channels in the AresB-Net model.
Compared with the baseline ResNet (He et al., 2016), the basic block doubled the
number of channels, but the grouped convolution maintained computational costs.
By extending this idea, another experiment repeated channels and increased groups in
the convolution by a factor of 2, multiplying the trainable shift and bias parameters in
the BN layer with expanded channels. The experimental results enhanced overall test
accuracies even though the computational costs in the grouped convolution maintained.

Table 4 Comparison with other models on ImageNet dataset(%).

Modela Top-
1

Top-
5

Down
sampling

From
scratcha

Storage
(Mbits)

FLOPS
(×108)

ResNet-18 (Rastegari et al., 2016) 69.3% 89.2% BConv Yes 374.1 18.1

XNOR-ResNet-18 (Rastegari et al.,
2016)

51.2% 69.3% FPConv Yes 33.7 1.67

ABC-Net-res18 (Lin, Zhao & Pan, 2017) 42.7% 67.6% BConv No 27.5 1.59

Bi-Real-Net-18 (Liu et al., 2018) 56.4% 79.5% FPConv No 33.6 1.63

MoBiNet-k4 (Phan et al., 2020) 54.4% 77.5% BConv Yes 36.8 0.52

AresB-18 54.81 78.15 No conv Yes 27.6 1.61

Note:
a When the model is trained from scratch, a pretrained model are not used in the weight initialization.

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 13/17

http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

Compared with the original setup of the AresB-18 model, Top-5 test accuracies of the
extended versions increased by 92.86% for 2× channels and 93.07% for 4× channels on
the CIFAR-100 dataset, respectively.

� Effects of the first BN layer in the second subblock When omitting this BN layer,
we experienced the gradient exploding in training on the CIFAR-100 dataset. Without
this layer, several features from previous blocks can have direct effects on the filtering
results, so that our version contained this BN layer per two subblocks.

� Pooling layer in downsampling As shown in Fig. 1B, the first subblock provided the
downsampled shortcut with stride = 2, where 3 × 3 max-pooling layer with padding = 1
was adopted. Different types of pooling layers were applied to the AresB-18 model
on the CIFAR-10 dataset. In addition to 2 × 2 max-pooling, 2 × 2 and 3 × 3 average
pooling layers were adopted in modified versions. In these evaluations, the final Top-1
classification accuracies with different pooling layers were ranged in 91.54–91.58%,
which were slightly degraded compared with the version using 3 × 3 max-pooling in the
downsampling.

� Data augmentation An experiment was conducted to know how much the specific data
augmentation affected the performance improvement. Without the random erasing
(Zhong et al., 2017) in the data augmentation, the AresB-18 model on CIFAR-10
achieved 91.68% Top-1 final test accuracy. Compared with the final classification result
without the random erasing (91.90%), slight accuracy enhancements were shown with
this specific data augmentation technique. Therefore, it was expected that this
augmentation technique could improve the performance. But the increase was not
significant, which means that the performance enhancement was mainly caused by the
proposed AresB-Net model.

CONCLUSION
The proposed network model achieves significant test accuracy improvements with
reduced costs, by expanding output channels and applying shuffled grouped convolutions.
The advantages of existing network blocks are combined along with the convenience of
making the pyramid structure. For apple-to-apple comparisons, we focused on the basic
block structure, so that we did not apply any specific training schemes and weight
initialization. In addition, our model did not consider trainable parameters for scaling
convolution outputs (Bulat & Tzimiropoulos, 2019), tuning binary activation (Wang et al.,
2020; Liu et al., 2020), PReLU (He et al., 2015). We definitely expect that there is no
difficulty in applying state-of-the-art training schemes and tuning methods to our model.
When adopting the basic training optimization and training from scratch, our model can
achieve acceptable performance for the CIFAR and ImageNet datasets and reduce
hardware costs by removing 1 × 1 downsampling. Notably, this proposed model provides
significant benefits in terms of storage size and speedup on CIFAR datasets. By removing
the intervention of the real-valued 1 × 1 convolution in the middle of operating a BNN
model, BNN’s operating steps become more simple. Most of all, it is concluded that the
proposed model can provide good classification results with low computational costs.

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 14/17

http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The author received no funding for this work.

Competing Interests
The author declares that they have no competing interests.

Author Contributions
� HyunJin Kim conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Code is available at GitHub: https://github.com/analog75/aresb/

REFERENCES
Alizadeh M, Fernández-Marqués J, Lane ND, Gal Y. 2018. An empirical study of binary neural

networks’ optimisation. In: International Conference on Learning Representations.

Bethge J, Bartz C, Yang H, Chen Y, Meinel C. 2020. Meliusnet: can binary neural networks
achieve mobilenet-level accuracy? Available at http://arxiv.org/abs/2001.05936.

Bethge J, Yang H, Bornstein M, Meinel C. 2019. Binarydensenet: developing an architecture for
binary neural networks. In: Proceedings of the IEEE International Conference on Computer
Vision Workshops.

Bottou L. 2010. Large-scale machine learning with stochastic gradient descent. In: Proceedings of
COMPSTAT’2010, Springer, 177–186.

Bulat A, Tzimiropoulos G. 2019. Xnor-net++: improved binary neural networks. arXiv.
Available at http://arxiv.org/abs/1909.13863.

Chakraborty I, Roy D, Ankit A, Roy K. 2019. Efficient hybrid network architectures for extremely
quantized neural networks enabling intelligence at the edge. arXiv. Available at http://arxiv.org/
abs/1902.00460.

Courbariaux M, Bengio Y, David J-P. 2015. Binaryconnect: training deep neural networks with
binary weights during propagations. In: Advances in Neural Information Processing Systems.
3123–3131.

Courbariaux M, Hubara I, Soudry D, El-Yaniv R, Bengio Y. 2016. Binarized neural networks:
training deep neural networks with weights and activations constrained to +1 or −1. Available at
http://arxiv.org/abs/1602.02830.

Ding R, Chin T-W, Liu Z, Marculescu D. 2019. Regularizing activation distribution for training
binarized deep networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. Piscataway: IEEE, 11408–11417.

Ghasemzadeh M, Samragh M, Koushanfar F. 2018. Rebnet: residual binarized neural network.
In: 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom
Computing Machines. Piscataway: IEEE, 57–64.

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 15/17

https://github.com/analog75/aresb/
http://arxiv.org/abs/2001.05936
http://arxiv.org/abs/1909.13863
http://arxiv.org/abs/1902.00460
http://arxiv.org/abs/1902.00460
http://arxiv.org/abs/1602.02830
http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

Gu J, Li C, Zhang B, Han J, Cao X, Liu J, Doermann D. 2019. Projection convolutional neural
networks for 1-bit CNNs via discrete back propagation. Proceedings of the AAAI Conference on
Artificial Intelligence 33:8344–8351 DOI 10.1609/aaai.v33i01.33018344.

Guo Y. 2018. A survey on methods and theories of quantized neural networks. arXiv. Available at
http://arxiv.org/abs/1808.04752.

He Z, Angizi S, Rakin AS, Fan D. 2018. Bd-net: a multiplication-less dnn with binarized
depthwise separable convolution. In: 2018 IEEE Computer Society Annual Symposium on VLSI.
Piscataway: IEEE, 130–135.

He K, Zhang X, Ren S, Sun J. 2015. Delving deep into rectifiers: surpassing human-level
performance on imagenet classification. In: Proceedings of the IEEE international Conference on
Computer Vision. Piscataway: IEEE, 1026–1034.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 770–778.

Helwegen K, Widdicombe J, Geiger L, Liu Z, Cheng K-T, Nusselder R. 2019. Latent weights do
not exist: rethinking binarized neural network optimization. In: Advances in Neural Information
Processing Systems. 7531–7542.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. 2017. Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4700–4708.

Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y. 2016. Binarized neural networks. In:
Advances in Neural Information Processing Systems. 4107–4115.

Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y. 2017. Quantized neural networks:
training neural networks with low precision weights and activations. Journal of Machine
Learning Research 18(1):6869–6898.

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. arXiv. Available at
http://arxiv.org/abs/1412.6980.

Krizhevsky A, Hinton G. 2009. Learning multiple layers of features from tiny images. Toronto:
University of Toronto.

Krizhevsky A, Nair V, Hinton G. 2014. The cifar-10 dataset. 55. Available at http://www.cs.
toronto.edu/kriz/cifar.html.

LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11):2278–2324 DOI 10.1109/5.726791.

Liang S, Yin S, Liu L, Luk W, Wei S. 2018. FP-BNN: binarized neural network on FPGA.
Neurocomputing 275(3):1072–1086 DOI 10.1016/j.neucom.2017.09.046.

Lin X, Zhao C, PanW. 2017. Towards accurate binary convolutional neural network. In: Advances
in Neural Information Processing Systems. 345–353.

Liu Z, Shen Z, Savvides M, Cheng K-T. 2020. Reactnet: towards precise binary neural network
with generalized activation functions. Available at http://arxiv.org/abs/2003.03488.

Liu Z, Wu B, LuoW, Yang X, LiuW, Cheng K-T. 2018. Bi-real net: enhancing the performance of
1-bit cnns with improved representational capability and advanced training algorithm. In:
Proceedings of the European Conference on Computer Vision. 722–737.

Maas AL, Hannun AY, Ng AY. 2013. Rectifier nonlinearities improve neural network acoustic
models. Proceedings of International Conferences on Minority Languages 30:3.

Martinez B, Yang J, Bulat A, Tzimiropoulos G. 2020. Training binary neural networks with
real-to-binary convolutions. Available at http://arxiv.org/abs/2003.11535.

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 16/17

http://dx.doi.org/10.1609/aaai.v33i01.33018344
http://arxiv.org/abs/1808.04752
http://arxiv.org/abs/1412.6980
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.neucom.2017.09.046
http://arxiv.org/abs/2003.03488
http://arxiv.org/abs/2003.11535
http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

Nair V, Hinton GE. 2010. Rectified linear units improve restricted boltzmann machines. In:
International Conferences on Minority Languages.

Phan H, He Y, Savvides M, Shen Z. 2020.Mobinet: a mobile binary network for image classification.
In: The IEEEWinter Conference on Applications of Computer Vision. Piscataway: IEEE, 3453–3462.

Rastegari M, Ordonez V, Redmon J, Farhadi A. 2016. Xnor-net: imagenet classification using
binary convolutional neural networks. In: European Conference on Computer Vision. Cham:
Springer, 525–542.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M, Berg AC, Fei-Fei L. 2015. ImageNet large scale visual recognition challenge.
International Journal of Computer Vision 115(3):211–252 DOI 10.1007/s11263-015-0816-y.

Sagartesla. 2020. flops-cnn. GitHub. Available at https://github.com/sagartesla/flops-cnn (accessed
3 June 2020).

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. 2018. Mobilenetv2: inverted residuals
and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 4510–4520.

ShenM, Liu X, Han K, Gong R, Wang Y, Xu C. 2019. Balanced binary neural networks with gated
residual. Available at http://arxiv.org/abs/1909.12117.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014.Dropout: a simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research 15(1):1929–1958.

Veit A, Wilber M, Belongie S. 2016. Residual networks are exponential ensembles of relatively
shallow networks. Available at http://arxiv.org/abs/1605.06431.

Wang P, He X, Li G, Zhao T, Cheng J. 2020. Sparsity-inducing binarized neural networks.
Proceedings of the AAAI Conference on Artificial Intelligence 34(7):12192–12199.

Wang Z, Lu J, Tao C, Zhou J, Tian Q. 2019. Learning channel-wise interactions for binary
convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. Piscataway: IEEE, 568–577.

Wu J, Leng C, Wang Y, Hu Q, Cheng J. 2016. Quantized convolutional neural networks for
mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 4820–4828.

Yi S, Xiao H, Yongjie S. 2018. FPGA accelerating core design based on XNOR neural network
algorithm. MATEC Web of Conferences 173(3):01024 DOI 10.1051/matecconf/201817301024.

Zhang X, Zhou X, Lin M, Sun J. 2018. Shufflenet: an extremely efficient convolutional neural
network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. Piscataway: IEEE, 6848–6856.

Zhong Z, Zheng L, Kang G, Li S, Yang Y. 2017. Random erasing data augmentation. arXiv.
Available at http://arxiv.org/abs/1708.04896.

Zhou Y, Redkar S, Huang X. 2017. Deep learning binary neural network on an fpga. In: 2017 IEEE
60th International Midwest Symposium on Circuits and Systems. Piscataway: IEEE, 281–284.

Zhou A, Yao A, Guo Y, Xu L, Chen Y. 2017. Incremental network quantization: towards lossless
cnns with low-precision weights. Available at http://arxiv.org/abs/1702.03044.

Zhu S, Dong X, Su H. 2019. Binary ensemble neural network: more bits per network or more
networks per bit? In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 4923–4932.

Zhuang B, Shen C, Tan M, Liu L, Reid I. 2019. Structured binary neural networks for accurate
image classification and semantic segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Piscataway: IEEE, 413–422.

Kim (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.454 17/17

http://dx.doi.org/10.1007/s11263-015-0816-y
https://github.com/sagartesla/flops-cnn
http://arxiv.org/abs/1909.12117
http://arxiv.org/abs/1605.06431
http://dx.doi.org/10.1051/matecconf/201817301024
http://arxiv.org/abs/1708.04896
http://arxiv.org/abs/1702.03044
http://dx.doi.org/10.7717/peerj-cs.454
https://peerj.com/computer-science/

	AresB-Net: accurate residual binarized neural networks using shortcut concatenation and shuffled grouped convolution
	Introduction
	Related work
	Aresb-net: accurate residual binarized neural network model
	Experimental results and analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

