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ABSTRACT
The Kmeans clustering and spectral clustering are two popular clustering methods
for grouping similar data points together according to their similarities. However,
the performance of Kmeans clustering might be quite unstable due to the random
initialization of the cluster centroids. Generally, spectral clustering methods employ a
two-step strategy of spectral embedding and discretization postprocessing to obtain the
cluster assignment, which easily lead to far deviation from true discrete solution during
the postprocessing process. In this paper, based on the connection between the Kmeans
clustering and spectral clustering, we propose a new Kmeans formulation by joint
spectral embedding and spectral rotation which is an effective postprocessing approach
to perform the discretization, termed KMSR. Further, instead of directly using the dot-
product data similarity measure, we make generalization on KMSR by incorporating
more advanced data similarity measures and call this generalized model as KMSR-
G. An efficient optimization method is derived to solve the KMSR (KMSR-G) model
objective whose complexity and convergence are provided.We conduct experiments on
extensive benchmark datasets to validate the performance of our proposed models and
the experimental results demonstrate that our models perform better than the related
methods in most cases.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning
Keywords Kmeans clustering, Spectral clustering, Spectral rotation, Data similarity

INTRODUCTION
Clustering is one of the important research contents in many communities such as data
mining and pattern recognition. Basically, it aims to group the data points into different
clusters according to their similarities or densities (Ubukata, 2019; Ren, Zhang & Zhang,
2019). Over the past decades, a number of clustering algorithms have been proposed such as
the Kmeans clustering, spectral clustering (Ng, Jordan & Weiss, 2001), min-max cut (Ding
et al., 2001; Nie et al., 2010), subspace clustering (Nie & Huang, 2016; Xie et al., 2020), and
multi-view clustering (Nie, Tian & Li, 2018; Cai et al., 2013). Among the existing clustering
methods, the most popular one is the Kmeans clustering algorithm due to its simpleness
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and efficiency, which aims to learn certain cluster centroids to minimize the within cluster
data distances. However, the Kmeans algorithm suffers a great impact on its clustering
performance due to the random initialization of cluster centroids.

By characterizing the data connectionwith an appropriate graphwhose vertices represent
the data points and the weights represent the connection between data pairs, spectral
clustering tries to partition the vertices into different clusters by minimizing the cut
information. There are some popular spectral clustering algorithms such as the ratio cut
(RCut) (Hagen & Kahng, 1992), normalized cut (NCut) (Shi & Malik, 1997), clustering
with adaptive neighbors (CAN) and its projected version (PCAN) (Nie, Wang & Huang,
2014), multiclass spectral clustering (Yu & Shi, 2003), constrained Laplacian rank (Nie et
al., 2016), and nonnegative matrix factorization (Peng et al., 2018). Given a built graph,
existing spectral clustering methods usually employ a two-step strategy to complete
the clustering; one is performing eigen-decomposition on the graph Laplacian matrix
to obtain the scaled cluster indicator matrix based on which the other aims to make
discretization to get the final cluster assignment. The former step is recognized as spectral
embedding and the latter step as postprocessing. Generally, the existing two approaches
to complete the postprocessing task of recovering the final discrete cluster indicators from
the relaxed continuous spectral vectors are the Kmeans clustering and spectral rotation.
As pointed by (Huang, Nie & Huang, 2013; Chen et al., 2017), using spectral rotation as the
postprocessing step can usually obtain better clustering performance than that of Kmeans
postprocessing. However, such two-stage process has an obvious disadvantage that the
final assignments may deviate far from the true discrete solution (Huang, Nie & Huang,
2013).

As mentioned above, both the Kmeans clustering and the spectral clustering have
limitations in respective fields. To this end, in this paper, we first derive the underlying
connection between the Kmeans clustering and spectral clustering, and then propose a
new Kmeans formulation by jointly performing spectral embedding and spectral rotation.
The resultant KMSR model can effectively alleviate the drawback of the randomness in the
initialization of cluster centroids of Kmeans. Moreover, the two sub-objectives of spectral
embedding and spectral rotation are jointly optimized, which can co-evolve to the optimum
and avoid the sub-optimality caused by the two-step strategy. Due to that the KMSR is
originated from the Kmeans clustering, it measures the data similarity by directly using the
dot-product weighting scheme whose performance is limited in dealing with complicated
data sets. To accommodate more advanced graphs and then improve the performance of
KMSR, we make corresponding extension on it by replacing the dot-product of data matrix
with predefined graphs such as CAN and PCAN (Nie, Wang & Huang, 2014), leading to the
generalized version KMSR-G. Mathematically, the KMSR model objective involves three
variables respectively corresponding to the relaxed continuous cluster indicator matrix,
the discrete cluster indicator, and the orthogonal transformation matrix to bridging them;
therefore, under the coordinate blocking framework, we design an efficient optimization
method to alternately update them, whose complexity and convergence property are
also analyzed. We conduct extensive experiments on representative benchmark data
sets to evaluate the performance of our proposed models. By comparing the clustering

Huang et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.450 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.450


performance of KMSR and KMSR-G with related models, they both perform better in
most cases.

The remainder of this paper is organized as follows. We give brief introductions to
some related works including the Kmeans, spectral clustering and spectral rotation in
‘Related Work’. In ‘The Proposed Model’, we first derive the model formulation of KMSR
based on depicting the connection between Kmeans clustering and spectral clustering,
and then provide the detailed optimization process to KMSR model objective. Besides, the
complexity and convergence analysis of KMSR, its generalization to KMSR-G are included.
In ‘Experiment’, extensive experiments are conducted on representative benchmark data
sets to evaluate the effectiveness of KMSR and KMSR-G in data clustering. ‘Conclusion’
concludes the whole paper and puts forward a future work.

Notations. In this paper, matrices are written as boldface uppercase letters. Vectors are
written as boldface lowercase letters. For example, the (i,j)-th element of matrix W is wij .
The squared `2-norm of matrixW∈Rn×m is ‖W‖22=

∑n
i=1
∑m

j=1w
2
ij .

By default, we use wi to represent the ith column of W and wj to represent its jth row.
We use R and B to represent the real domain and the binary domains, respectively.

RELATED WORKS
Kmeans clustering
Given a data matrix X= [x1,x2,...,xn] ∈Rd×n, the Kmeans clustering aims to partition X
into c (1≤ c ≤ n) clusters C = [C1,C2,...,Cc ] such that the within-cluster sum of squared
distances can be minimized and the sum of squared distances between clusters can be
maximized. Mathematically, the objective function of Kmeans clustering is

min
C

c∑
i=1

∑
xj∈Ci

∥∥xj−µi
∥∥2
2, (1)

where µi is the centroid corresponding to the cluster Ci. To optimize objective Eq. (1), the
membership of each data point and the centroid of each cluster are alternately updated.

Spectral clustering
For spectral clustering, we first need to construct a graph affinitymatrixA∈Rn×n according
to certain similarity measures to depict the connection between data pairs. Let yi|ni=1 be
the ith row vector of matrix Y = [y1;y2;··· ;yn] ∈Bn×c , which corresponds to the cluster
indicator vector for xi. The jth element of yi is 1 if xi ∈Cj , and 0 otherwise. By defining the
scaled cluster indicator matrix F as F=Y(YTY)−1/2 whose jth column is given by

fj = [0,...,0︸ ︷︷ ︸∑j−1
i=1ni

,1,...,1︸ ︷︷ ︸
nj

,0,...,0︸ ︷︷ ︸∑c
i=j+1ni

]
T/
√
nj, (2)

where nj is the number of data in the jth cluster. Then, the objective function of spectral
clustering can be formulated as

min
F

Tr(FTLF), s.t .F=Y (YTY)−1/2. (3)
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Here L=D−A is the Laplacian matrix, where D is the diagonal degree matrix with its ith
diagonal element defined as dii=

∑n
j=1aij .

Since FTF= (YTY )−1/2YTY(Y TY)−1/2 = I, the embedding F can be obtained by
stacking the eigenvectors of L corresponding to its c smallest eigen-values. However, F is a
real-valued matrix and therefore a postprocessing step such as the Kmeans clustering or
spectral rotation (Huang, Nie & Huang, 2013) is necessary to perform discretization.

It is easy to find that the solution to Eq. (3) is not unique. That is, for any solution F, FR
is another solution where R is an arbitrary orthogonal matrix. Therefore, spectral rotation
aims at finding a proper orthogonal and normalized R such that the resultant FR are closer
to the discrete indicator matrix solution set than the F in Kmeans. Mathematically, it aims
to minimize the following objective

min
Y ,R
‖FR−Y‖22, s.t .Y∈Bn×c ,Y1c = 1n,RTR= I, (4)

where 1c and 1n are both all-one column vectors with sizes of c×1 and n×1, respectively.
By using the alternative optimization method, objective Eq. (4) can be solved and therefore
the final cluster assignment can be obtained.

THE PROPOSED MODEL
In this section, we formulate the model objective function of KMSR and derive its
optimization method. Besides, the complexity and convergence analysis are provided.

Model formulation
By introducing two matrices U= [µ1,µ2,...,µc ] ∈Rd×c and Y such that (Y∈Bn×c ,Y1c =
1n) to respectively represent the cluster centroids and indices, the Kmeans objective in
Eq. (1) can be reformulated as

min
Y,U
‖X−UYT

‖
2
⇔min

Y,U
Tr(YUTUYT )−2Tr(XTUYT ). (5)

Since the solution to U is U=XY(YTY)−1, we have Tr(YUTUYT )= Tr(XTUY T ) and
then Eq. (5) can be written as

min
Y ,U
−Tr(XTUYT )⇔min

Y
−Tr((YTY)−

1
2Y T (XTX)Y(YTY)−

1
2 )

⇔min
F
−Tr(FT (XTX)F), (6)

where F∈Rn×c and F,Y(YTY)−
1
2 .

By checking Eq. (6), an usual way to solve it is relaxing the binary matrix F to real
domain but keeping its orthogonality intact. Then, we obtain the following formulation

min
F
−Tr(FTXTXF), s.t .FTF= I,F∈Rn×c . (7)

Note that F in Eq. (7) is the continuous relaxation which preserves the orthogonality
but misses the discrete nature of Y. If we use Kmeans to find the cluster assignment
which aims to jointly find the cluster indicator matrix Y and centroids C by
minY∈Bn×c ,Y1c=1n,C‖F−Y C‖2F , it can only guarantee that YC best approximates the relaxed
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continuous vector matrix F and cannot guarantee that such yielded Y best approximates
Y. As mentioned in ‘Spectral Clustering’, the relaxed solution to Eq. (7) is not unique.
Actually, for any solution F, FQ is another solution where Q is an arbitrary orthonormal
matrix. The goal of spectral rotation is to find a proper Q such that the resulting FQ are
closer to the discrete indicator matrix solution set than the F in Kmeans. Therefore, we
can take the idea of spectral rotation into account to perform post-processing operation
on the optimal F∗ of Eq. (7) to obtain the final cluster indicator matrix.

Inspired by Chen et al. (2017), we aim at finding an orthonormal matrix Q ∈Rc×c

to minimize the discrepancy between Y(YTY)−
1
2 and F∗Q as the postprocessing step.

Mathematically, it can be achieved by solving the following objective

min
Y ∈Bn×c ,Q

‖Y (YTY)−
1
2 −F∗Q ‖

2
F , s.t .QTQ= I,Q∈Rc×c . (8)

From the above analysis, we realize that an intuitive way to handle a spectral clustering
task is to get F∗ by solving Eq. (7) followed by an appropriate Q from Eq. (8) to finally
obtain the final cluster indicator matrix Y. To avoid the sub-optimality caused by such
two-step process, in this paper, we propose to jointly optimize the objectives of Eq. (7) and
Eq. (8) which respectively correspond to the spectral embedding and rotation, leading to
the following new Kmeans formulation (termed KMSR) as

min
Y,F,Q
−Tr(FTXTXF)+λ‖Y(YTY)−

1
2 −FQ‖

2
F , s.t .Y∈Bn×c ,Y1c = 1n,

FTF= I,QTQ= I, (9)

where λ> 0 is a regularization parameter to control the balance between the two items.
In spectral clustering, the normalized Laplacian matrix Ln is defined as

Ln= I−D−1/2AD−1/2. (10)

If we replace L in Eq. (3) with Ln, it becomes the objective function of the normalized cut.
Since Tr(FTF) is a constant, we can find an interesting point that there exists an equivalence
between the Kmeans clustering and the normalized cut. That is, the graph affinity matrix
in Kmeans clustering employs the simple dot-product weighting scheme, i.e., XTX, while
it is Ã,D−1/2AD−1/2 in normalized cut.

We know that the graph quality plays an important role in spectral clustering. Sometimes,
we need to learn amore robust graph to characterize the connection among data points than
simply constructing it by fixed rules. Therefore, to further enhance the model performance,
we make the generalization on KMSR by introducing Ã as the graph matrix. That is, we can
incorporate more advanced graphs instead of the simple dot-product weighting scheme.
We name the generalized model as KMSR-G which has the following objective function

min
Y ,F,Q
−Tr(FT ÃF)+λ‖Y (YTY)−

1
2 −FQ‖

2
2, s.t .Y∈Bn×c ,Y1c = 1n,FTF= I,QTQ= I.(11)

Obviously, KMSR-G is a general model to accommodate any predefined (or pre-learned)
graph, which is expected to achieve better performance than KMSR especially when
handling complicated data sets.
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Figure 1 The framework of the proposed models, KMSR and KMSR-G.
Full-size DOI: 10.7717/peerjcs.450/fig-1

Figure 1 intuitively shows the framework of our proposed models from which we can
observe that KMSR jointly performs spectral embedding and rotation on a specified graph.
Further, KMSR-G is a generalized model to accommodate other advanced graphs, leading
to better clustering performance.

Model optimization
The only difference between themodel objectives of KMSR in Eq. (9) and KMSR-G Eq. (11)
is the graph affinity matrix; therefore, they share the identical optimization procedure.
Below taking the KMSR-G as an example, we show its detailed optimization steps based
on the alternating framework (Tang et al., 2020). That is, we update one variable by fixing
the others.
� Update Q with Y and F fixed. The sub-objective associated with Q is

min
Q
‖Y(YTY)−

1
2 −FQ ‖

2
2, s.t .QTQ= Ic ,Q∈Rc×c , (12)

which can be further reformulated into

max
Q

Tr((YTY)−
1
2Y TFQ), s.t .QTQ= Ic ,Q∈Rc×c . (13)

By denotingM2, (YTY)−
1
2YTF, objective Eq. (13) can be converted to

max
Q

Tr(M2Q), s.t .QTQ= Ic ,Q∈Rc×c (14)

Huang et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.450 6/22

https://peerj.com
https://doi.org/10.7717/peerjcs.450/fig-1
http://dx.doi.org/10.7717/peerj-cs.450


Suppose that the singular value decomposition ofM2 is M2=U6V T and then we have

Tr(M2Q)=Tr(QU6VT )=Tr(6E)=
c∑

i=1

λiieii, (15)

where E=VTQU with λii and eii as the (i,i)-th elements of matrix 6 and E, respectively.
Since ETE= UTQTVVTQU= Ic , i.e.,

∑c
j=1e

2
ji = 1, we know eii ≤ 1 (1 ≤ i ≤ c).

Meanwhile, λii is non-negative since it is a singular value. Therefore, we have
Tr(M2Q)=

∑c
i=1λiieii ≤

∑c
i=1λii, and the equality holds when eii = 1 (1≤ i≤ c). That

is to say, Tr(M2Q) reaches its maximum when E= Ic = V TQU. Then we obtain the
optimal solution of Q as

Q=VUT . (16)

� Update F with Y and Q fixed. The sub-objective associated with F is

min
F
−Tr(FT ÃF)+λTr(FQQTFT ) −2λTr(FTM1QT ), s.t .FTF= Ic ,F∈Rn×c , (17)

where symmetric matric Ã∈Rn×n andM1,Y(YTY)−
1
2 ∈Rn×c . SinceQ∈Rc×c is a square

matrix and FTF= Ic , the second term in objective Eq. (17) is a constant and then we can
get the simplified version of objective Eq. (17) as

min
F
−Tr(FT ÃF)−2λTr(FTM1QT ), s.t .FTF= Ic ,F∈Rn×c . (18)

Denoting B,M1QT , we have

max
F

Tr(FT ÃF)+2λTr(FTB), s.t .FTF= Ic ,F∈Rn×c . (19)

The corresponding Lagrangian function of problem Eq. (19) is

L(F,3)=Tr(FT ÃF)+2λTr(FTB)−Tr(3(FTF− Ic)), (20)

where3 is a Lagrangian multiplier in matrix form. Then we can obtain the KKT condition
as
∂L
∂F
= 2ÃF+2λB−2F3= 0 (21)

which is difficult to solve directly.
Essentially, problem Eq. (19) is a relaxed form of quadratic optimization problem

on the Stiefel manifold (QPSM). In optimization theory, the standard form of QPSM is
minPTP=IkTr(P

THP− 2PTK), where P ∈Rm×k , K ∈Rm×k , and the symmetric matrix
H ∈ Rm×m. This objective can be relaxed into maxPTP=IkTr(P

T H̃P)+ 2Tr(PTK) by
introducing H̃= αIm−H ∈ Rm×m, which is equivalent to Eq. (19). Inspired by the
work (Nie, Zhang & Li, 2017), we employ the generalized power iteration (GPI) method to
optimize Eq. (19) and summarize the detailed procedure in Algorithm 1.
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Algorithm 1 The GPI-based optimization to problem (19)

Input: symmetric matrix Ã ∈ Rn×n, orthogonal matrix Q ∈ Rc×c , indicator matrix Y ∈
Bn×c , regulation parameter λ;

Output: the scaled indicator matrix F.
1: Initialize F∈Rn×c such that FTF= Ic ;
2: while not converged do
3: UpdateMF = 2ÃF+2λB, where B,M1QT andM1,Y(YTY)−

1
2 ;

4: Calculate the compact SVD ofMF asMF = USVT , where U ∈ Rc×c , S ∈ Rn×c and
V∈Rc×c ;

5: Update F=UVT ;
6: end while

� Update Y with F and Q fixed. Similar to the optimization process of updating Q, the
sub-objective associated with Y is

min
Y
‖Y(YTY)−

1
2 −FQ ‖

2
2, s.t .Y 1c = 1n,Y∈Bn×c . (22)

Denote G, FQ and then optimizing Eq. (22) is equivalent to optimizing the following one

max
Y

Tr(Y(YTY)−
1
2GT ), s.t .Y 1c = 1n,Y∈Bn×c . (23)

Motivated by Chen et al. (2018), objective Eq. (23) can be represented as

max
Y1c=1n,Y∈Bn×c

c∑
j=1

yj
Tgj√
yj Tyj

. (24)

Since
√
yTj yj involves all rows of Y, we can sove Y row-wisely; that is, we can update one

row of Y by fixing the others as constants. Suppose we have obtained the optimal solution
Y in the last iteration and the corresponding objective function values is J old(Ȳ). The
elements of each row vector yi are composed of 1 or 0 where the unique 1 indicates the
cluster membership of ith data point. To solve the ith row yi, we only need to consider the
increment of the objective function value from yij = 0 to yij = 1. The increment as can be
calculated as follows

sij =
yj

Tgj +gij(1−y ij)√
yj

Tyj + (1−y ij)
−

yj
Tgj −y ijgij√
yj

Tyj −y ij
, (25)

whose graphical illustration is given in Fig. 2.
Then it can be verified that the optimal solution of yi is

yij =〈j = arg max
l ′∈ [1,c]

sil ′〉 (26)

where 〈·〉 is 1 if the argument is true or 0 otherwise and sij is defined by Eq. (25).
As a whole, we summarize the complete procedure of solving the objective function

Eq. (11) of KMSR-G in Algorithm 2.
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Figure 2 The illustration procedure of updating Y (Chen et al., 2017).
Full-size DOI: 10.7717/peerjcs.450/fig-2

Algorithm 2 The optimization procedure to KMSR-G objective function in (11).

Input: Data matrix X ∈Rd×n, the number of clusters c , and the regularization parameter
λ;

Output: The binary cluster indicator matrix Y∈Bn×c .
1: Construct graph similarity matrix A ∈ Rn×n and its normalized version

Ã=D−1/2AD−1/2;
2: Compute the normalized graph Laplacian matrix Ln = I− Ã, where D ∈Rn×n is a di-

agonal degree matrix with its i-th diagonal element dii=
∑n

j=1aij ;
3: Form the matrix F∗ by stacking the eigenvectors of Ln corresponding to its c smallest

eigenvalues;

4: Initialize Y according to Y∗= diag (F∗F∗T )
−

1
2F∗ and yij =〈j = argmaxj ′∈ [1,c]y∗ij ′〉;

5: Initialize Q randomly such that QTQ= Ic ;
6: while problem (11) does not converge do
7: Update F according to Algorithm 1;

8: Update Q=VUT , where the compact SVD ofM2= (YTY)−
1
2YTF is U6VT ;

9: Calculate G= FQ;
10: while problem (24) does not converge do
11: Update Y according to (26);
12: end while
13: end while

Model complexity and convergence analysis
In terms of the computational complexity, if ignoring the special process in graph
construction in KMSR-G, KMSR and KMSR-G share similar complexities because they
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involve the same optimization procedure. The below complexity analysis is based on
Algorithm 2.

• Updating the variable F. We use the generalized power iteration method to update F in
Eq. (19). According to the analysis inNie, Zhang & Li (2017), the complexity of updating
F is O(n2c).
• Updating the variable Q. The complexity of updatingQmainly comes from the singular
value decomposition ofM2 ∈Rc×c , which has the complexity of O(c3).
• Updating the variable Y. We need O(nc) time to obtain Y because we deal with Y row
by row. What’s more, yj

Tyj and yj
Tgj can be calculated before solving Y and updated

after solving yi according to Eq. (26).

Assuming that T1 is the maximum number of iterations for the KMSR-G, r1 and r2 are
the average numbers of iterations to update F and Y respectively, the overall computational
complexity of KMSR-G isO(T1(n2cr1+c3+ncr2)). In general cases, we have c <T1<< n.
In comparison with spectral clustering methods which usually have the time complexity
of O(n3) (n is the number of samples), we can easily find that KMSR and KMSR-G have a
lower computational complexity in dealing with large-sized data sets.

Obviously, KMSR and KMSR-G have similar convergence properties due to the identical
optimization procedure. Here we also give the analysis based on Algorithm 2.When solving
the variable F, the GPI method is utilized whose optimization procedure is summarized
in Algorithm 1. According to the appendix of Nie, Zhang & Li (2017), we know that the
GPI method converges to a global minimum of the quadratic problem on the Stiefel
manifold, which guarantees the convergence of Algorithm 1 in updating F. When updating
the variable Q, the analytical solution to Q can be obtained based on the singular value
decomposition. For the variable Y, we propose to optimize it in a row-by-row manner
according to Eq. (26) because determining the membership of each sample is independent.
So we can convert the updating of Y into n independent subproblems. Further, since each
row of Y is a binary vector in one-hot encoding, there are finite candidate solutions for
each subproblem. Therefore, it can be proved that each subproblem must have an optimal
solution, which guarantees the convergence of the updating of Y. In total, we can come to a
conclusion that the optimization of KMSR-G is expected to converge in terms of iterations.

Discussions
We can find that the only difference between KMSR and KMSR-G is the different ways
to represent the similarity matrix (also called the affinity matrix) in respective objective
functions. If the normalized graph affinity matrix Ã is represented as XTX, KMSR-G will
degenerate to KMSR. It is obvious that the clustering performance heavily depends on the
quality of the input data graph in graph-based clustering. In the section of experiments, we
will adopt one rule-based method (‘Heatkernel’ weighting scheme) and two learning-based
methods (CAN and PCAN (Nie, Wang & Huang, 2014)) to obtain three different affinity
matrices. Then we will see how much the graph quality influences the performance of the
KMSR-G.
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Therefore, there are two proposed models KMSR and KMSR-G in this paper and the
latter can be seen as the generalization of the former. As a summary, below we summarize
the main contributions of this paper.

• We propose a novel Kmeans formulation (termed KMSR) by exploring the underlying
equivalence between the Kmeans clustering and the spectral clustering, which is finally
achieved by jointly performing the spectral embedding and rotation. Mathematically,
the objective of KMSR consists of two items, which respectively aim to calculate the
scaled cluster indicator matrix and perform discretization to obtain the final discrete
cluster indicator matrix. When compared with Kmeans clustering, the randomness
would be effectively alleviated in KMSR because it jointly searches for an optimal rotator
in discretization process.
• By investigating the connection between the graph affinity matrices respectively
employed in KMSR and spectral clustering, we make generalization on the KMSR
model to make it accommodate more advanced graphs, and finally formulate the
KMSR-G model. KMSR-G is also a unified model for jointly completing the spectral
embedding and rotation steps, which is often expected to obtain superior performance
to KMSR.
• We propose an efficient algorithm to optimize the objective function of KMSR-G (also
KMSR since they share the same optimization procedure). In the iterative procedure,
there are three blocks respectively corresponding to the three variables (i.e., F, Q
and Y) involved in KMSR-G. They are co-optimized toward the optimum. Besides, we
provide detailed computational complexity and convergence analysis to the optimization
algorithm.
• To evaluate the performance of KMSR and KMSR-G in data clustering, we conduct
extensive experiments on twelve representative benchmark data sets. The experimental
results show that both KMSR abd KMSR-G perform better than the closely related
counterparts.

EXPERIMENTS
In this section, we conduct experiments on twelve representative benchmark data sets to
evaluate the performance of the proposed KMSR and KMSR-G models in data clustering.

Evaluation metrics
To evaluate the clustering results, we compare the obtained label of each sample with
the label provided by the data set. We use three popular metrics, i.e., Accuracy (Acc) ,
Normalized Mutual Information (NMI) andPurity (Huang, Nie & Huang, 2015) tomeasure
the clustering performance of different models. Below we give the definition of these three
metrics in turn.

Given a data point xi, we use ri to denote the obtained cluster label and si to denote the
ground-truth label provided by the data set. Then Acc is defined as

Acc=
1
n

n∑
i=1

δ(si,map(ri)), (27)
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where n is the sample size, δ(x,y) is the indicator function that equals to one if x = y and
zero otherwise. map(ri) is the permutation mapping function which maps each cluster
label ri to the equivalent class label from the data set.

Let C denote the set of clusters obtained from the ground truth and C ′ denote the set of
the clusters obtained from the given model. Then mutual information MI(C,C ′) is defined
as

MI(C,C ′)=
∑

ci∈C,c ′j∈C ′
p(ci,c ′j ) · log

p(ci,c ′j )

p(ci)p(c ′j )
, (28)

where p(ci) and p(c ′j ) denote the probabilities that a sample arbitrarily selected from the
data set belongs to the clusters ci and c ′j , respectively. Besides, p(ci,c

′

j ) is the joint probability
that the selected sample belongs to the clusters ci and c ′j simultaneously. So the NMI is
given as follows

NMI(C,C ′)=
MI(C,C ′)

max(H (C),H (C ′))
, (29)

where H (C) and H (C ′) denote the entropies of C and C ′ respectively.
To compute the purity, each cluster is assigned to the class which is most frequent in

the cluster, and then the accuracy of this assignment is measured by counting the number
of correctly assigned documents and dividing by n. Then the clustering Purity metric is
estimated by

Purity=
1
n

c∑
i=1

max
j
(nji) (30)

where c is the number of the clusters and n is the total number of the data points, nji is the
number of ith input class that is assigned to the jth cluster.

It is easy to check that all Acc, NMI and Purity metrics range from zero to one and a
higher value indicates a better clustering result.

Data sets and experimental settings
Twelve real-world data sets were used in the following experiments including nine image
data sets (COIL20, umist, AT&T, YaleB, Yale, PIE, AR, MNIST and jaffe) and three
non-image data sets (ecoli, abalone and scale). Their basic characteristics of the sample
size, dimensionality, the number of clusters were summarized in Table 1.

The following experiments can be divided into two parts. In the former part, we aim
to demonstrate the effectiveness of the KMSR model in comparison with the traditional
one; In the latter part, we want to evaluate the effectiveness of the generalized KMSR-G
model and also provide some insights to the influence of graph quality on the clustering
performance.
PART 1. Experimental settings to evaluate the performance of the KMSRmodel. To
investigate the effectiveness of the KMSR model, we perform the pairwise comparison
between the KMSR and the traditional Kmeans clustering. Since the Kmeans clustering is
sensitive to the initialization, we independently repeat it 50 times. For our KMSR model,
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Table 1 The basic characteristics the twelve data sets used in the experiments.

Data Sets # Samples # Dimensions # Clusters

ecoli 327 7 5
abalone 4177 8 3
scale 625 4 3
COIL20 1440 1024 20
umist 575 644 20
AT&T 400 189 40
YaleB 2414 1024 38
Yale 165 105 15
PIE 1428 1024 68
AR 1200 261 100
MNIST 1000 784 10
jaffe 212 177 7

we repeat it 20 times. The number of clusters is set as the ground-truth. Since there is a free
regularization parameter in the proposed KMSR model, we tune it from candidate values{
10−3,10−2,...,103

}
to let it achieve the best results.

PART 2. Experimental settings to evaluate the performance of the KMSR-Gmodel.
First, we compare the generalized model KMSR-G with two closely related spectral
clustering algorithms, NCut and RCut, to evaluate its effectiveness. Two commonly used
post-processing methods (i.e., Kmeans and spectral rotation) are adopted in spectral
clustering; therefore, we implement this two versions of NCut respectively named as
NCut+KM and NCut+SR. Similarly, we have two corresponding versions of RCut,
RCut+KM and RCut+SR. The affinity matrix referred in these models is constructed
by the ‘Heatkernel’ function in which the number of the nearest neighbors is set as five,
and the bandwidth parameter is set as one. Second, by taking the two more advanced
learning-based graph affinity matrices, CAN and PCAN, as the input graphs to KMSR-G,
we respectively obtain two variant models termed KMSR-GC and KMSR-GPC. The
neighborhood parameters k required in CAN and PCAN are tuned from {5,10,15,20}.
The CAN and PCANmethod are repeated only once since their clustering results are stable
(Nie, Wang & Huang, 2014). Both KMSR-GC and KMSR-GPC are repeated 20 times. We
use CAN and PCAN as graph learning methods in our experiments for two reasons. One
is that both are joint models for graph construction and scaled cluster indicator matrix
learning, leading to superior graph quality. The other is that they can adaptively determine
the number of neighbors in graph construction.

For all the above mentioned models, the number of clusters is set as the ground-truth in
each data set and the clustering performance is evaluated based on the metrics of Acc, NMI
and Purity. Besides, we respectively set the maximum numbers of iterations in updating
F and Y in our proposed models to be 50 and 10. For the free regularization parameters
in related models, they are tuned from

{
10−3,10−2,...,102,103

}
to let the models achieve

their best results. The average clustering results and standard deviations are reported for
comparison.
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Table 2 Clustering performance (%) ofKmeans and KMSR on the benchmark data sets.

Acc NMI Purity

Data Sets Kmeans KMSR Kmeans KMSR Kmeans KMSR

ecoli 65.50± 6.85 84.56± 0.22 58.70± 2.27 61.47± 0.35 78.46± 1.50 84.56± 0.22
abalone 51.55± 0.39 53.63± 0.37 13.23± 0.63 15.64± 0.10 53.50± 0.03 54.20± 0.10
scale 55.31± 5.66 64.93± 0.51 17.42± 8.74 34.65± 1.34 69.72± 5.33 77.95± 1.05
COIL20 56.06± 4.94 72.81± 0.05 70.51± 2.18 80.26± 0.22 59.64± 4.34 74.55± 0.34
umist 39.51± 2.07 51.04± 0.12 58.33± 1.80 65.09± 0.20 46.51± 1.54 57.39± 0.49
AT&T 52.94± 4.21 63.10± 1.80 73.06± 2.51 78.34± 0.50 61.25± 3.41 67.85± 2.00
YaleB 8.49± 0.70 23.14± 0.62 10.46± 1.00 41.70± 0.71 9.22± 0.73 24.25± 0.79
Yale 39.09± 4.61 44.48± 2.04 45.19± 3.61 49.13± 1.60 41.36± 3.92 46.06± 1.29
PIE 33.56± 1.97 92.38± 0.91 66.40± 0.92 98.13± 0.22 39.22± 1.27 94.45± 0.57
AR 15.25± 0.31 33.48± 1.06 48.43± 0.65 62.38± 0.86 16.18± 0.39 37.40± 1.04
MNIST 52.04± 3.16 56.17± 0.31 49.83± 1.93 50.83± 0.00 55.83± 2.63 57.50± 0.00
jaffe 27.88± 2.92 34.91± 1.33 12.51± 3.02 17.25± 1.35 29.62± 3.38 35.94± 1.22

Experimental results and analysis
Here we show the experimental results based on which we provide the corresponding
analysis.

PART 1. The experimental results of the pairwise comparison between Kmeans and
KMSR are shown in Table 2, which includes the average results and standard deviations over
multiple runs. From this table, we can find that the best results highlighted in boldface are
all from the proposed KMSR model. Therefore, we can conclude that KMSR significantly
outperforms the Kmeans on all the used data sets in terms of all the three clustering
performance evaluation metrics, which indicates the effectiveness of jointly performing
spectral embedding and rotation.

Besides the mean values, we can observe that the standard deviations on all the data
sets corresponding to the KMSR is much smaller than those of Kmeans, which are more
explicitly shown by the statistical box digrams in Fig. 3. This means that KMSR is superior
to Kmeans on the model stability. We think that this improvement comes from the
optimization of the orthogonal and normalized rotation matrix instead of the random
initialization of cluster centroids in Kmeans clustering.

PART 2. By constructing the graph affinity matrix in the ‘Heatkernel’ scheme, we show
the experimental results of comparing KMSR-G with the four closely related models,
NCut+KM, NCut+SR, RCut+KM and RCut+SR, in Table 3 where the best results are
highlighted in boldface. It is obvious that KMSR-G obtained better clustering performance
than the other models in most cases. For example, KMSR-G performs pretty well on
the ecoli, COIL20, AT&T, PIE and MNIST data sets, which respectively obtains the
improvements of 7.78%, 3.76%, 2.7%, 12.83%, and 4.05% in comparison with the second-
best method in terms of the Acc metric.

Besides the theoretical analysis on the convergence of KMSR-G in ‘Model complexity
and convergence analysis’, , we empirically show the decreasing of its objective function
values on the six data sets of abalone, scale, umist, YaleB, PIE and jaffe in Fig. 4. All the
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A

B

C

Figure 3 Clustering results obtained byKmeans and KMSR in statistical box diagrams. (A) Acc. (B)
NMI. (C) Purity.

Full-size DOI: 10.7717/peerjcs.450/fig-3

Huang et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.450 15/22

https://peerj.com
https://doi.org/10.7717/peerjcs.450/fig-3
http://dx.doi.org/10.7717/peerj-cs.450


Table 3 Clustering performance (%) of KMSR-G and related models on twelve data sets.

Acc

Data Sets NCut+KM NCut+SR RCut+KM RCut+SR KMSR-G

ecoli 73.70± 0.55 75.26± 1.04 75.15± 5.25 77.84± 1.49 85.63± 0.01
abalone 49.42± 3.85 50.10± 2.68 48.87± 4.30 50.97± 0.00 51.13± 0.22
scale 65.61± 0.31 66.15± 0.50 63.37± 3.08 65.17± 1.61 66.72± 0.45
COIL20 72.46± 4.80 76.58± 5.16 71.45± 4.76 77.77± 3.31 81.53± 0.69
umist 50.77± 2.10 53.97± 1.98 51.32± 3.86 55.29± 1.56 56.43± 1.35
AT&T 62.70± 2.15 66.30± 2.53 62.38± 1.25 63.46± 1.01 69.00± 0.71
YaleB 32.69± 1.19 43.47± 0.33 33.62± 1.31 43.57± 0.06 37.76± 0.03
Yale 42.55± 0.66 42.61± 1.73 41.64± 1.56 43.42± 1.60 44.24± 0.86
PIE 82.56± 3.13 84.93± 3.16 81.55± 2.07 84.82± 3.96 97.76± 0.01
AR 16.65± 0.23 16.80± 0.15 16.56± 0.26 16.92± 0.11 17.04± 0.06
MNIST 49.29± 3.46 50.01± 1.45 49.70± 2.33 50.75± 1.24 54.80± 0.00
jaffe 24.43± 0.60 25.68± 0.24 24.62± 1.12 25.94± 0.48 25.94± 0.00

NMI
ecoli 55.94± 0.00 56.75± 0.47 57.86± 1.31 58.37± 0.19 67.55± 0.24
abalone 10.05± 4.54 11.42± 3.06 9.47± 4.54 12.41± 0.00 12.41± 0.00
scale 34.23± 0.35 34.64± 0.46 32.26± 3.88 34.13± 1.75 36.92± 0.00
COIL20 84.50± 1.81 87.66± 2.39 84.91± 2.41 87.78± 2.43 88.89± 0.23
umist 71.14± 1.14 72.66± 1.17 70.37± 2.01 73.60± 0.81 73.17± 0.30
AT&T 79.04± 0.80 80.39± 1.20 78.95± 0.63 79.20± 0.55 81.34± 0.20
YaleB 43.10± 0.80 51.26± 0.24 41.41± 0.91 50.00± 0.05 44.37± 0.09
Yale 49.94± 0.73 50.29± 1.16 49.18± 1.27 50.95± 1.00 51.71± 0.04
PIE 94.67± 1.08 95.12± 1.10 93.97± 0.97 95.03± 1.41 99.40± 0.01
AR 51.84± 0.22 52.87± 0.18 50.59± 0.38 52.11± 0.28 52.12± 0.32
MNIST 53.78± 2.21 55.47± 0.95 52.68± 1.12 53.69± 1.11 57.03± 0.06
jaffe 8.71± 0.82 9.40± 0.22 9.48± 0.88 9.69± 0.40 11.31± 0.66

Purity
ecoli 74.68± 0.14 75.72± 0.61 77.91± 0.29 78.12± 0.29 85.63± 0.01
abalone 50.54± 4.42 51.93± 3.31 49.89± 4.90 53.00± 0.00 53.00± 0.00
scale 78.74± 0.38 78.91± 0.55 77.41± 1.35 78.17± 0.73 79.76± 0.11
COIL20 75.23± 4.13 81.32± 5.24 76.56± 4.05 82.67± 3.33 84.20± 0.34
umist 61.96± 2.12 63.31± 1.97 60.16± 3.21 64.33± 1.66 65.04± 0.00
AT&T 66.00± 1.79 68.53± 2.86 65.75± 1.32 67.90± 1.02 72.63± 0.53
YaleB 34.72± 1.03 45.28± 0.35 35.65± 1.04 45.36± 0.07 39.08± 0.03
Yale 42.91± 0.51 43.00± 1.14 42.52± 1.78 43.42± 1.60 44.55± 1.29
PIE 85.51± 2.82 85.53± 3.24 82.46± 2.53 85.46± 3.96 98.39± 0.01
AR 17.29± 0.23 17.32± 0.13 17.50± 0.25 17.56± 0.17 17.71± 0.06
MNIST 55.74± 2.62 58.00± 2.81 55.55± 1.70 57.55± 1.59 61.95± 0.07
jaffe 24.65± 0.88 25.68± 0.24 24.79± 1.36 26.44± 0.50 27.83± 0.75

results are obtained when the regulation parameter λ is set as 10−1. We can find that
KMSR-G has desirable convergence property and usually converges in a few iterations.
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Figure 4 The decreasing of the KMSR-G objective function values in terms of iterations (λ= 0.1). (A)
abalone. (B) scale. (C) PIE. (D) YaleB. (E) jaffe. (F) umist.

Full-size DOI: 10.7717/peerjcs.450/fig-4

In the description of experimental settings, we mentioned that the regulation parameter
λ is tuned from candidate values {10−3,10−2,...,103}. Here we explore the impact of such
regulation parameter on the clustering performance of KMSR-G. We show the clustering
accuracy of KMSR-G with the variation of parameter λ on the eight of our used data sets
in Fig. 5. Generally, it depicts that KMSR-G prefers a small value of λ to achieve better
clustering accuracy.

In the optimization of the binary cluster indicator matrix Y, it is also in an iterative
manner (i.e., the inner loop in Algorithm 2). Here taking the AT&T and COIL20 data sets
for example, we show the number of iterations in updating Y in Fig. 6. Since the number
of clusters is usually small in respective data sets, the updating of Y could be a very fast
process, usually less than 10 iterations.

Besides the experiments on the rule-based graph (i.e., ‘Heatkernel’ function), we further
try two learning-based graphs which are the CAN and PCAN (Nie, Wang & Huang, 2014).
CAN can adaptively learn the graph affinitymatrix fromdata by simultaneously considering
the non-negativity, normalization and rank constraint (Peng et al., 2020) properties of a
desirable graph. PCAN is its projected version, which takes the three-fold constraints into
account in a subspace. We present the clustering results of CAN, KMSR-GC, PCAN and
KMSR-GPC in Table 4. From the obtained results, we have the following two findings.

• By comparing the results in Tables 3 and 4, we can find that KMSR-G with CAN (or
PCAN) obtained superior performance than that with ‘Heatkernel’ function in most
cases. This indicates that the graph quality is the leading factor in graph-based clustering
models. Even for one graph construction method, it functions differently on different
data sets according to our experimental results.
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Figure 5 The accuracy of KMSR-G obtained in different settings of λ. (A) abalone. (B) scale. (C)
AT&T. (D) PIE. (E) Yale. (F) YaleB. (G) MNIST. (H) umist.
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• We can generally declare that KMSR-GC is better than its baseline method CAN;
and similarly, KMSR-GPC outperforms PCAN on all the data sets. Though CAN and
PCAN jointly performs graph learning and clustering, the indicator matrices learned by
them are still real-valued ones; therefore, the postprocessing step is necessary to make
discretization. This limitation is avoided in our proposed KMSR-G model and thus
improved performance is obtained.

CONCLUSION
In this paper, based on the connection between Kmeans clustering and spectral clustering,
we proposed a new Kmeans formulation by jointly performing spectral embedding and
spectral rotation. The formulated KMSR model can not only improve the clustering
performance but also enhance the model stability in comparison with the traditional
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Table 4 Clustering performance (%) of KMSR-G based on learning-based graphs of CAN and PCAN.

Data Sets CAN KMSR-GC PCAN KMSR-GPC

Acc
ecoli 81.96 81.96± 0.00 81.96 81.96± 0.00
abalone 50.97 53.08± 0.00 50.97 51.59± 0.88
scale 53.28 63.20± 0.00 66.72 67.84± 0.01
COIL20 83.96 86.01± 0.05 81.81 81.81± 0.00
umist 69.04 71.13± 0.30 54.78 55.04± 0.37
AT&T 55.25 63.00± 1.77 60.00 61.50± 0.01
YaleB 37.12 37.12± 0.00 38.69 38.69± 0.00
Yale 41.21 42.42± 0.86 40.00 40.91± 0.43
PIE 100.0 100.0± 0.00 100.0 100.0± 0.00
AR 13.67 13.96± 0.06 13.33 13.63± 0.06
MNIST 45.80 49.37± 2.14 45.80 45.80± 0.00
jaffe 22.64 27.59± 0.33 25.00 26.18± 1.00

NMI
ecoli 65.74 65.74± 0.00 66.32 66.32± 0.00
abalone 12.49 12.52± 0.00 12.41 12.42± 0.00
scale 17.80 18.42± 0.00 17.04 17.17± 0.01
COIL20 91.34 92.49± 0.01 89.60 89.60± 0.00
umist 81.72 82.15± 0.60 65.02 65.02± 0.00
AT&T 73.88 78.82± 0.85 74.13 77.32± 0.22
YaleB 39.98 39.98± 0.00 39.99 40.22± 0.33
Yale 44.95 45.77± 0.20 42.64 43.06± 0.58
PIE 100.0 100.0± 0.00 100.0 100.0± 0.00
AR 42.93 43.04± 0.01 35.88 38.04± 0.02
MNIST 49.87 49.87± 0.00 46.35 46.46± 0.00
jaffe 10.80 11.28± 0.56 11.10 11.94± 0.83

Purity
ecoli 82.87 82.87± 0.00 82.87 82.87± 0.00
abalone 53.08 53.00± 0.00 53.00 53.00± 0.00
scale 67.20 67.20± 0.00 70.08 70.24± 0.01
COIL20 87.22 88.26± 0.00 86.11 86.11± 0.00
umist 74.78 76.00± 0.74 62.78 62.78± 0.00
AT&T 64.25 68.38± 1.24 67.50 68.25± 0.01
YaleB 39.73 39.73± 0.00 40.56 40.56± 0.00
Yale 43.03 44.85± 0.00 42.42 42.73± 0.43
PIE 100.0 100.0± 0.00 100.0 100.0± 0.00
AR 16.83 16.96± 0.06 17.17 17.25± 0.01
MNIST 50.90 50.90± 0.00 51.10 51.10± 0.00
jaffe 23.11 28.07± 0.33 25.94 26.89± 0.67
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Kmeans clustering. Further, the KMSR model was generalized as KMSR-G which can
take any pre-defined graph as input and output the final discrete cluster indicator matrix.
An efficient method in coordinate blocking framework was designed to optimize the
proposed KMSR (KMSR-G) model objective. Extensive experiments were conducted
on representative data sets to show the effectiveness of the proposed models in data
clustering. As our future work, we will consider unifying the three components of graph
construction, spectral embedding and spectral rotation in graph-based clustering into
a complete framework. That is, we will incorporate the graph learning process into the
present KMSR-G model.
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