
Neural network hyperparameter
optimization for prediction of real estate
prices in Helsinki
Jussi Kalliola1,*, Jurgita Kapočiūtė-Dzikienė1,* and
Robertas Damaševičius1,2,*

1 Department of Applied Informatics, Vytautas Magnus University, Kaunas, Lithuania
2 Faculty of Applied Mathematics, Silesian University of Technology, Gliwice, Poland
* These authors contributed equally to this work.

ABSTRACT
Accurate price evaluation of real estate is beneficial for many parties involved in real
estate business such as real estate companies, property owners, investors, banks,
and financial institutes. Artificial Neural Networks (ANNs) have shown promising
results in real estate price evaluation. However, the performance of ANNs greatly
depends upon the settings of their hyperparameters. In this paper, we apply and
optimize an ANN model for real estate price prediction in Helsinki, Finland.
Optimization of the model is performed by fine-tuning hyper-parameters (such as
activation functions, optimization algorithms, etc.) of the ANN architecture for
higher accuracy using the Bayesian optimization algorithm. The results are evaluated
using a variety of metrics (RMSE, MAE, R2) as well as illustrated graphically.
The empirical analysis of the results shows that model optimization improved the
performance on all metrics (reaching the relative mean error of 8.3%).

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Artificial neural network, Hyperparameter optimisation, Prediction model, Real estate
prices

INTRODUCTION
Artificial Intelligence (AI) and Machine Learning (ML) have been implemented into many
industrial and business fields and applications (Cioffi et al., 2020; Kraus, Feuerriegel &
Oztekin, 2020). Influential studies have demonstrated the robustness of the AI/ML
approaches to predict (or classify) different factors (as interest rates, mortgage rates, prices,
etc.) in the real-estate sector (Mu, Wu & Zhang, 2014; Kang et al., 2020). The real estate
price prediction problem is one of the most popular topics in which the capabilities of
AI-ML are investigated. Besides, real estate price prediction is a complex non-linear
problem, which is affected by multiple direct and indirect attributes (such as construction
year, apartment area, etc.) (Ferlan, Bastič & Pšunder, 2017).

Different types of approaches are used to predict the prices of residential property. One
of the methods most popular methods is based on hedonic price models (Can, 1992).
Hedonic price models (HPM) are relatively easy to analyze and simple to implement.
Besides, HPM allows human intervention to produce different outcomes consistently; and
due to it, developers can have a better understanding of relationships between inputs and
outputs (Tajani, Morano & Ntalianis, 2018). Despite the advantages of HPM, they

How to cite this article Kalliola J, Kapočiūtė-Dzikienė J, Damaševičius R. 2021. Neural network hyperparameter optimization for
prediction of real estate prices in Helsinki. PeerJ Comput. Sci. 7:e444 DOI 10.7717/peerj-cs.444

Submitted 2 November 2020
Accepted 25 February 2021
Published 19 April 2021

Corresponding authors
Jurgita Kapočiūtė-Dzikienė,
jurgita.kapociute-dzikiene@vdu.lt
Robertas Damaševičius,
robertas.damasevicius@polsl.pl

Academic editor
Khalid Aamir

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.444

Copyright
2021 Kalliola et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.444
mailto:jurgita.�kapociute-dzikiene@�vdu.�lt
mailto:robertas.�damasevicius@�polsl.�pl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.444
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

suffer from the non-linearities problem which is common in the price prediction tasks.
The linear approach for real estate price prediction has difficulties to construct generic
predictions, therefore other approaches have been offered to cope with the non-linearity
problem.

On the contrary to the hedonic models, other more sophisticated price prediction
approaches focus on the non-linear relationship between input and output data
such as spatial lag and spatial error model (Wang, Chang & Wang, 2019). The classic
representatives of this group are regression methods, such as linear regression, support
vector regression (SVR) or k-nearest neighbors, and random tree regression for real estate
price predictions are widely used and have demonstrated satisfactory results in the past
(Madhuri, Anuradha & Pujitha, 2019; Manasa, Gupta & Narahari, 2020; Lu et al.,
2017; Hong, Choi & Kim, 2020). However, regression methods have achieved only slightly
better results compared to HPMs, but they are more complicated and expensive to set up.

As an alternative to classic price prediction approaches, the artificial neural network
(ANN) based methods have shown promising results when applying for real estate
evaluation (Varma et al., 2019; Peter et al., 2020). Their main advantage is the ability to
find non-linear relationships between inputs and outputs; therefore, they are suitable for
non-linearity prediction for real estate price evaluation and prediction (Ho, Tang &Wong,
2020). Recent studies have claimed machine learning models, including ANNs, to be
effective for real estate price prediction tasks (Hamzaoui & Perez, 2011;Morano, Tajani &
Torre, 2015; Kang et al., 2020).

However, there have been little effort in modifying these models or adjusting their
hyperparameter values for the real state price prediction. For example, Abidoye et al. (2019)
used standard autoregressive integrated moving average (ARIMA), artificial neural
network (ANN) and support vector machine (SVM) models to generate out-of-sample
predictions of property prices, and evaluated them using property price index (PPI). Bin
et al. (2019) focused on combining house features and street map image features to
perform multi-modal feature fusion using the attention-based neural network, while the
evaluation of house price was done using classical boosted regression trees. Ho, Tang &
Wong (2020) also used typical machine learning algorithms such as support vector
machine (SVM), random forest (RF) and gradient boosting machine (GBM) for evaluation
of property price, but did not analyze their hyperparameter optimization. Kim, Kwon &
Choi (2020) did consider considered the combinations of the hyper-parameters for a
long short-term memory (LSTM) model used to construct a housing price prediction
model but they did not use any specific methodology and the applied procedure was ad
hoc. The problem, however, was not addressed by Lee & Park (2020), who used the
Bayesian neural network as a tool to measure the uncertainty in property valuation, and
Liu et al. (2020), who predicted the property price using pre-trained CNN model based on
neighboring data samples. Liu (2017) used the bacterial chemotaxis particle swarm
algorithm to optimize the initial weights and thresholds of the backpropagation neural
network for commercial real estate price evaluation, however, they did not explore the
hyperparameters of the network model.Milunovich (2020) focused on the combination of
forecast from several machine learning algorithms such as kernel ridge regressions,

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 2/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

and deep learning neural networks to predict Australian house prices, but they did not
consider optimizing the individual algorithms and models. Štubňová et al. (2020),
again, explored only the training of ANNs using different learning algorithms such as
Levenberg-Marquart, Bayesian Regularization, and Scaled Conjugate Gradient, but did
not consider the optimization of model architecture at the hyper level for residential
property price estimation. Similarly, Zhao, Chetty & Tran (2019) used a hybrid model
consisting of a pre-trained CNNs model, a MLP model for tabular dataset/numeric
features, and another CNNs model to extract visual features from property images,
while the XGBoost component performed regression to predict real estate price. However,
they did not do any ablation study to motivate the selection of the architecture or its
individual components. Zhou (2020) also adopted a standard three-layer feedforward BP
neural network, and selected the number of neurons in hidden layer based on the results of
pre-experiments with no additional details given on how these were performed.

Despite the robustness of ANN models used in previous studies, the performance of
machine learning models is greatly influenced by the selection of hyper-parameter values
(Kim, Kwon & Choi, 2020). However, the existing work on real estate (housing) price
evaluation or prediction usually applies off-the-shelf machine learning or deep learning
methods without considering the optimization of their parameters, or any setting of the
parameters is ad hoc. Therefore, the optimization of hyperparameters of deep learning
models for real estate price prediction remains a knowledge gap, which the current study is
aiming to bridge.

Different numbers of variables, sample sizes, training-testing ratios, and model
architectures have been used in various studies. The 80:20 to 90:10 training-testing ratio is
the most popular training-testing split. The number of input variables ranges from 6 to
40, which allows us to assume that the optimal feature set is not discovered. The number of
variables highly depends on the completeness of data. The model architecture plays an
important role in any ANN design: in different approaches, different architectures have
been investigated such as 8-13-1 (Morano, Tajani & Torre, 2015), 40-10-1 (Ahmed,
Rahman & Sabirah, 2014), and 6-6-1 (Hamzaoui & Perez, 2011) (where a-b-c represents
numbers of inputs, hidden layers, and outputs, respectively). The more numbers of hidden
layers the ANN architecture has, the more complex it is. High numbers of hidden layers
in the previous works indicate the complexity of the solution. The summary of these
important studies can be found in Table 1.

The dataset size is an important factor; however, completeness and representativeness
are even more important: the more representative instances it contains, the more robust
models can be created. As demonstrated in Morano, Tajani & Torre (2015), ANNs
can achieve relatively good results even with small datasets. Despite the diversity of the
ANN architectures (investigated in similar approaches), it is impossible to identify
the best architecture, because architectures were evaluated under very different
experimental conditions (in terms of datasets, inputs, etc.) (Zhang & Zhu, 2018; Abiodun
et al., 2018).

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 3/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

Moreover, none of the previous studies paid enough attention to the investigation of the
hyper-parameter values. Selecting different hyper-parameter values can significantly boost
or degrade the overall performance of the ANN even if the architecture remains stable
(Feurer & Hutter, 2019). Besides, the number of different hyper-parameter value
combinations is very large. Seeking for the optimal ANN hyper-parameter values
(optimization function, learning rate, batch size, dropout, validation split, and activation
functions) requires additional investigation. Due to it, we consider the hyper-parameter
tuning as the essential task of this research and the main goal of it is to improve the
baseline approach (with the initial ANN architecture and initial hyper-parameter values
chosen by the human expert according to the theoretical insights) by the significant
margin. The examples of methods used for optimizing ANN hyper-parameters include
various nature-inspired heuristics such as monarch butterfly optimization (Bacanin et al.,
2020), swarm intelligence (Bacanin et al., 2020), Bayesian optimization (Cho et al.,
2020), multi-threaded training (Połap et al., 2018), evolutionary optimization (Cui &
Bai, 2019), genetic algorithm (Han et al., 2020), harmony search algorithm (Kim, Geem &
Han, 2020), simulated annealing (Lima, Ferreira Junior & Oliveira, 2020), Pareto
optimization (Plonis et al., 2020), gradient descent optimization of a directed acyclic graph
(Zhang et al., 2020) and others.

Here we adopted a multilayer perceptron (MLP) neural network model for real estate
price prediction in Helsinki (Finland). We present a methodology for MLP model
optimization by adjusting hyper-parameters to achieve better performance. To our best
knowledge, similar research has never been performed for the Finnish real estate market,
which makes this research even more significant and novel as it can help house owners and
real estate companies to automate the price predictions with an intelligent and accurate
system. Moreover, the insights of this research are valuable with similar datasets and
predicting the real estate prices in general.

Table 1 The summary of related research works using ANN for the real estate price prediction. The results cannot be directly comparable due to
the different datasets used.

Authors City/Country Dataset size/features Train: test ratio ANN Model Accuracy

Mora-Esperanza (2004) Spain 100/12 85:15 12-7-1 n/a

Mimis, Rovolis & Stamou (2013) Athens (Greece) 3,150/9 60:20:20 9-5-1 0.86 (R2)

Lam, Yu & Lam (2008) Hong Kong 4,143/29 80:20 30 models 0.78 (R2)

Núñez-Tabales, Caridad & Rey (2013) Spain 10,124/6 80:20 6-6-1 0.86 (R2)

Ahmed, Rahman & Sabirah (2014) Bangladesh 100/40 70:30 40-10-1 0.92 (R2)

Morano, Tajani & Torre (2015) Italy 90/7 80:20 8-13-1 0.99 (R2)

Chiarazzo et al. (2014) Taranto (Italy) 193/42 70:15:15 20-20-1 0.819 (R2)

Bin et al. (2020) Philadelphia (USA) Places365 database 90:10 VGG16 0.823 (R2)

Xu & Gade (2017) South Boston (USA) n/a n/a 4 layers 96.5% accuracy within
20% price range

Abidoye et al. (2019) Hong Kong n/a 90:10 3 layers 0.92 (R2)

Sun (2019) n/a n/a n/a 3 layers 3.552 (MAE)

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 4/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

METHODOLOGY
Outline
The baseline ANNmodel was constructed based on the expert knowledge (considering the
best practices and recommendations in the related studies) and was used as the baseline
(a starting point) to which optimized ANN models were compared and evaluated.
Then we applied hyper-parameter optimization on the ANN model seeking to find their
values having the best impact on the prediction results. Here we have investigated the
following parameters: different deep neural network (DNN) architectures concerning the
number of layers (deeper or shallower), optimization functions, loss functions, batch sizes,
learning rates, dropouts, and validation splits. Different options of the hyper-parameter
values were investigated on the same dataset and the same time interval to keep
experimental conditions as equal as possible and to compare different models. The model
optimization process includes automatic hyperparameter optimization via different search
algorithms. Optimized models are compared to the baseline model.

The dataset
The ANN requires the dataset to be prepared in a supervised manner: two subsets of it
will be used to train and evaluate the model performance. The dataset for our experiments
was acquired and pre-processed to train, validate, and test different models. The data used
in our experiments contains real estate sales posts and sold apartments in Helsinki in 2019.
The property data was harvested using the web crawler (specifically developed for this
research) from several marketplaces and data search services. The property data was
combined with the area data using postal code as the key attribute. The area data is
collected from Statistics Finland and is grouped by a postal code. The latest available data
from 2017–2018 about the postal code areas were used. Each instance in the dataset
describes an apartment and the area, where it is located. The area is described with
34 features and property with 9 features. The area data is acquired from Statistics Finland
(2020) and grouped by the postal code. 29 variables were selected to differentiate postal
code areas from each other. Besides, average distances to local services (such as hospitals,
schools, grocery stores, and bus stops) in each area are used as attributes. Apartment
data was collected from several sources, mainly from real estate marketplaces and data
search service about sold apartments offered by the ministry of the environment and the
housing finance and development center of Finland (ARA) called “Asuntojen.hintatiedot.
fi” (The Ministry of the Environment and the Housing Finance and Development Centre
of Finland, 2020) using a dedicated web crawler developed by the authors. Apartment and
area data were combined by using postal code as the key variable between two datasets
to form the final instances. Data attributes describing an instance were selected based on
the importance, consistency, and format. Some data values were converted from a Boolean
or categorical format into a numerical format.

The description of the dataset is provided in Table 2. The description of the dataset is
divided into property- and area attributes. The descriptive statistics of the dataset variables
under examination is presented in Table 3.

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 5/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

Table 2 Description of the dataset attributes.

Property

Variable Category Description

Debt free price Price Price of an apartment, dept free price

Living area Size Size (m²) of an apartment

Rooms Size Number of rooms in an apartment

Living floor Building Floor number where an apartment is located

Total floors Building Total number of floors in a building

Type Building Type of an apartment, numerical value

Year Building Building year

Energy class Building Energy class of a building, numerical value

Property ownership Building Property ownership, own or rental, numerical value

Area

Population Population structure Population of the postal code area

Average age Population structure Average age of inhabitants

Aged 18 or over Education level of residents Amount of over 18-years old, total

With education Education level of residents People with at least an upper secondary qualification

Lower level university
degree

Education level of residents University/tertiary-level degree, lower: lower-degree level tertiary education
(level 6)

Higher level university
degree

Education level of residents University/tertiary-level degree, higher: higher-degree level tertiary education
(level 7) and doctorate degrees or equivalent (level 8)

Median income of
inhabitants

Resident disposable income Median income of inhabitants (V) is obtained by listing inhabitants by the
amount of disposable monetary income

The lowest income category Resident disposable income Inhabitants earning at most EUR 13 287 per year

The middle-income
category

Resident disposable income Inhabitants earning EUR 13 288 - 31 873 per year

The highest income category Resident disposable income Inhabitants earning more than EUR 31 874 per year

Purchasing power of
inhabitants

Resident disposable income Accumulated purchasing power of inhabitants (V) is the accumulated
disposable monetary income

Households Size and stage of life of households Number of households in total

Occupancy rate Size and stage of life of households Occupancy rate (m2) is the average floor area that is derived dividing the total
floor area by the number of inhabitants

Owner-occupied dwellings Size and stage of life of households Households living in owner-occupied dwellings are households whose tenure
status is owner-occupied dwelling

Rented dwellings Size and stage of life of households Households with rented dwellings are households whose tenure status is rental,
subsidized, interest subsidized rental and right of occupancy dwellings

Median income of
households

Disposable monetary income of
households

Median income of households (V) is obtained by listing households by the
amount of disposable monetary income

The lowest income category Disposable monetary income of
households

Households earning at most EUR 16 979 per year

The middle-income
category

Disposable monetary income of
households

Households earning EUR 16 980 - 35 297 per year

The highest income category Disposable monetary income of
households

Households earning more than EUR 35 298 per year

Purchasing power of
households

Disposable monetary income of
households

Accumulated purchasing power of households (V) is the accumulated
disposable monetary income

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 6/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

Analysis of dataset
The construction year is an important factor that introduces non-linearity to our problem.
Old apartments can be significantly more expensive than similar, but newer, apartments in
the same area. In Helsinki, the range of the construction year is wide, from 1850 to
2020. Only a few of the apartments are built between 1850–1925, 9.4% of the total number
of instances. 90.6% of the apartments fall between 1925 and 2020 (Fig. 1).

Another important factor is the size of an apartment. Outliers and anomalies occur in
the size category also. Apartments with a size of 0–10 m2 is most likely a mistake made by a

Table 2 (continued)

Property

Variable Category Description

Buildings, total Buildings and housing The total number of buildings per area. Free-time residences are not included
in this total

Residential buildings Buildings and housing Residential buildings is the number of buildings per area that are intended for
residential use

Blocks of flats Buildings and housing Dwellings in blocks of flats are dwellings in residential blocks. They include
buildings with at least three flats of which at least two are located on top of
each other

Average floor area Buildings and housing Average floor area (m2) is the total floor area of all dwellings divided by their
number

Workplaces Jobs by industry Number of workplaces is the number of people working (including part-time)
in each area

Employed Main activity of residents Employed labor force is defined as people aged 18 to 74 who were employed
during the last week of the year

Unemployed Main activity of residents Unemployed labor force comprises people aged 15 to 64 who were unemployed
on the last working day of the year

Students Main activity of residents Students are defined as persons who study full-time and are not gainfully
employed or unemployed

Pensioners Main activity of residents Pensioners are defined as persons who according to the Finnish Centre for
Pensions receive a pension or have some other pension income

Distance to a bus stop Local services Average distance (m) to the nearest bus stop

Distance to a grocery store Local services Average distance (m) to the nearest grocery store

Distance to a doctor or
hospital

Local services Average distance (m) to the nearest doctor or hospital

Distance to a school Local services Average distance (m) to the nearest school

Distance to a sports center Local services Average distance (m) to the nearest sports center

Table 3 Descriptive statistics of the selected dataset attributes.

Variable Min Max Mean Std. dev.

Debt free price, EUR 100,000 995,000 308,750 152,130

Living area, m2 14 199 65.44 28.38

Rooms 1 6 2.56 1.06

Year 1925 2020 1979 28.61

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 7/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

real estate agent or web crawler, and are excluded. Lack of data about extremely large
apartments, more than 200 m2, can decrease the accuracy of a common apartment.
Excluding instances that contains previously mentioned values, we end up with 15–200 m2

size of apartments, which make 96.74% of the whole dataset (Fig. 2).
To analyse the importance of features for predicting the price of apartments, we use

Pearson correlation, neighborhood component analysis (NCA) and regression trees.
Pearson correlation allows to analyze the features, which have both positive influence and
negative influence on the price of the apartment. Figure 3 shows the correlation values of

Figure 1 Distribution of apartments according to their construction year.
Full-size DOI: 10.7717/peerj-cs.444/fig-1

Figure 2 Distribution of apartments according to their size.
Full-size DOI: 10.7717/peerj-cs.444/fig-2

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 8/25

http://dx.doi.org/10.7717/peerj-cs.444/fig-1
http://dx.doi.org/10.7717/peerj-cs.444/fig-2
http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

features with the apartment price, which are statistically significant (p < 0.001). The most
correlated feature of the dataset is the full area of the apartment (r = 0.5696).

NCA (Goldberger et al., 2005) aims to learn a distance metric in the feature space by
finding a linear transform of input features so that average classification performance is
maximized in the transformed feature space. The NCA model is used to calculate feature
weights using a diagonal adaptation of NCA and then regularizing the feature weights.
The top 10 features with the biggest weight value are visualized in Fig. 4, showing that the
number of flats in total (“flats”) and the construction year of the apartment building are the
most important features for predicting the price of an apartment.

Predictor importance (Bi, 2012) is estimated by constructing the regression tree and
then summing changes in the mean squared error (MSE) due to splits on every predictor
and dividing the sum by the number of branch nodes. At each tree node, MSE is
calculated as node error weighted by the node probability. Predictor importance associated

Figure 3 Statistically significant (p < 0.001) correlations of features with the apartment price.
Full-size DOI: 10.7717/peerj-cs.444/fig-3

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 9/25

http://dx.doi.org/10.7717/peerj-cs.444/fig-3
http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

with this split is computed as the difference between MSE for the parent node and the total
MSE for the two children nodes. The top 10 most important features of the dataset in terms
of predictor importance are visualized in Fig. 5, showing that the full area of the apartment
is the most important feature for predicting the price of an apartment.

Figure 4 Top 10 property features with the biggest weight values calculated using neighborhood
component analysis. Full-size DOI: 10.7717/peerj-cs.444/fig-4

Figure 5 Top 10 most important features of the dataset in terms of predictor importance from
regression tree. Full-size DOI: 10.7717/peerj-cs.444/fig-5

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 10/25

http://dx.doi.org/10.7717/peerj-cs.444/fig-4
http://dx.doi.org/10.7717/peerj-cs.444/fig-5
http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

Data preprocessing
Data pre-processing stage contained such steps as detection and removal of outliers and
incorrect (empty) instances and, finally, standardization of the data. The purpose of the
data cleanup is to convert raw data into a good quality dataset which is essential for the
ANN model to perform accurately. The outliers and false instances were eliminated to
assure the best possible conditions to train an accurate and robust model. Outliers (such as
extremely expensive or large apartments that are sold rarely) can negatively affect the
overall performance, therefore the outliers were excluded. False instances (which contain
empty or null values) were errors introduced by the web crawler. The final dataset was
formed after pre-processing. After removing mistakes and outliers, the final dataset
contains 4,041 instances from 67 postal code areas.

Since the format and the scale of the data varied, it required standardization.
Standardization helped to map values into a similar range. Here we used a feature range
between zero and one, where one represents the highest value and zero the lowest, which is
derived (Eq. (1)) as follows:

Xsc ¼ X� Xmin
Xmax� Xmin

(1)

where X is the attribute value, Xmin is the minimum value for the attribute in the dataset
and Xmax is the maximum value for the attribute in the dataset.

Attributes are then divided into two groups, i.e., prediction- and target attributes.
Prediction attributes are used as an input for the ANN and the target attribute is the
determined value. In total, 43 attributes describe each instance (42 of which are used as the
input/source and 1 attribute as the target). Finally, preprocessed data was shuffled and
divided into training and testing subsets with the 80:20 ratio (as it is typically done in
similar research works (Lam, Yu & Lam, 2008; Núñez-Tabales, Caridad & Rey, 2013)).

ARTIFICIAL NEURAL NETWORK
The MLP architecture contains an input layer, one or more hidden layers and an output
layer. All connections are pointing towards the output node which means MLP is a
feedforward neural network. Layers are fully connected to each node in the next layer.
Every connection has a weight assigned to it and a weighted sum is calculated and passed
through a non-linear function. The non-linear function is called an activation function and
introduces non-linearity to the solution. The non-linear activation function is used in
every other layer than the input and output layer. Common examples of the activation
functions are single-pole sigmoid, hyperbolic tangent (tanh), Exponential linear unit
(eLU), Scaled exponential linear unit (seLU), and Rectified linear unit (reLU). Currently,
the reLU (Eq. (2)) activation function is considered as the best practice (Wang et al., 2020).

f a; xð Þ ¼ max 0; xð Þ (2)

Activation functions are non-linear functions that belong to a group of hyper-
parameters that can be adjusted for better performance. Other examples of hyper-
parameters are optimization functions, learning rates, batch sizes, validation splits, loss

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 11/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

functions, and model architectures. The model architecture consists of the number of
hidden layers and the number of nodes in each hidden layer. Each hyperparameter has its
purpose in the model and fine-tuning these values can make a significant difference in
the models and their results. Hyper-parameter optimization is performed in this research
by using automatized search algorithms to find the most accurate model for solving the
real estate price prediction problem.

EXPERIMENTS AND RESULTS
Settings
For implementation, we used Python version 3.7.4. Several third-party Python libraries
are used, such as are Numpy scientific computing and Pandas for data structures and
analysis. Keras is used as a high-level neural network API. Node.js is used to create a
backend server for the application that performed crawling of data from the Asuntojen.
hintatiedot.fi website. Tableau was used for data visualization and analytics.

Evaluation metrics
We have experimented with different ANNs architectures and hyper-parameters by
training and testing the obtained models on our dataset. Models were evaluated with
several metrics, i.e., Mean Squared Error (MSE) on the test set, MSE on the training set, the
difference between MSEs, validation loss, and training loss. For the best-determined
model, the sensitivity analysis was also performed by using Mean Absolute Error (MAE),
R-squared (R2), Root Mean Squared Error (RMSE), and Relative Mean Error (RME).
R2 (Eq. (3)) measures a fit for linear regression models. It describes the percentage of
variance and measures the relationship between prediction and targeted price on a scale of
0–100%. RMSE (Eq. (4)) is the root of the average of squared differences between
predictions and target prices. MAE (Eq. (5)) is the average error magnitude of prediction
and target prices. RME (Eq. (6)) is the absolute error between predicted and targeted
prices in percentages. MSE (Eq. (7)) is the average of the squares of the errors, i.e., the
average squared difference between the estimated values and the actual value. These
metrics are commonly used in real estate property evaluation studies (Nejad, Lu &
Behbood, 2017; Xue et al., 2020).

R2 ¼ 1�
P

i yi � ŷi
� �2P

i yi � �yi
� �2 (3)

RMSE ¼
ffiXn

i¼1

ŷi � yi
� �2

n

s
(4)

MAE ¼ 1
n

Xn
i¼1

yi � ŷi
�� �� (5)

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 12/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

RME ¼ 1
n

Xn
i¼1

yi � ŷi
�� ��

ŷi
�� �� �100%; (6)

MSE ¼ 1
n

Xn
i�1

yi � ŷi
� �2

(7)

where yi is the forecasted price by the model and ŷi the actual, targeted, price of the i-th real
estate and the number of properties is n.

Initial model evaluation
The initial (or a baseline) model architecture is selected based on expert knowledge,
considering the best practices in the previous studies. In many similar studies, the
ANN model architecture typically contains 6 to 15 hidden layers. A similar model
architecture can still be used in our research as an initial step to set the starting point before
the model optimization. The numbers of hidden layers and neurons in these layers are
determined considering the complexity of our solving real estate price prediction problem.
Assumptions about the complexity of our solving problem are made considering the
previous research (see Table 1). It resulted in choosing the larger numbers of hidden
layers and neurons in the initial ANN architecture. The number of nodes in each hidden
layer was set to 128. Every layer, except for the input layer, had the activation function
(having a large effect on the performance). Following the best practice, we use the reLU
function, which has the benefits of sparsity and good behavior when dealing with the
vanishing gradients problem. Moreover, reLU is more computationally efficient to
compute than Sigmoid functions and it has better convergence performance (Krizhevsky,
Sutskever & Hinton, 2012).

Other hyper-parameters are the batch size, optimization algorithm and learning rate,
loss function, dropout, and the number of epochs. In our experiments, the initial hyper-
parameters were set to the following values: the batch size = 128, Adam (Kingma &
Ba, 2014) as the optimization function with the learning rate of 0.001, MSE as a loss
function, and no dropout. The early stopping function was used after a certain number of
epochs to determine the training process if the model demonstrated no improvement in
the performance.

The initial model performance is presented in Table 4. The performance was evaluated
using the following procedure. The model was trained and evaluated five times (to avoid
abnormalities due to random weight initialization): the obtained results were averaged.
Training results show that the model is not underfitting or overfitting, because there is
no large difference between MSE values on training and testing datasets. These results
were later compared to the optimized model to measure the progress of the optimized
models.

Evaluation of optimized model
Optimization of the model can be performed in two ways: manually (by analyzing training
results and then tuning hyper-parameters towards the more accurate model) or

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 13/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

automatically (via the search and optimization algorithms). Both approaches use the
trial-and-error method, and both are considered correct if they lead to the creation of the
optimal model. However, manual tuning is time-consuming. Besides, human experts
tend to bind to more probable hyper-parameter values that can cause a risk (especially
in non-typical cases) that the optimal set of hyper-parameters will not be found.

Due to these reasons in our research, we have used the automatic Weights & Biases
developer tool (Weights & Biases, 2020). It iterates through the defined value ranges and
categories, using the determined search algorithm, which is Bayesian optimization.
Bayesian hyperparameter tuning builds a probabilistic model for the objective function
to be optimized in order to train the deep learning model (see Table 5). Bayesian
optimization attempts to collect measurements that reveal information about the
objective function and the position of the optimum by iteratively testing a promising
hyperparameter structure based on the current model, and then modifying it. Exploration
(hyperparameters with which the effect is most uncertain) and exploitation was attempted
to match (hyperparameters expected close to the optimum). The algorithm optimizes
the following hyper-parameters: batch size, learning rate, optimization algorithm,
activation function, validation split, dropout, and model architecture. The model
architecture is divided into several layers and many nodes in each layer separately.
The starting value ranges and categories of each iteration are summarized in Table 6.
The range of values is justified by the analysis of previous works on real estate price
prediction, which is presented in Table 1.

The purpose of the hyper-parameter optimization process is to get a wide variety of
results and to seek correlations between results and hyper-parameter value combinations.
The random search is used in the first iteration because the search algorithm must not

Table 5 Hyperparameter optimization algorithm.

1. Build a probability model D of the objective function uðÞ
2. Find the hyperparameters that perform best on the probability model xk ¼ arg max

X
u XjD1:k�1ð Þ

3. Apply these hyperparameters to the objective function and get the performance yk ¼ f xkð Þ
4. Update the probability model incorporating the new results D1:k ¼ D1:k�1; xk; ykð Þf g
5. Repeat steps 2–4 until max iterations or max computation time is reached

Table 4 Prediction performance of an initial (baseline) ANN model.

No. Training results Testing results

MSE MSE Train MSE Difference Val loss Loss R2 RMSE RME MAE

1 0.0027 0.0024 0.0003 0.00895 0.0026 0.90 46,517.8 10.9% 31,076.6

2 0.0026 0.0020 0.0006 0.00896 0.0012 0.90 46,054.24 9.89% 29,642.0

3 0.0028 0.0025 0.0002 0.00774 0.0023 0.90 47,202.2 11.5% 32,093.7

4 0.0029 0.0020 0.0009 0.01021 0.0012 0.90 48,106.7 10.3% 30,562.5

5 0.0027 0.0025 0.0002 0.00909 0.0020 0.90 46,197.5 11.3% 31,468.3

AVG 0.0027 0.0023 0.0004 0.00899 0.0019 0.90 46,815.7 10.8% 30,968.6

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 14/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

form any bias towards certain values at an early point. Other search algorithms are used in
further iterations. The best 10% of the runs are analyzed to find correlations between
results and hyper-parameters. The Bayesian search algorithm used the MSE metric to
find the best performing hyper-parameter values. MSE was calculated from the error
between prediction and target prices on the testing set. The MSE value calculated from the
testing set represents how the NN can predict prices of the unseen data. Other metrics,
such as validation loss, training loss, the difference between losses and MSEs are used to
narrow the search value ranges for further iterations.

The first iteration had the widest value ranges of values for each hyper-parameter, and it
used the random search. The random search is used so that the search algorithm does not
create any bias towards certain value groups. The random distribution over hyper-
parameters values gives enough variety in the results, that the search can be narrowed
afterward. Every run with MSE lower than 0.0045 was saved. The critical values represent
the 10th percentile of the values obtained from all runs, that is the selected set of results
contained top 10% of results, which were better than the remaining 90% of results.
The best 10% of the runs were analyzed, so the final sample size contained 27 runs.
A deeper analysis reveals that reLU as the activation function and Adam as the optimizer
appeared in the majority of the best runs. The majority of the analyzed runs containing

Table 6 Hyperparameter value ranges and categories in each optimization iteration.

No. Dropout Batch
size

Validation
split

Learning rate Number
of layers

Optimizer Activation
function

Number
of nodes

Search

1 0–0.5 10–1,000 0.05–0.2 0.0007–0.0011 1–10 Adam, SGD,
RMSProp,
NAdam

reLU, elu, selu,
sigmoid,
tanh

1–3: 64–
1,024
4–6: 64–512
7–10: 64–256

Random

2 0–0.2 10–1,000 0.08–0.19 0.0008-0.0011 1–10 Adam reLu All: 50–1,000 Bayes

3 0–0.1 10–1,000 0.08–0.12 0.0009–0.0011 6–10 Adam reLu 1: 600–1,000
2: 50–300
3: 500–1,000
4: 200–800
5: 700–1,000
6: 600–1,000
7: 200–800
8: 50–600
9:300–900

Bayes

4 0–0.05 300–700 0.08–0.1 0.001–0.002 6 Adam reLu 1: 700–900
2: 100–300
3: 600–900
4: 300–600
5: 900–1,000
6: 700–1,000

Bayes

5 0.3 600 0.085 0.0014 6 Adam reLu 1: 500–750
2: 250–500
3: 500–750
4: 400–700
5: 950–1,000
6: 800–1,000

Bayes

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 15/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

similar hyper-parameter values are used to find correlations between results and
hyperparameter sets. Other hyper-parameters did not have a similar, obvious, correlation
with the results. Thus, before continuing the search for the rest best hyper-parameter
values in the further iterations, the activation function and the optimizer were set to reLU
and Adam, respectively.

The second iteration achieved even better results compared to the first iteration. 312
runs were saved from 343 runs in total. Each saved run had MSE between 0.0022 and
0.0040. The Bayes search algorithm was used to optimize the hyper-parameters. The best
10% of the runs were analyzed in detail, therefore the sample size of this iteration resulted
in 32 runs. From six to ten hidden layers were used in 75% of these runs and were
considered as a new range of values for the next iteration. Surprisingly, the number of
nodes did not fall into the same value range in each layer. Layer 1 contained 600 to
1,000 nodes, but layer 2 had 50 to 300 nodes. The same phenomenon was observed in the
first and last layers. The hyper-parameter values for the best model architecture could still
be narrowed down in the next iterations since no clear correlation was noticed.

The third iteration produced consistent results and therefore was fast and efficient to
compute. Models were only saved if MSE value was lower than 0.0031. Models trained
with these hyper-parameter values do not perform significantly better compared to
previously created, but the results are more consistent. 209 of 301 runs had MSE between
0.0021 and 0.0031. The best 10% (or the 21 runs of) all were taken for further analysis.
This analysis revealed six hidden layers to be the dominant value for the best architecture
because 48% of all analyzed runs used it. The correlations between the best results and
other hyper-parameter values were determined as follows. The range for the validation
split was decreased to 8–10%; the dropout and the batch size got into the range of 0–0.05
and 300–700, respectively. The analysis shows that 66% of the runs had a validation
split between 8–10%, 81% had a dropout between 0–0.05, and 62% had a batch size
between 300–700. The range of nodes in the hidden layers could be decreased by a small
margin. All mentioned hyper-parameter values were set and considered as new value
ranges for the next iterations.

The fourth iteration produced the best performance and improved the results by 12.3%
compared to the best run from previous iterations. The best run was better than any
other run on the same iteration by a decent margin. The hyper-parameters on the run were
batch size 550, dropout 0.005, learning rate 0.0012, and validation split 8%. The model
architecture contained six hidden layers with the following numbers of nodes: 900,
150, 700, 550, 950, and 950. MSE on the testing and training sets gave 0.001877 and
0.001538, respectively; the difference between MSEs was 0.00034. The performance
differences in testing and training sets show that the model is neither overfitting nor
underfitting and can produce good results with unseen data. Finally, the fifth iteration
was performed to fine-tune the model architecture, but no improvement was found after
152 runs. Therefore, the best model from the fourth iteration can be considered as the
optimized model.

To summarizing, in total 2003 runs were performed with different hyper-parameter
value combinations and 1,514 runs were saved, where the MSE was equal to or lower than

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 16/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

0.0045. The worst run, which was saved had 0.004495 MSE and the best had 0.001877.
The average MSE was 0.002964. The most optimal model was formed with the hyper-
parameter values as follows: reLU as the activation function, Adam as the optimization
algorithm, batch size 550, dropout 0.005, learning rate 0.0012, and validation split 8%.
The best model architecture contains the single input layer with 42 nodes, six hidden layers
with the following number of nodes 900, 150, 700, 550, 950, 950, and the single output
node. Finally, an overview of all performed training sessions can be seen in Fig. 6.

The optimized model was evaluated and compared to the initial one with nine
evaluation metrics. These metrics were separated into two categories: for training and
testing evaluation. Table 7 represents the results of both models and their differences.
The best model outperformed the first initial model on every metric. The initial model was
created based on the expert knowledge and recommendations in the previous research
works. It allows us to conclude that despite how good the DNN architecture and the set of
hyper-parameters performs in similar tasks, recommendations cannot be blindly followed.

Table 7 Results for initial and optimized models. Baseline model architecture is selected based on expert knowledge, considering the best practices
in the previous studies. Optimized model is developed using hyper-parameter optimization.

Model Training results Testing results

MSE MSE Train MSE Difference Val loss Loss R2 RMSE RME MAE

Baseline 0.0027 0.0023 0.0004 0.00899 0.0019 0.90 46,815.7 10.8% 30,968.6

Optimized 0.0018 0.0015 0.0003 0.00669 0.0011 0.95 33,232.2 8.3% 23,320.9

Difference −0.0009 −0.0008 −0.0001 −0.0023 −0.008 0.05 −13,583.5 −2.5% −7647.7

Improvement 33.3% 34.8% 25.0% 25.6% 42.1% 5.56% 29.0% 23.2% 24.7%

Figure 6 Overview of the hyperparameter optimization. The X-axis represents the activation function, optimization function and number of
layers, and Y-axis represents MSE values and the difference between MSE on the training and testing set. Plotted MSE values are minimum, average,
and maximum from all training sessions. The upper section describes the performance of the model using the MSE metric. The lower section shows
the difference between MSE values which describes the over- or under-fitting of the model. Full-size DOI: 10.7717/peerj-cs.444/fig-6

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 17/25

http://dx.doi.org/10.7717/peerj-cs.444/fig-6
http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

Training results are mostly used to evaluate the training model, but the focus should
be on the sensitivity analysis of the testing results. The best model improved the RME
value, calculated from the actual differences between predicted and targeted price, by
23.2% and decreased it to 8.3%. This is a large improvement because every error percent
impacts thousands of euros in the final price, and MAE was also improved by 24.7% and
decreased to 23320.9 V. The R2 metric was improved by 5.56% to 0.95. The sensitivity
analysis measures how well the model observes the targeted outcome. All the metrics were
improved by the significant (p < 0.05) margin, which allows us to conclude that
improvement is significant compared to the initial model.

Figure 7 represents the error between predicted and original price, where the solid
line and the markers determine the real price and the predicted price, respectively.
The lower prices are predicted more accurately compared to the higher. The correlation
between the amount of the data and the accuracy can be the more instances the certain
property type has, the lower the error rate is achieved. The testing dataset was divided into
different categories which were further analyzed to get a better understanding of this.
Overall, the metrics show good performance on the whole dataset, where 95% of the
predicted prices are on the regression line (with RME andMAE equal to 8.3% and 23,320.9
V, respective) Despite the higher error rates are with more expensive apartments, the
obtained results can still be considered as satisfactorily. The sensitivity analysis is
performed on a divided dataset to get an understanding of the accuracy of more common
cases, where the lack of data is not affecting the results. The dataset was divided by the

Figure 7 Real (solid line) and predicted (dots) prices. Full-size DOI: 10.7717/peerj-cs.444/fig-7

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 18/25

http://dx.doi.org/10.7717/peerj-cs.444/fig-7
http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

number of rooms because it is a good measure related to differences in apartment prices
and their sizes. Afterward, the sensitivity analysis was performed on each of the obtained
subsets.

The analysis of the results based on the number of rooms (presented in Fig. 8)
reveals interesting information about the model. The obvious fact is that the number of
instances decreases when the number of rooms increases, and it is the most probable
reason causing the previously described issues. RME is the highest when the apartment has
six or more rooms (compared to any other category containing fewer rooms in the
apartment). However, it still has a better R2 value when compared to the studio
apartments, which are even more expensive. All metrics except R2 measure the difference
between the actual prices, which can be misleading, because of the very large price range.
Therefore, R2 is used to compare the results between different room prices. For each
category, the calculated R2 value shows that the model can predict the observed instances
quite well. The best performance was achieved in the categories containing four-five

Figure 8 Number of rooms and performance of the model: (A) Studio, (B) two rooms, (C) three rooms, (D) four rooms, (E) five rooms, (F) six
or more rooms. Full-size DOI: 10.7717/peerj-cs.444/fig-8

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 19/25

http://dx.doi.org/10.7717/peerj-cs.444/fig-8
http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

rooms, and two- and three-rooms; whereas studio and six-room apartments are predicted
slightly worse. As it was mentioned previously, the dataset contained fewer instances for
larger apartments, therefore the related category was predicted worse. Surprisingly, the
same reasoning is not valid for studio apartments.

The dataset contained almost the same number of instances as the other room
categories (even more than four- five-room apartments), but predictions are still worse
compared to those categories. Most of the predicted prices were slightly higher than the
targeted values. The random division into the training and testing datasets could also have
a negative effect on the results. The training set happened to contain more expensive
apartments than the testing set, which would create a bias towards higher prices.
The phenomenon of the imbalanced dataset does not occur in the other categories.

The price of overall, two-, three-, four-, and five-room apartments were predicted well.
The predicted prices are on 93–95% in the regression line and the difference between MAE
and RMSE is not significant. Here the statistical significance was evaluated using 95%
confidence intervals (CI). RME is between 5.29–9.05%, and, surprisingly, the best results
were achieved with the five-room apartments. Again, this can be a cause of a poorly
divided dataset where the training dataset had a lot of instances describing these types of
apartments. Two-, and three-room apartments are the most frequent in our dataset,
therefore the DNN model has enough material to learn how to predict their prices
correctly. Besides, the model was also capable to evaluate rarer sold apartments, which
shows its ability for generalization.

CONCLUSIONS
In this paper, we presented the methodology and results of optimizing the MLP model
aimed at predicting the real estate prices in Helsinki, Finland. Optimization of model
hyper-parameters improved the performance by a good margin (the R2 value improved by
0.05 and the RME value improved by 2.5%), and therefore can be considered as an
important step in developing real-estate prediction applications. However, the ANN
approach has its downsides and therefore receives criticism. The ANN’s lack of
explainability as relationships between inputs and outputs cannot be directly perceived and
explained; besides humans cannot directly intervene in these relationships. However,
producing sustainable property price evaluations without human intervention can be
considered as a benefit. The ANN can produce more accurate, flexible, and generic results,
if enough data is available compared to the other approaches, therefore, they can be
considered as a good solution for the price prediction problem. The result analysis shows
that model optimization process improved the performance significantly on each metric.
Training results shows no over- or underfitting and sensitivity analysis describes good
performance on the testing set. Analysis shows that results can be improved by focusing on
model optimization and hyperparameter tuning. The research has shown that real estate
prices can be predicted in Helsinki, Finland, using deep neural network approaches and
deep learning can be used in similar regression tasks for forecasting non-linear
relationships between inputs and outputs.

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 20/25

http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

In future research, using more data and extending the hyperparameter optimization
process to other types of neural networks could lead to finding a more robust and accurate
real estate price evaluation model.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Robertas Damaševičius is an Academic Editor for PeerJ.

Author Contributions
� Jussi Kalliola performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, authored or reviewed drafts of the paper, and
approved the final draft.

� Jurgita Kapočiūtė-Dzikienė conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

� Robertas Damaševičius analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data and code are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.444#supplemental-information.

REFERENCES
Abidoye RB, Chan APC, Abidohye FA, Oshodi OS. 2019. Predicting property price index using

artificial intelligence techniques: evidence from hong kong. International Journal of Housing
Markets and Analysis 12(6):1072–1092 DOI 10.1108/IJHMA-11-2018-0095.

Abidoye RB, Chan APC, Abidoye FA, Oshodi OS. 2019. Predicting property price index using
artificial intelligence techniques: evidence from hong kong. International Journal of Housing
Markets and Analysis 12(6):1072–1092 DOI 10.1108/IJHMA-11-2018-0095.

Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H. 2018. State-of-the-art
in artificial neural network applications: a survey. Heliyon 4(11):e00938
DOI 10.1016/j.heliyon.2018.e00938.

Ahmed S, Rahman M, Sabirah I. 2014. House rent estimation in Dhaka City by multi layer
perceptions neural network. International Journal of u- and e-Service, Science and Technology
7(4):287–300 DOI 10.14257/ijunnesst.2014.7.4.26.

Bacanin N, Bezdan T, Tuba E, Strumberger I, Tuba M. 2020. Monarch butterfly optimization
based convolutional neural network design. Mathematics 8(6):936 DOI 10.3390/math8060936.

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 21/25

http://dx.doi.org/10.7717/peerj-cs.444#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.444#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.444#supplemental-information
http://dx.doi.org/10.1108/IJHMA-11-2018-0095
http://dx.doi.org/10.1108/IJHMA-11-2018-0095
http://dx.doi.org/10.1016/j.heliyon.2018.e00938
http://dx.doi.org/10.14257/ijunnesst.2014.7.4.26
http://dx.doi.org/10.3390/math8060936
http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

Bacanin N, Bezdan T, Tuba E, Strumberger I, Tuba M. 2020. Optimizing convolutional neural
network hyperparameters by enhanced swarm intelligence metaheuristics. Algorithms 13(3):13
DOI 10.3390/a13030067.

Bi J. 2012. A review of statistical methods for determination of relative importance of correlated
predictors and identification of drivers of consumer liking. Journal of Sensory Studies
27(2):87–101 DOI 10.1111/j.1745-459X.2012.00370.x.

Bin J, Gardiner B, Li E, Liu Z. 2020.Multi-source urban data fusion for property value assessment:
a case study in philadelphia. Neurocomputing 404:70–83 DOI 10.1016/j.neucom.2020.05.013.

Bin J, Gardiner B, Liu Z, Li E. 2019. Attention-based multi-modal fusion for improved real estate
appraisal: a case study in los angeles. Multimedia Tools and Applications 78(22):31163–31184
DOI 10.1007/s11042-019-07895-5.

Can A. 1992. Specification and estimation of hedonic housing price models. Regional Science and
Urban Economics 22(3):453–474 DOI 10.1016/0166-0462(92)90039-4.

Chiarazzo V, Caggiani L, Marinelli M, Ottomanelli M. 2014. A neural network based model for
real estate price estimation considering environmental quality of property location.
Transportation Research Procedia 3(1):810–817 DOI 10.1016/j.trpro.2014.10.067.

Cho H, Kim Y, Lee E, Choi D, Lee Y, Rhee W. 2020. Basic enhancement strategies when using
bayesian optimization for hyperparameter tuning of deep neural networks. IEEE Access
8:52588–52608 DOI 10.1109/ACCESS.2020.2981072.

Cioffi R, Travaglioni M, Piscitelli G, Petrillo A, De Felice F. 2020. Artificial intelligence and
machine learning applications in smart production: progress, trends, and directions.
Sustainability 12(2):492 DOI 10.3390/su12020492.

Cui H, Bai J. 2019. A new hyperparameters optimization method for convolutional neural
networks. Pattern Recognition Letters 125:828–834 DOI 10.1016/j.patrec.2019.02.009.

Ferlan N, Bastič M, Pšunder I. 2017. Influential factors on the market value of residential
properties. Engineering Economics 28(2):135–144 DOI 10.5755/j01.ee.28.2.13777.

Feurer M, Hutter F. 2019. Hyperparameter optimization. In: Automated Machine Learning,
Springer International Publishing, 3–33.

Goldberger J, Hinton G, Roweis S, Salakhutdinov R. 2005.Neighbourhood components analysis.
Advances in Neural Information Processing Systems 17:513–520.

Hamzaoui YE, Perez JAH. 2011. Application of artificial neural networks to predict the selling
price in the real estate valuation process. In: 10th Mexican International Conference on Artificial
Intelligence (MICAI), November 26 - December 4, Puebla, Mexico.

Han J, Choi D, Park S, Hong S. 2020. Hyperparameter optimization using a genetic algorithm
considering verification time in a convolutional neural network. Journal of Electrical Engineering
and Technology 15(2):721–726 DOI 10.1007/s42835-020-00343-7.

Ho WKO, Tang B-S, Wong SW. 2020. Predicting property prices with machine learning
algorithms. Journal of Property Research 38(1):1–23 DOI 10.1080/09599916.2020.1832558.

HoWKO, Tang B, Wong SW. 2020. Predicting property prices with machine learning algorithms.
Journal of Property Research 38(1):48–70 DOI 10.1080/09599916.2020.1832558.

Hong J, Choi H, KimW. 2020. A house price valuation based on the random forest approach: the
mass appraisal of residential property in south korea. International Journal of Strategic Property
Management 24(3):140–152 DOI 10.3846/ijspm.2020.11544.

Kang J, Lee HJ, Jeong SH, Lee HS, Oh KJ. 2020. Developing a forecasting model for real estate
auction prices using artificial intelligence. Sustainability 12(7):2899 DOI 10.3390/su12072899.

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 22/25

http://dx.doi.org/10.3390/a13030067
http://dx.doi.org/10.1111/j.1745-459X.2012.00370.x
http://dx.doi.org/10.1016/j.neucom.2020.05.013
http://dx.doi.org/10.1007/s11042-019-07895-5
http://dx.doi.org/10.1016/0166-0462(92)90039-4
http://dx.doi.org/10.1016/j.trpro.2014.10.067
http://dx.doi.org/10.1109/ACCESS.2020.2981072
http://dx.doi.org/10.3390/su12020492
http://dx.doi.org/10.1016/j.patrec.2019.02.009
http://dx.doi.org/10.5755/j01.ee.28.2.13777
http://dx.doi.org/10.1007/s42835-020-00343-7
http://dx.doi.org/10.1080/09599916.2020.1832558
http://dx.doi.org/10.1080/09599916.2020.1832558
http://dx.doi.org/10.3846/ijspm.2020.11544
http://dx.doi.org/10.3390/su12072899
http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

Kim S, Geem ZW, Han G. 2020. Hyperparameter optimization method based on harmony search
algorithm to improve performance of 1D CNN human respiration pattern recognition system.
Sensors 20(13):1–20 DOI 10.1109/JSEN.2020.3010656.

KimH, Kwon Y, Choi Y. 2020.Assessing the impact of public rental housing on the housing prices
in proximity: based on the regional and local level of price prediction models using long short-
term memory (LSTM). Sustainability 12(18):7520 DOI 10.3390/su12187520.

Kingma D, Ba J. 2014. Adam: a method for stochastic optimization. arXiv. Available at
https://arxiv.org/abs/1412.

Kraus M, Feuerriegel S, Oztekin A. 2020. Dep learning in business analytics and operations
research: models, applications and managerial implications. European Journal of Operational
Research 281(3):628–641 DOI 10.1016/j.ejor.2019.09.018.

Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet classification with deep convolutional
neural networks. In: Proceedings of the NIPS, Lake Tahoe, CA, USA1097–1105.

Lam KC, Yu CY, Lam KY. 2008. An artificial neural network and entropy model for residential
property price forecasting in Hong Kong. Journal of Property Research 25(4):321–342
DOI 10.1080/09599910902837051.

Lee C, Park KK. 2020. Representing uncertainty in property valuation through a bayesian deep
learning approach. Real Estate Management and Valuation 28(4):15–23
DOI 10.1515/remav-2020-0028.

Lima LL, Ferreira Junior JR, Oliveira MC. 2020. Toward classifying small lung nodules with
hyperparameter optimization of convolutional neural networks. Computational Intelligence
69(1):7 DOI 10.1111/coin.12350.

Liu Y. 2017. A commercial real estate price evaluation model based on GT-BCPSO-BP neural
network. International Journal of Applied Decision Sciences 10(4):335–346
DOI 10.1504/IJADS.2017.087177.

Liu R, Liu Y, Yan Y, Wang J. 2020. Iterative deep neighborhood: a deep learning model which
involves both input data points and their neighbors. Computational Intelligence and
Neuroscience 2020:1–10 DOI 10.1155/2020/9868017.

Lu S, Li Z, Qin Z, Yang X, Goh RSM. 2017. A hybrid regression technique for house prices
prediction. In: IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM), Singapore. Piscataway: IEEE, 10–13.

Madhuri CHR, Anuradha G, Pujitha MV. 2019. House price prediction using regression
techniques: a comparative study. In: Proceedings of the 6th IEEE International Conference on
Smart Structures and Systems, ICSSS 2019, March 14–15 Chennai, India. Piscataway: IEEE.

Manasa J, Gupta R, Narahari NS. 2020. Machine learning based predicting house prices using
regression techniques. In: Proceedings of the 2nd International Conference on Innovative
Mechanisms for Industry Applications (ICIMIA), Bangalore, India.

Milunovich G. 2020. Forecasting australia’s real house price index: a comparison of time series and
machine learning methods. Journal of Forecasting 39(7):1098–1118 DOI 10.1002/for.2678.

Mimis A, Rovolis A, StamouM. 2013. Property valuation with artificial neural network: the case of
Athens. Journal of Property Research 30(2):128–143 DOI 10.1080/09599916.2012.755558.

Mora-Esperanza JG. 2004. Artificial intelligence applied to real estate valuation: an example for the
appraisal of Madrid. In: CATASTRO, 255–265.

Morano P, Tajani F, Torre CM. 2015. Artificial intelligence in property valuations: an application
of artificial neural networks to housing appraisal. In: 11th International Conference on Energy,
Environment, Ecosystems and Sustainable Development (EEESD’15), January 10–12, Tenerife,
Canary Islands, Spain.

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 23/25

http://dx.doi.org/10.1109/JSEN.2020.3010656
http://dx.doi.org/10.3390/su12187520
https://arxiv.org/abs/1412
http://dx.doi.org/10.1016/j.ejor.2019.09.018
http://dx.doi.org/10.1080/09599910902837051
http://dx.doi.org/10.1515/remav-2020-0028
http://dx.doi.org/10.1111/coin.12350
http://dx.doi.org/10.1504/IJADS.2017.087177
http://dx.doi.org/10.1155/2020/9868017
http://dx.doi.org/10.1002/for.2678
http://dx.doi.org/10.1080/09599916.2012.755558
http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

Mu J, Wu F, Zhang A. 2014. Housing value forecasting based on machine learning methods.
Abstract and Applied Analysis 2014(4):1–7 DOI 10.1155/2014/648047.

Nejad MZ, Lu J, Behbood V. 2017. Applying dynamic Bayesian tree in property sales price
estimation. In: 2017 12th International Conference on Intelligent Systems and Knowledge
Engineering (ISKE). Nanjing, 1–6.

Núñez-Tabales JM, Caridad JM, Rey FJ. 2013. Artificial neural networks for predicting real estate
prices. Revista de Metodos Cuantitativos para la Economia y la Empresa 15:29–44.

Peter NJ, Okagbue HI, Obasi ECM, Akinola AO. 2020. Review on the application of artificial
neural networks in real estate valuation. International Journal of Advanced Trends in Computer
Science and Engineering 9(3):2918–2925 DOI 10.30534/ijatcse/2020/66932020.

Plonis D, Katkevicius A, Gurskas A, Urbanavicius V, Maskeliunas R, Damasevicius R. 2020.
Prediction of meander delay system parameters for internet-of-things devices using pareto-
optimal artificial neural network and multiple linear regression. IEEE Access 8:39525–39535
DOI 10.1109/ACCESS.2020.2974184.

Połap D, Woźniak M, Wei W, Damaševičius R. 2018. Multi-threaded learning control
mechanism for neural networks. Future Generation Computer Systems 87:16–34
DOI 10.1016/j.future.2018.04.050.

Statistics Finland. 2020. Statistics Finland. Available at https://www.stat.fi/tup/paavo/paavon_
aineistokuvaukset_en.html (accessed 7 May 2020).

Sun Y. 2019. Real estate evaluation model based on genetic algorithm optimized neural network.
Data Science Journal 18(5):36 DOI 10.5334/dsj-2019-036.

Tajani F, Morano P, Ntalianis K. 2018. Automated valuation models for real estate portfolios: a
method for the value updates of the property assets. Journal of Property Investment Finance
36(4):324–347 DOI 10.1108/JPIF-10-2017-0067.

The Ministry of the Environment and the Housing Finance and Development Centre of
Finland. 2020. Hintatiedot. Available at https://asuntojen.hintatiedot.fi/haku/?l=2&submit=In
+English (accessed 7 May 2020).

Varma A, Sarma A, Doshi S, Nair R. 2019. House price prediction using machine learning and
neural networks. In: Proceedings of the International Conference on Inventive Communication
and Computational Technologies, ICICCT 2018, Coimbatore, India, 1936–1939.

Wang W, Chang Y, Wang H. 2019. An application of the spatial autocorrelation method on the
change of real estate prices in taitung city. ISPRS International Journal of Geo-Information
8(6):249 DOI 10.3390/ijgi8060249.

Wang Y, Li Y, Song Y, Rong X. 2020. The influence of the activation function in a convolution
neural network model of facial expression recognition. Applied Sciences 10(5):1897
DOI 10.3390/app10051897.

Weights & Biases. 2020.Weights & biases.Available at https://www.wandb.com/ (accessed 7May 2020).

XuH, Gade A. 2017. Smart real estate assessments using structured deep neural networks. In: IEEE
SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable
Computing Communications, Cloud Big Data Computing, Internet of People and Smart City
Innovation, 4–8 August 2017, San Francisco, CA, USA. Piscataway: IEEE.

Xue C, Ju Y, Li S, Zhou Q, Liu Q. 2020. Research on accurate house price analysis by using GIS
technology and transport accessibility: a case study of Xi’an, China. Symmetry 12(8):1329
DOI 10.3390/sym12081329.

Zhang M, Jing W, Lin J, Fang N, Wei W, Woźniak M, Damaševičius R. 2020. NAS-HRIS:
automatic design and architecture search of neural network for semantic segmentation in
remote sensing images. Sensors 20(18):1–15 DOI 10.1109/JSEN.2020.3010656.

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 24/25

http://dx.doi.org/10.1155/2014/648047
http://dx.doi.org/10.30534/ijatcse/2020/66932020
http://dx.doi.org/10.1109/ACCESS.2020.2974184
http://dx.doi.org/10.1016/j.future.2018.04.050
https://www.stat.fi/tup/paavo/paavon_aineistokuvaukset_en.html
https://www.stat.fi/tup/paavo/paavon_aineistokuvaukset_en.html
http://dx.doi.org/10.5334/dsj-2019-036
http://dx.doi.org/10.1108/JPIF-10-2017-0067
https://asuntojen.hintatiedot.fi/haku/?l=2&submit=In+English
https://asuntojen.hintatiedot.fi/haku/?l=2&submit=In+English
http://dx.doi.org/10.3390/ijgi8060249
http://dx.doi.org/10.3390/app10051897
https://www.wandb.com/
http://dx.doi.org/10.3390/sym12081329
http://dx.doi.org/10.1109/JSEN.2020.3010656
http://dx.doi.org/10.7717/peerj-cs.444
https://peerj.com/computer-science/

Zhang Q, Zhu S. 2018. Visual interpretability for deep learning: a survey. Frontiers of Information
Technology Electronic Engineering 19(1):27–39 DOI 10.1631/fitee.1700808.

Zhao Y, Chetty G, Tran D. 2019. Deep learning with XGBoost for real estate appraisal. In: 2019
IEEE Symposium Series on Computational Intelligence, SSCI 2019. Piscataway: IEEE, 1396–1401.

Zhou X. 2020. The usage of artificial intelligence in the commodity house price evaluation model.
Journal of Ambient Intelligence and Humanized Computing 11(5):74
DOI 10.1007/s12652-019-01616-4.

Štubňová M, Urbaníková M, Hudáková J, Papcunová V. 2020. Estimation of residential property
market price: comparison of artificial neural networks and hedonic pricing model. Emerging
Science Journal 4(6):530–538 DOI 10.28991/esj-2020-01250.

Kalliola et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.444 25/25

http://dx.doi.org/10.1631/fitee.1700808
http://dx.doi.org/10.1007/s12652-019-01616-4
http://dx.doi.org/10.28991/esj-2020-01250
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.444

	Neural network hyperparameter optimization for prediction of real estate prices in Helsinki
	Introduction
	Methodology
	Artificial neural network
	Experiments and results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

