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Leon Fröhling1
8

Email address: froehling@statistik.uni-hannover.de9

ABSTRACT10

The recent improvements of language models have drawn much attention to potential cases of use and

abuse of automatically generated text. Great effort is put into the development of methods to detect

machine generations among human-written text in order to avoid scenarios in which the large-scale

generation of text with minimal cost and effort undermines the trust in human interaction and factual

information online. While most of the current approaches rely on the availability of expensive language

models, we propose a simple feature-based classifier for the detection problem, using carefully crafted

features that attempt to model intrinsic differences between human and machine text. Our research

contributes to the field in producing a detection method that achieves performance competitive with far

more expensive methods, offering an accessible first line of defence against the abuse of language

models. Furthermore, our experiments show that different sampling methods lead to different types of

flaws in generated text.
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INTRODUCTION22

Recent developments in Natural Language Processing (NLP) research led to a massive leap in capability23

of language models. The combination of unsupervised pre-training on massive and diverse datasets24

(Radford et al., 2019) and the introduction of the attention-based transformer architecture (Vaswani et al.,25

2017) allowed increasingly complex models to learn representations of language over a context spanning26

more than just the next few words, thereby effectively replicating the distribution of human language.27

These advances already led to a more comprehensive use of language in a great number of research28

areas and consumer-oriented applications, as for example in the analysis of biomedical literature (Beltagy29

et al., 2019), the generation of EEG reports (Biswal et al., 2019), the development of more advanced30

chatbots (Budzianowski and Vulić, 2019) and the improvement of grammar- and writing-assistance31

(Hagiwara et al., 2019). However, this newly-gained quality of generated language also increased the fear32

of its potential abuse by malicious actors (Solaiman et al., 2019). Abuse scenarios are mostly based on33

the effectively vanishing costs for the generation of large amounts of text, allowing bad actors to leverage34

the effectiveness of high-volume/low-yield operations like spam, phishing or astroturfing (Solaiman et al.,35

2019; Ferrara et al., 2016). While Solaiman et al. (2019) could not find any evidence of their models being36

used for automated astroturfing attacks, in which review or comment systems are flooded with generated37

entries promoting a certain sentiment, an example of how easily text generating models might be abused38

to influence even policy-making can be found in the American Federal Communications Commission’s39

decision on the repeal of net neutrality rules in 2017 (Selyukh, 2017). Attempting to consider the public40

sentiment through an online comment system, it later turned out that millions of the submitted comments,41

most of them in favour of repealing net neutrality, were fakes (Fung, 2017), automatically generated42

using a template-based generation model. The little sophistication of the generation approach led to many43

duplicates and highly similar comments in phrasing and syntax (Kao, 2017), drawing attention to the issue44

in the first place. It is however easy to see how one of today’s State-Of-The-Art (SOTA) language models45
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might have drowned authentic, human opinions and skewed the final decision without being detected.46

Similar attacks could potentially overwhelm the news with fake news contents (Belz, 2019), manipulate47

the discourse on social media (Ferrara et al., 2016) or impersonate others online or in email (Solaiman48

et al., 2019).49

The wider implications of an Internet in which every snippet of written word could with equal50

probability stem from a human being or a language model are the erosion of fundamental concepts like51

truth, authorship and responsibility (Belz, 2019). Shevlane and Dafoe (2020) highlight the potential52

disruption caused by language models through their ability to impersonate humans in an online world53

where increasing numbers of human interactions and proportions of social life are hosted, be it in social54

media, online banking or commerce.55

While one approach to mitigate the damaging effects of language models is to educate the public56

about the increasing probability of encountering untrustworthy content online, such a loss of trust in the57

habitual informational environment is burdensome (Shevlane and Dafoe, 2020). This highlights the need58

for reliable detection systems in order to tell human and machine generated content apart, preventing the59

rise of an Internet in which generic nonsense and propaganda-like spam campaigns dominate the public60

discourse. This paper contributes to the research on the automated detection of machine generated text61

by being the first to apply a feature-based detection approach to the most recent language models and62

simultaneously proposing a range of features to be used to that end.63

Our experiments with samples from different language generating models show that the proposed64

feature-based detection approach is competitive with far more complex and computationally more65

restrictive methods. For its ability to generalise well across different sizes of the same language model, we66

consider the feature-based classifier a potential ”first line-of-defence” against future releases of ever bigger67

generators. Our research confirms the hypothesis that different sampling methods introduce different68

kinds of flaws into the generated text, and delivers first insights into which characteristics of text might69

show these differences the most.70

THE DETECTION PROBLEM71

We frame the task of detecting automated language models as a binary classification task where a model72

needs to determine if an input text is produced by a human or by automated means through a language73

model. The methods for the detection of machine-generated text presented in this paper take a textual74

input and assess its provenance based only on the properties of the text, without considering its metadata75

or veracity, as proposed in similar detection problems (Baly et al., 2018; Thorne and Vlachos, 2018).76

To prevent the scenario described above, we expect a detection method to fulfil the following three77

requirements:78

1. Solaiman et al. (2019) voice concern for a well-considered trade-off between the maximisation of79

a detector’s accuracy and the false positives it produces. False positives in the present detection80

context, the incorrect labelling of a human-written text as machine-generated, are especially critical81

by potentially suppressing human opinions. In a large-scale detection system that automatically82

filters out texts it considers machine-generated, this could effectively block any written contributions83

of human authors that happen to have a style similar to what the detector considers typical for84

language models. This might not only potentially be considered unethical or unlawful, but could85

also further erode public confidence and trust in the written word online. A practical detection86

method must therefore be highly accurate to be able to cope with large-scale adversarial attacks,87

but may not achieve that at the cost of a high false-positive rate.88

2. Another major fear in the current research into detection methods is the perspective of a “cat and89

mouse” game (Solaiman et al., 2019) between generator and detector, where detection methods90

are hardly transferable between different adversarial generators. Any improvement in language91

models would then create a temporary advantage for the generating side, persisting until the detector92

catches up by adapting to the new situation through changes in model architecture or fine-tuning.93

This would imply that the detection problem could never be resolved, but only temporarily patched.94

Signs of such a situation arising have been reported by Radford et al. (2019) and Zellers et al. (2019)95

who observe that detection models struggle with the increasing complexity of the generating model,96

Ippolito et al. (2020) who find that detection models fail to generalise across different decoding97
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methods used in the generation of texts, and Bakhtin et al. (2019), who note that their detection98

model does not transfer well across different training corpora. A detection method needs to be99

as universal as possible, working well for detecting generations from different language models,100

trained across different domains and decoded using different sampling methods.101

3. Gehrmann et al. (2019) developed their detection method with the intention to be easy to explain102

to non-experts and cheap to set up. This follows the recent controversy around availability and103

reproducibility of SOTA language models, which to a large degree differ only in their increasing104

financial and computational development costs, effectively restricting the access to them. The105

access-restriction can become harmful when defensive detection methods also rely on the access to106

such language models. Shevlane and Dafoe (2020) mention the difficulty and cost of propagating107

defensive measures to potentially harmful AI technologies as an important dimension in the108

assessment of risks associated with them, implying that a solution is desired that can effectively and109

easily be used by a large number of users. Given the anticipated broad impact of language models110

on human interaction online and usability of the Internet, detection methods should be universally111

available and easy to set up and adapt.112

RELATED WORK113

This research is aimed at broadening the range of existing detection methods beyond the predominant114

reliance on the availability of language models by proposing a feature-based approach. To design of115

meaningful features, a good understanding of the properties and limitations of the language generation116

process is necessary. The following subsections therefore provide an overview of SOTA language117

generation methods and their limitations, before discussing existing detection methods, and subsequently118

introducing the feature-based approach.119

Language Generation120

The currently predominating models for language generation are based on the transformer architecture121

introduced by Vaswani et al. (2017). Its big advantage over previous language models is the more122

structured memory for long-term dependencies. Even though the bidirectional representation of language,123

learned by models like BERT (Devlin et al., 2019), performs better in many downstream benchmark124

tasks, unidirectional left-to-right models like GPT-2 (Radford et al., 2019) are often the first choice for125

generating more coherent text (See et al., 2019). They allow to intuitively generate text by using the126

preceding context to estimate a probability distribution over the model’s vocabulary, which then only127

needs to be decoded by sampling the next token from it.128

Apart from the new architecture, recent language models profit mainly from the training on ever bigger129

datasets. Radford et al. (2019) trained their model on the WebText dataset, a representation of natural130

language constructed to be as diverse as possible by spanning many different domains and contexts. The131

approach to train on as much human-written text as possible is described by Bisk et al. (2020) as one of132

the big milestones in NLP, passing from the usage of domain-specific corpora for training to basically133

using the whole “written world”.134

Together with the size of the datasets used for training, the whole training paradigm shifted from135

task-specific architectures and inputs to unstructured pre-training of language models. First introduced at136

word-level by Mikolov et al. (2013), Radford et al. (2019) took this approach to the sentence-level. By137

processing as many unstructured, unlabelled, multi-domain and even multilingual texts as possible, the138

idea is that the models not only get a good understanding of language, but also implicitly learn a variety139

of potential downstream tasks. The feasibility of this approach was recently confirmed by Brown et al.140

(2020), whose GPT-3 exhibits strong performance on different NLP benchmarks, even without any form141

of task-specific fine-tuning but only through natural language interaction.142

In order not to overfit the ever increasing datasets used for training, the language models have to143

equally grow in size and complexity. GPT-3 therefore has 175B parameters, more than 100 times as many144

as its predecessor. See et al. (2019) consider current language models to already have enough capacity to145

effectively replicate the distribution of human language.146

Even if a language model perfectly learns the distribution of human language, an equally crucial147

component in language generation is the choice of the decoding method, i.e. how the next token is148

sampled from the probability distribution generated by the model. See et al. (2019) find that flaws in149

3/22PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54411:0:0:NEW 27 Oct 2020)

Manuscript to be reviewedComputer Science



language generation can be traced back to the choice of decoding method, rather than model architecture150

or insufficient training. The choice of decoding method can be seen as a trade-off between diversity and151

quality (Sun et al., 2020; Hashimoto et al., 2019), where sampling from the full distribution leads to152

diverse, but poor-quality text as perceived by humans, while a likelihood-maximising sampling method153

generating only from the most probable tokens leads to high-quality text that lacks diversity and is154

unnaturally repetitive. Holtzman et al. (2019) find the problem of sampling from the full distribution in155

the increased cumulative likelihood of picking an individually highly unlikely token, causing downward-156

spirals of text quality which are easy to notice for human readers. When trying to avoid this problem by157

choosing a likelihood-maximisation approach for sampling (e.g. top-k, sampling at every step only from158

the k most likely tokens), they observe repetition feedback loops which the model cannot escape from and159

outputs that strongly differ from human language by over-relying on high-likelihood words, making it160

easy for automated detection approaches to pick up on statistical artefacts.161

Detection Approaches162

Solaiman et al. (2019) introduce a simple categorization of different detection approaches based on their163

reliance on a language model. In the following, the existing approaches are categorised accordingly and164

briefly discussed along the dimensions introduced above.165

The first category of detection approaches are simple classifiers, trained from scratch based on text166

samples labelled as either human- or machine-generated. They tend to have relatively few parameters and167

be easily deployable. An example is the logistic regression classifier trained on tf-idf features, proposed as168

a detection baseline by Clark et al. (2019). Badaskar et al. (2008) trained a feature-based SVM-classifier,169

using high-level features to approximate a text’s empirical, syntactic and semantic characteristics, trying170

to find textual properties that differed between human and machine text and could thus be used for171

discrimination between the two types. Their experiments were limited to the now outdated trigram172

language models. The main advantage of simple classifiers are their low access- and set-up costs. Because173

they do not rely on the access to an extensively pre-trained or fine-tuned language model, they can be174

handled even on individual commodity computers. However, they are hard to adapt, requiring entirely175

new training on changing corpora. Because of the sparse literature on them, their performance and176

transferability are not yet clear, but will be investigated in our experiments.177

Zero-shot detection approaches from the second category rely on the availability of a language model178

to replicate the generation process. An example is the second baseline introduced by Clark et al. (2019),179

which uses the total probability of a text as assessed by a language model for detection. Gehrmann et al.180

(2019) elaborate on this approach by calculating histograms over next-token probabilities as estimated by181

a language model and training logistic regression classifiers on them. While not requiring fine-tuning,182

zero-shot detection approaches need a language model to work, the handling of which is computationally183

restrictive. Their performance lags far behind the simple tf-idf baseline (Clark et al., 2019; Ippolito et al.,184

2020) and their transferability is questionable, given the need for the detection method in this approach to185

basically “reverse-engineer” the model-dependent generation process to be successful.186

The third category uses pre-trained language models explicitly fine-tuned for the detection task.187

Solaiman et al. (2019) and Zellers et al. (2019) add a classifier-layer on top of the language model and188

Bakhtin et al. (2019) train a separate, energy-based language model for detection. While being by far the189

most expensive method in terms of training time and model complexity, and the least accessible for its190

reliance on a pre-trained and fine-tuned language model, this approach has so far achieved the highest191

accuracy on the detection task (Solaiman et al., 2019; Zellers et al., 2019). However, the discussed lack of192

transferability across model architectures, decoding methods and training corpora has been observed with193

fine-tuned models.194

Feature-Based Text-Classification195

The feature-based approach to discriminate between human and machine text is grounded on the assump-196

tion that there are certain dimensions in which both types differ. Stylometry - the extraction of stylistic197

features and their use for text-classification - was introduced by Argamon-Engelson et al. (1998), and198

has since been successfully employed for tasks as diverse as readability assessment (Feng et al., 2010),199

authorship attribution (Koppel et al., 2002) and, more recently, the detection of fake news (Pérez-Rosas200

et al., 2018; Rubin et al., 2016). Even though Schuster et al. (2019) consider the detection models of201

Zellers et al. (2019) and Bakhtin et al. (2019) examples of well-working, feature-based detectors, their202
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input features are mere vector-space representations of text. Rubin et al. (2016) hypothesise that high-203

level features, specifically designed for the classification problem, expand the possibilities of stylometry204

classifiers and would thus improve their performance. By building on differences between human and205

machine text, high-level features make the detection transparent and explainable, offering insights into206

characteristic behaviour of language models (Badaskar et al., 2008).207

METHODOLOGY208

A feature-based detection approach relies on features that discriminate between human and machine text209

by modelling properties and dimensions in which both types of text differ. Logical starting points for the210

creation of such features are therefore the flaws and limitations of language generation methods. In the211

following subsection, we categorise the known shortcomings and propose features to capture them, before212

discussing the choice of a detection model architecture.213

Features214

Depending on the choice of the decoding method, the flaws in the generated language differ. However, we215

establish four different categories to organise them. A comprehensive description of the features can be216

found in Appendix 1.217

Lack of Syntactic and Lexical Diversity218

Gehrmann et al. (2019) describe that language models fail to use synonyms and references as humans do,219

but rather stick to the repetition of the same expressions, leading to a lack of syntactic and lexical diversity220

in machine text. Zellers et al. (2020) observe their models confusing the ’who-is-who’ in story-telling,221

and failing to use different references for a text’s entities to increase diversity. See et al. (2019) find that222

generated texts contain more verbs and pronouns, and fewer nouns, adjectives and proper nouns than223

human text, indicating a different use of word types.224

This behaviour can be approximated by the use of named entities (NE) and the properties of the225

co-reference chains, as introduced by Feng et al. (2010). Compared to a human author who de-references226

and varies expressions, language models can be expected to use a larger share of unique NEs and to227

produce shorter and fewer coreference chains with a higher share of NEs. Additional features can be228

based on the shift in the POS-tag distribution between human and machine texts (Clark et al., 2019).229

As NE-based features, we use the relative distribution over NE-tags, their per-sentence count and230

a number of simple count-based features. The co-reference features are similar to those of Feng et al.231

(2010), all based on co-reference chains that indicate the different references made to entities throughout a232

text. As POS-based features, we use the relative distribution of a text’s POS-tags, their per-sentence count233

as well as a number of features based on the nouns, verbs, adjectives, adverbs and prepositions proposed234

by Feng et al. (2010). We use the NE-recogniser and POS-tagger provided in the Python spaCy 1 package235

to find the NE- and POS-tags, as well as the neuralcoref 2 extension to detect co-reference clusters.236

Repetitiveness237

The problem of over-using frequent words as described by Holtzman et al. (2019) can lead to a large238

degree of repetitiveness and a lack of diversity in machine-generated texts. Ippolito et al. (2020) observe239

that machine-generated language has 80% of its probability mass in the 500 most common words and240

Holtzman et al. (2019) expose the low-variance of the next-token probabilities over a text as assessed by a241

language model, showing that machine-generated text almost never dips into low-probability zones as242

human text characteristically does. Another big problem of machine-generated text is its highly parallel243

sentence structure (Gehrmann et al., 2019) and the occasional repetition of whole phrases (Jiang et al.,244

2020).245

We try to expose those statistical differences, assumed to be easiest to be picked up by automated246

detection methods, through the share of stop-words, unique words and words from “top-lists” in a text’s247

total words. We expect a more diverse, human-written text to have a higher share of unique words248

and a lower share of stop-words and words from “top-lists”. We propose to expose the repetitiveness249

by calculating the n-gram overlap of words (lexical repetition) and POS-tags (syntactic repetition) in250

consecutive sentences. Human text is expected to be less repetitive both in sentence structure and251

1https://spacy.io/
2https://github.com/huggingface/neuralcoref
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word choice. We introduce the “conjunction overlap” as a measure of the n-gram overlap around and-252

conjunctions to make explicit the reported failure of language models of plainly repeating words around253

those conjunctions.254

We use the stop-words defined by the spaCy package and take a list with the top 10000 words 3 used255

in English determined by Google to calculate the share of a text’s words that are in the top 100, top 1000256

and top 10000 words of that list. The n-gram (n = [1,2,3]) overlap of consecutive sentences is represented257

on a document level by histograms (from 0 to 1 in 10 uniform bins) over the share of repeated word and258

POS-tag n-grams in consecutive sentences.259

Lack of Coherence260

Even with SOTA language models, the most severe problem of machine-generated text remains the lack261

of coherence, especially over longer sentences and paragraphs (Holtzman et al., 2019; Brown et al.,262

2020). Language model generations are therefore often described as surprisingly fluent on the first read,263

but lacking any coherent thought and logic on closer inspection (See et al., 2019). Closely related is264

the ’topic-drift’, where language models struggle to focus on a single topic but cover different, often265

unrelated topics in a single text (Badaskar et al., 2008). The lack of coherence is especially blatant266

for generations sampled with likelihood-maximisation, which nevertheless remain hardest to detect for267

automated detectors due to their lack of sampling-artefacts (Ippolito et al., 2020).268

The coherence of a text might be approximated by the development of its entities, as introduced269

by Barzilay and Lapata (2008) and used for classification by Badaskar et al. (2008). The entity-grid270

representation tracks the appearance and grammatical role of entities through the separate sentences of a271

text. The assumption is that (locally) coherent text exhibits certain regularities, for example the repetitive272

presence of a text’s main entities in important grammatical roles and only sparse occurrences of less273

important entities in lesser grammatical roles. We use the neuralcoref extension to detect coreference274

clusters and track the appearance of their entities through the text. As a second layer, we implement an275

identity-based proxy, considering reappearing, identical noun phrases as the same entity. Using the spaCy276

dependency parser, we assign the roles Subject (S), Object (O), Other (X) or Not Present (-) to the found277

entities. Based on the resulting entity grid, we obtain the counts of the 16 possible transitions of entities278

between consecutive sentences and transform them to relative transition frequencies by normalising with279

the total number of transitions.280

Badaskar et al. (2008) further propose the use of Yule’s Q statistic as described in Eneva et al. (2001)281

to approximate a text’s intra-sentence coherence. Based on the available corpora of human- and machine-282

generated texts, the assumption is that co-appearances of content-words differ between both types. By283

requiring a minimal distance of five between the content-words forming a co-appearance pair, the focus284

is shifted to the model’s ability to produce coherent output over a medium-range context length. To285

discriminate between human and machine text, the texts available in the training corpora are used to286

calculate a correlation measure for the co-occurrence of content-words in texts from the two different287

sources. We define content-words as the top 5000 words from the Google top 10000 list, excluding spaCy288

stop-words and sub-word snippets. Given these correlation scores, separate human- and machine-scores289

can be calculated for every text, indicating the agreement of that text’s content-word co-appearances with290

the different corpora. The Q statistic is the only corpus-based feature, not exclusively reliant on the text291

itself.292

Badaskar et al. (2008) also use the topic redundancy, approximated by the information loss between a293

text and its truncated form, as a measure of coherence. The assumption is that human-generated text is294

more redundant, since it coherently treats a single or few topics without drifting from topic to topic. The295

text is transformed to a sentence-based vocabulary-matrix representation which can in turn be brought to296

its eigenspace using a Singular Value Decomposition. By replacing the lowest entries of the eigenvalue297

diagonal-matrix with 0, the reconstructed matrix is a truncated from of the original. By always setting298

the lowest 25% of entries to 0, we dynamically adapt to differing text-lengths. Given the original and299

truncated matrix representation, the information loss is calculated as the squared norm of the element-wise300

difference between the two matrices. We additionally calculate and include the mean, median, min and301

max of the truncated matrix and the element-wise difference between the full and truncated matrix.302

303

3https://github.com/first20hours/google-10000-english
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Lack of Purpose304

A final, more qualitative limitation of machine-generated text is its lack of purpose and functionality.305

While for human text function is generally considered as the “source of meaning” (Bisk et al., 2020),306

language models naturally do not have human-like needs or desires (Gehrmann et al., 2019) and their307

generations must therefore be considered as void of meaning and purpose.308

We approximate the purpose of a text by calculating its lexicon-based topicality scores. We expect309

human text to contain more sentiment-related keywords and thus score higher in these categories, while310

being more focussed on fewer categories overall, expressing a single message rather than generating311

purposelessly drifting text. We also take the share of a text’s non-generic content words as a measure of312

its originality, assuming that human text trying to convey a real message has a higher share.313

Based on the 194 categories available by default from the Python empath 4 lexicon-package (Fast314

et al., 2016) and 5 tailored categories (representing spatial properties, sentiment, opinion, logic and ethic),315

we calculate the mean, median, min, max and variance of a text’s scores over all categories as features.316

The same statistics are extracted based only on the “active” categories (empath scores > 0). Additionally,317

the scores of the text in the tailored categories are used as features.318

319

Other Features320

The last set consists of more general, potentially helpful features. The “basic features” are simple321

character-, syllable-, word- and sentence-counts, both in absolute and relative terms. The “readability322

features” reflect the syntactic complexity, cohesion and sophistication of a text’s vocabulary (Crossley323

et al., 2011). To test the models’ ability of structuring and formatting its generations, we calculate the324

distribution over punctuation marks, their per-sentence counts as well as the number and average length325

of paragraphs, shown to be successful in detecting fake news (Rubin et al., 2016).326

Classifier327

The feature-based detection method proposed in this paper can be considered as a special, binary case of328

the general automated text categorisation problem. We thus follow Yang and Liu (1999) in the definition of329

the task as the supervised learning of assigning predefined category labels to texts, based on the likelihood330

suggested by the training on a set of labelled texts. Given a text and no additional exogenous knowledge,331

the trained model returns a value between 0 and 1, indicating the evidence that the document belongs to332

one class or the other. A hard classifier takes this evidence, compares it to a pre-defined threshold and333

makes the classification decision (Sebastiani, 2002). From the range of available classification models, we334

consider Logistic Regression (LR), Support Vector Machines (SVM), Neural Networks (NN) and Random335

Forests (RF), which have often been reported to show similar performances on the text categorization task336

(Zhang and Oles, 2001; Joachims, 1998). We use the implementations of the different models available337

from the scikit-learn 5 package for our validation trials. We focus our following experiments on the338

evaluation of Neural Networks for the proposed detection problem, based on their superior performance339

in our validation trials (Table 1).340

Data

Classifier s s-k xl xl-k

Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Logistic Regression 0.822 0.908 0.811 0.890 0.707 0.787 0.750 0.823

SVM 0.847 n.a. 0.900 n.a. 0.704 n.a. 0.821 n.a.

Neural Network 0.885 0.958 0.923 0.972 0.760 0.841 0.847 0.929

Random Forest 0.814 0.908 0.852 0.888 0.694 0.763 0.774 0.819

Table 1. Validation Results. Classifier accuracies on test set. The classifiers have been fine-tuned with

regard to their key parameters using a validation set. Data comes from the different GPT-2 models: small

(s), small-k40 (s-k), xl (xl) and xl-k40 (xl-k).

4https://github.com/Ejhfast/empath-client
5https://scikit-learn.org/
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Type Model Dataset full name Short Full Filtered

name train valid test train valid test

machine GPT2 small-117M s 250000 5000 5000 185622 3732 3722

GPT2 small-117M-k40 s-k 250000 5000 5000 201236 4062 4082

GPT2 xl-1542M xl 250000 5000 5000 193052 3868 3851

GPT2 xl-1542M-k40 xl-k 250000 5000 5000 214202 4312 4243

GPT3 175B GPT3 1604 201 201 886 122 101

Grover Grover-Mega Grover 8000 1000 1000 7740 964 961

human GPT2 webtext 250000 5000 5000 190503 3813 3834

GPT3 GPT3-webtext 1604 201 201 1235 160 155

Grover realNews 8000 1000 1000 7725 972 976

Table 2. Dataset Sizes.

EXPERIMENTS341

We evaluate our feature-based classifier in a variety of settings, testing it across different generation model342

architectures, training datasets and decoding methods, thereby covering all main potential influences of a343

detector’s performance.344

Dataset345

In our experiments, we use publicly available samples of language model generations and try to detect346

them among the model’s training data, which was either scraped from the Internet or more randomly347

curated from existing corpora, but in any case of human origin. The biggest part of our data comes348

from the different GPT-2 model versions, published by Clark et al. (2019). We use generations from the349

smallest (117M parameters; s) and largest GPT-2 model (1542M parameters; xl), sampled both from the350

full and truncated (top-k=40) distribution, to test the transferability of our detectors across model sizes and351

sampling methods. To evaluate the transferability across model architectures, we include generations from352

the biggest Grover model (Zellers et al., 2019) and from Open-AI’s most recent GPT-3 model (Brown353

et al., 2020).354

We noticed that a significant share of the randomly scraped and unconditionally generated texts turned355

out to be website menus, error messages, source code or weirdly formatted gibberish. Since we consider356

the detection of such low-quality generations as neither interesting nor relevant for the limited impact of357

their potential abuse, we repeat our experiments on a version of the data that was filtered for “detection358

relevance”. We take inspiration from Raffel et al. (2019) in the construction of our filters, filtering out359

samples that show excessive use of punctuation marks, numbers and line-breaks, contain the words360

cookie, javascript or curly brackets, or are not considered as being written in English with more than 99%361

probability as assessed by the Python langdetect 6 package. Like Ippolito et al. (2020), we only consider362

texts that have at least 192 WordPiece (Schuster and Nakajima, 2012) tokens. The sizes of the resulting363

datasets are documented in Table 2. We compare the results of our detectors trained and evaluated on the364

unfiltered dataset to their counterparts trained and evaluated on the filtered dataset. We expect the filtering365

to decrease the share of texts without meaningful features, thus hypothesising that our classifiers perform366

better on the filtered datasets.367

Evaluation368

To evaluate the performance of our detection model, we report its accuracy as the share of samples that369

are classified correctly, as well as the area under curve (AUC) of the receiver operating characteristic370

curve (ROC), resulting from the construction of different classification thresholds. While the accuracy is371

often the sole metric reported in the literature, we argue that it should not be the only metric in assessing a372

detector’s quality. Its inability to include a notion of utility of the different types of errors (Sebastiani,373

2002) is a major drawback, given the potential severity of false positives. This is in line with related374

detection problems, e.g. the bot detection in social media, where a deliberate focus is on the detector’s375

precision to avoid the misclassification of human users as machines (Morstatter et al., 2016). Another376

problem is the sensitivity of accuracy to class skew in the data, influencing the evaluation of detectors377

6https://github.com/Mimino666/langdetect
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(Fawcett, 2006) and in extreme cases leading to the trivial classifier (Sebastiani, 2002) that effectively378

denies the existence of the minority class and thus fails to tackle the problem. We therefore decided to379

report the accuracy, allowing for comparison with existing detection approaches, but also provide the380

AUC of the ROC as a more comprehensive evaluation metric, effectively separating the evaluation of the381

classifier from skewed data and different error costs (Fawcett, 2006).382

All reported results are calculated on a held-out test set, using the classifier with the optimal parameter383

constellation found by a grid-search on the validation dataset. The parameter grid is documented in384

Appendix 2 Table 14. Using the Python scikit-learn package, the models were trained for a maximum of385

250 iterations or until convergence on validation data was observed.386

RESULTS387

The following results are organised along the different data constellations we trained and evaluated our388

classifiers on.389

Single-Dataset Classifiers390

In the main part of our experiments, we evaluate detectors trained on samples from a single generation391

model. We evaluate the resulting detectors not only on the language model they were specifically trained392

on, but also try their transferability in detecting generations from other models.393

Data

Classifier s s-k xl xl-k GPT3 Grover

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

s 0.897 0.964 0.487 0.302 0.728 0.838 0.471 0.290 0.475 0.474 0.479 0.454

s-k 0.338 0.247 0.927 0.975 0.445 0.328 0.808 0.924 0.537 0.769 0.502 0.671

xl 0.740 0.937 0.504 0.434 0.759 0.836 0.489 0.382 0.468 0.423 0.516 0.485

xl-k 0.292 0.223 0.908 0.967 0.382 0.322 0.858 0.932 0.535 0.545 0.503 0.514

GPT3 0.436 0.234 0.736 0.821 0.452 0.316 0.658 0.749 0.779 0.859 0.589 0.654

Grover 0.333 0.285 0.662 0.785 0.439 0.422 0.643 0.738 0.537 0.552 0.692 0.767

Table 3. Single-Dataset Classifiers. Accuracy scores of the classifiers evaluated on generations from the

different language models. Along the diagonal (bold), training and test data belong to the same language

model.

The feature-based classifier performs better for generations from likelihood-maximising decoding394

strategies (Table 3; s-k and xl-k vs. s and xl), as do all the approaches tested in the literature so395

far. Similarly, the detection of machine-generated texts becomes more difficult with increasing model396

complexity (Table 3; xl and xl-k vs. s and s-k), indicating that bigger models are harder to be detected and397

therefore presumably better replicate human texts statistically. This is shown by the baseline results from398

Clark et al. (2019), and also qualitatively, implied by the decreasing performance of our feature-based399

approach. The performance of the detector learned and evaluated on the GPT-3 model is surprisingly400

good, being even higher than for the GPT-2 xl generations. Given that GPT-3 has more than 100 times as401

many parameters, we would have expected GPT-3 generations to be more difficult to detect. However,402

this might also be due to the decoding choice, the top-p=0.85 sampling used for the GPT-3 generations403

marking a trade-off between the easier to detect top-k sampling and the harder to detect sampling from the404

full distribution. Similar reasoning applies to the detection of Grover generations (top-p=0.94 sampling),405

which our classifier struggles with most. Another reason might be that the detection of fine-tuned406

generation models, as is the case with the pre-conditioned article-like Grover generations, is generally407

more difficult (Clark et al., 2019).408

Table 3 shows acceptable transferability of our classifiers between models with the same architecture409

and sampling method, but different complexity. It is easier for a detector trained on samples from a bigger410

generator (xl and xl-k) to detect samples from a smaller generator (s and s-k) than vice versa. There is no411

transferability between the different sampling methods, confirming the observations by Holtzman et al.412

(2019) that different sampling methods produce different artefacts, making it impossible for a feature-413

based detector to generalise between them. To rule out the possibility that the lack of transferability414
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Data

Classifier s s-k xl xl-k GPT3 Grover

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

s 0.894 0.962 0.486 0.312 0.729 0.838 0.471 0.281 0.512 0.491 0.484 0.451

s-k 0.492 0.275 0.917 0.972 0.486 0.335 0.800 0.903 0.617 0.775 0.574 0.732

xl 0.867 0.957 0.443 0.311 0.777 0.864 0.427 0.289 0.410 0.415 0.462 0.449

xl-k 0.454 0.174 0.887 0.959 0.457 0.277 0.837 0.917 0.622 0.724 0.566 0.684

GPT3 0.445 0.266 0.703 0.791 0.458 0.350 0.624 0.705 0.739 0.828 0.585 0.629

Grover 0.386 0.265 0.705 0.755 0.444 0.404 0.675 0.719 0.537 0.526 0.683 0.760

Table 4. Single-Dataset Classifiers, no Q.

is caused by the corpus-based Q features, we repeat the experiments for detectors trained on all but415

the Q features (Table 4). The transferability across sampling methods remains abysmal, indicating that416

the feature-based approach is indeed unable to pick out common flaws produced by different sampling417

methods.418

Data

Classifier s s-k xl xl-k GPT3 Grover

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

s 0.930 0.982 0.473 0.307 0.769 0.884 0.459 0.273 0.320 0.2139 0.431 0.430

s-k 0.321 0.172 0.947 0.985 0.443 0.292 0.801 0.939 0.609 0.812 0.505 0.667

xl 0.849 0.971 0.446 0.329 0.802 0.883 0.426 0.303 0.387 0.328 0.494 0.477

xl-k 0.216 0.099 0.910 0.974 0.360 0.242 0.861 0.933 0.637 0.660 0.514 0.721

GPT3 0.417 0.131 0.806 0.884 0.432 0.254 0.734 0.820 0.754 0.834 0.614 0.668

Grover 0.334 0.286 0.764 0.842 0.423 0.395 0.711 0.762 0.731 0.747 0.676 0.769

Table 5. Single-Dataset Classifiers, Filtered.

We finally test the performance of classifiers when trained and evaluated on the longer texts from the419

filtered dataset which are potentially more characteristic and richer in features. As expected, our classifiers420

perform better, gaining between 1 and 3 percentage-points accuracy across the GPT-2 generations (Table421

5). However, this does not hold for GPT-3 and Grover, again hinting at better-curated data.422

Feature-Set Classifiers423

To get an idea of which features are truly important for the performance of the feature-based classifiers,424

we train and evaluate detectors on the individual subsets of features.425

From the results in Table 7, we can see that the most important feature subsets in terms of their426

individual performance are the syntactic, lexical diversity and basic features (6). While the subsets427

generally have similar performance for the different sampling methods, we observe that the NE and428

coreference features are consistently stronger for the untruncated sampling method, and the lexical429

diversity and Q features for the top-k sampling. This is in line with the assumption that untruncated430

sampling is easier to detect based on more qualitative text characteristics such as coherence and consistency,431

while generations from top-k sampling methods can more easily be detected based on statistical properties.432

Multi-Dataset Classifiers433

Simulating a more realistic detection landscape in which different types of language models are used for434

the generation of texts, we construct datasets that combine generations from different language models.435

Their exact composition is documented in Table 7.436

Table 8 shows that classifiers trained on combined datasets from the same sampling method (GPT2-437

un and GPT2-k) show good results on the respective individual datasets (s,xl and s-k,xl-k) without438

outperforming the optimised single-dataset classifiers (Table 3). Their transferability is similar to that439

of the single-dataset classifier trained on the respectively bigger datasets (xl,xl-k). When learning a440

classifier on all GPT-2 generations (GPT2), it shows relatively good performance across all individual441
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Classifier Data

s s-k xl xl-k GPT3 Grover

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

syntactic 0.859 0.944 0.845 0.925 0.733 0.826 0.780 0.865 0.714 0.803 0.627 0.692

basicAbs 0.822 0.910 0.817 0.900 0.716 0.794 0.747 0.827 0.679 0.766 0.602 0.664

lexicalDiv 0.792 0.879 0.821 0.901 0.678 0.751 0.756 0.832 0.654 0.667 0.618 0.667

infoLoss 0.806 0.890 0.756 0.842 0.681 0.753 0.720 0.800 0.679 0.733 0.598 0.648

readability 0.796 0.877 0.798 0.874 0.693 0.758 0.730 0.801 0.592 0.659 0.560 0.611

repetitiveness 0.785 0.870 0.739 0.822 0.652 0.716 0.707 0.775 0.637 0.679 0.618 0.654

basicRel 0.792 0.864 0.798 0.875 0.692 0.743 0.730 0.805 0.520 0.597 0.587 0.624

NE 0.795 0.886 0.725 0.807 0.677 0.751 0.660 0.727 0.632 0.673 0.543 0.549

empath 0.710 0.786 0.703 0.778 0.627 0.682 0.624 0.676 0.649 0.727 0.572 0.595

formatting 0.696 0.768 0.705 0.780 0.611 0.660 0.640 0.698 0.567 0.626 0.586 0.630

coreference 0.747 0.824 0.618 0.671 0.637 0.695 0.595 0.631 0.624 0.666 0.537 0.553

entityGrid 0.697 0.774 0.604 0.643 0.594 0.636 0.596 0.629 0.597 0.679 0.590 0.600

Q 0.577 0.711 0.664 0.879 0.554 0.594 0.625 0.765 0.587 0.637 0.501 0.618

Table 6. Feature-Set Classifiers. Highlighted in bold are the feature-dataset combinations where a

feature is far better for either the untruncated or top-k sampling for both GPT-2 dataset sizes. The value

printed in italics corresponds to the feature-dataset combination the highlighted value is compared against.

The features are sorted in decreasing order of their average accuracy across all datasets.

Machine Human

Set Name s s-k xl xl-k GPT3 Grover webtext GPT3-

webtext

realNews

Train GPT2-un 125000 - 125000 - - - 250000 - -

GPT2-k - 125000 - 125000 - - 250000 - -

GPT2 62500 62500 62500 62500 - - 250000 - -

All 60099 60099 60099 60099 1604 8000 236396 1604 8000

Valid GTP2-un 2500 - 2500 - - - 5000 - -

+ GPT2-k - 2500 - 2500 - - 5000 - -

Test GPT2 1250 1250 1250 1250 - - 5000 - -

All 950 950 950 949 201 1000 3299 201 1500

Table 7. Multi-Dataset Compositions.

GPT-2 datasets, but breaks down on the xl-k data. This might hint at the possibility that the detector442

learns sub-detectors for every single data source, rather than obtaining a universal understanding of the443

difference between human text and GPT-2 generations.444

Finally, we train and evaluate a classifier on the combination of all the different data sources, including445

generations from GPT-3 and Grover (All). The resulting detector, especially when trained on the446

subset of features that excludes the corpus-based Q features (Table 9), is surprisingly robust and shows447

decent performance across all generation models. That it even performs well for the GPT-3 and Grover448

generations that are under-represented in its training data might be caused by the overall increased training,449

compared to their single-dataset classifiers, due to the reduced number of available training samples for450

these models.451

Ensemble Classifiers452

After observing that our feature-based classifier is more accurate than the tf-idf baseline in detecting texts453

from untruncated sampling (s and xl, Table 10), while it is the other way around for texts generated with454

top-k=40 sampling (s-k and xl-k, Table 10), we construct ensemble classifiers to take advantage of the455

differing performances. In the separate (sep.) ensemble model variant, we take the individually optimised456

feature-based- and tf-idf-baseline models’ probability estimates for a text to be machine-generated as457

input to a meta-learner, which in turn produces the final label estimate. In the super ensemble model, we458
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Data Classifier

GPT2-un GPT2-k GPT2 All

Acc. AUC Acc. AUC Acc. AUC Acc. AUC

s 0.827 0.940 0.323 0.216 0.767 0.932 0.809 0.907

s-k 0.508 0.410 0.921 0.969 0.866 0.940 0.880 0.940

xl 0.726 0.834 0.430 0.320 0.726 0.800 0.690 0.754

xl-k 0.497 0.398 0.830 0.920 0.682 0.829 0.772 0.863

GPT3 0.473 0.470 0.515 0.530 0.512 0.566 0.510 0.586

Grover 0.458 0.517 0.602 0.512 0.590 0.593 0.643 0.685

GPT2-un 0.817 0.897 0.381 0.273 0.773 0.877 0.760 0.837

GPT2-k 0.500 0.401 0.871 0.942 0.777 0.881 0.824 0.900

GPT2 0.636 0.590 0.607 0.592 0.785 0.865 0.782 0.859

All 0.602 0.560 0.616 0.625 0.725 0.787 0.755 0.824

Table 8. Multi-Dataset Classifiers.

Classifier

Data GPT2-un GPT2-k GPT2 All

Acc. AUC Acc. AUC Acc. AUC Acc. AUC

s 0.890 0.962 0.470 0.197 0.846 0.934 0.855 0.938

s-k 0.466 0.291 0.905 0.968 0.862 0.942 0.867 0.942

xl 0.771 0.859 0.469 0.293 0.718 0.803 0.721 0.808

xl-k 0.451 0.271 0.834 0.917 0.784 0.864 0.780 0.856

GPT3 0.458 0.444 0.622 0.757 0.580 0.681 0.714 0.755

Grover 0.537 0.450 0.650 0.703 0.598 0.599 0.688 0.746

GPT2-un 0.830 0.909 0.471 0.245 0.781 0.867 0.785 0.871

GPT2-k 0.457 0.277 0.869 0.942 0.823 0.901 0.825 0.898

GPT2 0.645 0.594 0.670 0.594 0.805 0.887 0.808 0.888

All 0.600 0.558 0.653 0.628 0.744 0.818 0.770 0.856

Table 9. Multi-Dataset Classifiers, no Q.

use the probability estimates of all the different, optimised feature-set classifiers, as well as the estimate459

from the tf-idf-baseline model, as input to a meta-learner. For each of the different ensembles, we train460

a Logistic Regression and a Neural Network model, following the previously introduced grid-search461

approach. The resulting constellations of the optimal models are documented in Appendix 2 Table 21.462

The ensemble models, and especially the NN sep. variant built on top of the optimised tf-idf-baseline463

and feature-based model, outperform and even improve on the best accuracy of the individual classifiers464

by at least 1 percentage-point on each dataset (Table 10). This holds, even though we observe massive465

overfitting to the training data with this architecture.466

Comparison to Results in the Literature467

Comparing the performance of our feature-based detector to results reported in the literature, we see468

that the RoBERTa models fine-tuned for the detection task by Solaiman et al. (2019) show unmatched469

accuracies across all model sizes and sampling methods. The accuracies of 96.6% on the xl and 99.1%470

on the xl-k dataset are impressive, with our best ensemble model lagging behind 18 percentage-points in471

accuracy on the generations from the full distribution (xl; Table 10). However, only samples with a fixed472

length of 510 tokens were tested, potentially giving the accuracy a boost compared to the many shorter,473

thus harder to detect samples in our test data. Our results therefore are not directly comparable. Ippolito474

et al. (2020) report detection results for a fine-tuned BERT classifier on generations from the GPT-2 large475

model (774M parameters) with a sequence length of 192 tokens. They report an accuracy of 79.0% for476

generations from the full distribution and 88.0% for top-k=40 samples. The use of 1-token-priming for477

generation makes their results not directly comparable to ours. However, as stated by the authors, the478

priming should only negatively affect the accuracy on the top-k generations. Our strongest ensemble479
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Baselines Ensembles

Data feature-

baseline

tf-idf-

baseline

LR sep. NN sep. LR super NN super

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

s 0.897 0.964 0.855 0.935 0.877 0.959 0.918 0.973 0.880 0.957 0.882 0.957

s-k 0.927 0.975 0.959 0.993 0.966 0.995 0.971 0.995 0.962 0.991 0.961 0.988

xl 0.759 0.836 0.710 0.787 0.740 0.831 0.782 0.877 0.714 0.802 0.716 0.803

xl-k 0.858 0.932 0.915 0.972 0.920 0.976 0.924 0.975 0.912 0.969 0.905 0.965

GPT3 0.779 0.859 0.749 0.837 0.761 0.844 0.786 0.862 0.754 0.853 0.774 0.864

Grover 0.692 0.767 0.690 0.764 0.689 0.764 0.724 0.804 0.691 0.783 0.716 0.805

Table 10. Ensemble-Classifier. The size of the tf-idf vectors in the tf-idf baseline has been n = 100k.

model achieves an accuracy of 78.2% on samples from the untruncated GPT-2 xl model, a generation480

model twice the size of that used in Ippolito et al. (2020) and therefore theoretically harder to detect.481

Given the unclear effect of restricting the text length to 192 tokens, compared to our data which includes482

both longer and shorter texts, we consider our feature-based ensemble classifier to be at least competitive483

with the reported BERT results. Our best ensemble classifier struggles most with the detection of Grover.484

While only the fine-tuned Grover model of Zellers et al. (2019) scores a strong accuracy of 92.0% on485

the Grover-Mega data, the fine-tuned BERT and GPT-2 detectors perform similar to our classifier, with486

reported accuracies of 73.1% and 70.1%, respectively. This suggests that the inability of these detectors487

might less be due to the detection approach but rather be caused by the highly-curated Grover training488

data, differing strongly from the more diverse internet text used to train the non-Grover classifiers.489

DISCUSSION AND FUTURE WORK490

Our research into the possibility of using feature-based classifier for the detection of SOTA language491

models offers not only an understanding of the method’s general performance, but also delivers many492

insights into more general language model detection issues. We observed low transferability between the493

detectors of different sampling methods, as well as differing performance of the individual feature sets,494

indicating that the sampling method choice indeed influences the type of flaws a language model produces495

in its generations. Our experiments with multi-dataset classifiers indicate that it might be impossible to496

account for these differences in one single classifier, and that a solution might instead be the construction497

of sub-classifiers for every single dataset and the combination of their outputs using an ensemble approach.498

We have also shown that our more quality-focussed features work better than the more statistical tf-idf-499

baseline for the detection of texts generated from the full distribution, and that ensemble detectors which500

combine these simple approaches can be competitive with more computationally expensive, language-501

model-based detectors. Given the transferability observed between different generation model sizes with502

the same sampling method, we are hopeful that our feature-based approach might work as a “first line of503

defence” against potential releases of ever bigger language models of the same architecture, as was the504

trend with the last GPT models, without the immediate need to extensively re-train the detector.505

Future work into feature-based detection methods might include the more detailed evaluation of the506

contribution of individual features to the overall performance of the classifier, with a possible focus on the507

search for features that increase transferability between the different sampling methods. We furthermore508

suggest to evaluate the feature-based detector in a more realistic setting with carefully curated, high-quality509

generations from different language models.510
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1 FEATURE OVERVIEW639

Index Feature

basic features (absolute)

0 Number of characters

1 Number of syllables

2 Number of words

3 Number of sentences

4 Number of difficult words

5 Number of short words

6 Number of long words

basic features (relative)

7 Characters per Word

8 Syllables per Word

9 Words per Sentence

10 Share difficult words in total words

11 Share short words in total words

12 Share long words in total words

readability features

13 Automatic Readability Index

14 Coleman Liau Index

15 Flesch-Kincaid Grade Level

16 Flesch-Kincaid Reading Ease

17 Gunning-Fog Index

18 LIX

19 McAlpine EFLAW Score

20 RIX

21 SMOG Grade

lexical diversity features

22 Share stop-words in total words

23 Share unique words in total words

24 Share words in google top-100 list in total words

25 Share words in google top-1000 list in total words

26 Share words in google top-10000 list in total words

formatting features

27 - 39 Rel. frequencies of punctuation marks [,.:;?!-”()[]\n]

40 - 52 Punctuation marks per sentence

53 Number of paragraphs

54 Average paragraph length

Table 11. Feature Overview I
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Index Feature

lexical and syntactic repetitiveness features

55 - 64 Unigram overlap of words between consecutive sentences (10 uniform bins from 0 to 1)

65 - 74 Bigram overlap of words between consecutive sentences (10 uniform bins from 0 to 1)

75 - 84 Trigram overlap of words between consecutive sentences (10 uniform bins from 0 to 1)

85 - 94 Unigram overlap of POS-tags between consecutive sentences (10 uniform bins from 0 to 1)

95 - 104 Bigram overlap of POS-tags between consecutive sentences (10 uniform bins from 0 to 1)

105 - 114 Trigram overlap of POS-tags between consecutive sentences (10 uniform bins from 0 to 1)

115 - 117 Uni-, Bi- and Trigram overlap of words around and-conjunctions

syntactic features

118 - 136 Rel. frequencies of POS-tags [ADJ, ADP, ADV, NOUN, VERB, AUX, CONJ, CCONJ,

DET, INTJ, NUM, PART, PRON, PROPN, PUNCT, SCONJ, SYM, X, SPACE]

137 - 155 POS-tags per sentence

156 - 160 [ADJ,ADP,ADV,NOUN,VERB]-tags in total words

161 - 165 Unique [ADJ,ADP,ADV,NOUN,VERB]-tags in total words

166 - 170 [ADJ,ADP,ADV,NOUN,VERB]-tags in total [ADJ,ADP,ADV,NOUN,VERB]-tags

171 - 175 Unique [ADJ,ADP,ADV,NOUN,VERB]-tags in total unique

[ADJ,ADP,ADV,NOUN,VERB]-tags

176 - 180 [ADJ,ADP,ADV,NOUN,VERB]-tags per sentence

181 - 185 Unique [ADJ,ADP,ADV,NOUN,VERB]-tags per sentence

named-entity features

186 - 203 Rel. frequencies of NE-tags [PERSON, NORP, FAC, ORG, GPE, LOC, PRODUCT,

EVENT, WORK-OF-ART, LAW, LANGUAGE, DATE, TIME, PERCENT, MONEY,

QUANTITY, ORDINAL, CARDINAL]

204 - 221 NE-tags per sentence

222 Share unique NE-tags in total NE-tags

223 NE-tags in total words

224 Unique NE-tags in total words

225 NE-tags in total sentences

226 Unique NE-tags in total sentences

coreference features

227 - 236 Share of unique coreferences in total coreferences per cluster (10 uniform bins from 0 to 1)

237 Coreferences per cluster

238 Average span of clusters

239 Share of long coreference chains (¿ document length / 2)

240 Share of short inferences (distance between first and second coreference ¡= 20)

241 Share of shorter inferences (distance between first and second coreference ¡= 10)

242 Share of shortest inferences (distance between first and second coreference ¡= 5)

243 Share of NEs in total references

244 Active coreference chains per word

245 Active coreference chains per NE-tag

Table 12. Feature Overview II
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Index Feature

entity-grid features

246 - 261 Rel. frequencies of entity transitions [SS, SO, SX, S-, OS, OO, OX, O-, XS, XS, XX, X-,

-S, -X, -O, –]

topic redundancy features

262 Information Loss

263 - 266 Mean, Median, Maximum and Minimum of truncated Matrix

267 - 270 Difference in Mean, Median, Maximum and Minimum between original and truncated

Matrix

271 Information Loss (lemmatised)

272 - 275 Mean, Median, Maximum and Minimum of truncated Matrix (lemmatised)

276 - 279 Difference in Mean, Median, Maximum and Minimum between original and truncated

Matrix (lemmatised)

empath features

280 Share of topical words in total words

281 - 285 Mean, Median, Minimum, Maximum and Variance of empath scores

286 Number of active categories (score != 0)

287 - 291 Mean, Median, Minimum, Maximum and Variance of active categories

292 - 296 Empath scores of [spatial,sentiment,opinion,logic,ethic] categories

yule’s Q features

297 Q-Score based on human corpus

298 Q-Score based on machine corpus

299 Share of word-pairs not in human corpus

300 Share of word-pairs not in machine corpus

Table 13. Feature Overview III
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2 RESULTS640

Parameter Values

Layers (100), (25,50,25)

Activation ReLU, Logistic

Learning Rate 0.001, 0.01

Alpha 0.00005, 0.0001, 0.0005

Table 14. Grid-Search Parameters.

Classifier Parameters

Layers Activation Learning Rate Alpha

s (25, 50, 25) ReLU 0.01 0.0005

s-k (100) ReLU 0.001 0.0005

xl (100) ReLU 0.01 0.0005

xl-k (25, 50, 25) ReLU 0.01 0.0005

GPT3 (100) Logistic 0.001 0.0005

Grover (25, 50, 25) ReLU 0.01 0.0001

Table 15. Single-Dataset Classifiers, Optimal Parameter Constellations.

Classifier Parameters

Layers Activation Learning Rate Alpha

s (100) Logistic 0.001 0.0005

s-k (25, 50, 25) ReLU 0.001 0.0005

xl (25, 50, 25) ReLU 0.001 0.00005

xl-k (25, 50, 25) ReLU 0.001 0.00005

GPT3 (25, 50, 25) Logistic 0.001 0.0001

Grover (100) ReLU 0.01 0.00005

Table 16. Single-Dataset Classifiers, no Q, Optimal Parameter Constellations.

Classifier Parameters

Layers Activation Learning Rate Alpha

s (25, 50, 25) ReLU 0.001 0.0005

s-k (100) ReLU 0.001 0.0005

xl (100) ReLU 0.01 0.0005

xl-k (100) ReLU 0.01 0.00005

GPT3 (100) ReLU 0.01 0.00005

Grover (100) Logistic 0.091 0.0001

Table 17. Single-Dataset Classifiers, Filtered, Optimal Parameter Constellations.

20/22PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54411:0:0:NEW 27 Oct 2020)

Manuscript to be reviewedComputer Science



Classifier Parameters

Layers Activation Learning Rate Alpha

GPT2-un (25, 50, 25) ReLU 0.01 0.0005

GPT2-k (100) ReLU 0.01 0.0005

GPT2 (25, 50, 25) ReLU 0.01 0.0005

All (100) ReLU 0.01 0.0001

Table 18. Multi-Dataset Classifiers, Optimal Parameter Constellations.

Classifier Parameters

Layers Activation Learning Rate Alpha

GPT2-un (25, 50, 25) ReLU 0.001 0.0001

GPT-k (25, 50, 25) ReLU 0.001 0.0001

GPT2 (25, 50, 25) ReLU 0.001 0.00005

All (25, 50, 25) ReLU 0.001 0.00005

Table 19. Multi-Dataset Classifiers, no Q, Optimal Parameter Constellations.

Features Classifier

s s-k xl xl-k GPT3 Grover

basicAbs 0.001 0.001 0.001 0.001 0.001 0.001

0.0001 0.0001 0.00005 0.00005 0.0001 0.0001

basicRel 0.001 0.001 0.0001 0.001 0.001 0.001

0.00005 0.0001 0.0001 0.00005 0.00005 0.0001

readability 0.001 0.001 0.001 0.001 0.001 0.0001

0.0001 0.00005 0.00005 0.00005 0.0001 0.0001

lexicalDiv 0.001 0.001 0.001 0.001 0.0001 0.001

0.00005 0.00005 0.0001 0.00005 0.00005 0.0001

formatting 0.001 0.001 0.001 0.001 0.001 0.001

0.00005 0.00005 0.00005 0.0001 0.00005 0.00005

repetitiveness 0.001 0.001 0.001 0.001 0.0001 0.001

0.00005 0.00005 0.0001 0.00005 0.00005 0.00005

syntactic 0.001 0.001 0.001 0.001 0.001 0.001

0.0001 0.00005 0.00005 0.00005 0.00005 0.0001

NE 0.001 0.001 0.001 0.0001 0.001 0.001

0.0001 0.0001 0.0001 0.00005 0.0001 0.00005

coreference 0.001 0.001 0.001 0.0001 0.001 0.001

0.00005 0.0001 0.0001 0.00005 0.00005 0.0001

entityGrid 0.001 0.001 0.001 0.0001 0.0001 0.001

0.00005 0.0001 0.0001 0.0001 0.00005 0.00005

infoLoss 0.001 0.001 0.001 0.001 0.001 0.001

0.0001 0.0001 0.00005 0.00005 0.00005 0.00005

empath 0.001 0.001 0.001 0.0001 0.001 0.001

0.0001 0.00005 0.0001 0.00005 0.0001 0.0001

Q 0.0001 0.0001 0.001 0.0001 0.001 0.0001

0.00005 0.00005 0.00005 0.00005 0.00005 0.00005

Table 20. Feature-Set Classifiers, Optimal Parameter Constellations. The feature-set classifiers have

been optimised only on the initial learning rate (Values: [0.0001, 0.001]) and the alpha parameter (Values:

[0.00005, 0.00001]), with the activation being fixed to ReLU and the layers to (25,50,25). For every set of

features, the first row shows the optimal initial learning rate, and the second row the optimal alpha

parameter.
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Data LR NN

C Activation Layers Learning

Rate

Alpha

Separate

s 1/64 Logistic (5, 10, 5) 0.00001 0.00001

s-k 32 Logistic (5, 10, 5) 0.0001 0.00001

xl 1/64 Logistic (5, 10, 5) 0.00001 0.00001

xl-k 64 ReLU (100) 0.00001 0.00001

GPT3 1 Logistic (25, 50, 25) 0.001 0.00001

Grover 64 Logistic (100) 0.001 0.00001

Super

s 1/64 ReLU (100) 0.0001 0.00001

s-k 4 ReLU (5, 10, 5) 0.0001 0.005

xl 1/8 Logistic (25, 50, 25) 0.001 0.00001

xl-k 1/64 Logistic (100) 0.001 0.005

GPT3 1/8 Logistic (25, 50, 25) 0.001 0.00001

Grover 0.25 Logistic (5, 10, 5) 0.001 0.00001

Table 21. Ensemble-Classifier, Optimal Parameter Constellations. The NN ensemble-classifiers have

been optimised on the type of activation (Values: [ReLU, Logistic]), the hidden layer sizes (Values:

[(100), (25,50,25), (5, 10, 5)]), the initial learning rate (Values: [0.00001, 0.0001, 0.001] and alpha

(Values: [0.00001, 0.00005, 0.0001, 0.0005]). The LR ensemble-classifiers have been optimised on the

regulation parameter C. Values: [1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16, 32, 64]
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