
Feature-based detection of automated
language models: tackling GPT-2, GPT-3
and Grover
Leon Fröhling1 and Arkaitz Zubiaga2

1 Leibniz Universität Hannover, Hanover, Germany
2 Queen Mary University of London, London, UK

ABSTRACT
The recent improvements of language models have drawn much attention to
potential cases of use and abuse of automatically generated text. Great effort is
put into the development of methods to detect machine generations among
human-written text in order to avoid scenarios in which the large-scale generation of
text with minimal cost and effort undermines the trust in human interaction and
factual information online. While most of the current approaches rely on the
availability of expensive language models, we propose a simple feature-based
classifier for the detection problem, using carefully crafted features that attempt to
model intrinsic differences between human and machine text. Our research
contributes to the field in producing a detection method that achieves performance
competitive with far more expensive methods, offering an accessible “first line-of-
defense” against the abuse of language models. Furthermore, our experiments show
that different sampling methods lead to different types of flaws in generated text.

Subjects Artificial Intelligence, Computational Linguistics, Natural Language and Speech
Keywords Feature-based detection, Language models, Language generation, Text classification,
NLP

INTRODUCTION
Recent developments in Natural Language Processing (NLP) research led to a massive
leap in capability of language models. The combination of unsupervised pre-training
on massive and diverse datasets (Radford et al., 2019) and the introduction of the
attention-based transformer architecture (Vaswani et al., 2017) allowed increasingly
complex models to learn representations of language over a context spanning more than
just the next few words, thereby effectively replicating the distribution of human language.

These advances already led to a more comprehensive use of language in a great number
of research areas and consumer-oriented applications, as for example in the analysis
of biomedical literature (Beltagy, Lo & Cohan, 2019), the generation of EEG reports
(Biswal et al., 2019), the development of more advanced chatbots (Budzianowski & Vulić,
2019) and the improvement of grammar- and writing-assistance (Hagiwara et al., 2019).
However, this newly-gained quality of generated language also increased the fear of its
potential abuse by malicious actors (Solaiman et al., 2019). Abuse scenarios are mostly
based on the effectively vanishing costs for the generation of large amounts of text,
allowing malicious actors to leverage the effectiveness of high-volume/low-yield operations
like spam, phishing or astroturfing (Solaiman et al., 2019; Ferrara et al., 2016). While

How to cite this article Fröhling L, Zubiaga A. 2021. Feature-based detection of automated language models: tackling GPT-2, GPT-3 and
Grover. PeerJ Comput. Sci. 7:e443 DOI 10.7717/peerj-cs.443

Submitted 28 October 2020
Accepted 24 February 2021
Published 6 April 2021

Corresponding author
Leon Fröhling,
froehling@statistik.uni-hannover.de

Academic editor
Alexander Bolshoy

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.443

Copyright
2021 Fröhling and Zubiaga

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.443
mailto:froehling@�statistik.�uni-hannover.�de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.443
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


Solaiman et al. (2019) could not find any evidence of their models being used for
automated astroturfing attacks, in which review or comment systems are flooded with
generated entries promoting a certain sentiment, an example of how easily text generating
models might be abused to influence even policy-making can be found in the American
Federal Communications Commission’s decision on the repeal of net neutrality rules in
2017 (Selyukh, 2017). Attempting to consider the public sentiment through an online
comment system, it later turned out that millions of the submitted comments, most of
them in favour of repealing net neutrality, were fakes (Fung, 2017), automatically
generated using a template-based generation model. The little sophistication of the
generation approach led to many duplicates and highly similar comments in phrasing and
syntax (Kao, 2017), drawing attention to the issue in the first place. It is, however, easy to
see how one of today’s State-Of-The-Art (SOTA) language models might have drowned
authentic, human opinions and skewed the final decision without being detected. Similar
attacks could potentially overwhelm the news with fake news contents (Belz, 2019),
manipulate the discourse on social media (Ferrara et al., 2016) or impersonate others
online or in email (Solaiman et al., 2019).

The wider implications of an Internet in which every snippet of written word could with
equal probability stem from a human being or a language model are the erosion of
fundamental concepts like truth, authorship and responsibility (Belz, 2019). Shevlane &
Dafoe (2020) highlight the potential disruption caused by language models through their
ability to impersonate humans in an online world where increasing numbers of human
interactions and proportions of social life are hosted, be it in social media, online banking
or commerce.

In line with the recommendation given in Lewandowsky et al. (2012), one approach of
mitigating the damaging effects of language models is to educate the public about the
increasing probability of encountering untrustworthy content online, thereby increasing
scepticism and avoiding that factually unsustained information enters a person’s belief,
from where it would be difficult to retract. However, as argued by Shevlane & Dafoe (2020),
such a loss of trust in the habitual informational environment is burdensome. This
highlights the need for reliable detection systems in order to tell human and machine
generated content apart, preventing the rise of an Internet in which generic nonsense and
propaganda-like spam campaigns dominate the public discourse. This paper contributes to
the research on the automated detection of machine generated text by being the first to
apply a feature-based detection approach to the most recent language models and
simultaneously proposing a range of features to be used to that end.

Our experiments with samples from different language generating models show that the
proposed feature-based detection approach is competitive with far more complex and
computationally more restrictive methods. For its ability to generalize well across different
sizes of the same language model, we consider the feature-based classifier a potential
“first line-of-defense” against future releases of ever bigger generators. Our research
confirms the hypothesis that different sampling methods introduce different kinds of flaws
into the generated text, and delivers first insights into which characteristics of text might
show these differences the most.

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 2/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


THE DETECTION PROBLEM
We frame the task of detecting automated language models as a binary classification
task where a model needs to determine if an input text is produced by a human
or by automated means through a language model. The methods for the detection of
machine-generated text presented in this paper take a textual input and assess its
provenance based only on the properties of the text, without considering its metadata or
veracity, as proposed in similar detection problems (Baly et al., 2018; Thorne & Vlachos,
2018). To prevent the scenario described above, we expect a detection method to fulfil
the following three requirements:

1. Solaiman et al. (2019) voice concern for a well-considered trade-off between the
maximization of a detector’s accuracy and the false positives it produces. False positives
in the present detection context, the incorrect labelling of a human-written text as
machine-generated, are especially critical by potentially suppressing human opinions.
In a large-scale detection system that automatically filters out texts it considers
machine-generated, this could effectively block any written contributions of human
authors that happen to have a style similar to what the detector considers typical for
language models. This might not only potentially be considered unethical or unlawful,
but could also further erode public confidence and trust in the written word online.
A practical detection method must therefore be highly accurate to be able to cope with large-
scale adversarial attacks, but may not achieve that at the cost of a high false-positive rate.

2. Another major fear in the current research into detection methods is the perspective
of a “cat and mouse” game (Solaiman et al., 2019) between generator and detector,
where detection methods are hardly transferable between different adversarial
generators. Any improvement in language models would then create a temporary
advantage for the generating side, persisting until the detector catches up by adapting to
the new situation through changes in model architecture or fine-tuning. This would
imply that the detection problem could never be resolved, but only temporarily patched.
Signs of such a situation arising have been reported by Radford et al. (2019) and
Zellers et al. (2019) who observe that detection models struggle with the increasing
complexity of the generating model, Ippolito et al. (2020) who find that detection models
fail to generalize across different decoding methods used in the generation of texts, and
Bakhtin et al. (2019), who note that their detection model does not transfer well
across different training corpora. A detection method needs to be as universal as possible,
working well for detecting generations from different language models, trained across
different domains and decoded using different sampling methods.

3. Gehrmann, Strobelt & Rush (2019) developed their detection method with the intention
to be easy to explain to non-experts and cheap to set up. This follows the recent
controversy around availability and reproducibility of SOTA language models, which to
a large degree differ only in their increasing financial and computational development
costs, effectively restricting the access to them. The access-restriction can become
harmful when defensive detection methods also rely on the access to such language

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 3/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


models. Shevlane & Dafoe (2020) mention the difficulty and cost of propagating
defensive measures to potentially harmful AI technologies as an important dimension in
the assessment of risks associated with them, implying that a solution is desired that can
effectively and easily be used by a large number of users. Given the anticipated broad
impact of language models on human interaction online and usability of the Internet,
detection methods should be universally available and easy to set up and adapt.

RELATED WORK
This research is aimed at broadening the range of existing detection methods beyond the
predominant reliance on the availability of language models by proposing a feature-based
approach. To design meaningful features, a good understanding of the properties and
limitations of the language generation process is necessary. The following subsections
therefore provide an overview of SOTA language generation methods and their
limitations, before discussing existing detection methods and subsequently introducing the
feature-based approach.

Language generation
The currently predominating models for language generation are based on the transformer
architecture introduced by Vaswani et al. (2017). Its big advantage over previous language
models is the more structured memory for long-term dependencies. Even though the
bidirectional representation of language, learned by models like BERT (Devlin et al., 2019),
performs better in many downstream benchmark tasks, unidirectional left-to-right
models like GPT-2 (Radford et al., 2019) are often the first choice for generating more
coherent text (See et al., 2019). They allow to intuitively generate text by using the
preceding context to estimate a probability distribution over the model’s vocabulary, which
then only needs to be decoded by sampling the next token from it.

Apart from the new architecture, recent language models profit mainly from the
training on ever bigger datasets. Radford et al. (2019) trained their model on the WebText
dataset, a representation of natural language constructed to be as diverse as possible by
spanning many different domains and contexts. The approach to train on as much
human-written text as possible is described by Bisk et al. (2020) as one of the big milestones
in NLP, passing from the usage of domain-specific corpora for training to basically using
the whole “written world”.

Together with the size of the datasets used for training, the whole training paradigm
shifted from task-specific architectures and inputs to unstructured pre-training of
language models. First introduced at word-level by Mikolov et al. (2013), Radford et al.
(2019) took this approach to the sentence-level. By processing as many unstructured,
unlabelled, multi-domain and even multilingual texts as possible, the idea is that the
models not only get a good understanding of language, but also implicitly learn a variety of
potential downstream tasks. The feasibility of this approach was recently confirmed by
Brown et al. (2020), whose GPT-3 exhibits strong performance on different NLP

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 4/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


benchmarks, even without any form of task-specific fine-tuning but only through natural
language interaction.

In order to effectively leverage the information contained in the ever increasing training
datasets into improved language generation ability, the language models have to equally
grow in size and complexity. GPT-3 therefore has 175B parameters, more than 100 times
as many as its predecessor. See et al. (2019) consider current language models to already
have enough capacity to effectively replicate the distribution of human language.

Even if a language model perfectly learns the distribution of human language, an equally
crucial component in language generation is the choice of the decoding method, i.e. how
the next token is sampled from the probability distribution generated by the model.
See et al. (2019) find that flaws in language generation can be traced back to the choice
of decoding method, rather than model architecture or insufficient training. The choice
of decoding method can be seen as a trade-off between diversity and quality (Sun,
Schuster & Shmatikov, 2020; Hashimoto, Zhang & Liang, 2019), where sampling from
the full distribution leads to diverse, but poor-quality text as perceived by humans,
while a likelihood-maximizing sampling method generating only from the most probable
tokens leads to high-quality text that lacks diversity and is unnaturally repetitive.
Holtzman et al. (2019) find the problem of sampling from the full distribution in the
increased cumulative likelihood of picking an individually highly unlikely token, causing
downward-spirals of text quality which are easy to notice for human readers. When trying
to avoid this problem by choosing a likelihood-maximization approach for sampling
(e.g. top-k, sampling at every step only from the k most likely tokens), they observe
repetition feedback loops which the model cannot escape from and outputs that strongly
differ from human language by over-relying on high-likelihood words, making it easy for
automated detection approaches to pick up on statistical artifacts.

Detection approaches
Solaiman et al. (2019) introduce a simple categorization of different detection approaches
based on their reliance on a language model. In the following, the existing approaches are
categorized accordingly and briefly discussed along the dimensions introduced above.

The first category of detection approaches are simple classifiers, trained from scratch
based on text samples labelled as either human- or machine-generated. They tend to have
relatively few parameters and to be easily deployable. An example is the logistic regression
(LR) classifier trained on term frequency-inverse document frequency (tf-idf) features,
proposed as a detection baseline by Clark, Radford & Wu (2019). Badaskar, Agarwal &
Arora (2008) trained a feature-based Support Vector Machine (SVM) classifier, using
high-level features to approximate a text’s empirical, syntactic and semantic characteristics,
trying to find textual properties that differed between human and machine text and
could thus be used for discrimination between the two types. Their experiments were
limited to the now outdated trigram language models. The main advantages of simple
classifiers are their low access- and set-up costs. Because they do not rely on the access to
an extensively pre-trained or fine-tuned language model, they can be handled even on
individual commodity computers. However, they are hard to adapt, requiring entirely new

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 5/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


training on changing corpora. Because of the sparse literature on them, their performance
and transferability are not yet clear, but will be investigated in our experiments.

Zero-shot detection approaches from the second category rely on the availability of a
language model to replicate the generation process. An example is the second baseline
introduced by Clark, Radford & Wu (2019), which uses the total probability of a text as
assessed by a language model for detection. Gehrmann, Strobelt & Rush (2019) elaborate
on this approach by calculating histograms over next-token probabilities as estimated
by a language model and then training LR classifiers on them. While not requiring
fine-tuning, zero-shot detection approaches need a language model to work, the handling
of which is computationally restrictive. Their performance lags far behind the simple
tf-idf baseline (Clark, Radford & Wu, 2019; Ippolito et al., 2020) and their transferability
is questionable, given the need for the detection method in this approach to basically
“reverse-engineer” the model-dependent generation process to be successful.

The third category uses pre-trained language models explicitly fine-tuned for the
detection task. Solaiman et al. (2019) and Zellers et al. (2019) add a classifier-layer on top of
the language model and Bakhtin et al. (2019) train a separate, energy-based language
model for detection. While being by far the most expensive method in terms of training
time and model complexity, and the least accessible for its reliance on a pre-trained and
fine-tuned language model, this approach has so far achieved the highest accuracy on
the detection task (Solaiman et al., 2019; Zellers et al., 2019). However, the discussed lack of
transferability across model architectures, decoding methods and training corpora has also
been observed with fine-tuned models.

Feature-based text-classification
The feature-based approach to discriminate between human and machine text is grounded
on the assumption that there are certain dimensions in which both types differ.
Stylometry—the extraction of stylistic features and their use for text-classification—was
introduced by Argamon-Engelson, Koppel & Avneri (1998), and has since been successfully
employed for tasks as diverse as readability assessment (Feng et al., 2010), authorship
attribution (Koppel, Argamon & Shimoni, 2002) and, more recently, the detection of fake
news (Pérez-Rosas et al., 2018; Rubin et al., 2016). Even though Schuster et al. (2019)
consider the detection models of Zellers et al. (2019) and Bakhtin et al. (2019) examples of
well-working, feature-based detectors, their input features are mere vector-space
representations of text. Rubin et al. (2016) hypothesize that high-level features, specifically
designed for the classification problem, expand the possibilities of stylometry classifiers
and would thus improve their performance. By building on differences between human
and machine text, high-level features make the detection transparent and explainable,
offering insights into characteristic behaviour of language models (Badaskar, Agarwal &
Arora, 2008).

METHODOLOGY
A feature-based detection approach relies on features that discriminate between human
and machine text by modelling properties and dimensions in which both types of text

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 6/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


differ. Logical starting points for the creation of such features are therefore the flaws and
limitations of language generation methods. In the following subsection, we categorize
the known shortcomings and propose features to capture them, before discussing the
choice of a detection model architecture.

Features
Depending on the choice of the decoding method, the flaws in the generated language
differ. However, we establish four different categories to organize them. A comprehensive
description and further explanation of the features can be found in the corresponding
Supplemental Information.

Lack of syntactic and lexical diversity

Gehrmann, Strobelt & Rush (2019) describe that language models fail to use synonyms
and references as humans do, but rather stick to the repetition of the same expressions,
leading to a lack of syntactic and lexical diversity in machine text. Zellers et al. (2020)
observe their models confusing the “who-is-who” in story-telling, and failing to use
different references for a text’s entities to increase diversity. See et al. (2019) find that
generated texts contain more verbs and pronouns, and fewer nouns, adjectives and proper
nouns than human text, indicating a different use of word types.

This behaviour can be approximated by the use of named entities (NE) and the
properties of the coreference chains, as introduced by Feng et al. (2010). Compared to a
human author who de-references and varies expressions, language models can be expected
to use a larger share of unique NEs and to produce shorter and fewer coreference
chains with a higher share of NEs. Additional features can be based on the shift in the
part-of-speech (POS) distribution between human and machine texts (Clark, Radford &
Wu, 2019).

As NE-based features, we use the relative distribution over NE-tags, their per-sentence
counts and a number of simple count-based features. The coreference features are
similar to those of Feng et al. (2010), all based on coreference chains that indicate the
different references made to entities throughout a text. As POS-based features, we use the
relative distribution of a text’s POS-tags, their per-sentence counts as well as a number of
features based on the nouns, verbs, adjectives, adverbs and prepositions proposed by
Feng et al. (2010). We use the NE-recognizer and POS-tagger provided in the Python
spaCy (https://spacy.io/) package to find the NE- and POS-tags, as well as the neuralcoref
(https://github.com/huggingface/neuralcoref) extension to detect coreference clusters.

Repetitiveness
The problem of over-using frequent words as described by Holtzman et al. (2019) can lead
to a large degree of repetitiveness and a lack of diversity in machine-generated texts.
Ippolito et al. (2020) observe that machine-generated language has 80% of its probability
mass in the 500 most common words and Holtzman et al. (2019) expose the low-variance
of the next-token probabilities over a text as assessed by a language model, showing
that machine-generated text almost never dips into low-probability zones as human text
characteristically does. Another big problem of machine-generated text is its highly parallel

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 7/23

https://spacy.io/
https://github.com/huggingface/neuralcoref
http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


sentence structure (Gehrmann, Strobelt & Rush, 2019) and the occasional repetition of
whole phrases (Jiang et al., 2020).

We try to expose those statistical differences, assumed to be easiest to be picked up by
automated detection methods, through the share of stop-words, unique words and words
from “top-lists” in a text’s total words. We expect a more diverse, human-written text
to have a higher share of unique words and a lower share of stop-words and words from
“top-lists”. We propose to expose the repetitiveness by calculating the n-gram overlap of
words (lexical repetition) and POS-tags (syntactic repetition) in consecutive sentences.
Human text is expected to be less repetitive both in sentence structure and word choice.
We introduce the “conjunction overlap” as a measure of the n-gram overlap around
and-conjunctions to make explicit the reported failure of language models of plainly
repeating words around those conjunctions.

We use the stop-words defined by the spaCy package and take a list with the top 10,000
words (https://github.com/first20hours/google-10000-english) used in English determined
by Google to calculate the share of a text’s words that are in the top 100, top 1,000 and
top 10,000 words of that list. The n-gram (n = [1,2,3]) overlap of consecutive sentences is
represented on a document level by histograms (from 0 to 1 in 10 uniform bins) over the
share of repeated word and POS-tag n-grams in consecutive sentences.

Lack of coherence
Even with SOTA language models, the most severe problem of machine-generated text
remains the lack of coherence, especially over longer sentences and paragraphs (Holtzman
et al., 2019; Brown et al., 2020). Language model generations are therefore often described
as surprisingly fluent on the first read, but lacking any coherent thought and logic on
closer inspection (See et al., 2019). Closely related is the “topic-drift”, where language models
struggle to focus on a single topic but cover different, often unrelated topics in a single text
(Badaskar, Agarwal & Arora, 2008). The lack of coherence is especially blatant for
generations sampled with likelihood-maximization, which nevertheless remain hardest to
detect for automated detectors due to their lack of sampling-artifacts (Ippolito et al., 2020).

The coherence of a text might be approximated by the development of its entities, as
introduced by Barzilay & Lapata (2008) and used for classification by Badaskar, Agarwal
& Arora (2008). The entity-grid representation tracks the appearance and grammatical
role of entities through the separate sentences of a text. The assumption is that (locally)
coherent text exhibits certain regularities, for example the repetitive presence of a text’s
main entities in important grammatical roles and only sparse occurrences of less important
entities in lesser grammatical roles. We use the neuralcoref extension to detect coreference
clusters and track the appearance of their entities through the text. As a second layer,
we implement an identity-based proxy, considering reappearing, identical noun phrases as
the same entity. Using the spaCy dependency parser, we assign the roles Subject (S), Object
(O), Other (X) or Not Present (-) to the found entities. Based on the resulting entity
grid, we obtain the counts of the 16 possible transitions of entities between consecutive
sentences and transform them to relative transition frequencies by normalizing with the
total number of transitions.

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 8/23

https://github.com/first20hours/google-10000-english
http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


Badaskar, Agarwal & Arora (2008) further propose the use of Yule’s Q statistic as
described in Eneva, Hoberman & Lita (2001) to approximate a text’s intra-sentence
coherence. Based on the available corpora of human- and machine-generated texts, the
assumption is that co-appearances of content-words differ between both types. By
requiring a minimal distance of five between the content-words forming a co-appearance
pair, the focus is shifted to the model’s ability to produce coherent output over a
medium-range context length. To discriminate between human and machine text, the texts
available in the training corpora are used to calculate a correlation measure for the
co-occurrence of content-words in texts from the two different sources. We define
content-words as the top 5,000 words from the Google top 10,000 list, excluding spaCy
stop-words and sub-word snippets. Given these correlation scores, separate human- and
machine-scores can be calculated for every text, indicating the agreement of that text’s
content-word co-appearances with the different corpora. The Q statistic is the only
corpus-based feature, not exclusively reliant on the text itself.

Badaskar, Agarwal & Arora (2008) also use the topic redundancy, approximated by the
information loss between a text and its truncated form, as a measure of coherence. The
assumption is that human-generated text is more redundant, since it coherently treats a
single or few topics without drifting from topic to topic. The text is transformed to a
sentence-based vocabulary-matrix representation which can in turn be brought to its
eigenspace using a Singular Value Decomposition. By replacing the lowest entries of the
eigenvalue diagonal-matrix with 0, the reconstructed matrix is a truncated version of
the original. By always setting the lowest 25% of entries to 0, we dynamically adapt to
differing text-lengths. Given the original and truncated matrix representation, the
information loss is calculated as the squared norm of the element-wise difference between
the two matrices. We additionally calculate and include the mean, median, min and max of
the truncated matrix and the element-wise difference between the full and truncated
matrix.

Lack of purpose
A final, more qualitative limitation of machine-generated text is its lack of purpose and
functionality. While for human text function is generally considered as the “source of
meaning” (Bisk et al., 2020), language models naturally do not have human-like needs or
desires (Gehrmann, Strobelt & Rush, 2019) and their generations must therefore be
considered as void of meaning and purpose.

We approximate the purpose of a text by calculating its lexicon-based topicality scores.
We expect human text to contain more sentiment-related keywords and thus score higher
in these categories, while being more focussed on fewer categories overall, expressing a
single message rather than generating purposelessly drifting text. We also take the share of
a text’s non-generic content words as a measure of its originality, assuming that human
text trying to convey a real message has a higher share.

Based on the 194 categories available by default from the Python empath (https://github.
com/Ejhfast/empath-client) lexicon-package (Fast, Chen & Bernstein, 2016) and five
tailored categories (representing spatial properties, sentiment, opinion, logic and ethic),

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 9/23

https://github.com/Ejhfast/empath-client
https://github.com/Ejhfast/empath-client
http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


we calculate the mean, median, min, max and variance of a text’s scores over all categories
as features. The same statistics are extracted based only on the “active” categories
(empath scores > 0). Additionally, the scores of the text in the tailored categories are used
as features.

Other features
The last set consists of more general, potentially helpful features. The basic features
are simple character-, syllable-, word- and sentence-counts, both in absolute and
relative terms. The readability features reflect the syntactic complexity, cohesion and
sophistication of a text’s vocabulary (Crossley, Allen &McNamara, 2011). To test a model’s
ability of structuring and formatting its generations, we calculate the distribution over
punctuation marks, their per-sentence counts as well as the number and average length of
paragraphs, shown to be successful in detecting fake news (Rubin et al., 2016).

Classifier
The feature-based detection method proposed in this paper can be considered as a
special, binary case of the general automated text categorization problem. We thus follow
Yang & Liu (1999) in the definition of the task as the supervised learning of assigning
predefined category labels to texts, based on the likelihood suggested by the training on a
set of labelled texts. Given a text and no additional exogenous knowledge, the trained
model returns a value between 0 and 1, indicating the evidence that the document belongs
to one class or the other. A hard classifier takes this evidence, compares it to a pre-defined
threshold and makes the classification decision (Sebastiani, 2002). From the range of
available classification models, we consider LR, SVM, Neural Networks (NN) and Random
Forests, which have often been reported to show similar performances on the text
categorization task (Zhang & Oles, 2001; Joachims, 1998). We use the implementations of
the different models available from the scikit-learn (https://scikit-learn.org/) package for
our validation trials. We focus our following experiments on the evaluation of NN for
the proposed detection problem, based on their superior performance in our validation
trials (Table 1).

Table 1 Validation results. Classifier accuracies on test set. The classifiers have been fine-tuned with
regard to their key parameters using a validation set. Data comes from the different GPT-2 models: small
(s), small-k40 (s-k), xl (xl) and xl-k40 (xl-k).

Training data Test data

s xl s-k xl-k

Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Logistic regression 0.822 0.908 0.707 0.787 0.811 0.890 0.750 0.823

SVM 0.847 n.a. 0.704 n.a. 0.900 n.a. 0.821 n.a.

Neural network 0.885 0.958 0.760 0.841 0.923 0.972 0.847 0.929

Random forest 0.814 0.908 0.694 0.763 0.852 0.888 0.774 0.819

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 10/23

https://scikit-learn.org/
http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


EXPERIMENTS
We evaluate our feature-based classifier in a variety of settings, testing it across different
generation model architectures, training datasets and decoding methods, thereby covering
all main potential influences of a detector’s performance.

Dataset
In our experiments, we use publicly available samples of language model generations and
try to detect them among the model’s training data, which was either scraped from the
Internet or more randomly curated from existing corpora, but in any case of human origin.
The biggest part of our data comes from the different GPT-2 model versions, published
by Clark, Radford & Wu (2019). We use generations from the smallest (117M parameters;
s) and largest GPT-2 model (1,542M parameters; xl), sampled both from the full and
truncated (top-k = 40) distribution, to test the transferability of our detectors across model
sizes and sampling methods. To evaluate the transferability across model architectures,
we include generations from the biggest Grover model (Zellers et al., 2019) and from
Open-AI’s most recent GPT-3 model (Brown et al., 2020).

We noticed that a significant share of the randomly scraped and unconditionally
generated texts turned out to be website menus, error messages, source code or weirdly
formatted gibberish. Since we consider the detection of such low-quality generations as
neither interesting nor relevant for the limited impact of their potential abuse, we repeat
our experiments on a version of the data that was filtered for “detection relevance”.
We take inspiration from Raffel et al. (2019) in the construction of our filters, filtering out
samples that show excessive use of punctuation marks, numbers and line-breaks,
contain the words cookie, javascript or curly brackets, or are not considered as being
written in English with more than 99% probability as assessed by the Python langdetect
(https://github.com/Mimino666/langdetect) package. Like Ippolito et al. (2020), we only
consider texts that have at least 192 WordPiece (Schuster & Nakajima, 2012) tokens.
The sizes of the resulting datasets are documented in Table 2. We compare the results of
our detectors trained and evaluated on the unfiltered dataset to their counterparts trained
and evaluated on the filtered dataset. We expect the filtering to decrease the share of
texts without meaningful features, thus hypothesizing that our classifiers perform better on
the filtered datasets.

Evaluation
To evaluate the performance of our detection model, we report its accuracy as the share
of samples that are classified correctly, as well as the area under curve (AUC) of the
receiver operating characteristic curve (ROC), resulting from the construction of different
classification thresholds. While the accuracy is often the sole metric reported in the
literature, we argue that it should not be the only metric in assessing a detector’s quality.
Its inability to include a notion of utility of the different types of errors (Sebastiani, 2002)
is a major drawback, given the potential severity of false positives as discussed above.
This is in line with related detection problems, e.g. the bot detection in social media, where
a deliberate focus is on the detector’s precision to avoid the misclassification of human

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 11/23

https://github.com/Mimino666/langdetect
http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


users as machines (Morstatter et al., 2016). Another problem is the sensitivity of accuracy
to class skew in the data, influencing the evaluation of detectors (Fawcett, 2006) and in
extreme cases leading to the trivial classifier (Sebastiani, 2002) that effectively denies the
existence of the minority class and thus fails to tackle the problem. We therefore decided
to report the accuracy, allowing for comparison with existing detection approaches, but
also provide the AUC of the ROC as a more comprehensive evaluation metric, effectively
separating the evaluation of the classifier from skewed data and different error costs
(Fawcett, 2006) by combining the notions of specificity (share of correctly detected human
texts) and sensitivity (share of correctly detected machine texts).

All reported results are calculated on a held-out test set, using the classifier found to be
optimal by a grid search over a range of different parameter constellations and evaluated
on validation data. Each of the individual classifiers has thus been optimized across a
range of different parameter constellations as defined by a parameter grid using the
respective classifier’s default optimization method provided in the scikit-learn package that
was used for training. The classifiers were trained for a maximum of 250 iterations or
until convergence on validation data was observed. Please refer to the corresponding
Supplemental Information for the underlying parameter grid and the resulting optimal
parameter constellations.

RESULTS
The following results are organized along the different data constellations we trained and
evaluated our classifiers on.

Single-dataset classifiers
In the main part of our experiments, we evaluate detectors trained on samples from a
single generation model. We evaluate the resulting detectors not only on the language

Table 2 Dataset sizes. The human text datasets used in our experiments were taken from the samples of
human text published with the respective language models and resized to match the size of the machine
text datasets.

Model Dataset full name Short Full Filtered

Name Train Valid Test Train Valid Test

Machine datasets

GPT2 Small-117M s 250,000 5,000 5,000 185,622 3,732 3,722

GPT2 xl-1542M xl 250,000 5,000 5,000 193,052 3,868 3,851

GPT2 Small-117M-k40 s-k 250,000 5,000 5,000 201,236 4,062 4,082

GPT2 xl-1542M-k40 xl-k 250,000 5,000 5,000 214,202 4,312 4,243

GPT3 175B GPT3 1,604 201 201 886 122 101

Grover Grover-Mega Grover 8,000 1,000 1,000 7,740 964 961

Human datasets

GPT2 Webtext 250,000 5,000 5,000 190,503 3,813 3,834

GPT3 GPT3-webtext 1,604 201 201 1,235 160 155

Grover realNews 8,000 1,000 1,000 7,725 972 976

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 12/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


model they were specifically trained on, but also try their transferability in detecting
generations from other models.

The feature-based classifier performs better for generations from likelihood-maximizing
decoding strategies (Table 3; s-k and xl-k vs. s and xl), as do all the approaches tested in
the literature so far. Similarly, the detection of machine-generated texts becomes more
difficult with increasing model complexity (Table 3; xl and xl-k vs. s and s-k), indicating
that bigger models presumably better replicate human texts statistically. This follows
from the baseline results of Clark, Radford & Wu (2019) and is also implied by the
decreasing performance of our feature-based approach. The performance of the detector
learned and evaluated on the GPT-3 model is surprisingly good, being even higher than
for the GPT-2 xl generations. Given that GPT-3 has more than 100 times as many
parameters, we would have expected GPT-3 generations to be more difficult to detect.
However, this might partly be due to the decoding choice, with the top-p = 0.85 sampling
used for the GPT-3 generations marking a trade-off between the easier to detect top-k
sampling and the harder to detect sampling from the full distribution. Similar reasoning
applies to the detection of Grover generations (top-p = 0.94 sampling), which our classifier
struggles with most. Another reason might be that the detection of fine-tuned generation
models, as is the case with the pre-conditioned article-like Grover generations, is generally
more difficult (Clark, Radford & Wu, 2019).

Table 3 shows acceptable transferability of our classifiers between models with the same
architecture and sampling method, but different complexity. It is easier for a detector
trained on samples from a bigger generator (xl and xl-k) to detect samples from a smaller
generator (s and s-k) than vice versa. There is no transferability between the different
sampling methods, confirming the observations by Holtzman et al. (2019) that different
sampling methods produce different artifacts, making it impossible for a feature-based
detector to generalize between them. To rule out the possibility that the lack of
transferability is caused by the corpus-based Q features, we repeat the experiments for
detectors trained on all but the Q features (Table A1). The transferability across sampling
methods remains abysmal, indicating that the feature-based approach is indeed unable to
pick out common flaws produced by different sampling methods.

Table 3 Single-dataset classifiers. Accuracy scores of the classifiers evaluated on generations from the different language models. Along the
diagonal (bold), training and test data belong to the same language model.

Training data Test data

s xl s-k xl-k GPT3 Grover

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

s 0.897 0.964 0.728 0.838 0.487 0.302 0.471 0.290 0.475 0.474 0.479 0.454

xl 0.740 0.937 0.759 0.836 0.504 0.434 0.489 0.382 0.468 0.423 0.516 0.485

s-k 0.338 0.247 0.445 0.328 0.927 0.975 0.808 0.924 0.537 0.769 0.502 0.671

xl-k 0.292 0.223 0.382 0.322 0.908 0.967 0.858 0.932 0.535 0.545 0.503 0.514

GPT3 0.436 0.234 0.452 0.316 0.736 0.821 0.658 0.749 0.779 0.859 0.589 0.654

Grover 0.333 0.285 0.439 0.422 0.662 0.785 0.643 0.738 0.537 0.552 0.692 0.767

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 13/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


We finally test the performance of our classifiers when trained and evaluated on the
texts from the filtered datasets which are potentially more characteristic and richer in
features. As expected, our classifiers perform better, gaining between 1 and 3 percentage-
points accuracy across the GPT-2 generations (Table A2). However, this does not hold for
GPT-3 and Grover, again hinting at better-curated data.

Feature-set classifiers
To get an idea of which features are truly important for the performance of the
feature-based classifiers, we train and evaluate detectors on the individual subsets of features.

From the results in Table 4 it is apparent that the most important feature subsets in
terms of their individual performance are the syntactic, lexical diversity and basic features.
While the subsets generally have similar performance for the different sampling
methods, we observe that the NE and coreference features are consistently stronger for the
untruncated sampling method, and the lexical diversity and Q features for the top-k
sampling. This is in line with the assumption that untruncated sampling is easier to detect
based on more qualitative text characteristics such as coherence and consistency, while
generations from top-k sampling methods can more easily be detected based on statistical
properties.

Multi-dataset classifiers
Simulating a more realistic detection landscape in which different types of language
models are used for the generation of texts, we construct datasets that combine generations
from different language models. The combined datasets are composed to optimally balance

Table 4 Feature-set classifiers. Highlighted in bold are the feature-dataset combinations where a feature-set is far better for either the untruncated
or top-k sampling for both GPT-2 dataset sizes. The underscored values correspond to the feature-set and dataset combinations the highlighted
values are compared against. The features are sorted in decreasing order of their average accuracy across all datasets.

Feature-set Training- and test data

s xl s-k xl-k GPT3 Grover

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Syntactic 0.859 0.944 0.733 0.826 0.845 0.925 0.780 0.865 0.714 0.803 0.627 0.692

BasicAbs 0.822 0.910 0.716 0.794 0.817 0.900 0.747 0.827 0.679 0.766 0.602 0.664

LexicalDiv 0.792 0.879 0.678 0.751 0.821 0.901 0.756 0.832 0.654 0.667 0.618 0.667

InfoLoss 0.806 0.890 0.681 0.753 0.756 0.842 0.720 0.800 0.679 0.733 0.598 0.648

Readability 0.796 0.877 0.693 0.758 0.798 0.874 0.730 0.801 0.592 0.659 0.560 0.611

Repetitiveness 0.785 0.870 0.652 0.716 0.739 0.822 0.707 0.775 0.637 0.679 0.618 0.654

BasicRel 0.792 0.864 0.692 0.743 0.798 0.875 0.730 0.805 0.520 0.597 0.587 0.624

NE 0.795 0.886 0.677 0.751 0.725 0.807 0.660 0.727 0.632 0.673 0.543 0.549

Empath 0.710 0.786 0.627 0.682 0.703 0.778 0.624 0.676 0.649 0.727 0.572 0.595

Formatting 0.696 0.768 0.611 0.660 0.705 0.780 0.640 0.698 0.567 0.626 0.586 0.630

Coreference 0.747 0.824 0.637 0.695 0.618 0.671 0.595 0.631 0.624 0.666 0.537 0.553

EntityGrid 0.697 0.774 0.594 0.636 0.604 0.643 0.596 0.629 0.597 0.679 0.590 0.600

Q 0.577 0.711 0.554 0.594 0.664 0.879 0.625 0.765 0.587 0.637 0.501 0.618

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 14/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


the contributions of the individual data sources. Their exact composition is documented in
Table A3.

Table 5 shows that classifiers trained on combined datasets from the same sampling
method (GPT2-un and GPT2-k) lead to good results on the respective individual datasets
(s, xl and s-k, xl-k) without outperforming the optimized single-dataset classifiers
(Table 3). Their transferability is similar to that of the single-dataset classifier trained on
the respective, more difficult dataset (xl, xl-k). When training a classifier on all GPT-2
generations (GPT2), it shows relatively good performance across all individual GPT-2
datasets, but breaks down on the xl-k data. This might hint at the possibility that the
detector learns sub-detectors for every single data source, rather than obtaining a universal
understanding of the difference between human text and GPT-2 generations.

Finally, we train and evaluate a classifier on the combination of all the different data
sources, including generations from GPT-3 and Grover (All). The resulting detector,
especially when trained on the subset of features that excludes the corpus-based Q features
(Table A4), is surprisingly robust and shows decent performance across all generation
models. Its strong performance for the GPT-3 and Grover generations—which are
under-represented in the multi-dataset classifiers’ training data—might be due to the
overall increase in training when compared to the single-dataset classifiers. In total, the
multi-dataset classifier is trained on much more and more diverse training samples than
the respective single-dataset classifiers for GPT-3 and Grover.

Ensemble classifiers
After observing that our feature-based classifier is more accurate than the tf-idf baseline in
detecting texts from untruncated sampling (s and xl, Table 6), while it is the other way
around for texts generated with top-k = 40 sampling (s-k and xl-k, Table 6), we construct
ensemble classifiers to take advantage of the differing performances. In the separate (sep.)
ensemble model variant, we take the individually optimized feature-based- and tf-idf-
baseline models’ probability estimates for a text to be machine-generated as input to a

Table 5 Multi-dataset classifiers. Instances where training and test data belong to the same language
model are highlighted (bold).

Training data Test data

s xl s-k xl-k GPT3 Grover GPT2-un GPT2-k GPT2 All

Accuracies

GPT2-un 0.827 0.726 0.508 0.497 0.473 0.458 0.817 0.500 0.636 0.602

GPT2-k 0.323 0.430 0.921 0.839 0.515 0.602 0.381 0.871 0.607 0.616

GPT2 0.767 0.726 0.866 0.682 0.512 0.590 0.773 0.777 0.785 0.725

All 0.809 0.690 0.880 0.772 0.510 0.643 0.760 0.824 0.782 0.755

AUC

GPT2-un 0.940 0.834 0.410 0.398 0.470 0.517 0.897 0.401 0.590 0.560

GPT2-k 0.216 0.320 0.969 0.920 0.530 0.512 0.273 0.942 0.592 0.625

GPT2 0.932 0.800 0.940 0.829 0.566 0.593 0.877 0.881 0.865 0.787

All 0.907 0.754 0.940 0.863 0.586 0.685 0.837 0.900 0.859 0.824

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 15/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


meta-learner, which in turn produces the final label estimate. In the super ensemble model,
we use the probability estimates of all the different, optimized feature-set classifiers, as well
as the estimate from the tf-idf-baseline model, as input to a meta-learner. For each of
the different ensembles, we train a LR and a Neural Network classifier, following the
previously introduced grid-search approach in order to approximate the optimal
parameter constellation.

The ensemble models, and especially the NN sep. variant built on top of the optimized
tf-idf-baseline and feature-based model, outperform the individual classifiers and even
improve on their best accuracy by at least 1 percentage-point on each dataset (Table 6).
This holds, even though the combination of using NN and the high-dimensional tf-idf
baseline necessarily implies strong overfitting to the relatively small input dimensionality, a
fact which we observe in the classifiers’ near-perfect performances on the training data
itself. However, since we explicitly optimized our models on independent validation
datasets and not on the training data, we confidently ignore that issue.

Comparison to results in the literature
Comparing the performance of our feature-based detector to results reported in the
literature, we see that the RoBERTa models fine-tuned for the detection task by Solaiman
et al. (2019) show unmatched accuracies across all model sizes and sampling methods.
The accuracies of 96:6% on the xl and 99:1% on the xl-k dataset are impressive, with our
best ensemble model lagging behind 18 percentage-points in accuracy on the generations
from the full distribution (xl; Table 6). However, Solaiman et al. (2019) evaluated their
detector only on samples with a fixed length of 510 tokens, potentially giving its accuracy a
boost compared to the many shorter, thus harder to detect samples in our test data.
The results therefore are not directly comparable. Ippolito et al. (2020) report detection
results for a fine-tuned BERT classifier on generations from the GPT-2 large model (774M
parameters) with a sequence length of 192 tokens. They report an accuracy of 79:0%
for generations from the full distribution and 88:0% for top-k = 40 samples. The use of
one-token-priming for generation makes their results not directly comparable to ours.

Table 6 Ensemble-classifiers. The size of the tf-idf vectors in the tf-idf baseline is n ¼ 100k.

Classifier Training- and test data

s xl s-k xl-k GPT3 Grover

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Baselines

Feature-baseline 0.897 0.964 0.759 0.836 0.927 0.975 0.858 0.932 0.779 0.859 0.692 0.767

tf-idf-baseline 0.855 0.935 0.710 0.787 0.959 0.993 0.915 0.972 0.749 0.837 0.690 0.764

Ensembles

LR sep. 0.877 0.959 0.740 0.831 0.966 0.995 0.920 0.976 0.761 0.844 0.689 0.764

NN sep. 0.918 0.973 0.782 0.877 0.971 0.995 0.924 0.975 0.786 0.862 0.724 0.804

LR super 0.880 0.957 0.714 0.802 0.962 0.991 0.912 0.969 0.754 0.853 0.691 0.783

NN super 0.882 0.957 0.716 0.803 0.961 0.988 0.905 0.965 0.774 0.864 0.716 0.805

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 16/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


However, as stated by the authors, the priming should only negatively affect the accuracy
on the top-k generations. Our strongest ensemble model achieves an accuracy of 78:2%
on samples from the untruncated GPT-2 xl model, a generation model twice the size
of that used in Ippolito et al. (2020) and therefore presumably more difficult to detect.
Given the unclear effect of restricting the text length to 192 tokens, compared to our data
which includes both longer and shorter texts, we consider our feature-based ensemble
classifier to be at least competitive with the reported BERT results. Our best ensemble
classifier struggles most with the detection of Grover. While only the fine-tuned Grover
model of Zellers et al. (2019) scores a strong accuracy of 92:0% on the Grover-Mega data,
the fine-tuned BERT and GPT-2 detectors perform similar to our classifier, with reported
accuracies of 73:1% and 70:1%, respectively. This suggests that the inability of these
detectors might less be due to the detection approach but rather be caused by the
highly-curated Grover training data, differing strongly from the more diverse Internet text
used to train the non-Grover classifiers.

DISCUSSION AND FUTURE WORK
Our research into the possibility of using feature-based classifiers for the detection of
SOTA language models offers not only an understanding of the method’s general
performance, but also delivers many insights into more general language model detection
issues. We observed low transferability between the detectors of different sampling
methods, as well as differing performance of the individual feature sets, indicating that the
sampling method choice indeed influences the type of flaws a language model produces in
its generations. Our experiments with multi-dataset classifiers indicate that it might be
impossible to account for these differences in one single classifier, and that a solution
might instead be the construction of sub-classifiers for every single dataset and the
combination of their outputs using an ensemble approach. We have also shown that our
more quality-focussed features work better than the more statistical tf-idf-baseline for
the detection of texts generated from the full distribution, and that ensemble detectors
which combine these simple approaches can be competitive with more computationally
expensive, language-model-based detectors. Given the transferability observed between
different generation model sizes with the same sampling method, we are hopeful that our
feature-based approach might work as a “first line-of-defense” against potential releases
of ever bigger language models of the same architecture, as was the trend with the last GPT
models, without the immediate need to extensively retrain the detector. Given that the
dataset used for training has been explicitly crafted to be as diverse as possible and therein
covers a wide range of places of discourse on the Internet, we feel confident that our trained
classifiers might already in their current form help assessing the origin of text online.
However, an important strain of future research would be to systematically evaluate the
classifiers’ performances in more realistic settings like forum discussions, blog posts or
wider social media discourse. Since the training data was constructed to mirror wide parts
of the Internet, almost necessarily the potential issue of underrepresentation of minorities
arises. The question whether our classifiers show consistent performance across
different sources of human text is an important ethical question that requires careful

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 17/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


investigation before deployment, with the aim to ensure that no minorities or non-native
speaking groups are discriminated against by a classifier that struggles to detect their
speech as human as reliably as it does for other groups. Future work into feature-based
detection methods might also include the more detailed evaluation of the contribution of
individual features to the overall performance of the classifier, with a possible focus on
the search for features that increase transferability between the different sampling
methods. Similarly, based on the hypotheses formulated during feature development
regarding the role of the different features in distinguishing between human and machine
text, a deeper investigation of these linguistic differences could inform the future
development and improvement of machine generated language.

APPENDIX

Table A1 Single-dataset classifiers, no Q. Instances where training and test data belong to the same language model are highlighted (bold).

Training data Test data

s xl s-k xl-k GPT3 Grover

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

s 0.894 0.962 0.729 0.838 0.486 0.312 0.471 0.281 0.512 0.491 0.484 0.451

xl 0.867 0.957 0.777 0.864 0.443 0.311 0.427 0.289 0.410 0.415 0.462 0.449

s-k 0.492 0.275 0.486 0.335 0.917 0.972 0.800 0.903 0.617 0.775 0.574 0.732

xl-k 0.454 0.174 0.457 0.277 0.887 0.959 0.837 0.917 0.622 0.724 0.566 0.684

GPT3 0.445 0.266 0.458 0.350 0.703 0.791 0.624 0.705 0.739 0.828 0.585 0.629

Grover 0.386 0.265 0.444 0.404 0.705 0.755 0.675 0.719 0.537 0.526 0.683 0.760

Table A2 Single-dataset classifiers, filtered. Instances where training and test data belong to the same language model are highlighted (bold).

Training data Test data

s xl s-k xl-k GPT3 Grover

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

s 0.930 0.982 0.769 0.884 0.473 0.307 0.459 0.273 0.320 0.2139 0.431 0.43

xl 0.849 0.971 0.802 0.883 0.446 0.329 0.426 0.303 0.387 0.328 0.494 0.477

s-k 0.321 0.172 0.443 0.292 0.947 0.985 0.801 0.939 0.609 0.812 0.505 0.667

xl-k 0.216 0.099 0.360 0.242 0.910 0.974 0.861 0.933 0.637 0.660 0.514 0.721

GPT3 0.417 0.131 0.432 0.254 0.806 0.884 0.734 0.820 0.754 0.834 0.614 0.668

Grover 0.334 0.286 0.423 0.395 0.764 0.842 0.711 0.762 0.731 0.747 0.676 0.769

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 18/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Arkaitz Zubiaga serves as an Academic Editor for PeerJ Computer Science.

Author Contributions
� Leon Fröhling conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Arkaitz Zubiaga conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Table A3 Multi-dataset compositions.

Name Machine Human

s xl s-k xl-k GPT3 Grover webtext GPT3-webtext realNews

Train datasets

GPT2-un 125,000 125,000 – – – – 250,000 – –

GPT2-k – – 125,000 125,000 – – 250,000 – –

GPT2 62,500 62,500 62,500 62,500 – – 250,000 – –

All 60,099 60,099 60,099 60,099 1,604 8,000 236,396 1,604 8,000

Valid and test datasets

GTP2-un 2,500 2,500 – – – – 5,000 – –

GPT2-k – – 2,500 2,500 – – 5,000 – –

GPT2 1,250 1,250 1,250 1,250 – – 5,000 – –

All 950 950 950 949 201 1,000 3,299 201 1,500

Table A4 Multi-dataset classifiers, no Q. Instances where training and test data belong to the same
language model are highlighted (bold).

Training data Test data

s xl s-k xl-k GPT3 Grover GPT2-un GPT2-k GPT2 All

Accuracies

GPT2-un 0.890 0.771 0.466 0.451 0.458 0.537 0.830 0.457 0.645 0.600

GPT2-k 0.470 0.469 0.905 0.834 0.622 0.650 0.471 0.869 0.670 0.653

GPT2 0.846 0.718 0.862 0.784 0.580 0.598 0.781 0.823 0.805 0.744

All 0.855 0.721 0.867 0.780 0.714 0.688 0.785 0.825 0.808 0.770

AUC

GPT2-un 0.962 0.859 0.291 0.271 0.444 0.450 0.909 0.277 0.594 0.558

GPT2-k 0.197 0.293 0.968 0.917 0.757 0.703 0.245 0.942 0.594 0.628

GPT2 0.934 0.803 0.942 0.864 0.681 0.599 0.867 0.901 0.887 0.818

All 0.938 0.808 0.942 0.856 0.755 0.746 0.871 0.898 0.888 0.856

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 19/23

http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


Data Availability
The following information was supplied regarding data availability:

Code is available in the Supplemental Files.
Data is available at GitHub:
- https://github.com/openai/gpt-2-output-dataset
- https://github.com/openai/gpt-3
- https://github.com/rowanz/grover/tree/master/generation_examples.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.443#supplemental-information.

REFERENCES
Argamon-Engelson S, Koppel M, Avneri G. 1998. Style-based text categorization: what

newspaper am i reading. In: Proceedings of the AAAI Workshop on Text Categorization. 1–4.

Badaskar S, Agarwal S, Arora S. 2008. Identifying real or fake articles: towards better language
modeling. In: Proceedings of the Third International Joint Conference on Natural Language
Processing: Volume-II.

Bakhtin A, Gross S, Ott M, Deng Y, Ranzato M, Szlam A. 2019. Real or fake? learning to
discriminate machine from human generated text. arXiv. Available at http://arxiv.org/abs/1906.
03351.

Baly R, Karadzhov G, Alexandrov D, Glass J, Nakov P. 2018. Predicting factuality of reporting
and bias of news media sources. In: Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. 3528–3539.

Barzilay R, Lapata M. 2008. Modeling local coherence: an entity-based approach. Computational
Linguistics 34(1):1–34 DOI 10.1162/coli.2008.34.1.1.

Beltagy I, Lo K, Cohan A. 2019. Scibert: a pretrained language model for scientific text.
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
3606–3611.

Belz A. 2019. Fully automatic journalism: we need to talk about nonfake news generation. In:
Conference for Truth and Trust Online.

Bisk Y, Holtzman A, Thomason J, Andreas J, Bengio Y, Chai J, Lapata M, Lazaridou A, May J,
Nisnevich A, Pinto N, Turian J. 2020. Experience grounds language. arXiv. Available at
http://arxiv.org/abs/2004.10151.

Biswal S, Xiao C, Westover MB, Sun J. 2019. Eegtotext: learning to write medical reports from eeg
recordings. In: Machine Learning for Healthcare Conference. 513–531.

Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P,
Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A,
Ziegler DM, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J,
Berner C, McCandlish S, Radford A, Sutskever I, Amodei D. 2020. Language models are
few-shot learners. arXiv. Available at http://arxiv.org/abs/2005.14165.

Budzianowski P, Vulić I. 2019. Hello, it’s gpt-2-how can i help you? towards the use of pretrained
language models for task-oriented dialogue systems. In: Proceedings of the 3rd Workshop on
Neural Generation and Translation. 15–22.

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 20/23

http://dx.doi.org/10.7717/peerj-cs.443#supplemental-information
https://github.com/openai/gpt-2-output-dataset
https://github.com/openai/gpt-3
https://github.com/rowanz/grover/tree/master/generation_examples
http://dx.doi.org/10.7717/peerj-cs.443#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.443#supplemental-information
http://arxiv.org/abs/1906.03351
http://arxiv.org/abs/1906.03351
http://dx.doi.org/10.1162/coli.2008.34.1.1
http://arxiv.org/abs/2004.10151
http://arxiv.org/abs/2005.14165
http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


Clark J, Radford A, Wu J. 2019. Gpt-2 simple baseline. Available at https: //github.com/openai/
gpt-2-output-dataset/blob/master/detection. md (accessed 13 July 2020).

Crossley SA, Allen DB, McNamara DS. 2011. Text readability and intuitive simplification: a
comparison of readability formulas. Reading in a Foreign Language 23(1):84–101.

Devlin J, Chang M-W, Lee K, Toutanova K. 2019. Bert: Pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). 4171–4186.

Eneva E, Hoberman R, Lita LV. 2001. Learning within-sentence semantic coherence.
In: Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing.

Fast E, Chen B, Bernstein MS. 2016. Empath: understanding topic signals in large-scale text.
In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
4647–4657.

Fawcett T. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27(8):861–874
DOI 10.1016/j.patrec.2005.10.010.

Feng L, Jansche M, Huenerfauth M, Elhadad N. 2010. A comparison of features for automatic
readability assessment. In: Proceedings of the 23rd International Conference on Computational
Linguistics: Posters. 276–284.

Ferrara E, Varol O, Davis C, Menczer F, Flammini A. 2016. The rise of social bots.
Communications of the ACM 59(7):96–104 DOI 10.1145/2818717.

Fung B. 2017. Fcc net neutrality process ‘corrupted’ by fake comments and vanishing consumer
complaints, officials say. Washington Post. Available at https://www.washingtonpost.com/news/
the-switch/wp/2017/11/24/ fcc-net-neutrality-process-corrupted-by-fake-comments-and-
vanishing-consumer-complaints-officials-say/ (accessed 16 July 2020).

Gehrmann S, Strobelt H, Rush AM. 2019. Gltr: statistical detection and visualization of generated
text. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics:
System Demonstrations. 111–116.

Hagiwara M, Ito T, Kuribayashi T, Suzuki J, Inui K. 2019. Teaspn: framework and protocol for
integrated writing assistance environments. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP): System Demonstrations. 229–234.

Hashimoto T, Zhang H, Liang P. 2019. Unifying human and statistical evaluation for natural
language generation. In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 1689–1701.

Holtzman A, Buys J, Du L, Forbes M, Choi Y. 2019. The curious case of neural text degeneration.
In: International Conference on Learning Representations.

Ippolito D, Duckworth D, Callison-Burch C, Eck D. 2020. Automatic detection of generated text
is easiest when humans are fooled. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. 1808–1822.

Jiang S, Wolf T, Monz C, de Rijke M. 2020. Tldr: token loss dynamic reweighting for reducing
repetitive utterance generation. arXiv. Available at http://arxiv.org/abs/2003.11963.

Joachims T. 1998. Text categorization with support vector machines: Learning with many relevant
features. In: European Conference on Machine Learning. Cham: Springer, 137–142.

Kao J. 2017. More than a million pro-repeal net neutrality comments were likely faked.
Medium. Available at https://medium.com/hackernoon/ more-than-a-million-pro-repeal-net-
neutrality-comments-were-likely-faked-e9f0e3ed36a6 (accessed 16 July 2020).

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 21/23

https://github.com/openai/gpt-2-output-dataset/blob/master/detection.md
https://github.com/openai/gpt-2-output-dataset/blob/master/detection.md
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1145/2818717
https://www.washingtonpost.com/news/the-switch/wp/2017/11/24/fcc-net-neutrality-process-corrupted-by-fake-comments-and-vanishing-consumer-complaints-officials-say/
https://www.washingtonpost.com/news/the-switch/wp/2017/11/24/fcc-net-neutrality-process-corrupted-by-fake-comments-and-vanishing-consumer-complaints-officials-say/
https://www.washingtonpost.com/news/the-switch/wp/2017/11/24/fcc-net-neutrality-process-corrupted-by-fake-comments-and-vanishing-consumer-complaints-officials-say/
http://arxiv.org/abs/2003.11963
https://medium.com/hackernoon/more-than-a-million-pro-repeal-net-neutrality-comments-were-likely-faked-e9f0e3ed36a6
https://medium.com/hackernoon/more-than-a-million-pro-repeal-net-neutrality-comments-were-likely-faked-e9f0e3ed36a6
http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


Koppel M, Argamon S, Shimoni AR. 2002. Automatically categorizing written texts by author
gender. Literary and Linguistic Computing 17(4):401–412 DOI 10.1093/llc/17.4.401.

Lewandowsky S, Ecker UK, Seifert CM, Schwarz N, Cook J. 2012. Misinformation and its
correction: continued influence and successful debiasing. Psychological Science in the Public
Interest 13(3):106–131 DOI 10.1177/1529100612451018.

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. 2013. Distributed representations of words
and phrases and their compositionality. In: Advances in Neural Information Processing Systems.
3111–3119.

Morstatter F, Wu L, Nazer TH, Carley KM, Liu H. 2016. A new approach to bot detection:
striking the balance between precision and recall. In: 2016 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM). Piscataway: IEEE, 533–540.

Pérez-Rosas V, Kleinberg B, Lefevre A, Mihalcea R. 2018. Automatic detection of fake news. In:
Proceedings of the 27th International Conference on Computational Linguistics. 3391–3401.

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. 2019. Language models are
unsupervised multitask learners. OpenAI Blog 1(8):9.

Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ. 2019.
Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv.
Available at http://arxiv.org/abs/1910.10683.

Rubin VL, Conroy N, Chen Y, Cornwell S. 2016. Fake news or truth? using satirical cues to detect
potentially misleading news. In: Proceedings of the Second Workshop on Computational
Approaches to Deception Detection. 7–17.

Schuster M, Nakajima K. 2012. Japanese and korean voice search. In: 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 5149–5152.

Schuster T, Schuster R, Shah DJ, Barzilay R. 2019. Are we safe yet? the limitations of
distributional features for fake news detection. arXiv. Available at http://arxiv.org/abs/1908.09805.

Sebastiani F. 2002. Machine learning in automated text categorization. ACM Computing Surveys
34(1):1–47 DOI 10.1145/505282.505283.

See A, Pappu A, Saxena R, Yerukola A, Manning CD. 2019. Do massively pretrained language
models make better storytellers? In: Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL). 843–861.

Selyukh A. 2017. Fcc repeals ‘net neutrality’ rules for internet providers. NPR. Available at
https://www.npr.org/sections/thetwo-way/2017/12/14/570526390/ fcc-repeals-net-neutrality-
rules-for-internet-providers?t= 1602063579891 (accessed 13 October 2020).

Shevlane T, Dafoe A. 2020. The offense-defense balance of scientific knowledge: does publishing ai
research reduce misuse? In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society.
New York: ACM, 173–179.

Solaiman I, Brundage M, Clark J, Askell A, Herbert-Voss A, Wu J, Radford A, Wang J. 2019.
Release strategies and the social impacts of language models. arXiv. Available at http://arxiv.org/
abs/1908.09203.

Sun Z, Schuster R, Shmatikov V. 2020. De-anonymizing text by fingerprinting language
generation. arXiv. Available at http://arxiv.org/abs/2006.09615.

Thorne J, Vlachos A. 2018. Automated fact checking: task formulations, methods and future
directionsIn: Proceedings of the 27th International Conference on Computational Linguistics.
3346–3359.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. 2017.
Attention is all you needIn: Advances in Neural Information Processing Systems. 5998–6008.

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 22/23

http://dx.doi.org/10.1093/llc/17.4.401
http://dx.doi.org/10.1177/1529100612451018
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1908.09805
http://dx.doi.org/10.1145/505282.505283
https://www.npr.org/sections/thetwo-way/2017/12/14/570526390/fcc-repeals-net-neutrality-rules-for-internet-providers?t=1602063579891
https://www.npr.org/sections/thetwo-way/2017/12/14/570526390/fcc-repeals-net-neutrality-rules-for-internet-providers?t=1602063579891
http://arxiv.org/abs/1908.09203
http://arxiv.org/abs/1908.09203
http://arxiv.org/abs/2006.09615
http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/


Yang Y, Liu X. 1999. A re-examination of text categorization methods. In: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. New York: ACM, 42–49.

Zellers R, Holtzman A, Clark E, Qin L, Farhadi A, Choi Y. 2020. Evaluating machines by their
real-world language use. arXiv. Available at http://arxiv.org/abs/2004.03607.

Zellers R, Holtzman A, Rashkin H, Bisk Y, Farhadi A, Roesner F, Choi Y. 2019. Defending
against neural fake news. In: Advances in Neural Information Processing Systems. 9054–9065.

Zhang T, Oles FJ. 2001. Text categorization based on regularized linear classification methods.
Information Retrieval 4(1):5–31 DOI 10.1023/A:1011441423217.

Fröhling and Zubiaga (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.443 23/23

http://arxiv.org/abs/2004.03607
http://dx.doi.org/10.1023/A:1011441423217
http://dx.doi.org/10.7717/peerj-cs.443
https://peerj.com/computer-science/

	Feature-based detection of automated language models: tackling GPT-2, GPT-3 and Grover
	Introduction
	The detection problem
	Related work
	Methodology
	Experiments
	Results
	Discussion and future work
	Appendix
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


