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ABSTRACT
MATLAB is a software based analysis environment that supports a high-level
programing language and is widely used to model and analyze systems in various
domains of engineering and sciences. Traditionally, the analysis of MATLAB models
is done using simulation and debugging/testing frameworks. These methods provide
limited coverage due to their inherent incompleteness. Formal verification can
overcome these limitations, but developing the formal models of the underlying
MATLAB models is a very challenging and time-consuming task, especially in the
case of higher-order-logic models. To facilitate this process, we present a library of
higher-order-logic functions corresponding to the commonly used matrix functions
of MATLAB as well as a translator that allows automatic conversion of MATLAB
models to higher-order logic. The formal models can then be formally verified in an
interactive theorem prover. For illustrating the usefulness of the proposed library and
approach, we present the formal analysis of a Finite Impulse Response (FIR) filter,
which is quite commonly used in digital signal processing applications, within the
sound core of the HOL Light theorem prover.

Subjects Theory and Formal Methods
Keywords MATLAB, Formal verification, Matrix based MATLAB models, Interactive theorem
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INTRODUCTION
MATLAB (http://www.mathworks.com/products/matlab/) (MATrix-LABoratory) is
arguably one of the most commonly used software environments for modeling and
analyzing complex systems in various domains of engineering and science, including
analog and mixed signal circuits, digital filters and control systems. One of the prime
motivations of its widespread usage is the availability of a collection of built-in functions
based on basic matrix operations, which can be built upon for developing a library of
larger, more complex, functions.

Generally, model-based systems are represented in Simulink (http://www.mathworks.
com/products/simulink/), while algorithms are expressed using m-code in MATLAB

based analysis of systems. Traditionally, the Simulink models are validated through
simulation, and the m-code based models are analyzed through debugging, that is, by
setting breakpoints at different levels and examining the values of outputs/variables.
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Some testing frameworks (https://www.mathworks.com/help/matlab/matlab-unit-test-
framework.html) are also used to partially test the MATLAB code by providing a subset of all
possible input combinations.

Simulation and testing do not guarantee a complete analysis, since the system under
test is simulated for a specific set of inputs and at specified intervals of time. Similarly,
the breakpoints based approach tests the behavior of the given program by inserting
breakpoints at various discrete steps only. It is quite feasible when dealing with smaller
systems but becomes unscalable for larger systems, as managing breakpoints and deciding
their suitable positions to ensure that the whole range of possible values is covered
becomes extremely difficult. The use of computer arithmetic and thus the introduction of
roundoff errors adds another dimension of inaccuracy to the MATLAB based analysis.
Due to these inaccuracies in the analysis, the traditional MATLAB based analysis is not
suitable for analyzing systems used in safety-critical domains, such as health-care or
transportation, where even a slight inaccuracy or a missed corner case may lead to
disastrous consequences including the loss of human life.

The above-mentioned limitations can be addressed by using formal methods (Hasan &
Tahar, 2015) for analyzing MATLAB models. With the same motivation, MATLAB has
recently introduced a formal verification tool, namely Simulink Design Verifier (SDV)
(Hamon, 2008), to verify Simulink models. SDV supports two modes of operation: test
suite generation and property proving. The first mode deals with the generation of suitable
input vectors to provide the maximum output coverage and diversity for detecting
bugs. The second mode is based on automated theorem proving and model checking
techniques and is used for verifying the given system and generating counter examples in
case of failures. However, this verification support is limited to a subset of Simulink
functions and SDV has been reported to have some compatibility issues for larger models
due to their nonlinear operations (Hamon, 2008). Even though the vector generation
mode of SDV has been made quite scalable recently (Matinnejad et al., 2016), only a
subset of blocks can be supported by the verification mode of SDV. Finally, due to the
computational limitations of automatic theorem proving and model checking, the
verification support of SDV cannot be utilized to verify physical systems that usually
contain many continuous elements.

Another notable formal verification approach for Simulink models is presented in Chen,
Dong & Sun (2009), where the main idea is to translate the Simulink models to a library
of Timed Interval Calculus (TIC) functions, and then formally verify these TIC models.
A library of TIC models is developed for the Simulink library blocks and each block
can thus be automatically translated to its corresponding TIC model. Furthermore, the
higher-order-logic theorem prover PVS (Owre, Rushby & Shankar, 1992) is used to
formally verify these TIC models. These TIC models capture the timing characteristics of
the given system and thus can provide the support for verifying the continuous models
of systems by leveraging upon the high expressiveness of higher-order logic. However,
the scope of their work is just limited to the Simulink models. The authors in Lu &
Mukhopadhyay (2012) proposed using static code analysis, that is, to check the logical
behavior of the code at compile time with abstract interpretation techniques to validate the
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m-code. However, their approach only ensures the verification of logical errors and cannot
be used to capture the continuous aspects of the systems in their true sense.

Reicherdt & Glesner (2014) proposed to conduct the formal verification of the
discrete-time MATLAB/Simulink models using Microsoft’s Boogie program verifier. It
involves the automatic translation of MATLAB/Simulink models into the Boogie verification
language, which allows developing first-order-logic based models of the system and their
verification using the automated theorem prover Z3. Similarly, Boström (2011) proposed
an approach for the contract-based verification of the Simulink models. It involves
translating the Simulink models, viewed as Synchronous Data Flow (SDF) graphs, to their
corresponding functionally equivalent sequential program statements, which are further
analyzed using the automated theorem prover Z3. Joshi & Heimdahl (2005) proposed an
approach for the verification of the discrete time MATLAB/Simulink models using the SCADE
design verifier. It includes the translation of the MATLAB/Simulink models to
the synchronous data flow language, Lustre, for the model-based safety analysis using
SCADE. However, due to the inherent computational limitations of the associated formal
methods, that is, less-expressiveness and abstraction in automated theorem proving, and
discretization of the continuous models and state-space explosion in model checking, the
above-mentioned approaches cannot be termed as accurate and complete when analyzing
the complex systems exhibiting continuous dynamics.

Formalizations of real vectors and real matrices have been proposed in higher-order-logic
theorem provers HOL Light (Harrison, 2013), HOL4 (Shi et al., 2014; Shi, Guan & Li, 2020),
PVS (Herencia-Zapana et al., 2012), Isabelle (Aransay & Divasón, 2015), Mizar
(Bancerek et al., 2018) and Coq (Boldo, Lelay & Melquiond, 2015; Mahboubi & Tassi,
2017; Dénes & Bertot, 2011) and automated theorem prover ACL2 (Gamboa, Cowles &
Baalen, 2003). Also, the complex vectors, bivectors and some complex matrix arithmetic
is formalized in HOL Light (Afshar et al., 2014). Similarly, these real vectors libraries
have been used for formally verifying control software algorithms (Herencia-Zapana
et al., 2012) and motion planner of autonomous vehicles (Rizaldi et al., 2018). However,
these works mainly emphasize on the formalization of vectors and matrices, and not on
matrix manipulation functions, such as, concatenation and flip operations, and thus
require a significant amount of formalization effort for analyzing the applications in
which a large number of matrix manipulations are required.

To overcome the above-mentioned limitations, we propose to formalize some of the
most commonly used matrix functions, such as concatenation, flip, sum and
product, of MATLAB in HOL Light (Harrison, 2009), which is a higher-order-logic
theorem prover. The usage of higher-order logic and interactive theorem proving in the
proposed analysis method allows us to overcome the expressiveness and scalability issues
of SDV (Hamon, 2008) by leveraging upon the expressiveness of higher-order logic and the
associated powerful reasoning methods, such as induction. Moreover, the inherent
soundness of theorem proving ensures a complete and accurate analysis. It is important to
note that these added benefits are attained at the cost of extensive human involvement in
the formalization and verification tasks. The proposed work mainly focuses on the analysis
of the MATLABmodels expressed using the m-code. However it can also be used to analyze
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the Simulink models (Chen, Dong & Sun, 2009) since m-code can also be used to model
Simulink blocks.

The main motivation of developing the proposed library is to facilitate the formal
modeling process as these formal functions can be readily built upon to develop more
complex formal models, just like we build complex models based on the available MATLAB
functions. Moreover, we have also developed a translator that can parse a given MATLAB

code and then utilize our formal library of MATLAB matrix functions to automatically
develop the corresponding formal model in higher-order-logic. Thereafter, our formally
verified properties of the proposed matrix functions can be used in the formal reasoning
process of the given system and thus their availability reduces the interactive verification
effort. In order to illustrate the practical effectiveness and utilization of the proposed
formalization, we use it in this article to conduct the formal analysis of a Finite Impulse
Response (FIR) filter that is quite frequently used in many Digital Signal Processing (DSP)
applications.

The main contributions of this article are:

� Development of a formal library of some commonly used MATLAB functions in higher-
order logic

� Formal verification of some of the classical properties of the formalized MATLAB

functions using the HOL Light theorem prover

� Formal analysis of a Finite Impulse Response (FIR) filter using the proposed framework
in HOL Light

MULTIVARIATE THEORY IN HOL LIGHT
HOL Light (Harrison, 2009) is an interactive theorem prover from the family of
Higher-order-logic (HOL) theorem provers. Its core primarily consists of a small
number of basic axioms and inference rules, expressed in the Objective CAML (OCaml)
language, which is a variant of the strongly typed functional language ML (meta-language)
(Rémy, 2002). HOL Light has a rich set of theories for different data types, like
natural numbers, real numbers, sets, lists, vectors, matrices etc. Despite having the basic
formalization of the matrices and some of their operations in other theorem provers,
the main motivation of choosing HOL Light for our work is its rich formal reasoning
support for multivariate calculus (Harrison, 2013). One of the other reasons for opting
HOL Light is the presence of formal libraries for the Laplace (Taqdees & Hasan, 2013;
Rashid & Hasan, 2017) and the z (Siddique, Mahmoud & Tahar, 2014) transforms that
allows us to link our proposed formalization of matrix functions to these libraries for
performing the analysis of the continuous and discrete time systems, respectively.

We inherited the representation of an M × N matrix A as (A:real^N^M) from
Harrison’s seminal work (Harrison, 2005). The idea here is that instead of defining with a
specific type of matrices, the M × N matrices are represented using the Cartesian product
twice and thus, the arithmetic operations can in turn be defined by using a point-wise
lifting. Due to this formalization approach, we make the indexing correspond to the usual
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row-column convention by representing M × N matrices as (RN)M. Lambda abstraction
function lambda is used to define the behavior of a vector or a matrix in terms of its
components. Some of the HOL Light functions, from Harrison’s matrix theory (Harrison,
2005), used in this article are described below:

Definition 1. Matrix Multiplication
⊦def ∀(A:real^N^M) (B:real^P^N). matrix_mul A B = lambda i j.

PN
k¼1 Aik ∗ Bkj

The function matrix_mul accepts matrices A and B having dimensionsM × N and N ×
P, respectively, and returns their multiplication result.

Definition 2. Transpose of a matrix
⊦def ∀A. transp A = lambda i j. Aji

The function transp returns the transpose of the input matrix of order M × N by
interchanging its rows and columns.

Definition 3. Row and Column of the Matrix
⊦def ∀i A. row i A = lambda j. Aij

⊦def ∀j A. column j A = lambda i. Aij

The function row accepts a natural number i and anM×Nmatrix A and extracts the ith
row of the input matrix. The function column returns the jth column of the input matrix A.

Definition 4. Diagonal Matrix
⊦def ∀k. mat k = lambda i j. if i = j then k else 0
The function mat accepts a natural number k and returns the diagonal matrix of order

M × N with all the diagonal elements equal to k (Harrison, 2005). Thus, k = 1 gives an
Identity matrix and k = 0 corresponds to the zero matrix. The & operator is used to
typecast a natural number to its corresponding real number.

Definition 5. Vector
⊦def ∀n. vec n = lambda i. &n

The function vec takes a natural number n and returns the vector with all its elements
equal to n after changing it to a real number.

Definition 6. Row and Column Vectors
⊦def ∀v. rowvector v = lambda i j. vj
⊦def ∀v. columnvector v = lambda i j. vi
The functions rowvector and columnvector accept an N-dimensional vector v and

return the same vector as the row and column matrices of orders 1 × N and N × 1,
respectively.

Definition 7. Vectorize
⊦def ∀A. vectorize A = lambda i. Að1þi�1

N Þð1þji�1jN Þ
The function vectorize linearizes the input matrix A with order M × N to a (M∗N)-

dimensional vector. Here, |x|N represents the modulo operator, that is, it is a remainder
after the division of x by N.
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Definition 8. Matrify
⊦def ∀(x:real^(M,N):finite_prod). matrify x = lambda i j. x((i − 1)∗N + j)

The function matrify takes a (M∗N)-dimensional vector x and returns the matrix with the
order M × N having the same elements as the input vector. Here, finite_prod is a type
constructor, which accepts two finite natural numbers M and N and returns the type M × N.

FORMALIZATION OF MATRIX FUNCTIONS IN HOL LIGHT
This section provides the proposed formalization of the commonly used matrix functions
of MATLAB in HOL Light (Harrison, 2009). These formal definitions can in turn be used
to convert a MATLAB model into its corresponding higher-order-logic model. It is
important to note that the MATLAB functions use the IEEE floating point data type for the
matrix elements due to the inability of expressing pure real numbers in computers. On the
other hand, we have used the data type of real numbers for the elements of matrices in
the corresponding formal definitions because the formal analysis is done symbolically with
no involvement for computer arithmetic. Moreover, under certain circumstances, floating
point numbers can be considered a subset of real numbers (Harrison, 2012). Finally,
this is how we can deal with pure continuous models as well that MATLAB based analysis
cannot handle.

We formalized most of the matrix manipulation functions that fall under the category of
MATLAB language fundamentals (https://www.mathworks.com/help/matlab/functionlist.html).
We describe some of the MATLAB functions that we have formalized in detail below,
some are summarized in Table 1 and the rest can be found in (Gauhar, 2021).

Rotation
MATLAB function: rot90 (https://www.mathworks.com/help/matlab/ref/rot90.html)

Behavior: Rotates the contents of the input matrix A by integer multiples of 90° in the
counter-clockwise direction.

Definition 9. Rotation by Multiples of 90°
⊦def ∀A n. rot90_matrix A 0 = A ∧

rot90_matrix A (n + 1) = flipud (transp (rot90_matrix A n))

Our formalization of the rotation function rot90_matrix accepts a matrix A and a
natural number n and rotates the matrix A in the counter-clockwise recursively by n ∗ 90
degrees by taking the transpose (transp) of the given matrix and then flipping it upside
down (flipud) n times. The transp function, as described in “Multivariate Theory in
HOL Light”, is a built-in HOL Light function whereas we formalized flipud as part of this
work and its definition is in Table 1.

Diagonalization
MATLAB function: diag (https://www.mathworks.com/help/matlab/ref/diag.html)

Behavior: The diag function can be used with a different number of input arguments.
When there is a single input, that is, a matrix, it returns the main diagonal of input matrix
A as a vector. For two input arguments, a matrix A and an integer k, it extracts the kth
diagonal of the matrix A. For two inputs, a vector v and an integer k, it places the vector v
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Table 1 Formal definitions of MATLAB’s matrix manipulation functions.

Description HOL Definition

horzcat (https://www.mathworks.com/help/matlab/ref/horzcat.html)

Concatenates the input matrices horizontally ⊦def ∀ (A:real^N^M) (B:real^P^M). horz_conct A B = lambda

i j. if j = N then Aij else Bi(j-N)

vertcat (https://www.mathworks.com/help/matlab/ref/vertcat.html)

Concatenates the input matrices vertically ⊦def ∀ (A:real^N^M) (B:real^N^P). vert_conct A B = lambda i

j. if i = M then Aij else B(i-M)j

flipud (https://www.mathworks.com/help/matlab/ref/flipud.html)

Flips the matrix along the horizontal axis ⊦def ∀(A:real^N^M) . flipud A = lambda i j. A(M−i+1) j

fliplr (https://www.mathworks.com/help/matlab/ref/fliplr.html)

Flips the matrix along the vertical axis. ⊦def ∀(A:real^N^M) . fliplr A = lambda i j. Ai(N−j+1)

movprod (https://www.mathworks.com/help/matlab/ref/movprod.html)

Computes the product of k neighboring elements of input matrix A for each
element of the output matrix

⊦def ∀(A:real^N^M) k. movprod A k = lambda i j.

if |k|2 = 0
then �

iþðk2Þ
x¼i�ðk1Þ

(if x = 0 _ x > M then 1 else Axj)

else �
iþðk�1

2 Þ
x¼i�ðk�1

2 Þ (if x = 0 _ x > M then 1 else Axj)

Computes the product of previous k1 elements, next k2 elements and the current
element

⊦def ∀(k:num^2^1) (A:real^N^M) k. movprod A k = lambda i j.

�iþk2
i�k1

(if x = 0 _ x > M then 1 else Axj)

cumprod (https://www.mathworks.com/help/matlab/ref/cumprod.html)

Cumulative product of elements along rows of the given matrix ⊦def ∀A. cumprod_row A = lambda i j. �j
k¼1 Aik

Cumulative product of elements along columns of the given matrix ⊦def ∀A. cumprod_col A = lambda i j. �j
k¼1 Akj

cumsum (https://www.mathworks.com/help/matlab/ref/cumsum.html)

Cumulative sum along each row ⊦def ∀A. cumsum_row A = lambda i j.
Pj

k¼1 Aik

Cumulative sum along each column ⊦def ∀A. cumsum_col A = lambda i j.
Pj

k¼1 Akj

sum (https://www.mathworks.com/help/matlab/ref/sum.html)

Adds the elements of each column ⊦def ∀(A:real^N^M). sum_row A = lambda j.
PM

k¼1 Akj

Adds the elements of each row to return a column vector ⊦def ∀(A:real^N^M). sum_col A = lambda i.
PN

k¼1 Aik

prod (https://www.mathworks.com/help/matlab/ref/prod.html)

Multiplies the elements of each column ⊦def ∀(A:real^N^M). prod_row A = lambda j. �M
k¼1 Akj

Multiplies the elements of each row and returns a column vector ⊦def ∀(A:real^N^M). prod_col A = lambda i. �M
k¼1 Aik

size (https://www.mathworks.com/help/matlab/ref/size.html)

Returns the size of M × N input matrix A ⊦def ∀(A:real^N^M). size_matrix A = (M,N)

numel (https://www.mathworks.com/help/matlab/ref/numel.html)

Returns the number of elements of the matrix A ⊦def ∀(A:real^N^M). numel_mat A = (M ∗ N)

Returns the number of elements for N-dimensional vector v ⊦def ∀(A:real^N). numel_vect v = N

length (https://www.mathworks.com/help/matlab/ref/length.html)

Returns the maximum dimension for the matrix A ⊦def ∀(A:real^N^M). length_mat A = max (M,N)

Returns the dimension of input vector v ⊦def ∀(A:real^N). length_vect v = N

colon (https://www.mathworks.com/help/matlab/ref/colon.html)

Returns the range from the lower limit l to upper limit u ⊦def ∀x u l. colon1 x u l = (x ≤ u) ^ (l ≤ x)

Returns the range from lower limit l to upper limit u for the variable x of natural
number type that is, for the for-loop indexing

⊦def ∀x l u. colon2 x l u = (x ≤ u) ^ (l ≤ x)

Breaks the interval according to the given step size s ⊦def ∀x l u s n. colon3 x l u s n = if l + ns ≤ u then x = l + ns else

x = u

(Continued)
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in the kth diagonal, where k = 0 corresponds to placement of the vector in the main
diagonal, and k < 0 and k > 0 are below and above the main diagonal, respectively.

Definition 10. Diagonal of a Matrix
⊦def ∀A. diag_single A = lambda i. Aii
⊦def ∀A k. diag_vect A k = lambda i. if k � 0 then A(i + k)i else Ai(i + k)

⊦def ∀v k. diag_matrix v k = lambda i j. if k � 0 then (if i = j + k then vj else 0)
else (if i + k = j then vi else 0)

The formalization of the function diag is done using three definitions: diag_single,
diag_vect and diag_matrix. The function diag_single accepts the matrix A and
returns its main diagonal as a vector. To extract the kth diagonal of the input matrix A,
diag_vect can be used. The function diag_matrix places input vector v in the kth
diagonal of output matrix.

Circular shift
MATLAB function: circshift (https://www.mathworks.com/help/matlab/ref/circshift.html)

Behavior: The function circshift has some variants depending upon the types of
input arguments. circshift(A,[k1,k2]) shifts the matrix A in each dimension circularly,
where k1 and k2 are the circular shift in row and column dimensions, respectively.
circshift(v,k) circularly shifts the elements of the given vector v on the kth position,
k > 0 and k � 0 corresponds to the right and left shift, respectively.

Definition 11. Circular Shifting of a Matrix
⊦def ∀(v:real^M) k. circ_vshift v k = lambda n. if |i − k|M � 0 then v(M − ji−kjM)
else vji−kjM
⊦def ∀(A:real^N^M) k. circ_mshift A k =

lambda i j. if (|i − k1|M � 0 ∧ |j − k2|N � 0) then A(M − ji−k1jM) (N − jj−k2jN )
else if (|i − k1|M � 0) then A(M − ji−k1jM)(jj−k2jN )

else if jj−k2jN � 0 then A(ji−k1jM)(jj−k2jN ) else A(ji−k1jM)(jj−k2jN )

Table 1 (continued)

Description HOL Definition

Times(.∗) (https://www.mathworks.com/help/matlab/ref/times.html)

Element-wise multiplication ⊦def ∀A B. array_mul A B = lambda i j. Aij ∗ Bij

Power(.^) (https://www.mathworks.com/help/matlab/ref/power.html)

Power of each element of matrix A raises to k ⊦def ∀A k. matpow A k = lambda i j. Aij
k

abs (https://www.mathworks.com/help/matlab/ref/abs.html)

Returns absolute value of each element in matrix ⊦def ∀A. abs_matrix A = lambda i j. abs (Aij)

ind2sub (https://www.mathworks.com/help/matlab/ref/ind2sub.html)

Changes the linear index i to the subscripts ⊦def ∀(A:real^N^M) i. ind2sub A i = ðji� 1jM; i−1
M Þ

sub2ind (https://www.mathworks.com/help/matlab/ref/sub2ind.html)

Returns the index for given subscripts ⊦def ∀(A:real^N^M) i j. sub2ind A i j = (i + (j − 1) ∗ M)

rot90 (https://www.mathworks.com/help/matlab/ref/rot90.html)

Rotates the input matrix by 90° in counter-clockwise direction ⊦def ∀A. rot90_matrix_single A = flipud (transp A)
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We formalized the behavior of the circular shift for matrices and vectors in two separate
definitions, circ_mshift and circ_vshift, respectively. The circular shift in both cases is
done by placing the corresponding entries of input vector/matrix using the if-then-else
statements. The computation of corresponding indices involves the mod operator and some
other arithmetic manipulations using the sizes/dimensions of the input vector/matrix and
the index of the output vector/matrix.

Colon indexing
MATLAB function: Colon (:) (https://www.mathworks.com/help/matlab/ref/colon.html)

Behavior: Colon (:) operators allow accessing the elements of a matrix. For example,
a range of elements in matrix A can be accessed either through A(l:u) that returns (u − l + 1)
consecutive elements starting from the lower limit l or through A(l:k:u) that returns
� ðu−lÞ

k þ1
�
elements starting from the lower limit l until the upper limit u, while picking

elements after every (k − 1) indices.

Definition 12. Matrix Indexing using the Colon Operator
⊦def ∀A l u. mat_colon A l u = lambda i j.

if l � u then (if l + ( j − 1) � u then Aind2sub(A)(l + (j − 1)) else 0)
else (if u + ( j − 1) � (l + 1) then Aind2sub(A)((l + 1) − j)) else 0)

⊦def ∀A l k u. mat_colon_interval A l k u = lambda i j.
if l � u then (if j � ðu−lÞ

k then Aind2sub(A)(l + k∗(j − 1)) else 0)
else (if j � ðu−lÞ

ðkþ1Þ then Aind2sub(A)(l − k∗(j − 1)) else 0)

The return type of colon indexing functions depends on the value of the input.
However, this behavior cannot be formalized in HOL Light as we need to explicitly declare
the return type of the functions in their function definition. To cater for this issue, we
decided to keep the dimensions of the return type of our colon indexing matrices the
same as the input matrices by adding additional 0s at the end. The function ind2sub

used in the above definitions returns the subscripts of matrix A for a given index, where the
subscript of a matrix A in MATLAB identifies its elements based on row and columns
indexing and the index is used to identify the elements of a matrix using integers only after
linearizing it. The behavior of the ind2sub function that we formalized is presented
in Table 1.

Moving Sum
MATLAB function: movsum (https://www.mathworks.com/help/matlab/ref/movsum.html)

Behavior: The function movsum returns a matrix such that each of its elements is
equal to the sum of the corresponding element of input matrix and its neighbors, where
the neighborhood is defined by the second argument (sliding window). For example,
for A = [1 2 3 4 5 6], and k = 3, movsum(A,k) = [3 6 9 12 15 11]. When the value of k is
odd, the window is centered at the current index and for an even value, it is centered
about the current and the previous indices. To pick the different number of elements in
forward or backward direction movsum (A, [k1,k2]) is used, which computes the sum
of the previous k1 elements, current element and the next k2 elements.
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Definition 13. Moving Sum of the Matrix
⊦def ∀(A:real^N^M) k. movsum A k = lambda i j.

if |k|2 = 0 then
Piþðk2Þ

x¼i�k
2
(if x = 0 ∨ x > M then 0 else Axj)

else
Piþðk�1

2 Þ
x¼i�k�1

2
(if x = 0 ∨ x > M then 0 else Axj)

⊦def ∀(k:num^2^1) (A:real^N^M). movsum_2 A k = lambda i j.Piþðk2Þ
x¼i�k2

(if x = 0 ∨ x > M then 0 else Axj)

Moving average
MATLAB function: movmean (https://www.mathworks.com/help/matlab/ref/movmean.html)

Behavior: The function movmean returns the matrix with the local k point average of the
elements of an input matrix A. It mainly adds the values of the elements within the
given sliding window, as defined in the movsum function, and returns a matrix with their
average values, that is, by dividing the sum value with the number of elements added.

Definition 14. Moving Average of the Matrix
⊦def ∀(A:real^N^M) k. movmean A k = lambda i j.

if |k|2 = 0 then
if (1 � i − k

2) ∧ (i + (k2 − 1) � M) then
Piþðk2�1Þ

x¼i�k
2

Axj

k

else if ¬(1 � i − k
2 ∧ (i + (k2 − 1) � M) then

Piþk
2�1

x¼1
Axj

iþðk2�1Þ
else if (1 � (i − k

2) ∧ ¬(i + (k2 − 1) � M) then
PM

x¼i�k
2

Axj

ðM�ði�ðk2þ1ÞÞÞ
else

PM
x¼1 ðAxj

M Þ
else if (1 � i − k�1

2 ) ∧ (i + (k�1
2 − 1) � M) then

Piþðk�1
2 �1Þ

x¼i�k�1
2

Axj

k

else if ¬(1 � i − k�1
2 ∧ (i + k�1

2 � M) then
Piþðk�1

2 �1Þ
x¼1

Axj

ðiþk�1
2 Þ

else if (1 � (i − k�1
2 ) ∧ ¬(i + (k�1

2 ) � M) then
PM

x¼i�k�1
2

Axj

ðM�ði�ðk�1
2 þ1ÞÞÞ

else
PM

x¼1

�Axj

M

�

We modeled this behavior in HOL Light using the function movmean that accepts a
matrix A and a number k and returns the desired value by using if-then-else statements to
cover all the possible cases for inputs.

Minimum
MATLAB function: min (https://www.mathworks.com/help/matlab/ref/min.html)

Behavior: Returns the Minimum Value in the Matrix

Definition 15. Minimum of the Matrix
⊦def ∀y n. min_vect y 0 = min (y1) (y2) ∧

min_vect y (n + 1) = min (min_vect y n) (yn + 1)

The function min_vect returns the minimum value of the vector y. To make the matrix
input compatible, the function vectorize is used. The function vectorize is used to
linearize the matrix to change it into a vector.
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We also formally verified some of the classical mathematical properties for the
formalized MATLAB functions. The verification of these properties, not only ensures
the correctness of our definitions, but also facilitates the formal reasoning process about
the systems that use the corresponding definitions. Some of these formally verified
properties are briefly described below and more details and the full list of formally verified
properties can be seen in Gauhar (2021).

Theorem 1. Multiplication with Concatenated Matrices
⊦thm ∀A B C. A ∗ (horz_conct (B, C)) = horz_conct (A ∗ B, A ∗ C)

⊦thm ∀A B C. (vert_conct (A, B)) ∗ C = vert_conct (A ∗ C, B ∗ C)

The above theorem provides an important property about the multiplication of the
horizontal and vertical concatenation matrices. We start the proof process of Theorem 1
(horizontal concatenation) by rewriting with the definitions of horizontal concatenation
(horz_conct in Table 1) and matrix multiplication (Definition 1) providing its
components, that is, rows and column entries. Next, we used some properties of indexing
along with arithmetic reasoning to conclude the proof of Theorem 1. We used the
same kind of reasoning for the verification of the property about multiplication of the
vertical concatenation matrices.

Theorem 2. Zero Matrix
⊦thm ∀k. diag_matrix (vec 0) (k) = (mat 0)

This property guarantees the correctness of the diag_matrix function, which places
the given vector as the diagonal of the given matrix. We start the verification of the
above theorem by rewriting with the definitions of diag_matrix (Definition 10), vec
(Definition 5) and mat (Definition 4). Next, we perform a case analysis on k along with
some arithmetic reasoning to conclude with the proof of Theorem 2.

Theorem 3. Extracting Main Diagonal of Matrix
⊦thm ∀k. diag_vect (mat k)(0)= vec k

The proof of Theorem 3 is based on the fact that, for any diagonal matrix having same
entries in the main diagonal, the diag_vect returns the vector having elements equal to
the main diagonal of the given matrix, given that k = 0. It requires rewriting with
Definition 4, some basic properties of indexing along with some arithmetic reasoning.

Theorem 4. Cumulative Product of a Matrix
⊦thm ∀(A:real^N^M) i j. (1� i� N) ∧ (1� j� N) ∧ (Aij = 1)⇒ cumprod_row A = A

The theorem states that for all-ones input matrix A, that is, an input matrix with all
its entries equal to 1, the function cumprod_row returns the same matrix. The verification
of Theorem 4 is mainly based on the definition cumprod_row in Table 1, some basic
properties of indexing along with some arithmetic reasoning.

Theorem 5. Equivalence of Cumulative Product of a Matrix
⊦thm ∀(A:real^N^M) i j. (1 � i � N) ∧ (1 � j � N) ∧ (Aij = 1)

⇒ cumprod_row A = cumprod_col A
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The above theorem provides an equivalence of the cumulative product along rows and
column for all-ones input matrix A, that is, an input matrix with all its entries equal to 1.
The verification of Theorem 5 is mainly based on definitions cumprod_row and
cumprod_col in Table 1 and some indexing properties.

Theorem 6. Cumulative Sum of Zero Matrix
⊦thm cumsum_row (mat 0) = cumsum_col (mat 0)

The proof of the above theorem is based on the fact that every element in a zero matrix
is equal to zero and the property of summation of zero functions, which states that if a
function is zero for a specific range then its sum in that range would also be zero.

Theorem 7. Equivalence of Moving Sum
⊦thm ∀(A:real^N^M) (k:num^2^1)(n:num). (ODD n) ∧ (k11 = k12)

⇒ movsum_2 A k = movsum A n

The theorem verifies the equivalence of the two variants of the function movsum and is
based on arithmetic reasoning. The assumptions ensure that the length of sliding window
is odd by using the function ODD and that both elements in the second argument of
movsum_2 are equal.

Theorem 8. Sum of the Diagonal Matrix
⊦thm ∀k. sum_row (mat k) = rowvector (vec k)

This property states that the sum of any diagonal matrix with all entries, which are equal
to k, along its rows, is equal to a row vector, with all its elements equal to k. The proof of
this theorem is primarily based on the definitions of the functions sum_row in Table 1,
vec (Definition 5), rowvector (Definition 6), and mat (Definition 4) along with some
arithmetic reasoning.

Theorem 9. Rotation of the Diagonal Matrix
⊦thm ∀n k. if k mod 2 = 0

then rot90_matrix (mat n) (k) = mat (n)

else rot90_matrix (mat n) (k) = flipud (mat n)

This theorem states that the counter-clockwise rotation of the diagonal matrix by
odd multiples of 90° will result in the same matrix and for even multiples the function
rot90_matrix flips the matrix upside down. The proof of this theorem is primarily based
on the definitions of the functions mat (Definition 4) and rot90_matrix (Definition 9),
induction on the variable k along with some arithmetic reasoning.

Theorem 10. Equivalence of Variants of mat_colon
⊦thm ∀A u l k . (k = 1) ⇒ mat_colon_interval A l u k = mat_colon A l u

This theorem verifies the equivalence between the two variants of the colon indexing
function when k = 1. The proof of this theorem is based on Definition 12 (the definitions of
the functions mat_colon and mat_colon_interval) along with some arithmetic
simplifications.
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Theorem 11. Usage of mat_colon to Avoid Trailing Zeros
⊦thm ∀(a:real^R^1) (b:real^Q^1) (n:num) (m:num) (k:num).

(a = rowvector (vec k) ∧
(1 � n) ∧ (n � R) ∧ (1 � m) ∧ (m � R) ∧
(R � Q) ∧ (Q = (n − m) + 1) ∧ (m � n) ∧
(b = rowvector (vec k)))

⇒ (mat_colon (b)(m)(n) + a) = (rowvector (vec (k + k)))

This theorem presents a way to eliminate the extra zeros, generated by the function
mat_colon, by restricting the dimensions of the output to a desired number of elements
and use these conditions in assumptions. The proof of the theorem is based on a lemma
about indexing along with some arithmetic reasoning.

Theorem 12. Check the Element of mat_colon
⊦thm ∀A u l. (l � u) ⇒ (mat_colon (A)(l)(u))1((u − l) + 1) = Aind2sub (A) (u)

As mentioned above in Definition 12, mat_colon corresponds to the colon indexing
in MATLAB, so this property guarantees its correctness by checking that ((u − l) + 1)
element of the output must be equal to the uth element of input matrix A, assuming the
value of l is less than or equal to u. The proof of the theorem is based on the definitions
of the function mat_colon (Definition 12) and some reasoning on indexing along with
arithmetic reasoning. Table 2 provides some additional properties of the formalized
MATLAB matrix functions.

Just like the above-mentioned properties, we verified many other properties about our
formalized MATLAB matrix functions and the details can be found in Gauhar (2021).

Table 2 Formally verified properties of matrix functions.

Property Description

Diagonal of Zero Matrix

⊦thm ∀ k. diag_vect (mat 0) (k) = (vec 0) The theorem states that with a zero matrix as input, any vector extracted via the diag_vect
function would be a zero vector.

Placing Vector in Main Diagonal of Matrix

⊦thm ∀n. diag_matrix (vec n) (0) = mat n This theorem states that when k = 0 then the diag_matrix for any input vector returns the
diagonal matrix.

Flip Diagonal Matrix

⊦thm ∀n. fliplr (mat n) = flipud (mat n) The proof of the theorem is primarily based on the arithmetic simplification on the row and
column indices of the matrices

Element-wise Multiplication of Diagonal Matrix

⊦thm ∀n. array_mul (mat m) (mat n) = (mat m * n) The proof of above theorem is primarily based on the definitions of the functions array_mul
and mat along with some arithmetic reasoning

Power of the Diagonal Matrix

⊦thm ∀k p. (k s 0) 0 matpow (mat k) = mat The proof of this theorem is primarily based on the definitions of the functions mat and
matpow along with some arithmetic reasoning about the power function

Rotation of the Zero Matrix

⊦thm ∀k. rot90_matrix (mat 0) (k) = mat (0) The proof of this theorem is primarily based on the fact that rotation of the zero matrix
returns the zero matrix
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The formal proofs of Theorems 1–12 and the ones provided in Table 2 in our proposed
formalization (https://doi.org/10.6084/m9.figshare.13992317.v1) of the matrix functions are
mainly based on Definitions 1–15 and the ones presented in Table 1, indexing properties
of the vectors andmatrices along with some arithmetic reasoning. It is important to note that
our HOL Light functions/definitions are generic, that is, having N dimensions of a vector
and N × M dimensions of a matrix. On the other hand, in the MATLAB based analysis,
these functions and theorems hold for specific values of vectors and matrices. The two main
challenges incurred during the development of the proposed approach include:

� Developing a library of generic definitions for existing MATLAB functions. This was
specially challenging in the case of functions that involved loops as we had to represent
the corresponding behavior recursively in a formal manner.

� To facilitate the formal reasoning process as well as to ensure the correctness of our
definitions, we had to figure out their behavioral properties (Theorems 1–12, Table 2)
and interactively verify them in a theorem prover.

TRANSLATOR FROM MATLAB TO HOL LIGHT
Using the formalization of the matrix functions described in the “Formalization Of Matrix
Functions In Hol Light”, we developed a translator (https://doi.org/10.6084/m9.figshare.
13992314.v1) for converting MATLABmodels to the corresponding higher-order-logic models
automatically. The overall architecture of the proposed framework is depicted in Fig. 1.

Figure 1 Overview of MATLAB to HOL light translation. Full-size DOI: 10.7717/peerj-cs.440/fig-1

Gauhar et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.440 14/21

https://doi.org/10.6084/m9.figshare.13992317.v1
https://doi.org/10.6084/m9.figshare.13992314.v1
https://doi.org/10.6084/m9.figshare.13992314.v1
http://dx.doi.org/10.7717/peerj-cs.440/fig-1
http://dx.doi.org/10.7717/peerj-cs.440
https://peerj.com/computer-science/


The translator works with compilable MATLAB models (m-files), that is, free of syntax
problems, and uses the MATLAB functions that we have formalized. The translation process
is broadly divided into two phases, that is, MATLAB model (m-file) to XML conversion
and XML to HOL Light model conversion. The intermediate XML format is used because it
provides a well-tagged parsed format that can be translated to HOL Light code in a
straightforward manner. For the MATLAB to XML conversion, we use MATISSE (Bispo et al.,
2013) a compiler that has been developed primarily for the conversion of MATLAB models
to C code (Bispo et al., 2013). Although the compiler is not yet publicly available, it has
an online demo version (http://specs.fe.up.pt/tools/matisse/) and we have made available a
MATLAB-to-XML client that communicates with the online version1.

The current work along with Bispo et al. (2013) can allow engineers to write a MATLAB
model only to describe the desired system behavior. This model can then be used to
simulate the design, to generate its formal model automatically, using the proposed
translator, for formal verification, and to get the implementation in C code automatically
using Bispo et al. (2013).

An important aspect of the proposed translator is to ensure the completeness of the
model and for this purpose it has to deal with missing (i) data types, (ii) dimensions of
matrices, (iii) values of variables and (iv) conditions. For example, the translator uses the
same data types in the formal models that are specified in the corresponding MATLAB

models. However, if a data type or dimension is missing then the translator uses the
arbitrary data type or dimension. Similarly, MATLAB allows users to define models using an
if-statement without an else statement, but the else part cannot be avoided in the
corresponding formal model. In such scenarios, the proposed translator prompts the user
to enter the action to be taken if the condition is not true.

Furthermore, MATLAB is an interpreted dynamic programing language that does
not require variable declaration or type definition at compile time. Similarly, the
MATLAB-to-XML converter does not distinguish between the constant multiplication and
array multiplication because of the usage of the same operator (.∗). Similarly, there are
many other operator overloadings that are commonly used in MATLAB. In these cases, the
translator replaces the operators with the corresponding HOL Light functions/operators
by inferring them based on the data types of the variables/inputs.

The proposed MATLAB code to HOL Light translator is depicted in Fig. 2. We first use
the MATISSE compiler (http://specs.fe.up.pt/tools/matisse/) to output an XML file with
an AST-based intermediate representation corresponding to the given MATLAB code.
The XML file is then given to the XML parser to extract the content of tags and subtags along
with their names. If the translator identifies an object with a function data type then the
user is prompted to enter the types of its inputs and outputs. In case the user does not
provide the types, then the input and output types are assumed to be arbitrary M × N
matrices. Once the types of inputs and outputs are acquired, the translator constructs a
symbol table for the identifiers along with a dictionary holding their values.

Both variables and functions of the MATLABmodels are expressed with the identifier tag
in XML representation. To avoid any ambiguity, the tables and dictionaries are formed by
concurrent comparison of each identifier with the already stored names of MATLAB

1 The MATLAB -to- XML client can be
downloaded at specs.fe.up.pt/
tools/matlab-to-xml.jar.
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functions along with the formalized library presented in Section Formalization of Matrix
Functions in HOL Light. Combining the information of symbol table, dictionary and
our formalized library, the Intermediate Representation (IR) generator generates an IR
of each statement depending on its type. The IR is chosen such that it captures all the
information of the statement as well as can be easily used by the subsequent steps to
generate the higher-order-logic model. Then, the code optimizer block revamps the output
from IR generator according to the semantics of the target language and by taking
some input from users, like missing data types and if-else conditions. Finally, the code
generator develops the higher-order-logic model according to the syntax and semantics of
the language used by the HOL Light theorem prover.

The translator has been developed to facilitate the formalization process but it has
not been formally verified so there is always a chance that the translation process may
introduce a bug in the formal model, like it might happen in the manual formalization
process as well. However, since we formally verify the formal models in the next step there is
a high probability of catching these kinds of translation bugs during the verification phase.

APPLICATION: FINITE IMPULSE RESPONSE FILTER
Filters are widely used in Digital Signal Processing (DSP) applications to reduce or
eliminate the unwanted components of the signal. Finite Impulse Response (FIR) filters
find their applications in most of the DSP applications due to their inherent stability
(Proakis & Manolakis, 2007).

Finite Impulse Response filters provide a finite duration response when excited with a
non-zero input. They are also called non-recursive filters due to the fact that the output at a
particular instant is dependent on the past and present values of the input rather than the

Figure 2 XML to HOL light translator’s architecture. Full-size DOI: 10.7717/peerj-cs.440/fig-2
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previous values of output. Mathematically the nth output of a M-tap/order FIR Filter
(Lyons, 2011), as depicted in Fig. 3, can be expressed as:

yðnÞ ¼
XM�1

k¼0

hðkÞ � xðn� kÞ (1)

where h(k) is the impulse response or filter coefficients of the filter, x(k) is the input and
y(n) represents the nth sample of output y.

A MATLAB model representing a simple FIR filter is expressed in Listing 1, where
vector_1d and coef represent input and filter coefficients, respectively, and output is
the output of the FIR filter.

As expressed in Eq. (1), the corresponding MATLAB model is formed by using the
array multiplication, colon indexing of the matrix and summation functions. We have
formalized all these functions and thus the translator formalized the behavior of this FIR
filter using our formally defined functions array_mul, mat_colon, numel_mat, colon2
and sumrowvec as follows:

Definition 16. Formalization of 1D FIR Filter
⊦def ∀(vector_1d:real^Q^P) (coef:real^R^1). output vector_1d coef = lambda i j.
if colon2 j (numel_mat coef) (numel_mat vector_1d) then
sumrowvec (array_mul (mat_colon vector_1d j (j - (numel_mat coef) +

1)) coef)

else &0

The function output in the above definition returns the matrix representing the
output of the filter. The input to the system includes input vector vector_1d and filter

Figure 3 Finite impulse response (FIR) filter. Full-size DOI: 10.7717/peerj-cs.440/fig-3

function output=fir_1d(vector_1d,coef)
NTAPS=numel(coef);
N=numel(vector_1d);
output= zeros(1,N);

for i=NTAPS:1:N
output(i)= sum(vector_1d(i:−1:i−NTAPS+1).* coef);

end
end

Listing 1. MATLAB model of 1D FIR filter. Full-size DOI: 10.7717/peerj-cs.440/fig-4
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coefficients coef, respectively. Now based on our formalization, we can formally verify
that if the impulse response is absolutely integrable and the input is bounded, then the
system is Bounded-input-bounded-output (BIBO) stable for this filter. This can be
expressed as the following theorem:

Theorem 13. BIBO Stability of the FIR Filter
⊦thm ∀(vector_1d:real^Q^P) (coef:real^R^1).

bounded (vector_1d) ∧ (9M:
PN

x¼1 jc1xj � M) ⇒ bounded (output

(vector_1d)(coef))

The distinguishing features of the above theorem include the fact that it is verified based
on the inherent sound reasoning of the theorem proving approach, accompanying all
required assumptions so it is guaranteed to be accurate, unlike the properties verified by
other traditional analysis techniques. Moreover, the result is applicable to all universally
quantified variables in the theorem, that is, vector_1d and coef, unlike the MATLAB
based analysis, which holds for specific values of vectors and matrices. The formal
reasoning about the correctness of the above theorem is primarily based on the formally
verified theorems, presented in “Formalization of Matrix Functions in HOL Light” of
this paper, and thus was very straightforward. This clearly indicates the usefulness of the
proposed approach for the formal analysis of MATLAB models involving matrices.

CONCLUSIONS
This article presented a higher-order-logic formalization of some of the commonly used
matrix functions of MATLAB. The formalization has been carried out by using the
multivariate calculus theory of HOL Light. This formalization facilitates the development
of formal models for MATLAB models, expressed as m-code. We have also developed an
automatic translator to convert MATLAB models to their corresponding higher-order-logic
formalization automatically. This formal model can then be used to formally verify its
desired characteristics in HOL Light. The formally verified properties of our formalized
functions in HOL Light greatly aid in the formal reasoning process of the corresponding
system properties. For illustration purposes, we presented a formal analysis of a FIR filter
and the modeling and analysis was found to be a very straightforward one, thanks to
our formal definitions and theorems.

Currently our formalization supports a subset of MATLAB functions and we are
planning to extend the proposed library by formalizing additional functions, such as
matrix_inverse and convolution and thus cater for the formal analysis of more
complex applications. In particular, the convolution function is widely used for
performing the formal analysis of many continuous and discrete time systems, such
as, digital image processing filters (Solomon & Breckon, 2011) and neural networks
(Niepert, Ahmed & Kutzkov, 2016). Automating some parts of the verification process by
writing specialized proof tactics is another worth exploring research direction for this
work.
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