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ABSTRACT
Deep learning is one of the most advanced forms of machine learning. Most modern
deep learning models are based on an artificial neural network, and benchmarking
studies reveal that neural networks have produced results comparable to and in some
cases superior to human experts. However, the generated neural networks are
typically regarded as incomprehensible black-box models, which not only limits their
applications, but also hinders testing and verifying. In this paper, we present an active
learning framework to extract automata from neural network classifiers, which can
help users to understand the classifiers. In more detail, we use Angluin’s L� algorithm
as a learner and the neural network under learning as an oracle, employing
abstraction interpretation of the neural network for answering membership and
equivalence queries. Our abstraction consists of value, symbol and word abstractions.
The factors that may affect the abstraction are also discussed in the paper. We have
implemented our approach in a prototype. To evaluate it, we have performed the
prototype on a MNIST classifier and have identified that the abstraction with interval
number 2 and block size 1 × 28 offers the best performance in terms of F1 score. We
also have compared our extracted DFA against the DFAs learned via the passive
learning algorithms provided in LearnLib and the experimental results show that our
DFA gives a better performance on the MNIST dataset.

Subjects Artificial Intelligence, Theory and Formal Methods
Keywords Automata learning, Neural network, Active learning

INTRODUCTION
Deep learning is one of the most advanced forms of machine learning, which has been
applied to various fields, including computer vision, speech recognition, natural
language processing, audio recognition, social network filtering, machine translation,
bioinformatics, drug design and board game programs (Schmidhuber, 2014; Lecun,
Bengio & Hinton, 2015). Most modern deep learning models are based on an artificial
neural network, such as deep neural networks (DNN), deep belief networks, convolutional
neural networks (CNN) and recurrent neural networks (RNN). Benchmarking studies
reveal that neural networks have produced results comparable to and in some cases
superior to human experts.

However, the generated neural networks are typically regarded as incomprehensible
black-box models. They are in practice unlikely to generalise exactly to the concept being
trained, and what they eventually learn actually is unclear (Omlin & Giles, 2000).
The opaqueness of neural networks not only limits their applications, but also hinders
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testing and verifying. Indeed, several lines of work attempt to glimpse into the black-box
networks, especially RNN (Zeng, Goodman & Smyth, 1993; Sanfeliu & Alquezar, 1994;
Tiňo & Šajda, 1995; Omlin & Giles, 1996; Frasconi et al., 1996; Gori et al., 1998; Cechin,
Simon & Stertz, 2003; Cohen et al., 2017). They induce rules that mimic the blackbox
neural networks as closely as possible, by exploring the possible state vectors of networks,
which is often practically impossible at present.

Active learning (Angluin, 1987) can learn finite automata (sets of words) from a
minimally adequate teacher (MAT), an oracle capable of answering the so-called
membership and equivalence queries, which has been successfully applied to numerous
practical cases in different domains (Vaandrager, 2017; Aichernig et al., 2018). Recently,
Weiss, Goldberg & Yahav (2018) adopted active learning to extract automata from
neural networks. But the network systems under learning are RNN acceptors on small
regular languages: an input at a time is considered as a symbol, and thus a sequence
of inputs is a word. Hence, their approach is not suitable to other neural networks
in practice such as CNN, since not all neural networks perform on discrete-time
symbolic data.

In this paper, we present an active learning framework to extract automata from neural
network classifiers, which is inspired by Weiss, Goldberg & Yahav (2018)’s work. But
different from their work, we consider each input as a word (i.e., a sequence of symbols)
rather than a symbol, via abstraction interpretation, which consists of value, symbol and
word abstractions. Therefore, the system under learning (SUL) here can be any neural
network. Indeed, we assume that we have no idea about the framework of neural networks:
we can not access the state-vectors nor we do not know the relations between two
consecutive inputs. For simplicity, we focus on network-acceptors, that is, binary neural
network classifiers, since multi-class classifiers can be reduced into several binary classifiers1.

Abstraction is the key for scaling model learning methods to realistic application
(Vaandrager, 2017), so the key idea of our approach is to define an abstraction for the
neural network classifier under learning. Our abstraction consists of three layers: (1) value
abstraction: each value in an input array is mapped into an integer via partitioning;
(2) symbol abstraction: a block of multi-dimensional integer array is abstracted as a
symbol; and (3) word abstraction: the whole input array is encoded into a word. We also
discuss the factors that may affect the abstraction.

Next, we present how to instantiate the active learning framework on neural
networks, in particular the membership and equivalence queries (Vaandrager, 2017).
Membership queries can be answered by the neural networks via the word concretization
function: we concretise the word that is being queried and then feed the concretised
data into the neural network under learning. Equivalence query is more of a challenge,
because there is no finite interpretation for neural networks (Weiss, Goldberg & Yahav,
2018). To address this, we use as an abstract model the automaton that is learned passively
from some test data in the training dataset and then perform the equivalence query against
the abstract model. If no words that separate the hypothesis and the abstract model are
found, then the answer for the equivalence query is yes. Note that, when a counterexample

1 This may raise a comparative perfor-
mance problem, which is not the scope of
this paper.
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is found, it may be not that the hypothesis is incorrect, but rather that the abstract model is
not precise enough and needs to be refined.

Finally, we have implemented our approach in Java, wherein we use the library LearnLib
(Howar et al., 2012) to implement the active learning framework. To evaluate our
approach, we conducted a series of experiments on a classifier for the MNIST dataset, a
large database of handwritten digits that is commonly used for training various image
processing systems. We first test the measures of the MNIST classifier, namely, safety,
conflict, the size of alphabet and the length of words, under the abstractions with different
interval numbers (i.e., the number of partitioning) and block sizes, and have identified
some suitable abstractions. Secondly, we conduct some experiments to learn DFAs
from the MNIST classifier with the suggested abstractions. The results shows that the
abstraction with interval number 2 and block size 1 × 28 offers the best performance in
terms of F1 score. At last, we also conduct the experiments to compare our resulted DFA
against the DFAs learned via the passive learning algorithms (see “Passive Learning”)
provided in LearnLib and the MNIST classifier itself. Although worse than the classifier,
our DFA gives a better performance than the other DFAs in our experiments. Nevertheless,
there are still some limitations for our approach.

In summary, our contributions are as follows:

� We have proposed an MAT framework to extract automata from neural networks,
employing abstraction interpretation of the neural network for answering membership
and equivalence queries.

� We have conducted several experiments on a MNIST classifier, and the experimental
results show that our approach is viable, and the resulted DFA has a better performance
in terms of F1 score than the DFAs learned via the passive learning algorithms provided
in LearnLib on the MNIST dataset.

The remainder of this paper is organised as follows. “Preliminary” gives the
preliminaries of DFA and active learning. “Approach” describes our approach, followed by
the experimental results in “Experiments”. “Limitations” discusses some limitations of our
approach. “Related Work” presents the related work, followed by some concluding
remarks in “Conclusion”.

PRELIMINARY
In this section, we present the notion about neural networks, deterministic finite automata,
active learning and passive learning.

Neural networks as functions
Neural network models can be viewed as mathematical models defining a possible non-
linear function N : X ! Y , where X is the input and Y is the output. In more detail,
N can be defined as a composition of other (layer) functions, which can further be
decomposed into other functions. This can be conveniently represented as a network
structure, with arrows depicting the dependencies between functions. In this paper we
assume that the framework of neural networks is unknown and only network-acceptors
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are considered. So the function we consider here is the one representing the whole network
N : X ! Bool, where X is a multi-dimensional array. We say an input data X is positive
if NðXÞ ¼ true, and otherwise negative.

Deterministic finite automata
Definition 2.1

A deterministic finite automaton (DFA) is a 5-tuple (Q, σ, δ, q0, F), where

� Q is a finite set of states,

� σ is a finite set of input symbols and is called the alphabet,

� d : Q� � ! Q is the transition function,

� q0 ∈ Q is the starting state,

� F � Q is the set of accepting states.

A word or string over an alphabet σ is a finite sequence of symbols from σ. The length
of a word is the number of symbols it contains. Note that a word can be empty: the empty
word, denoted as ε, has length 0 and contains no symbols.

Definition 2.2
Let M ¼ ðQ;�; d; q0; FÞ be a DFA and w = a1a2 … an be a word of length n over σ.
The automatonM accepts the word w if and only if there exists a sequence of states r0,r1,…,
rn with the following conditions:

� r0 = q0
� ri + 1 = δ(ri, ai + 1), for i = 0, …, n − 1

� rn ∈ F.

The set of words recognised by a DFAM, called the language ofM, is the following set:

LðMÞ ¼ fw 2 Σ�jw is accepted by Mg

Active learning framework
Angluin (1987) proposed the first active learning algorithm, the L* algorithm, to learn finite
automata from aMAT in 1987, and today all the most efficient learning algorithms that are
being used follow Angluin’s approach. In the following, we briefly introduce the MAT
framework.

Finite automata can be learned precisely from a MAT, that is, an oracle capable of
answering the so-called membership and equivalence queries:

� membership queries: the learner asks whether a given word is accepted by the
automaton or not, and the teacher answers with the result.

� equivalence queries: the learner asks whether a given hypothesis automaton H is equal
to the automaton model M held by the teacher. The teacher answers yes if this is
the case. Otherwise she answers no and supplies a word, the so-called counterexample,
on which the hypothesis automaton H and the automaton model M disagree.
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The MAT framework is shown in Fig. 1. Initially, the learner knows the static interface
of the SUL, that is, the sets of input (i.e., multi-dimensional array for neural networks)
and output (i.e., yes or no for recognizers). Then the learner starts to ask a sequence of
membership queries (MQs) and receives the corresponding responses from the teacher.
After a “sufficient” number of queries, the learner builds a hypothesisH from the obtained
information, and then sends an equivalence query (EQ). If the teacher answers yes,
then the hypothesisH is returned. Otherwise, the learner refines the information with the
returned counterexample, and continues on querying.

Passive learning
Different from active learning, passive learning constructs automata from sets of
examples directly. Many approaches in grammatical inference can be described as passive
learning. In the paper, we consider the polynomial-time RPNI algorithms provided in
the library LearnLib (Howar et al., 2012).

Oncina & Garca (1992) proposed the Regular Positive and Negative Inference (RPNI)
algorithm for DFA learning. RPNI starts with a prefix tree acceptor, a tree-like DFA
built from the learning examples by taking all the prefixes of the examples as states,
and then greedily creates clusters of states (by merging) in order to come up with an
automaton that is always consistent with the examples. Two heuristic strategies can be
employed in state merging: Evidence Driven State Merging (EDSM) (Cicchello & Kremer,
2002) and Minimum Description Length (MDL) (Adriaans & Jacobs, 2006).

APPROACH
In this section, we present an active learning framework to extract automata from neural
network classifiers. Our framework is shown in Fig. 2, which is a classic MAT framework
with an abstraction2. In a nutshell, we make an abstraction between the learner and the SUL.
When the membership queries are sent, the abstraction maps the abstract words into the
concrete ones (i.e., the up arrow in Fig. 2), which are then fed into the neural network under
learning. When the equivalence queries are sent, the abstraction does the opposite (i.e., the
down arrow in Fig. 2) and from the abstract words an abstract representation is built
for checking. In the following, we explain how to define an abstraction for neural networks
and how to instantiate the active learning framework on neural networks.

Figure 1 The MAT framework. Full-size DOI: 10.7717/peerj-cs.436/fig-1

2 Some papers use the term mapper
(Vaandrager, 2017).
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Abstraction
For simplicity, we focus on network-acceptors, that is, there are only two outputs for
the SUL, and thus we do not need to abstract them. In other words, only the inputs need
to be abstracted. Generally, the inputs of neural network classifiers are always multi-
dimensional arrays. As mentioned in “Introduction”, we aim to abstract an input as a
word, rather than a symbol. So the aim of the abstraction is to convert multi-dimensional
arrays into words and vice-versa.

Just like the serialization of multi-dimensional arrays, a naive and simple solution to
the abstraction is to convert the input multi-dimensional array into a 1-dimensional
array in row (or column) major order, and then concatenate the string representation of
each value in the converted array in order, yielding a word. For example, Fig. 3 shows an
array with size 4 × 4, on which the simple abstraction is applied. However, there are
two problems for this solution: (1) the size of alphabet may be too large, even infinite.
(2) the length of the abstracted word may be too long. Both of them can make the automata
learning too time-consuming.

So for practicality, we propose a three-layer abstraction, which consists of:

� value abstraction: each value in an input array is mapped into an integer via partitioning,
which helps reduce the size of alphabet;

� symbol abstraction: a block of multi-dimensional integer array is abstracted as a symbol,
which enables us to reduce the length of word;

� word abstraction: the whole input array is encoded into a word, wherein value
abstraction and symbol abstraction are applied.

Value abstraction
In order to reduce the size of alphabet, inspired by Omlin & Giles (1996) work, we first split
the values of the input space into n (equal) intervals, and map each interval into an integer,
that is, the index of the corresponding intervals. Formally, let the input space be I and

Figure 2 Framework of our approach. Full-size DOI: 10.7717/peerj-cs.436/fig-2
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it be split into n intervals I0, …, In − 1. Then a value abstraction function
av : I ! f0; . . . ; n� 1g is defined as follows:

8d 2 I : avðdÞ ¼ i such that d 2 Ii

This value abstraction function maps a concrete value in the input to an abstract integer.
Figure 4 shows an example of value abstraction applying on the array given in Fig. 3, where
the input space I is [0,1] and I is split into I0 = [0,0.5) and I1 = [0.5,1].

While for concretization, an abstract integer is mapped to its corresponding interval,
that is, the value concretization function gv : f0; . . . ; n� 1g ! 2I is defined:

gvðiÞ ¼ Ii

Both av and βv can be extended on sets of elements in a natural way:

fvðSÞ ¼
[

d2S
fvðdÞ

where fv is av or βv .
It is easy to get that av (γv(i)) = i for each integer i, and d ∈ γv (av(d)) for any given value

d. Therefore, (av, γv) forms a Galois connection (Nielson, Nielson & Hankin, 1999). While
in practice, especially when we query a word, we are unable to test all the values in the
interval for each integer. For that, we randomly select at most kv (which can be dependent
on the intervals) values to represent the corresponding interval. That is to say, we define a
weak value concretization function:

gpracv ðiÞ ¼ fdj j dj 2 Ii and 0 � j < kvg
Obviously, the larger kv is, the closer g

prac
v ðiÞ is to γv(i) . So concerning Galois

connections, the larger kv, the better.

0.7 0.4 0.6 0.8

0.3 0.5 0.7 0.9

0.6 0.8 0.2 0.4

0.7 0.1 0.3 0.5

0.7 0.4 ... 0.3 0.5

0.7, 0.4, ..., 0.3, 0.5

Figure 3 Example of simple abstraction. Full-size DOI: 10.7717/peerj-cs.436/fig-3

0.7 0.4 0.6 0.8

0.3 0.5 0.7 0.9

0.6 0.8 0.2 0.4

0.7 0.1 0.3 0.5

1 0 1 1

0 1 1 1

1 1 0 0

1 0 0 1

αv

Figure 4 Example of value abstraction. Full-size DOI: 10.7717/peerj-cs.436/fig-4
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But only Galois connections are not enough here. We also need to consider the safety of
neural networks (Huang et al., 2017), that is, a vibration of values should not flap the
outputs, since different values may be abstracted into an identity integer. In fact, the
composition of the functions av and γv can be viewed as a kind of manipulations (Huang
et al., 2017). We say a k-value manipulation vmk with respect to av and γv is a function
such that for any input array in

vmkðinÞ ¼ in � ½di 7!d0i	i2f1;...;kg
where di ∈ in and d′i ∈ γv (av(di)) . Intuitively, k-value manipulation replaces (at most)
k values of the input array by some values, which share the same intervals with the
corresponding original values. Figure 5 shows an example of 4-value manipulation
applying on the input array in Fig. 4, where the input spaceI is [0,1] and it is split into I0 =
[0,0.5) and I1 = [0.5,1]. And we say a network N is safe with respect to this value
manipulation vmk if for every input array in

NðvmkðinÞÞ ¼ NðinÞ
That is to say, performing this value manipulation should not result in a different

classification. This requires that every interval Ii should be as small as possible or the
number n of intervals should be as large as possible. However, the safety cannot easily
be preserved in practice, unless the abstraction is an identity function or the network is
robust enough. So instead, we use a weak notation called σ-safety: we say a network N is
σ-safe with respect to k-value manipulation vmk under a given input set D if

j fin 2 D j NðvmkðinÞÞ 6¼ NðinÞg j
jDj � s

where |D| ≥ 1.

Symbol abstraction
After the value abstraction, each integer can be used as a symbol. But this could yield
words that are too long to learn the model. So for scalability, we add a symbol abstraction,
which abstracts input arrays into symbols by blocks. For simplicity, in this paper
we consider 2-dimensional array with size iRow × iCol. We say a slice of an input array
starting from the index (ri, ci) to the index (ri + oRow − 1, ci + oCol − 1) is a block, and the
size of the block is oRow × oCol.

0.7 0.4 0.6 0.8

0.3 0.5 0.7 0.9

0.6 0.8 0.2 0.4

0.7 0.1 0.3 0.5

0.7 0.3 0.6 0.8

0.3 0.5 0.7 0.8

0.5 0.8 0.2 0.4

0.7 0.1 0.4 0.5

vm4

Figure 5 Example of k-abstraction manipulation. Full-size DOI: 10.7717/peerj-cs.436/fig-5
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A natural way to abstract blocks into symbols is to map the blocks into one dimension
in row (or column) major order and then encode the one dimension into a base-n number
(or a string consisting of the integers in the one dimension). We denote this mapping
as aB

s . Figure 6 gives an example of aB
s that are performed on the array that are obtained by

the value abstraction shown in Fig. 4, where the number n of intervals is 2 and the size of
blocks is 2 × 2. Moreover, by decoding the base-n number (or the string), it is easy to
obtain the inverse mapping gBs . It is clear ðaB

s ;g
B
s Þ forms a Galois connection. But a

drawback of this solution is that the size of alphabet is noRow × oCol, which could be too large
in practice. For example, the size of alphabet of the example shown in Figure 6 is 16.

In this paper we use an alternative way to represent a block as its sum. In more detail,
we define a symbol abstraction function aS

s that maps integer blocks of size oRow ×oCol
into the sum of the integers in blocks:

aS
s ðbÞ ¼

X

i2b
i

It is easy to compute the set of the possible sums of blocks, that is, {0,…, oRow×oCol×
(n − 1)}. So the size of alphabet is oRow×oCol× (n − 1) + 1. Compared to the natural
solution, the size of alphabet is quite smaller (from noRow × oCol reduced to oRow×oCol×
(n − 1) + 1). Take the input array in Fig. 6 for example. Under this sum abstraction, its
abstraction is shown in Fig. 7 and the size of alphabet is 5.

But it is pity that this mapping is not bijective. So in order to form Galois connections,
similar to value abstraction, we define the inverse mapping from symbols (i.e. sums) to sets
consisting of blocks of size oRow × oCol whose sum is exactly the symbol:

gSs ðsumÞ ¼ fbj j
X

i2bj
i ¼ sumg

Likewise, these two functions can be lifted to sets of elements in a natural way. It is easy
to get that as (γs(sum)) = sum for each symbol sum, and b ∈ γs (as(b)) for any given block b
of size oRow × oCol. Therefore, (as, γs) forms a Galois connection. While for practicality,
similar to value abstraction γv, we use a weak sum concretization function:

gSpracs ðsumÞ ¼ fbj j
X

i2bj
i ¼ sum and 0 � j < ksg

1 0 1 1

0 1 1 1

1 1 0 0

1 0 0 1

9 15

14 1

αB
s

Figure 6 Example of base-n symbol abstraction. Full-size DOI: 10.7717/peerj-cs.436/fig-6
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That is, we select at most ks (which can be dependent on the block size and n) blocks to
represent the corresponding sum. Clearly, the larger ks is, the closer gSpracs ðsumÞ is to
gSs ðsumÞ. So concerning Galois connections, the larger ks, the better.

In addition, the composition of aS
s and gSs forms a manipulation as well, and the

network N should be safe with respect to this manipulation. Formally, we say a k-shift
manipulation smk with respect to aS

s and gSs is a function such that for any input array in

smkðinÞ ¼ in � ½bi 7! b0i	i2f1;...;kg
where bi is a block of size oRow ×oCol belonging to in and b0i 2 gSs ðaS

s ðbiÞÞ. And a
network N is safe with respect to smk if for every input array in

NðsmkðinÞÞ ¼ NðinÞ
In a word, k-shift manipulation replaces (at most) k blocks of the input array by some

blocks, which share the same sums with the corresponding original blocks; and performing
this k-shift manipulation should not result in a different classification. Similar to value
manipulation, the safety cannot easily be preserved in practice. So we use a weak notation
called σ-safety: a network N is σ-safe with respect to smk under a given input set D if

jfin 2 DjNðsmkðinÞÞ 6¼ NðinÞgj
jDj � r

where |D| ≥ 1. Considering the safety, the distance between two blocks of the same
sum or the size of block should be as small as possible. Figure 8 shows an example of 1-shift
manipulation applying on the input array in Fig. 7, where n is 2 and the size of blocks is 2
× 2.

Finally, let us consider the alphabet size. As discussed above, the alphabet size for the
abstraction function aS

s (as resp.) is linear (exponential resp.) in the block size and the
number of intervals n. So concerning the alphabet size, the smaller the block size and
the interval number n, the better.

Word abstraction
Finally, we split the input array into blocks, and map them into a sequence of symbols
(i.e., a word) in row (or column) major order. Algorithm 1 shows the detail of the word
abstraction function aw. The algorithm first invokes the value abstraction av to map the

1 0 1 1

0 1 1 1

1 1 0 0

1 0 0 1

2 4

3 1

αS
s

Figure 7 Example of sum symbol abstraction. Full-size DOI: 10.7717/peerj-cs.436/fig-7
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values in the input array into integers (Line 1). Then it slides over the integer array
block by block (Lines 2–10) and maps each block into a symbol by the symbol abstraction

aS
s (Line 6). Note that here we use a narrow slide on the input array, that is, the blocks to be

abstracted are fully contained in the input array. One can use the wide slide with zero-
padding as well. Just like the convolution operation of CNN, one can further set the stride
sizes for each dimension. In addition, one can further encode the sequence of symbols into
a final word in a more compact format, such as run-length encoding (RLE).

As mentioned above, the symbol abstraction aims to reduce the length of words.
According to the word abstraction, we have that the larger the block size, the shorter the
word.

Figure 9 shows our abstraction applying on the input array given in Fig. 3, where the
number n of intervals is 2 and the size of blocks is 2 × 2. Compared to the simple
abstraction shown in Fig. 3, our abstraction yields words with smaller size of alphabet and
shorter length.

The word concretization function γw, which is shown in Algorithm 2, does the opposite:
it maps a sequence of symbols (i.e., a word) into a sequence of sets of blocks (Lines 5–7),
and combines them into a set of arrays (Lines 8−10). Note that we require the length of

1 0 1 1

0 1 1 1

1 1 0 0

1 0 0 1

sm1

0 0 1 1

1 1 1 1

1 1 0 0

1 0 0 1

Figure 8 Example of k-shift manipulation. Full-size DOI: 10.7717/peerj-cs.436/fig-8

Algorithm 1 Word abstraction function αw(in).

Input: an input in

Output: a word w

1: inI = αv(in)

2: w = ε, ri = 0

3: while ri + oRow < iRow do

4: ci = 0

5: while ci + oCol < iCol do

6: w = w + αs
S (inI [ri : ri + oRow][ci : ci + oCol]))

7: ci = ci + oCol

8: end while

9: ri = ri + oRow

10: end while

11: return w

Xu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.436 11/28

http://dx.doi.org/10.7717/peerj-cs.436/fig-8
http://dx.doi.org/10.7717/peerj-cs.436
https://peerj.com/computer-science/


word to be concretized should conform to the size of input (Lines 2−4). One can release
this length condition by zero-padding or discarding the superfluous symbols. But this may
break the Galois connections.

Theoretically, if (av, γv) and ðaS
s ;g

S
s Þ form Galois connections, then so does (aw, γw).

While for practicality, we use

gpracw ¼ gw½gv 7!gpracv ;gSs 7!gSpracs 	
instead, and the number of data in gpracw ðwÞ depends on the word w as well as kv and ks.
In particular, in our implementation we collect sets of inputs (including values and blocks)
that are mapped into an identity word from existing data and then select inputs from the
corresponding set.

Finally, considering safety, if (av, γv) and ðaS
s ;g

S
s Þ does not cause the flapping, then

neither does (aw, γw). But the safety of a network focus on the vibrations of local parts of
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0.6 0.8 0.2 0.4

0.7 0.1 0.3 0.5

αv

1 0 1 1
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αS
s

2 4

3 1

encoding
2, 4, 3, 1

αw

Figure 9 Example of word abstraction. Full-size DOI: 10.7717/peerj-cs.436/fig-9

Algorithm 2 Word Concretization Function γ(w).

Input: a word w

Output: a set matrix_set of arrays

1: rnum = iRow/oRow, cnum = iCol/oCol

2: if w.length ≠ rnum × cnum then

3: return null

4: end if

5: for wi = 0, . . . ,w.length − 1 do

6: data[wi] = γs
S (word[wi])

7: end for

8: S = {m | m[ri : ri + oRow][ci : ci + oCol] ∈ data[ri × cnum + ci]}

9: matrix_set = {in | in ∈ γv(m) and m ∈ S}

10: return matrix_set
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inputs (Huang et al., 2017). To evaluate the whole inputs, we use another notation conflict,
that is, inputs of different classifications should not abstracted into an identity word.
Formally, we say a network N is non-conflict with respect to aw and γw if for every input
array in and for every array in′ ∈ γw(aw(in))

Nðin0Þ ¼ NðinÞ
In other words, the abstraction itself should not be over-approximated. We say a wordw

is conflict, if there exist two inputs of different classifications that are abstracted into it.
So to avoid over-approximation, the number of the conflict words caused by the
abstraction should be as few as possible. Similar to the safety, the non-conflict cannot easily
be preserved in practice. For that, we evaluate the conflicts words under a given dataset.
In detail, we say a network N is σ-conflict with respect to aw under a given set D if

jfin j 9in0:NðinÞ 6¼ Nðin0Þ ^ awðinÞ ¼ awðin0Þgj
jDj � r

where |D| ≥ 1 and in, in′∈ D.
To sum up, to obtain a suitable abstraction (e.g., scalable, safe and non-conflict), one

needs to take into account the number n of intervals, the block size oRow and oCol, and the
other factors.

Active learning
In this section, we present how to instantiate the active learning framework on neural
networks, in particular the membership and equivalence queries.

Membership query
Membership queries can be answered by the neural networks via the word concretization
function. In our abstraction, we map a word into a set of data. As mentioned above,
the abstraction may flap the results or yield some conflict words, that is, the classifications
of different data in the set of an identity word may not be the same. To address this,
we count the numbers of different classifications of the data in the set and take the
classification which gets the most votes as the result for the word.

Given a network N and a word concretization function aw, we say a word w is
positive if

jfin 2 gwðwÞjNðinÞ ¼ truegj 
 jfin 2 gwðwÞjNðinÞ ¼ falsegj
and otherwise negative. Intuitively, a word is positive (negative resp.) if there are more
positive (negative resp.) input arrays that are abstracted into it than the negative (positive
resp.) ones.

Algorithm 3 gives the procedure of membership query checking, where N denote
the neural network under learning. Firstly, the algorithm concretises the word w that is
being queried into a setmatrix_set of possible data, using the word concretization function
γw (Line 1). If the set matrix_set is null, that is, the length of word w does not conform
to the size of input data, then the algorithm returns false immediately. Otherwise, the
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algorithm feeds each data into the neural network N under learning and counts the
numbers of different classifications (Lines 5–12). Finally, it returns the classification that
gets the most votes (Line 13).

Equivalence query
As there is no finite interpretation for neural networks (Weiss, Goldberg & Yahav, 2018),
equivalence queries are more challenging than membership queries. To address this,
similar toWeiss, Goldberg & Yahav (2018)’s work, we use an abstract representation of the
neural network under learning. But different from Weiss, Goldberg & Yahav (2018)’s
work, we start with the automaton that is learned passively via the RPNI algorithm
(Oncina & Garca, 1992) from some test queries, which are selected from the training
dataset. Then we perform the equivalence query against this abstract model. As discussed
in Weiss, Goldberg & Yahav (2018), when a counterexample is found, it may be not that
the hypothesis is incorrect, but rather that the abstract model is not precise enough
(i.e., different behaviors from the neural network under learning) and needs to be refined.

The procedure3 of equivalence query checking is given in Algorithm 4. Firstly, the
algorithm tries to find a word that can separate the hypothesis H and the abstract
model M (Line 3). If such a word does not exist, then it returns null (Lines 4−6), which
means the equivalence query is yes. Assume a word w is found. Then it checks whether this
word is a true counterexample, that is, the classifications of the abstract model and the
neural network under learning are the same (Line 7). If it is in that case, then it returns
this word as a counterexample to the learner (Line 8). Otherwise, it refines the abstract
model with this word (Line 10): it adds the counterexample into the positive set or the

Algorithm 3 Membership query M Q(w).

Input: a word w

Output: true if w is accepted, otherwise false

1: matrix set = γw(w)

2: if matrix_set == null then

3: return false

4: end if

5: yes = 0, no = 0

6: for matrix in matrix_set do

7: if N (matrix) then

8: yes++

9: else

10: no++

11: end if

12: end for

13: return yes >= no

3 In our implementation, we set a bound
for the refining time for efficiency, which
may yield an incompatible acceptance
exception.
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negative set dependent on its true classification, and relearns a new automata via RPNI.
After that, the algorithm continues on the equivalence query against this refined model.

EXPERIMENTS
We have implemented our approach in a prototype in Java, wherein we use the library
LearnLib (Howar et al., 2012) to implement the MAT learning framework and the
RPNI algorithm. Moreover, to find the true counterexamples faster, we use the Wp-
method test (Fujiwara et al., 1991)4 in the equivalence query between the hypothesis
and the abstract models. To evaluate our approach, we conduct a series of experiments
on a classifier for the MNIST dataset, a large database of handwritten digits that is
commonly used for training various image processing systems. Firstly, we conduct
experiments to see the measures of the MNIST classifier, namely, σ-safety, σ-conflict, the
size of alphabet and the length of words, under the abstractions with different interval
numbers and block sizes. Secondly, we present the experiments to learn DFAs from
the MNIST classifier under different selected abstractions. Thirdly, we also conduct
experiments to compare the resulted DFAs against the DFAs learned via the passive
learning algorithms provided in LearnLib and the MNIST classifier itself.

The experiments were conducted on a workstation with Intel Processor i7-7820HQ
(2.90GHz) and 32GB memory.

MNIST classifier
The MNIST classifier under learning is a binary classification version of MnistClassifier
from the tutorial examples of DeepLearning4J (https://github.com/deeplearning4j/dl4j-
examples), which recognises the number 1. It is built on a convolution neural network,
which consists of six layers, namely, a convolution layer, a pooling layer, another
convolution layer, another pooling layer, a dense layer and an output layer. The training

Algorithm 4 Equivalence query EQ(H, M).

Input: a hypothesis H and an abstract model M

Output: a counterexample if H ≠ M , otherwise null

1: while true do

2: find a word w that separates H and M

3: if w does not exist then

4: return null

5: end if

6: if M .isAccepted(w) = MQ(w) then

7: return w

8: end if

9: refine M with (w, MQ(w))

10: end while

4 The other equivalence approximation
strategies provided in LearnLib can be
used as well.
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dataset and the testing dataset are from the official site (http://yann.lecun.com/exdb/mnist/),
wherein each input is 2-dimensional integer matrix with size 28 × 28.

Abstraction experiments
As discussed in “Abstraction”, the interval number n and the block size affect the definition
of the abstraction, especially the safety and the conflict of the neural network under
learning, the size of alphabet and the length of words. For that, we present in this section
some experiments to see these measures of the abstractions with different interval numbers
and block sizes.

Safety

The first measure to test is the safety. For that, we present some experiments to test the
flapping of the MNIST classifier on some selected inputs from the training set (i) via
performing k-value manipulations vmk with different interval numbers and (ii) via
performing k-shift manipulations smk with different block sizes.

First, in the experiments about k-value manipulation vmk, for a given interval number n,
we randomly select k values from a selected input, and replace each selected value by a
random value which shares the same interval with the corresponding selected value.
Then we fed the resulted data into the MNIST classifier and see whether the classifications
are flapped. We select 59,838 inputs in total from the training set, which are classified
correctly by the MNIST classifier. Table 1 shows the results, where Flaps denotes the
number of inputs whose results are flapped by the manipulation, and Ratio denotes the
percentage of the number of flapped input to the total number of selected inputs.

From the results we can see that, the number of flapped inputs increases as the number k
of selected values increases, since the larger the number k, the larger the vibration for the
inputs. In contrast, as the number of intervals increase, the number of flapped inputs
decreases, which indicates that the larger the interval number, the better. This conforms
to the discussion in “Abstraction”. Moreover, the results also show that the MNIST
classifier is about 0.053%-safety, with respect to the 100-value manipulation vm100 with
the interval number 2. And the 100-value manipulation means 12.76% (100/784) of an
input has been modified, such that we believe 100 is enough for local vibration. Therefore,
we suggest to set the interval number n as 2.

Table 1 Flapped results on different k-value manipulations.

n k Flaps Ratio (%) n k Flaps Ratio (%)

2 1 3 0.005 2 10 6 0.010

2 100 32 0.053 2 500 276 0.461

3 1 0 0.000 3 10 5 0.008

3 100 16 0.027 3 500 43 0.072

5 1 0 0.000 5 10 0 0.000

5 100 10 0.017 5 500 16 0.027

10 1 1 0.002 10 10 0 0.000

10 100 5 0.008 10 500 6 0.015
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Next, in the experiments about k-shift manipulation smk, for a given block size oRow ×
oCol, we randomly select k blocks from a selected input, and rearrange the values in each
selected block. Then we feed the resulted data into the MNIST classifier and see whether
the classifications are flapped. Similarly, we select the 59,838 inputs that are classified
correctly by the MNIST classifier from the training set. For simplicity and scalability,
we consider the block sizes whose row sizes or column sizes are 28. The results are given in
Table 2, where the notations are the same as the ones in Table 1.

First, the results show that, as the size of block increases, the number of flapped inputs
increases, which conforms to the discussion in “Abstraction”. The results also show
that the number of flapped inputs increases as the number k of selected blocks increases.
This is because that, the larger the number k, the larger the vibration for the inputs.
Moreover, we found that the MNIST classifier is more safe under k-shift manipulation
built on rows than the one on columns. The reason may be that the digit number of 1
is more regular in row order than in column order. Finally, assume the size allowed for
local vibration is about 100. All the σ-safeties of the MNIST classifier with respect to
the k-shift manipulation with the block size 1 × 28, 2 × 28, 4 × 28, 28 × 1, 28 × 2 or 28 × 4
are smaller than 1.8%. In particular, the MNIST classifier is about 0.055%-safety, with
respect to the 4-shift manipulation vm4 with the block size 1 × 28.

Conflict
The second measure to test is the non-conflict, which indicates whether the abstraction
with the given block size is over-approximated. In other words, we would like to conduct
experiments to test how many conflict words that are generated by the abstractions with
different block sizes under the training set. For that, we perform the abstractions with
different block sizes on some selected inputs from the training set, and do a statistic
analysis on the abstracted words with respect to their classifications, where we take the

Table 2 Flapped results on k-shift manipulations.

oRow oCol k Flaps Ratio (%) oRow oCol k Flaps Ratio (%)

1 28 1 0 0.000 28 1 1 4 0.007

1 28 4 33 0.055 28 1 4 376 0.628

1 28 28 5136 8.583 28 1 28 6608 11.043

2 28 1 10 0.017 28 2 1 105 0.175

2 28 2 109 0.182 28 2 2 879 1.469

2 28 14 5768 9.639 28 2 14 6615 11.055

4 28 1 382 0.638 28 4 1 1018 1.701

4 28 7 6284 10.502 28 4 7 6617 11.058

7 28 1 1273 2.127 28 7 1 2077 3.471

7 28 4 6684 11.170 28 7 4 6620 11.063

14 28 1 3050 5.097 28 14 1 3766 6.294

14 28 2 6436 10.756 28 14 2 6431 10.747

28 28 1 6425 10.737 – – – – –
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interval number n as the suggested one 2. The test inputs that are selected from the training
set is 59,840 in total, with 6,700 positive inputs and 53,140 negative ones.

The statistic results are given in Table 3, where TW denotes the total number of
words, PW (NW resp.) denotes the number of positive (negative resp.) words, CPW
(CNW resp.) denotes the number of positive (negative resp.) words that have both positive
and negative inputs and CPD (CND resp.) denotes the number of positive (negative resp.)
inputs that are abstracted into a negative (positive resp.) word.

The results show that as the block size increases, the number of abstracted words
decreases, which conforms to the discussion in “Abstraction”. Thus it could be easier to
extract the automaton for a larger block size. For example, when taking the whole input as
a symbol, there are 239 words in total. But both the number of conflict words and the
number of conflict data increase as the block size increases, which indicates that an
abstraction with a larger block size is prone to be an over-approximation. In particular,
when taking the whole input as a symbol, 56.194% of the positive inputs are abstracted into
negative words and 64.865% of the positive words are conflict. Moreover, from the results
we can also see that all the σ-conflicts for the MNIST classifier with respect to the
abstractions with the block size 1 × 28, 2 × 28, 28 × 1 or 28 × 2 are smaller than 0.015%
(8/59,840). And the abstractions with the block size 2 × 28 and 1 × 28 perform best,
yielding none conflict data nor words.

Word complexities
Finally, we also conduct experiments to see the size of alphabets and the length of words,
which are dubbed as word complexities. Table 4 shows the word complexities under
different abstractions with different block sizes, where Size denotes the size of alphabet,
dSize denotes the number of symbols occurring in the selected inputs and Length denotes
the length of words.

The results show that the larger the block size, the larger the alphabet size and the
shorter the word length, which conforms to the discussion in “Abstraction”. Moreover,
we found that the products of the alphabet size and the word length are almost the same.

Table 3 Conflict results on different abstractions.

oRow oCol TW PW NW CPW CNW CPD CND

1 28 59745 6605 53140 0 0 0 0

2 28 59640 6500 53140 0 0 0 0

4 28 58817 5755 53062 15 0 0 15

7 28 53912 4501 49411 246 11 11 248

14 28 5444 248 5196 163 544 2577 1367

28 1 59708 6569 53139 1 0 0 1

28 2 59321 6195 53126 8 0 0 8

28 4 55944 4512 51432 421 80 81 431

28 7 36535 1414 35121 490 744 2276 1333

28 14 5229 734 4495 327 871 3196 1195

28 28 239 37 202 24 79 3765 1204
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So for scalability, any block size seems fine. But if considering the practical alphabet
(i.e., symbols occurring in the inputs), the larger block size could be better.

To sum up, based on the experiments above, we suggest to use for the MNIST classifier
the abstractions with the interval number n = 2 and the block size 1 × 28, 2 × 28, 28 × 1
or 28 × 2.

Automata learning
In this section, we present the experiments to learn DFAs from the MNIST classifier under
the suggested abstractions.

To quantitatively validate the models, we use the following performance measures.
Accuracy is the most intuitive performance measure and it is simply a ratio of correctly
predicted observation to the total observations. Precision is the ratio of correctly predicted
positive observations to the total predicted positive observations, and Recall is the ratio
of correctly predicted positive observations to all observations in actual class. F1 score is
the weighted average of Precision and Recall, that is, (2 · Precision · Recall)/(Precision +
Recall). Moreover, there are two kinds of observations in our experiments, namely, the
input arrays and the abstracted words (i.e., the abstractions of the input arrays). So we
compute the measures above with respect to both kinds of observations. Intuitively, the
higher the measures above, the better the model.

Automata performance
We first conduct experiments to learn DFAs from the MNIST classifier under different
suggested abstractions. Then we perform experiments to evaluate the learned DFAs on the
testing dataset. The performance results of the learned DFAs are given in Table 5,
where the interval number n is 2, the columns wAcc, wPre, wRec and wF1 respectively

Table 4 Word complexities on different abstractions.

n oRow oCol dSize Size Length n oRow oCol dSize Size Length

2 1 28 21 29 28 2 28 1 21 29 28

2 2 28 41 57 14 2 28 2 41 57 14

2 4 28 48 113 7 2 28 4 81 113 7

2 7 28 126 197 4 2 28 7 124 197 4

2 14 28 143 393 2 2 28 14 146 393 2

2 28 28 244 785 1 – – – – – –

Table 5 Automata performance under different abstractions.

oRow oCol wPre (%) wRec (%) wAcc (%) wF1 (%) dPre (%) dRec (%) dAcc (%) dF1 (%)

1 28 55.041 70.782 90.176 61.927 55.288 70.988 90.184 62.162

2 28 54.830 70.321 90.142 61.617 55.203 70.635 90.154 61.973

28 1 44.382 70.035 86.691 54.333 44.569 70.194 86.699 54.521

28 2 42.904 69.686 86.232 53.110 43.466 70.106 86.248 53.662

28 28 100.000 66.667 94.064 80.000 74.472 40.388 91.657 52.373
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denote the Accuracy, Precision, Recall and F1 score that are computed with respect to
words, and the columns dAcc, dPre, dRec and dF1 respectively denote the Accuracy,
Precision, Recall and F1 score that are computed with respect to input data.

The results show that all the learned DFAs perform well on the testing dataset, with
the F1 score more than 50%5. In particular, the DFAs learned under the abstraction
with block size 1 × 28 performs best. The results also show that DFA learned via the
abstraction with a smaller block size can obtain a higher F1 score. In detail, the F1 score of
DFA learned via the abstraction with block size 1 × 28 (28 × 1 resp.) is higher than the
one with block size 2 × 28 or 28 × 2 (28 × 2 resp.). This is because that a smaller block
size can generate a more preciser abstraction, which conforms to the discussion in
“Abstraction”. Moreover, from the results, we can see that the DFAs learned under the
abstractions in rows perform better than the ones under the abstractions in columns in
terms of all performance measures with respect to both words and data. For example,
the F1 score of DFA learned via the abstraction with block size 1 × 28 is higher than
the one with block size 28 × 1. The reason may be that the digit number of 1 is more regular
in row order than in column order. In addition, we also perform the abstraction
mapping a whole input as a symbol as does inWeiss, Goldberg & Yahav (2018)’s work. Due
to this abstraction is over-approximated, the extracted DFA gets the worst performance in
the input data layer, although it has a better performance than the other models on the
word layer, especially the Precision.

Learning complexities

During the experiments, we also count the learning times in seconds needed by the
resulted DFAs and the sizes of the resulted DFAs. The results are given in Table 6, where
aTime, xTime and iTime respectively denote the average time, the maximum time and the
minimum time needs by the resulted DFAs, and aState, xState and iState respectively
denote the average number, the maximum number and the minimum number of states of
the resulted DFAs.

From the results, we can see that learning the DFA via a smaller block size needs more
time. As discussed before, an input array can be abstracted into a longer word under the
abstraction with a smaller block size, which thus requires more time to proceed.
Concerning the size of learned DFA, learning via a smaller block size can yield a larger
DFA. For example, the number of the states of the DFA learned under the abstraction with
block size 28 × 1 is the largest one among the results. Similar to the learning time, the
reason is that an abstraction with a smaller block size yields longer words, which could

Table 6 Learning complexities under different abstractions.

oRow oCol aTime xTime iTime aState xState iState

1 28 29150.5 47761.8 16393.2 579 949 251

2 28 8145.3 15833.9 2838.4 299.3 495 139

28 1 16164.0 65525.8 75.7 801.1 2213 239

28 2 6492.4 12650.5 214.6 309.3 499 97

28 28 5.9 11.8 0.1 2 2 2

5 Assume a random binary classifier pre-
dicts half of the digits as 1 with the
accuracy 50%. As the ratio of digit 1 in
the dataset is about 1/10, the F1 score is
about 16.7%.
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enlarge the learned DFA. In addition, both the learning times and the sizes of the learned
DFAs under the abstractions in rows are larger than the ones under the abstractions in
columns. The reason may be that more blocks are abstracted into 0 under the abstractions
in columns than the abstractions in rows.

Learned automata
Finally, we convert the learned DFAs into the format used in JFLAP (Rodger & Finley,
2006), which enables us to view the DFAs and convert DFA into regular expressions
step by step. For simplicity, we consider a DFA learned via the abstraction with block size
14 × 28, which is given in Fig. 10. From this figure, we can see that (i) the learned DFA
has a very clear structure: a starting node, an intermediate layer with several nodes, an
accepting node and a trap node; and (ii) the learned DFA accepts words with length 2.
To understand it further, we convert this DFA into a regular expression, which is a
union of several alternatives. Among these alternatives, some of them are easy to
understand and explain. For example, the expressions (31 + 29)(31 + 32 + 30 + 29 + 33),
25(23 + 31 + 26 + 27 + 28 + 29 + 24 + 25 + 30) and 26(30 + 31 + 32 + 26 + 27 + 28 + 29 + 25
+ 33 + 24 + 34) state that the upper part and the low part share similar sums.

Let us see a DFA learned via the abstraction with block size 7 × 28, which is shown in
Fig. 11. Compared with the one in Fig. 10, this DFA has a more complex structure. But we
still can identity some hierarchical structures in it. It is pity that we are not able to
convert this DFA into a regular expression via JFLAP due to a runtime error.

In addition, we also present a DFA learned via the abstraction with block size 1 × 28,
which has 949 states and is given in Fig. 12. It is a little complex to understand, so we can
only identity a rough hierarchical structure. We believe that one can understand this
DFA more if he gets a closer look on it. In addition, the learned DFAs can help to generate
test cases to test the networks, which are left as a future work.

Comparison
To further evaluate the resulted DFA, we compare it against the DFAs learned via the
passive learning algorithms provided in LearnLib, namely, the RPNI algorithm, the RPNI-

Figure 10 DFA learned via abstraction with 14 × 28. Full-size DOI: 10.7717/peerj-cs.436/fig-10
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EDSM algorithm and the RPNI-MDL algorithm, and the MNIST classifier itself. In these
experiments, we perform our abstraction on the training data and then learn a DFA
via each passive learning algorithms provided in LearnLib, wherein the abstraction we used
is the one with interval number 2 and block size 1 × 28, all the arrays are selected for

Figure 11 DFA learned via abstraction with 7×28. Full-size DOI: 10.7717/peerj-cs.436/fig-11

Figure 12 DFA learned via abstraction with 1 × 28. Full-size DOI: 10.7717/peerj-cs.436/fig-12
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the RPNI algorithm, only the positive arrays are selected for the RPNI–MDL algorithm
(since it does not support the negative examples), and all the positive arrays and only
one ninth of the negative ones are selected for the RPNI–EDSM algorithm (to avoid memory
overflow and time-consuming). Next, we evaluate all the models with the testing dataset. The
results are given in Table 7, where the notations are the same as the ones of Table 5.

Compared to the RPNI one, our DFA performs better in all the performance measures,
since the abstract model we use is the DFA learned via the RPNI algorithm from some
inputs in the training dataset and is refined with respect to the classifier continually during
learning. While compared to the RPNI–MDL and RPNI–EDSM ones, our DFA has a
better Accuracy, Precision and F1 score, but a worse Recall. This is because that these
two DFAs take all the positive inputs in the training set into account such that it can
recognise more positive inputs in the testing dataset, while only part of positive inputs
are selected for our abstracted model. The results also show that our DFA is still worse than
the classifier. There are several reasons for this. The first one is that we have set some
bounds (e.g., the refining time for the abstract representation) in our implementation for
the learning procedure for efficiency and to avoid memory overflow. The second one is
that the Wp-method test used in our experiments may miss some true counterexamples.
The third one is that the abstraction may be over-approximated to yield too many conflict
words. Nevertheless, our approach still needs to be improved.

LIMITATIONS
Although our approach works for the MNIST classifier, there are still some limitations.
Firstly, to figure out a suitable abstraction for the neural network under learning is not an
easy task. As shown in Biggio et al. (2013), Szegedy et al. (2013) and Huang et al. (2017),
several DNN, including highly trained and smooth networks optimised for vision tasks,
are unstable with respect to so called adversarial perturbations. Hence, some neural
networks may be too sensitive to the abstraction manipulation to find a reasonable
interval number. Even if a reasonable interval number were found, one need to make a
compromise between the abstraction and the scalability to find a block size. Moreover,
whether a turing machine can simulate a natural neural network is an open question
(Zenil & Quiroz, 2006). So in some sense, we cannot define an abstraction without the
conflict or the flapping.

Secondly, the scalability is another problem. Generally, the size of inputs of neural
networks is in thousands. For such a neural network, either the alphabet may be too large

Table 7 Comparison against the passive DFAs and the MNIST classifier.

Model wPre (%) wRec (%) wAcc (%) wF1 (%) dPre (%) dRec(%) dAcc (%) dF1 (%)

Ours 55.041 70.782 90.176 61.927 55.288 70.988 90.184 62.162

RPNI 46.170 59.947 87.590 52.164 46.463 60.229 87.600 52.458

RPNI-MDL 15.599 99.911 38.974 26.985 15.693 99.912 39.022 27.125

RPNI-EDSM 19.407 98.313 53.729 32.416 19.520 98.325 53.766 32.574

CNN – – – – 99.69 99.40 99.06 98.63
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(if a large block size is taken) or the word may be too long (if a small block size is taken)
for us to extract the automaton. Taking the MNIST classifier for example, it may last
several hours for some abstractions (see the abstraction with block size 1 × 28 in Table 6) to
extract the automaton, even several days. There are two possible reasons for this issue in
our implementation: (i) we use the implementation of RPNI algorithm from LearnLib,
which does not support incremental learning proposed in Dupont (1996) and can be
improved with it; and (ii) there are too many queries for the non-accepting words with
invalid lengths.

Thirdly, our approach is dependent on the dataset. In “Experiments”, we selected the
interval number and the block size via an analysis on the training dataset. Different
datasets may derive different abstractions. To make things worse, it may be the case that
an abstraction is suitable for the training dataset, but unsuited for some other testing
dataset. Moreover, our abstract model is built from some existing testing data. Different
data yields different abstract models, which could affect the results, such as the learning
time and the learned DFA.

Fourthly, the implementation of equivalence query is a practical problem requiring
attention. One may think that a precise equivalence check can be performed in polynomial
time on the hypothesis automaton and the abstract automaton. However, the precise
equivalence check could return too many false counterexamples such that it takes too much
time for the learning. This is because the precise equivalence check is prone to generate a
short and false counterexample that is invalid with respect to the abstraction. Indeed, we
have tried this precise equivalence check, but we only succeed on the abstraction of 28 × 28 in
1 h. So considering the efficiency, we use the Wp-method test in the equivalence check,
which enables us to find the counterexamples whose lengths are in a given range.

Fifthly, although our approach is black-box, the structures of neural networks may
affect the performances of the networks themselves, so as the performances of the learned
DFAs. We have performed our approach with the abstraction 2 × 28 on the MNIST
classifiers whose hidden layer numbers range in {1, 2, 5, 10}, which are binary classification
versions from the tutorial examples of DeepLearning4J. The accuracies of all the classifiers
are above 99%. Figure 13 shows the F1 scores with respect to words and input data of

Figure 13 The F1 scores with respect to words and input data via the abstraction 2 × 28.
Full-size DOI: 10.7717/peerj-cs.436/fig-13
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the learned DFA. We can see that the F1 scores are quite close to each other. And the DFA
learned from the larger network is not necessary to get the best performance in terms of F1
score. Therefore, we present the experimental results on only one MNIST classifier in
“Experiments”.

RELATED WORK
In this section, we review some related work. Existing work on DFA extraction from neural
networks targets RNNs, which was extensively explored in Jacobsson (2005) and Wang
et al. (2017).

Omlin & Giles (1996) proposed a global partitioning of the network state space
according to q equal intervals along every dimension, and then exploring the network
transitions in the partitioned space. Our value abstraction adopts this partitioning, but we
work on the input space, instead of the state space.

Cechin, Simon & Stertz (2003) presented a approach to extract DFA using k-means and
fuzzy clustering. The key idea is to classify a large sample set of reachable network state
using k-means. Hou & Zhou (2018) proposed another approach to extract DFA from
RNN using two clustering algorithms, namely LISOR-k and LISOR-x, on hidden states.
There are several other work that adopted cluster analysis on state space, including
k-means clustering (Zeng, Goodman & Smyth, 1993; Frasconi et al., 1996; Gori et al.,
1998; Cohen et al., 2017), hierarchical clustering (Sanfeliu & Alquezar, 1994) and self-
organizing maps (Tiňo & Šajda, 1995). These approaches have to access the state-vectors,
while our approach is a black-box one.

Recently, Weiss, Goldberg & Yahav (2018) adopted active learning to extract automata
from RNN. Our work is inspired by and similar to this, but different in the follows:
(1) we target general neural network, not only RNN; (2) we consider an input is a word,
rather than a symbol; (3) we use a DFA that is inferred from some training data as an
abstract model for equivalent queries.

CONCLUSION
In this work, we have proposed a MAT framework to extract automata from neural
networks, employing abstraction interpretation of the neural networks for answering
membership and equivalence queries. We have implemented our approach in a prototype
and have carried out some interesting experiments on a MNIST classifier. Through
experiments, we have found that the DFA extracted from the MNIST classifier under the
abstraction with the interval number 2 and the block size 1 × 28 performs the best. In the
experiments, that our resulted DFA has a better performance than the DFAs learned via
the passive algorithms provided in LearnLib on the MNIST dataset.

As for future work, we may consider a better encoding such as RLE to improve the
approach. We can improve the RPNI algorithm with incremental learning to reduce the
learning time. We can also perform experiments on other neural network classifiers. Other
models to be extracted from neural network are under consideration.
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