
A product quality impacts of a mobile
software product line: an empirical study
Luka Pavlič, Tina Beranič and Marjan Heričko
Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor,
Maribor, Slovenia

ABSTRACT
Background: The software product lines (SPL) enable development teams to fully
address a systematic reuse of shared assets to deliver a family of similar software
products. Mobile applications are an obvious candidate for employing an SPL
approach. This paper presents our research outcomes, based on empirical data from
an industry-level development project. Two development teams were confronted
with the same functionalities set to be delivered through a family of native mobile
applications for Android and iOS.
Methods: Empirical data was gathered before, during and after a year of full-time
development. The data demonstrate the impact of a SPL approach by comparing the
SPL and non-SPL multiple edition development. One family of products (Android
apps) was developed using an SPL approach, while another (iOS apps), functionally
the same, was developed without employing an SPL approach. The project generated
a volume of raw and aggregated empirical data to support our research questions.
Results: The paper reports a positive impact of an SPL approach on product quality
(internal and external) and feature output per week. As data shows, it also increases
the delivery of functionalities (240% in 6 more editions), while investing the same
amount of effort needed for a single-edition development. As a result of system-
supported separation of development and production code, developers had a high
confidence in further development. On the other hand, the second team delivered less
new functionalities, only two new application editions, and lower software quality than
the team that manages multi-edition development by employing an SPL approach.

Subjects Computer Architecture, Mobile and Ubiquitous Computing, Software Engineering
Keywords Software product line, Android, Simultaneous development, iOS, Software quality,
Software product editions

INTRODUCTION
Reuse is one of the fundamental disciplines in software engineering. It plays an important
role in the development of new systems and in maintenance of existing ones. It is an
important concept, especially when developing several simultaneous versions of the
software. Usually, a software does not result in a single version or edition, specially tailored
to certain customers. On the other hand, we are talking about diversity also when we
have at the declarative level only one version of the software, i.e., the test version, the
production version, etc. Even more, software can also be tailored to a specific set of
hardware. Regardless of the domain, reuse plays a crucial role in successfully managing a
set of similar software editions and versions. The software product lines (SPL) is an
approach to reuse, employed in case where a family of products shares several common

How to cite this article Pavlič L, Beranič T, Heričko M. 2021. A product quality impacts of a mobile software product line: an empirical
study. PeerJ Comput. Sci. 7:e434 DOI 10.7717/peerj-cs.434

Submitted 23 October 2020
Accepted 17 February 2021
Published 27 April 2021

Corresponding author
Luka Pavlič, luka.pavlic@um.si

Academic editor
Luca Ardito

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.434

Copyright
2021 Pavlič et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.434
mailto:luka.�pavlic@�um.�si
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.434
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

functionalities. In addition to rare publicly available empirical evidence, software architects
have to rely primarily on theoretical benefits and their lessons learned, while practicing the
SPL approach to reuse.

In this paper we will present our research outcomes, done during 1 year of development
of mobile applications for two mobile platforms, Android and iOS, sharing a common set
of functionalities. Mobile applications are a part of a larger project which also included
backend cloud solutions, a web portal, a media streaming server and tablet applications.
Several editions of mobile applications, applications for the Android platform, were
managed with the introduction and implementation of the Software Product Line (SPL)
approach, while other set of applications, applications for the iOS platform, were managed
with more traditional methods of reuse, e.g., branches in version management system,
sharing the same codebase, but compiling it several times, using compiler directives,
runtime checking, etc. Android and iOS development teams shared the same set of
functionalities that had to be developed and they were given the same time to finish the
implementation. This industry-based setup gave us the opportunity to explore and share
interesting pre-, mid- and post-development empirical data, compiled to research
observations on SPL approach implications.

The rest of the paper is organized as follows. The chapter “RelatedWork” gives a general
overview on the state-of-the art approaches, emphasizing the SPL approach. Also, related
work that deals with the same research is outlined. In the next chapter, the research
method is discussed in detail. Research questions are presented. The project setup,
methods, tool and SPL realization are presented. Chapter 4 outlines the domain in which
the SPL approach was exercised. The chapter “Results” provides details on empirical data
that is used to address research questions. The paper continues with “Discussion”
providing an interpretation of the empirical data, focusing on comparing Android and iOS
products and the velocity of the teams. The differences will be discussed together with
long-term implications and both the positive and negative lessons learned. The paper
finish with “Conclusion” that summarizes the most important findings of our research.

RELATED WORK
The software product lines (SPL) approach to reuse in the software engineering area has
been discussed and published for several years. It was introduced in the Software
Engineering Institute (Northrop, 2002) and proved to be an adequate solution to reuse in
special cases, when several software products share a majority of functionalities, while
only a fraction of functionalities are edition-specific. The foundation book “Software
Product Lines: Practices and Patterns” from Clements & Northrop (2001). According to
the original SPL idea, development efforts are directed towards developing core assets,
while product development is a process of aligning core assets into final products.
Management activities (including analysis and design) are shared among all products.
Northrop (2002) also proposes several patterns and their variants, to be used for SPL-based
development.

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 2/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

The SPL approach is explained in detail by the Software Engineering Institute (2020a).
They define software product lines as follows:

A software product line (SPL) is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way.

As explained by Northrop (Software Engineering Institute, 2020b) SPL in addition to the
existing mechanisms of reuse allow other levels of reuse—reuse at the level of larger
software pieces. Besides reusing technical building blocks, these also include reusing
procedures and rules, associated with the software. They include single analytics, planning,
and management of software development. The SPL approach could be implemented
when some of the following issues occur as a result of the complexity of the software
(Software Engineering Institute, 2020b):

� we develop the same functionality for a variety of products and/or customers,

� the same change should be made in a number of different software products,

� the same functionality should behave differently depending on the final product,

� certain functionality can no longer be maintained, and so the customer has to move to a
newer version of the software,

� we cannot estimate the cost of transferring certain features to different software,

� certain basic infrastructure changes lead to unpredictable behavior of dependent
products,

� the majority of effort is put into maintenance, and not the development of new
functionalities.

The additional costs of the SPL approach are also clearly stated: architecture, building
blocks and individual tests should include the possibility of variability, while business
plans must be made for multiple products, not just one. The long term claimed
contributions of SPL are as follows (Software Engineering Institute, 2020b): up to 10×
improved productivity, up to 10× improved quality, joint development costs reduced by up
to 60%, shortened time-to-market by up to 98% and the possibility of moving to new
markets is measured in months, not in years.

SPL positive effects could, however, only have been observed if SPL approaches were
used correctly and in appropriate software development projects.Muthig et al. (2004) lists
several possibilities of misusing the SPL approach. These include (Muthig et al., 2004)
general purpose reuse, using classical reuse techniques such as component-based reuse,
having configurable software behavior and managing versions of the same software.
According to many authors, an important aspect in the SPL approach is managing
variabilities. Cavalcanti, Machado & Anselmo (2013) define the SPL-approach as a tool to
effectively cope with variabilities. The authors address three types of variabilities:

� Functionality presence: If the functionality is present in all the lines and in all with the
same realization, such functionality may be realized in the most general common
building block.

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 3/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

� The lack of functionality: the functionality is not present in particular lines. In the case
that the functionality is required in only one line, the functionality may be realized in the
line itself, otherwise it is necessary to introduce a specific building block.

� A different realization: the functionality is available, but the realization will be different
in different product lines. A different realization can be realized in the line, unless
the same feature can be found in multiple lines—in this case, it is reasonable to introduce
a new building block, which is a specialization of the existing one.

Clements & Bachmann (2005) explains that the technical realization of variabilities is
based on already established and well-known concepts in software engineering, including
component level reuse, design pattern employment, developing plug-ins, using
parameterization, configuration with deployment descriptors and others.

SPL approach specifics for modern mobile platforms and the specifics of mobile
application development have been little published so far. However, some authors have
published papers in this area. Muthig et al. (2004) published a report on The Go Phone
Case Study. It is an in-depth report on the practical proof-of-concept development of
mobile applications for several platforms; including SPL-specific analysis and design.

Usman, Iqbal & Khan (2017) shows two case studies employing SPL approach as well.
Authors base their case studies on problem of developing and maintaining multiple native
variants of mobile applications to support different mobile operating systems, devices
and varying application functional requirements. Their approach includes their own tool
(Moppet) to automates their approach of model-driven generating mobile applications.
Authors deal with three types of variations in mobile applications: variation due to
operation systems and their versions, software and hardware capabilities of mobile devices,
and functionalities offered by the mobile application.

Similarly, Marinho et al. (2013) discusses the use of an SPL approach in mobile
development for several hardware and context situations. They presented Android
applications that resulted from the MobiLine project as well as the approach used to build
them. The SPL employment resulted in 57 applications that share 100% commonmobility-
related functionalities, 87% common message exchange-related functionalities and 8%
context-related functionalities. For modeling and building applications they proposed and
used their MobiLine development approach. The authors only reported on the lessons
learned from technical and project management areas.

Alves, Camara & Alves (2008) presented successful SPL employment in the area of
mobile games. They observed an interesting fact—the SPL approach has been used several
times in the past, but they did not name it SPL. It emerged naturally. At the same time,
they reveal the need for standards or standard approaches in terms of establishing a
common SPL architecture—which would simplify SPL-based development dramatically.

Quinton et al. (2011) reported on the problem of addressing variabilities, while
designing mobile applications. The SPL approach is defined by two independent
dimensions: mobile device variety and mobile platforms. Their model-driven approach,
supported by the Applitude tool, enables the creation of Android, iOS and Windows
Phone mobile applications, while considering variabilities. The variabilities are addressed

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 4/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

with merging core assets, while the platform dimension is supported by metamodel in
Applitude.

Dürschmid, Trapp & Döllner (2017) acknowledges the SPL approach in paper “Towards
architectural styles for Android app software product lines” to be complex in Android
development due to inflexible operating system framework. This is why they propose
several techniques to achieve appropriate SPL architectures. They include activity
extensions, activity connectors, dynamic preference entries, decoupled definition of
domain-specific behavior via configuration files, feature model using Android resources.
Using their approach, authors manage to demonstrate the benefits via 90% of code reuse
in their case study. As we will demonstrate in this paper, our real-life production project
goes even beyond techniques mentioned before (we also employ design patterns etc.)
and demonstrate benefits not only via code reuse, but also via increased productivity and
code quality.

As demonstrated in systematic literature reviews by El-Sharkawy, Yamagishi-Eichler &
Schmid (2019) and Chacón-Luna et al. (2020), SPL has gained momentum lately and
the interest in empirical data on SPL has increased (Chacón-Luna et al., 2020). In addition
to this, Software Product Lines Conference (SPLC, 2020) is organized annually, regularly
disseminating the progress of this research domain. We see our papers’ role as an
important report of industry-scale development with shoulder-to-shoulder comparison of
parallel development of the same application—one team with, and one team without SPL
approach.

Another indicator of SPL approach gaining popularity in the mobile development is also
the fact, that in 2019, Android API and Android Studio have a full support for “product
flavors”, which is Google’s term for SPL—creating different variants of an app (Android
Developers, 2020).

Product flavors allow the developers to specify different features and device
requirements as well as use specific source sets for each flavor, while still using shared
code and assets where possible. Each build variant represents a different version of an app
built from a single project (Android Developers, 2020). When building the app only the
source sets relevant to the selected build variant are included in the resulting end-user
package, while all the others are left out. The Googles’ approach to SPL is similar to
the approach, presented in this paper. However, our approach, as demonstrated later in
the paper, is based on projects, libraries, proven design patterns and avoids compile-
time separation of product lines. In addition, even app resources (such as graphics,
multilanguage translations etc.) are addressed by variabilities management, presented in
this paper.

RESEARCH METHOD
24alife is the ecosystem of information solutions, oriented towards an increasing quality of
life. This multidisciplinary project includes medical, sports, psychological and nutritional
aspects as well as the combined view of an individual through targeted support in
detecting, monitoring and eliminating the negative effects of stress. It is intended for

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 5/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

individuals in strengthening and upgrading health reserves and, as such, focuses on a
healthy lifestyle.

Mobile applications (Android, iOS) are used as a supplement to the primary, web-based,
user interface. Their main role is to track and guide sports activities (such as jogging,
cycling, fitness training, etc.), to do daily measurements (heart rate, weight, blood pressure
etc.), motivate users, offer guidance for portal-created personal programs, etc. In addition
to simple, practical suggestions, analysis and progress indications, they are also tasked
with exchanging data with the cloud. There are several publicly available editions of mobile
application, such as free and payable version. In addition to this, some editions are
available only to project teams and partners and special customers. At the moment, all
components support 6 languages and the imperial and metric system.

The 24alife project includes two mobile development teams—Android and iOS.
Application families are developed from single requirement-design body in separate
development teams, resulting in native applications for Android and iOS.

Two agile development teams of the same sizes, one for Android another for iOS, were
given with the same set of requirements during the development. Both teams were
supported by the same graphical designer. Product owner was also the same person for
both teams. So, effectively, the goal was that they deliver two identical native mobile
applications with the same set of functionalities and the same look. The only planned
difference was expected behavior, aligned with iOS and Android design guidelines.

Presented circumstances enabled us to design a research which would quantify
development teams design decisions on how to manage product families. The empirical
data results from a process, illustrated in Fig. 1. To verify whether development teams,
separately working on mobile applications for Android and iOS are comparable, a
pre-development survey was executed, capturing the developers’ experience and perceived
knowledge. We designed our questionnaire based on the practices set forth (Chen et al.,
2018). We asked them to enter their perceived level of knowledge of programing languages
and provide a number of years for their professional experience. Since the knowledge
self-assessment can be biased and subjective, the years of experience criterion was added in
order to objectify participant’s experiences.

The development team for the iOS application managed their multiple editions of
mobile applications manually. The Android development team did the same during the
weeks 1–33. From week 34, the Android development team switched to an SPL-based
approach. In week 55, our research ended. During development weeks 1–55, we
continuously measured internal quality metrics and source code size. It resulted in
empirical data, used to verify if we can compare iOS and Android source code in the first
place. Secondly, if and what is the impact of week 33s’ decision on Android source code
and further delivery of functionalities. We measured external quality via analyzing test
reposts, generated by the quality assurance team. In addition to measuring source code
size, application size was measured by counting functionalities, offered to users by
application editions, which is also the case in function point analysis, which is one of the
standard metrics for determining the size of the software product (Albrecht, 1979).
The source code size (LOC—Lines of Code metric) was continuously monitored during

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 6/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

the development not only to provide evidence on ability to compare iOS and Android
application, but also to support possible differences in delivered functionalities in the
second half of the development. In the first half of the development project, LOC
metric was primarily used to verify if we can compare products (development effort
and delivered functionalities were the same in both development teams). In the second
half of the project, LOC was primarily a control variable to see if changes in delivered
functionalities was a result of possible changes in particular team’s effort. Deviations in
size-based metrics would signal that the introduction of the SPL approach was not the only
change in the development process.

Post-development gathering of empirical data consists of a questionnaire to capture
developers’ perception of their decision to manage multiple editions. It also included
gathering and interpreting empirical metrics from the configuration management system,
bug tracking system and release logs. Post-development data gathering aims is to show if
introducing the SPL approach returned the investment in terms of changed delivery times
and possible quality changes.

Based on the presented research method and compiled empirical data, we would like to
conclude while answering the research questions below:

� RQ1: Is the source code size comparable between Android and iOS applications, while
having the same set of requirements?

� RQ2: What are the impacts of introducing a software product lines (SPL) approach to a
mobile development?

� RQ2.1: What are the impacts of the SPL approach to application growth?

� RQ2.2: What are the impacts of the SPL approach to application quality?

Figure 1 Gathering research empirical data during the development process.
Full-size DOI: 10.7717/peerj-cs.434/fig-1

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 7/26

http://dx.doi.org/10.7717/peerj-cs.434/fig-1
http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

� RQ2.3: What are the impacts of the SPL approach to developers’ confidence in
frequent releases?

The presented set of research questions was carefully selected to check:

a) Whether we can compare Android and iOS applications on source code level, while
having the same set of functionalities and investing the same effort amount;

b) Internal and external quality of both applications with respect to selected multiple
editions approach;

c) Delivered application editions and core, optional and alternative functionalities with
respect to selected multiple editions approach;

d) Developers perception on the selected multiple editions approach.

In addition to two questionnaires (pre- and post-development questionnaire), our
research relies on software metrics, that support answers on research questions:

a) Source code size and class-based metrics (Lines of Code, Logical Lines of Code, Number
of Classes) in combination with product size metrics (Number of Editions, Number of
Functionalities) support RQ1;

b) Source code size-based metrics support RQ2.1 as an implicit control of invested effort to
the development;

c) Product size metrics support RQ2.1;

d) Source code internal quality metrics (Code to Comment Ratio, Logic Density, Code
Structure Modularity) support RQ2.2;

e) Product quality metrics (Number of reported errors, imperfections and inconsistencies)
support RQ2.2;

OUR APPROACH TOWARDS SEVERAL MOBILE
APPLICATION EDITIONS
The 24alife project (see “Research Method”) includes two mobile development teams
(Android and iOS), driven by the same requirement-design body and resulting in native
applications for Android and iOS.

The mobile development teams were combined in week 1. Weeks 1 to 3 were dedicated
for preparations, reviewing the initial product backlog, early prototyping, deciding on
architecture design, preparing user interface wireframes and designs. Functionality-driven
development, i.e., the first iteration, started in week 4. The development practices and
process mechanics were organized according to Scrum development method
(Sutherland & Schwaber, 2014) by practicing planning, daily and demo meetings,
retrospectives, honest sprint commitment via planning poker and others. Both
development teams (iOS and Android) consisted of three experienced developers. Both
teams share the same scrum master, product owner, graphics designer and quality
assurance team.

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 8/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

In order to manage several editions efficiently, during requirements gathering,
designing and testing, functionalities were collected in a multi-dimensional table.
Functionalities were not only listed, but also described in terms of which edition
functionality was available and if and what specialities were required for a particular
functionality in a particular edition. This is how development team ended with
functionalities written in several categories: common (all editions), optional (only in
selected editions) and alternative (edition-specific implementation of the same
functionality). Such approach enabled development teams to reuse common requirements,
design and testing, which is also one of the foundations in order to establish SPL
approach (Software Engineering Institute, 2020b).

Both teams initially managed multiple editions of their applications (daily built, test
version) in manual manner. The breaking point (see Fig. 1) was at week 33 with a clear
clients’ demand do provide application in freely available (“Free”) and payable editions
(“Pro”). Since the iOS development team was confident, that their established techniques
to manage several editions will continue to prove itself to be adequate, they did not change
the design of their application (preserving a single development project with compiler
directives and run-time switches, finally manually building the desired edition while
providing an appropriate set of configurations). iOS development teams’ approach is the
best described as “ifdef hell”, reported by several authors, e.g., (Feigenspan et al., 2013).

On the other hand, Android development team decided to invest extra effort to prepare
the production-ready appropriate SPL architecture, libraries and projects.

A Set of core Android mobile development assets and available product lines is
presented in Fig. 2. Figure 2 shows available assets (components implemented as Android
libraries), from which 7+1(Core Module) are fully functional Android applications,
combined from other assets. Figure 2 does not capture variabilities in functionalities
(which can be seen in Table 1), rather it shows available components. A set of
functionalities is present in particular application edition by appropriate library in
edition. Functionality absence in achieved by not including the library. The alternative
implementation is achieved by including library and overriding (a part) of its
implementation by employing appropriate design pattern. A code-generation approach to
introduce common, optional or alternative functionalities was not employed in the
presented SPL architecture. No additional source code was automatically generated in
order to support SPL approach.

The “24alife Core Module” is the Android library (at the same time a fully running
Android application). It realizes functionalities that are common to all editions
(product lines). The “Core Module” also contains common architecture of mobile
applications and the variability points of additional functionalities (see Fig. 3).
Applications within the product line are built into the final products with standard build
tools, available in Android Studio. Core product assets (Android libraries) contain, in
addition to the source code, also XML-written user interfaces, graphics, multilingual
messages, dependant libraries, static content, etc. The library structure is shown in Fig. 3.

Android development team implemented variabilities using industry-proven best
practices and approaches. These include the use of object-oriented design, proven design

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 9/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

patterns, extensions, and component parameterization. Design patterns are used heavily,
especially: factory, abstract factory, factory method, bridge, bean, adapter and others
(Gamma et al., 1998). As shown in Fig. 3, Android developers created a common SPL
architecture as a set of concrete and abstract classes. Their primary role is to handle the
orchestration of newly introduced functionalities from other libraries via prepared
extension points.

Component-based development is heavily used in the presented SPL realization. All
components are managed (created, initiated, cleaned etc.) via the Component Manager

Figure 2 Components (Android libriaries) in Android software product line.
Full-size DOI: 10.7717/peerj-cs.434/fig-2

Table 1 Final editions compared: functionality-based differences.

Edition Based on Base f. Optional f. Alternative f. F. count (B+O) F.diff (O+A) Diff (%)

Pro Free 45 8 2 53 10 19

Free Core 45 0 3 45 3 7

Alpha Core 45 9 5 54 14 26

Test Pro 53 0 1 53 1 2

Demo Free 45 8 2 53 10 19

BB Pro Core 45 0 3 45 3 7

BB Free Free 45 0 3 45 3 7

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 10/26

http://dx.doi.org/10.7717/peerj-cs.434/fig-2
http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

class. The Component contains the implementation of predefined interfaces and
specific interfaces with their implementation as well. Operations, such as preparing
the database structure, upgrading the database, exchanging data with the cloud
(synchronizing) and others are all part of a component. This is how certain editions
(product lines) without a certain component, will not even have database structure for
unsupported functionalities. The component manager is also responsible for component-
to-component communication (The Component Manager would provide a reference to a
component in the same product line).

The Configuration class constitutes another concept in the presented architecture.
Configuration, provided by the Core Module, includes general purpose configurations,
common to all product lines. In a particular edition (the product line), developers
would typically extend the Configuration class in order to do necessary adoptions or
overriding (e.g., introduce new operations to be run when the mobile application starts,
add new synchronization points, turn off some components, set data for accessing a
particular cloud—whether it be production or test deployment).

Figure 3 SPL architecture as a part of Core Module. Full-size DOI: 10.7717/peerj-cs.434/fig-3

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 11/26

http://dx.doi.org/10.7717/peerj-cs.434/fig-3
http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

This is how the inclusion of a specialized functionality in the individual line is,
technically, achieved using several approaches:

� preparation of the extension point in the core module (in terms of components or inside
components using factory method or abstract factory design patterns),

� using inheritance and adding new methods and/or method invocations in the product
line,

� using an abstract factory pattern, which combines the functionality of the new line and
its own user interface.

The exclusion of unwanted features is achieved mainly through inheritance and the
exclusion of unwanted features (such as not downloading programs for free products), as
well as with the parameterization of the basic building blocks. However, in most cases,
exclusion was not necessary, since product line-specific functionalities were introduced in
the product lines themselves (e.g., 24alife PRO library).

Changing behavior (e.g., the demo edition expires 1 month after construction), are
achieved also with inheritance and/or by employing appropriate design patterns, such as: a
bridge, factory method, or builder.

Based on presented technical SPL architecture, 7 application editions were managed.
Table 1 summarizes functionality-based differences between them. For example, final
“Alpha” edition is based on “Core Module”, having 45 common functionalities, 9
additional functionalities are implemented only in “Alpha”. Which results in total of 54
functionalities. In addition to this, 5 functionalities in “Alpha” are adopted to different
behavior. Which resulted in 14 functionalities implementation for “Alpha” (optional +
alternative). That is 26% difference with base edition, which is “Core Module” in case of
“Alpha”. Differences in terms of functionalities for other editions are demonstrated in
Table 1.

RESULTS
In order to answer the research questions, we will outline the most important empirical
research data. This includes an in-depth analysis of version control logs, source code
metrics for comparative quantitative and qualitative data, querying bug-management logs
and production logs and analyzing developer questionnaires. Several tools were used in
order to capture, prepare and aggregate raw data, including Subversion CLI, CLOC tool,
Javancss, XClarify, ProjectCodeMeter and shell scripts for batch processing and data
aggregation.

Developer profiles
Based on the pre-development questionnaire, the mobile developer’s profile was as follows:

� Android developers average perceived developments skills: 2.3/5,

� Android developers average perceived Android Studio skills: 4/5,

� iOS developers average perceived developments skills: 2/5,

� iOS developers average perceived XCode skills: 3/5,

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 12/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

� Android developers average experience in developing mobile applications: 4 years,

� iOS developers average experience in developing mobile applications: 3.3 years.

Edition and functionality growth
During the research, presented in this paper, we observed the development of 55 weeks
(see Fig. 1). During this time, the final version of the released mobile application is 3.0.
Versions 1.0, 1.1, and 2.0 were released in a two-edition manner (free, pro) while version
2.1 and later were required in several editions (including demo, alpha, test, blackberry-
optimised free and blackberry-optimised pro). Please see Table 2 for the growth in terms of
new functionalities. Please also see Table 1 for a complete functionality count per
particular edition.

Besides functionality growth, edition growth is also an important data regarding our
research. Figure 4 shows the number of released products during project time (editions and
versions combined) for iOS and Android. Since Android developers used an SPL
approach, the chart in Fig. 4 provides additional insight into core SPL asset numbers over
time. The chart clearly shows only version-based growth until week 41. After week 33,
the Android application becomes a core asset, and the iOS application stays monolithic.
Please note that Fig. 4 does not capture internally available editions. The chart includes
7 different Android editions across several versions and 2 iOS editions across several
versions.

Source code size
The product’s quantitative metrics are as follows. One of the commonly used metrics is
LOC (Lines Of Code). Figure 5 displays how LOC (without blanks and comments)
changed over time for Android and iOS products. In both, an important segment of code
is done in XML (examples would be user interfaces, navigation rules, animations, etc.)
This is why we show this distribution also in Fig. 5. In the case of Android, the chart
captures LOC for the entire Android projects (all editions, all core SPL assets). The chart
includes the iOS initial application as well as the Free and Pro iOS editions. The internally
available experimental iOS HRV/Corporate is not included, since it is a separate branch on
its own. Please note, that week 4 was the first official iteration, while weeks 1–3 were
preparations and prototyping. This is why the subversion repository is starting the
codebase with week 4 and charts in Figs. 5 and 6 also start at week 4.

While LOC can give concrete insight into software size, we included the number of
classes for both development projects in Fig. 6 in order to give more accurate insight into
code distribution. The measured codebase is the same as in the chart in Fig. 5—all Android
editions and versions with core SPL assets, iOS initial, Free and Pro editions.

We measured LOC values for both iOS and Android with the same tool (cloc), so that
the same rules would apply, thus making the results comparable. We also used the
ProjectCodeMeter tool to measure the final state of subversion repository for both projects
as well as the final single-edition project for both projects. This also makes the results
directly comparable.

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 13/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

Source code quality
In addition to size-oriented metrics, we also applied quality-oriented source code metrics.
Since we are interested in internal quality change, measuring mid- and final-version of
source code is sufficient. The results that the ProjectCodeMeter tool produces are
summarized in Table 3. Code to Comment ratio (CCR) grabs logical LOC per one
comment line. Code Structure Modularity (CSM) aggregates modularity of the source code
(value: <100—low modularity, >100 fragmented code). Logic Density (LD) assesses
number of lines to capture a certain logic. As Table 3 shows, CCR value stays the same (19)
till the end of the project for the iOS application. On the other hand, we can see significant
improvement (from 9 to 15) in week 55 in the case of the Android application. Code
structure (CSM metric) is reduced in case the of iOS application source code (152 to 143).

Table 2 Functionality count, implemented in iOS and Android mobile applications.

Public
version

Included functionalities

1.0 16 initial, core functionalities (e.g., login with portal-created account, data synchronization, settings, GPS-based activity tracking, enter
medical measurements, view exercise videos, sports tests etc.)

1.1 6 new functionalities (e.g., notifications, history management), general improvements

2.0 9 new functionalities (e.g., support for guided, goal-based programs), general improvements

2.1 2 new functionalities (including VO2max support)

2.2 2 new basic functionalities (e.g., start-in-10) and 4 new Pro functionalities (e.g., progress analysis), general improvements

2.3 4 new functionalities (e.g., Facebook integration), general improvements

3.0 6 new basic functionalities (e.g., manual activity import) and 4 new Pro functionalities (e.g., goal-driven activities), general
improvements

Figure 4 Android and iOS mobile application editions available during the project.
Full-size DOI: 10.7717/peerj-cs.434/fig-4

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 14/26

http://dx.doi.org/10.7717/peerj-cs.434/fig-4
http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

Figure 5 Code size (LOC, no comments or blanks) during the project.
Full-size DOI: 10.7717/peerj-cs.434/fig-5

Figure 6 Classes count during the project. Full-size DOI: 10.7717/peerj-cs.434/fig-6

Table 3 Comparable final project metrics.

iOS (week 37) iOS final Android (week 33) Android final

CCR 19 19 9 15

CSM 152 143 145 153

LD 77 81 45 66

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 15/26

http://dx.doi.org/10.7717/peerj-cs.434/fig-5
http://dx.doi.org/10.7717/peerj-cs.434/fig-6
http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

It is, however, the opposite in the case of Android application source code—CSM value is
increased (145 to 153). Logic density (metric LD) is increased in both cases: Android
application from 45 to 66 and iOS application from 77 to 88.

Product quality
During the research, we also measured the product’s external quality. The quantity of
reported failures was used as a comparable measure. The quality assurance team was using
the following classification of failures (based on IEEE standard 1044-2009 (IEEE Computer
Society, 2010)):

� errors (behaviour, that is different from what is specified in software requirements
specifications or unexpected crashes),

� inconsistencies (not really errors, but disturbing quality failures—e.g., inappropriate
input checks, displaying values in inaccurate measures, e.g., the length of a run in meters
instead of kilometers, etc.) and

� imperfections (mostly visual quality failures, e.g., using wrong colors, screen appearing
incorrect when rotated, etc.).

We preserved this classification also in Figs. 7 and 8. Please note that all failures
were addressed (fixed or closed as false failures) during the development. This is why the
charts in Figs. 7 and 8 does not capture the frequency of closing failures. The testing efforts
were the same for both platforms, so the results are comparable.

As chart in Figure 7 shows, we can observe an almost constant rise of reported failures
(5.5 per week; 6.4 if we remove the first 4 weeks of prototyping) in the case of Android
development. During the introduction of the SPL approach, the failure number rose from 160

Figure 7 Cumulative reported failures during time spent on Android projects.
Full-size DOI: 10.7717/peerj-cs.434/fig-7

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 16/26

http://dx.doi.org/10.7717/peerj-cs.434/fig-7
http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

to 240, which is 11.4 per week. In the third period, the final failure count rose from 240 to 405,
constant failures per week rate in this period is 9.1. The final failure percentage, according to
classifications, is as following: 64% errors, 16% inconsistencies, 20% imperfections.

Similar situation is reported in Fig. 8 for the case of reported failures in iOS
development (6.5 per week in first period; 7.8 if we remove the first 4 weeks). During the
introduction of the multi-edition approach, the failure number rose from 195 to 280,
which is 12 per week. In the third period, the final total failure count rose from 280 to 631,
the constant failures per week rate is 25. We can see how the weekly failure rate in this
period is not linear. 25 is the average rate during stable multi-edition development.
If we split this period in half, the first half has a rate of 18, while the second half is 33.
The final failure percentage is 64% errors, 18% inconsistencies, 18% imperfections.

Post-development survey
After the development, we finalized gathering empirical data to execute a post-
development survey among developers. The answers were as follows:

� The development was time framed to 8 h per day. We asked developers about their
assessment with regard to how many hours they spent daily on development (allowing
for the fact that they might have done extra work at home). iOS developers reported
that they spent 9 h a day with the project, Android developers reported working on
average 8.7 h daily.

� We asked developers how they liked the implemented mechanism of managing several
editions. On a scale of 1–5 (1—do not like it at all; 3—neutral opinion; 5—extremely like
it) they responded: iOS developers: 2.7, Android developers: 4.7.

� We asked developers about the fear they had in cases where they would have to change
some random code in a project—did they worry that they would cause some failures

Figure 8 Cumulative reported failures during time on iOS projects.
Full-size DOI: 10.7717/peerj-cs.434/fig-8

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 17/26

http://dx.doi.org/10.7717/peerj-cs.434/fig-8
http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

with it? On a scale of 1–5 (1—no fear at all; 5—very afraid) they responded: iOS
developers: 3.3, Android developers: 1.7.

� We asked developers how they would welcome the need to establish a new edition of a
mobile application. On a scale of 1–5 (1—no problem; 5—possible only with high
investment) they responded: iOS developers: 4, Android developers: 2.

Finally, developers had opportunity to express their positive and negative experience
with managing several editions. The answers include:

� An Android developer highlighted an event as a positive experience. The requirement
was stated for the fully functional Pro edition that could be available as a “Demo” edition.
Based on Pro, the Demo edition included a special logo and functionality for expiration
within 1 month with the possibility of buying the Pro edition on the Google Play market.
The edition was prepared and turned over to production, as claimed, in just 3 h.

� As a negative aspect, an iOS developer highlighted fast development, and a lot of
requirements changing the already implemented functionalities. Changing/maintaining
the code was problematic, he explained.

� An iOS developer suggested, that instead of having many editions of the same
applications, it would be better (in terms of development) to have several smaller
applications with limited functionalities.

DISCUSSION
In this chapter we will provide answers to the research questions presented in the
“Research method” chapter:

� RQ1: Is the source code size comparable between Android and iOS applications, while
having the same set of requirements?

� RQ2: What are the impacts of introducing a software product lines (SPL) approach to a
mobile development?

� RQ2.1: What are the impacts of the SPL approach to application growth?

� RQ2.2: What are the impacts of the SPL approach to application quality?

� RQ2.3: What are the impacts of the SPL approach to developers’ confidence in
frequent releases?

Based on empirical data from the previous chapter, we will also provide further
discussions on the implications that arise from the data. Based on the gathered data, let us
answer the fundamental research questions.

RQ1: is the source code size comparable between Android and iOS
applications, while having the same set of requirements?
The final codebase for Android products included 47,259 Java LOC and 32,828 XML LOC;
390 classes (see Figs. 5 and 6). The final codebase for iOS products included 50,739
Objective LOC and 22,744 XML LOC; 290 classes (see Figs. 5 and 6).

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 18/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

Based on the CLOC tool, the final iOS codebase was larger by 7% (Java vs. Objective C);
the combined (XML + programing language) LOC is smaller in the case of iOS by 8%.
With regard to the LLOC measure (Logical LOC), the final Android LLOC was larger by
7% (see Fig. 5), based on the ProjectCodeMeter tool. The class count was larger in the final
Android codebase by 26% (see Fig. 6).

The complete analyzed iOS codebase includes only the Pro and Free editions. On the
other hand, the analyzed Android codebase also includes additional editions (Alpha, Test,
Demo, BB Pro, BB Free). This is why the Android codebase actually includes 10 more
functionalities (see Table 1) compared to iOS codebase functionalities (53 functionalities in
Free and Pro), which is 16%. Taking this into account, the effective (normalized to
functionalities) LOC difference between iOS and Android is 9% and the LLOC difference is
8% (iOS is higher). The effective class count (normalized to functionalities) difference is
14% (Android is higher). The class difference is easily justified: the Android codebase
includes SPL architecture, which is rich in terms of classes. There are also 13 alternative
functionalities, where the implementation heavily depends on design patterns and
inheritance (which results in introducing new classes—see chapter 4).

To compare product sizes, regardless of SPL approach, we can easily compare codebases
at the point of releasing a last single-edition product. This was done in week 33 for
Android and week 37 for iOS (see Table 3). Android LOC at that point was 49,664, while
iOS LOC was 50,418. The difference is as low as 1.5%. The classes count for Android
was 277, while the iOS codebase had 238 classes. Please note, that the difference is 14%,
which is the same as the final difference, normalized to functionalities.

Based on the presented calculations, we can confidently claim, that having the same
set of functionalities, implemented using our project boundaries and rules would result
in comparable codebase size for both Android and iOS. This is how we answer the
research question 1 as positive.

RQ2.1: what are the impacts of the SPL approach to application
growth?
Observing the data, presented in Fig. 5, we can see that LOC is rising at an almost constant
rate of circa 1,400 LOC (pure code, blanks and comments emitted) per week for both
the Android and iOS projects. If we analyze the LOC per week coefficient at release weeks
or before and after introducing more editions, the data does not show any significant
change in LOC velocity. This clearly indicates, that development teams continued to invest
unchanged development efforts.

Based on the data presented in Fig. 6 we can see an almost constant coefficient
classes/week value of 6. However, in the case of Android, the classes introduction velocity
rises to 9 per week after introducing the SPL approach. On the other hand, in the case of
iOS, the several edition approach resulted in the dropping of some classes (21).

Implications of quantity metrics are as follows: the developers output in terms of LOC is
obviously not affected by multi-edition development. Since the development was
functionality-based, it means, that the only driver of LOC velocity were functionalities.
However, the structure of the created program code changes if SPL is applied (148 Java

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 19/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

LOC per class before SPL, 98 Java LOC per class with the SPL approach in our case).
On the other hand, we can observe even more Objective C LOC per class after ad-hoc
multi-edition development in the iOS project. From 153 Objective C LOC per class before
multi-edition development, to as high as 189 LOC per class (in week 50) and the final
coefficient is 170 LOC per class. Improvement in terms of LOC per class in the iOS project
in the last 5 weeks is a result of refactoring. Positive effect on code structure after
employing SPL approach is also captured in the CSM measurement (see Table 3).

Based on the presented calculations we can conclude that multi-edition development
does not affect development output velocity in terms of LOC, but it does affect the product
static structure: SPL-based development in a positive way, while ad-hoc multi-edition
development in a rather negative manner.

However, the SPL approach largely affects velocity in terms of functionality and released
editions. Based on Tables 1 and 2, we can see that the delivered functionalities and editions
per given time frame were comparable in the single-edition period for both Android
and iOS development teams. A total of 33 functionalities in single-edition software were
delivered in 39 weeks by the iOS development team and in 37 weeks by the Android
development team; which is 0.9 functionality per week.

With the same amount of effort input (see post-development survey), this translates
into 1.7 new functionalities per week in 2 editions for the iOS development team; and 2.2
new functionalities per week and 1 adopted functionality per week across 7 different
editions. While combining public releases with available editions (see Fig. 6), we can
see that after multi-edition development, the Android development team delivered
13 (0.93 per week) new editions and versions of software, while iOS delivered 6 (1 per
2 weeks).

Based on presented data, we can answer research question 2.1 as follows. In our case,
SPL approach results in 126% higher functionality-based velocity (or as much as
240% higher, compared to single-edition development). At the same time, the SPL
approach enabled developers to adopt an additional 100% of new functionalities across
several editions with the same effort level.

RQ2.2: what are the impacts of the SPL approach to application
quality?
Internal code quality comparison of the products in terms of single-edition development
vs. multi-edition development and Android development vs. iOS development is shown
in Table 3. In the case of iOS, single-edition and multi-edition development do not
change Objective C code quality, which is an expected observation (managing editions was
done mainly with compiler directives—see Chapter 4). Modularity improves by 6%, logic
density is affected by 5% in a negative manner. The commenting ratio stays the same.

In the case of the Android single-edition and multi-edition development, Java code
quality also did not change. Modularity changed by 5% (towards fragmented code),
which is expected as a result of SPL implementation (see Chapter 4). The LLOC to capture
certain logic increased by 32% (from 45 to 66), which also makes sense: SPL-related

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 20/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

(architecture, optional and alternative functionalities management) code does not capture
a lot of business logic. However, logic density is, even after being changed a lot, lower by
19%, compared to Objective C code.

Data shows, that internal code quality did not change importantly. This is a reasonable
outcome: the same development skills and effort was used during the whole project. SPL-
enabled multi-edition approach affects code in terms of a lot of additional code
fragmentation, while the ad-hoc approach does not have this effect. Which is also expected
result.

However, Figs. 7 and 8 demonstrate SPL impact on external quality. As implied from
the charts showed on Figs. 7 and 8 there are three distinctive periods during the project:
single-edition development (weeks 1–33), first multi-edition intensive development (weeks
33–37), and stable multi-edition development.

As explained in “Product Quality” and shown in Fig. 7, in Android application, the
constant failures per week is dropped from 11.4 to 9.1 in SPL-enabled period—resulting in
405 failures found throughout the development project.

An important observation from Fig. 7 (Android failures) is this: the constant weekly
failure rate in the single-edition development was followed by a rise in failures during
the introduction of the SPL approach. During the stable SPL approach-enabled multi-
edition development, the weekly reported failure rate is linear and stable again. The rate
rose from 6.4 to 9.1 (30%), which is reasonable when considering not only additional
functionalities, but also 6 additional editions (from an external point of view completely
separate products) with 10 edition-specific and 13 edition-adopted functionalities.
The failure increase is significantly smaller than feature and editions increases. Failure per
edition on a weekly basis in the last period is as low as 1.3.

As explained in “Product Quality” and shown in Fig. 8, in iOS application, the constant
failures per week is elevated from 7.8 to 12 in multi-edition period—resulting in 631
failures found throughout the development project. An important observation from Fig. 8
(iOS failures) is that constant weekly failure rate in single-edition development is followed
by an increase in failures during the introduction of the SPL approach. In the period
of stable multi-edition development, the weekly failure rate is not linear. The average
weekly rate in this period, rose by a factor of 3.2 (from 7.8 to 25). This is, using ad-hoc
multi edition development, more failures per edition (25 per week for two editions—
12.5 failures per week per edition) than in the single-edition development (7.8 per editions
per week). The ad-hoc multi edition approach failed in terms of rising or at least
maintaining an external quality level.

Based on presented data, let us answer the research question 2.2. In our case, internal
quality is not affected by introducing SPL approach. Since SPL approach promotes faster
development (see chapter 6.2) and failure rate stays the same, number of failures per
functionality drops. This is how SPL approach enhances external quality. However,
using non-SPL multiple edition development results in our case in reduced external
quality (reported failures rose by factor 3.2).

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 21/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

RQ2.3: what are the impacts of the SPL approach to developers’
confidence in frequent releases?
Both the post-development survey and post-development data analysis revealed that
developers are more confident in using the SPL approach than using a multi-edition
approach, designed and crafted on their own. In the case of SPL-supported multi-edition
development, developers created complex software architecture and maintained it while
considering strict rules of reuse. They did not have an opportunity to create any shortcut
or workaround solution to their approach, as the other development team had. Multi-
edition development without an SPL approach relied on developer-chosen and freely
implemented approaches, such as compiler directives, runtime conditions, etc.

Therefore, the post-development survey revealed that developers in the SPL-supported
development team liked the multi-edition development approach more: 4.7/5, while on
the other hand only 2.7/5 in the case of iOS developers. The SPL-supported development
team was also more confident in maintaining and developing new code in production
software (fear of introducing failures while changing code is as low as 1.7/5 in case of
Android developers and as high as 3.3/5 in the case of iOS developers). As a consequence,
iOS developers would not be happy with demands for a new edition of the application
(4.0/5), while Android developers would welcome it (2.0/5).

Although surprising, we believe that the survey results have a foundation in source code
organization: in the case of the SPL approach, the source code of different editions is
physically separated. Common functionalities are reused with merging separate source
code projects into final products. Therefore, it is clear that developers can be sure that
certain new code or code changes will not be included in a certain product edition.
On the other hand, ad-hoc multi-edition development has a common code base, where
all source code is processed when creating any edition of the final product. Software
components are therefore more coupled and less cohesive. As a result, as proven also by
the post-development survey, it makes developers not so confident in creating new code or
changing existing code.

Higher developer confidence in creating new source code and maintaining existing code
was also shown in the post-development data analysis. The failure rate is importantly
higher when the SPL approach is not used. The failure introduction velocity is also not
linear. It shows how fixing failures in some cases results in introducing new ones with
the ad-hoc multi-edition approach. Which finally answers our research question 2.3: the
SPL approach have a positive impact on developers’ confidence in delivering releases
(and new functionalities as a consequence) frequently.

Key findings and limitations
Based on presented results, visualizations and in-depth analysis, let us summarize the main
outcomes while answering research questions. Using our research setup, methods and
results, we showed that:

� Having the same set of functionalities would result in comparable codebase size for both
Android and iOS;

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 22/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

� The SPL approach results in 126% higher functionality-based velocity (240% higher,
compared to single-edition development);

� The SPL approach enabled developers to adopt an additional 100% of new
functionalities across several editions with the same effort level;

� Internal quality is not affected by introducing SPL approach;

� SPL approach enhances external quality.

� Managing several editions using non-SPL approach would reduce external quality.

� The SPL approach have a positive impact on developers’ confidence in delivering new
functionalities and releases frequently.

The presented research method, results and discussion also include limitations which
represent possible threats to validity.

In ideal world, one would design presented experiment in terms of developing the same
application for the same platform twice—with and without a SPL approach to manage
several editions. This is how it would be possible to eliminate every doubt, caused by
developing for two different operating systems with two different programing languages.
However, we created the research method, gather results and interpret them in mind to
minimize any doubt in our conclusions. The main measure to address this threat lies in
answering research question RQ1. In addition to this, we believe that while we scientifically
investigated large, real-world industry project, validity of the results is higher than any
laboratory-set experimenting environment.

A question also remains, whether we would end with the same results and conclusion,
if in week 33 iOS development team would chose to implement SPL and Android
developers would go on with manual approach to manage multiple editions. We addressed
this threat by monitoring internal quality of source code and invested effort in terms of
delivered LOC. Since internal quality and LOC velocity remains the same after week
33 for both development teams, this indicates that the only difference between products
lies in the SPL-enabled architecture in Android application. During the research we have
used LOC metric carefully and systematically in both development teams in order to
minimize the risk that comes with possible disconnection between LOC metric and
delivered functionalities.

CONCLUSIONS
This paper highlighted our research during two development teams that created
production-ready mobile application families for two different platforms (Android, iOS).
They shares the same set of functionalities and were done with the same effort input.
Both families share 85% of their common functionalities. Other functionalities are optional
or alternative. One product family was developed with the SPL approach to manage reuse,
while other product family was developed with more traditional and ad-hoc reuse
techniques (single codebase, no special architecture to manage variabilities, employing
compiler directives, etc.). As shown in this paper, this was the only difference in approach
between the development of two functionally equal software families.

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 23/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

The results of this research show that two product families not only share the same set of
functionalities and effort rate, but, surprisingly, product growth and end products size
were also the same. Comparing multi-edition with single-edition development, we showed
that development velocity, in terms of code quantity, did not change. However, code
structure improved after introducing the SPL approach. The SPL approach also had
positive implications for feature-based output: after the introduction of the SPL approach,
functionality output per week increased by 240%, which is 124% higher than cases of
iOS development with non-SPL approach to multi-edition development. At the same time,
the SPL approach employment resulted in 6 new editions, while the non-SPL approach
resulted in only one.

An important aspect, directly impacted by the SPL approach, is also software quality.
With the SPL approach, the failure introduction velocity did not increase, but remained
linear. After dividing failures across all editions, failure rates fell. On the other hand,
we showed how the failure introduction rate in the case of the non-SPL approach not only
increased but was also not linear anymore. In our case, the failure count, divided by
editions, is even higher than in the single-edition development. The derived statement
from this observation is that doing multi-edition development without an SPL approach is
something that will have a very bad impact in terms of software quality. On the other hand,
the SPL approach has a very positive impact on software quality.

Our research revealed that the SPL approach enables development teams to produce
more functionalities in several product editions with the same effort as they would use
while working on a single-edition product. Not only productivity, but even more
importantly, software quality, rises. Developers’ confidence in the maintenance and
developing of new code is also higher, when using the SPL-based product structure.

Our finding, that is even more taught full is, that when development teams have to
manage multiple editions, doing it manually can have severe consequences in terms of
drop in quality and worse developers’ confidence while introducing new functionalities or
upgrading existing ones.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Financial support was received from the Slovenian Research Agency (research core
funding No. P2-0057). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Slovenian Research Agency: P2-0057.

Competing Interests
The authors declare that they have no competing interests.

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 24/26

http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

Author Contributions
� Luka Pavlič conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Tina Beranič conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Marjan Heričko conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data is available at GitHub:
https://github.com/luka-pavlic/SPL.
Data is also available at the University of Maribor:
http://spl.informatika.uni-mb.si.

REFERENCES
Albrecht AJ. 1979. Measuring application development productivity. In: Proceedings of the Joint

SHARE, GUIDE, and IBM Application Development Symposium, October 14–17. Monterey,
California: IBM Corporation, 83–92.

Alves C, Camara T, Alves V. 2008. Experiences with mobile games product line development at
meantime. In: 2008 12th International Software Product Line Conference, SPLC’08, 8–12
September 2008, Limerick, Ireland. 287–296.

Android Developers. 2020. Configure build variants. Available at https://developer.android.com/
studio/build/build-variants.

Cavalcanti YC, Machado IC, Anselmo P. 2013. Handling variability and traceability over SPL
disciplines, software product line–advanced topic, Edited by Abdelrahman Osman Elfaki, Rijeka,
2013. Available at https://www.intechopen.com/books/software-product-line-advanced-topic/
handling-variability-and-traceability-over-spl-disciplines.

Chacón-Luna AE, Gutiérrez AM, Galindo JA, Benavides D. 2020. Empirical software product
line engineering: a systematic literature review. Information and Software Technology
128(7):106389 DOI 10.1016/j.infsof.2020.106389.

Chen Z, Chen L, Ma W, Zhou X, Zhou Y, Xu B. 2018. Understanding metric-based detectable
smells in Python software: a comparative study. Information and Software Technology 94:14–29.

Clements PC, Bachmann F. 2005. Variability in software product lines, product line practice
initiative, 2005. Available at https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7675.

Clements P, Northrop L. 2001. Software product lines: practices and patterns. Boston: Addison-
Wesley.

Dürschmid T, Trapp M, Döllner J. 2017. Towards architectural styles for Android app software
product lines. In: Proceedings of the 4th International Conference on Mobile Software Engineering
and Systems. 58–62 DOI 10.1109/MOBILESoft.2017.12.

El-Sharkawy S, Yamagishi-Eichler N, Schmid K. 2019. Metrics for analyzing variability and its
implementation in software product lines: a systematic literature review. Information and
Software Technology 106(8):1–30 DOI 10.1016/j.infsof.2018.08.015.

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 25/26

https://github.com/luka-pavlic/SPL
http://spl.informatika.uni-mb.si
https://developer.android.com/studio/build/build-variants
https://developer.android.com/studio/build/build-variants
https://www.intechopen.com/books/software-product-line-advanced-topic/handling-variability-and-traceability-over-spl-disciplines
https://www.intechopen.com/books/software-product-line-advanced-topic/handling-variability-and-traceability-over-spl-disciplines
http://dx.doi.org/10.1016/j.infsof.2020.106389
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7675
http://dx.doi.org/10.1109/MOBILESoft.2017.12
http://dx.doi.org/10.1016/j.infsof.2018.08.015
http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

Feigenspan J, Kästner C, Apel S, Liebig J, Schulze M, Dachselt R, Papendieck M, Leich T,
Saake G. 2013. Do background colors improve program comprehension in the #ifdef hell?
Empirical Software Engineering 18(4):699–745 DOI 10.1007/s10664-012-9208-x.

Gamma E, Helm R, Johnson R, Vlissides J. 1998. Design patterns: elements of reusable
object-oriented software. Boston: Addison-Wesley.

IEEE Computer Society. 2010. Standard 1044-2009: IEEE standard classification for software
anomalies. Piscataway: The Institute of Electrical and Electronics Engineers, Inc.

Marinho FG, Andrade RMC,Werner C, VianaW, Maia MEF, Rocha LS, Teixeira E, Ferreira JB,
Dantas VLL, Lima F, Aguiar S. 2013. A nested software product line for the domain of mobile
and context-aware applications. Science of Computer Programming 78(12):2381–2398
DOI 10.1016/j.scico.2012.04.009.

Muthig D, John I, Anastasopoulos M, Forster T, Doerr J, Schmid K. 2004. GoPhone—a software
product line in the mobile phone domain (Technical Report, 025.04/E). Kaiserslautern,
Fraunhofer Institut, Experimentelles Software Engineering, 2004. Available at http://publica.
fraunhofer.de/documents/N-20848.html.

Northrop LM. 2002. Sei’s software product line tenets. IEEE Software 19(4):32–40
DOI 10.1109/MS.2002.1020285.

Quinton C, Mosser S, Parra C, Duchien L. 2011. Using multiple feature models to design
applications for mobile phones. In: Proceedings of the 15th International Software Product Line
Conference. Vol. 2. New York: ACM, 8 DOI 10.1145/2019136.2019162.

Software Engineering Institute. 2020a. Carnegie Mellon University. Available at http://www.sei.
cmu.edu.

Software Engineering Institute. 2020b. Software product lines essentials. Software Engineering
Institute. Available at http://www.sei.cmu.edu/productlines.

SPLC. 2020. Systems and software product line conference. Available at https://splc.net.

Sutherland J, Schwaber K. 2014. The definitive guide to scrum: the rules of the game. Available at
http://www.scrumguides.org.

Usman M, Iqbal MZ, Khan MU. 2017. A product-line model-driven engineering approach for
generating feature-based mobile applications. Journal of Systems and Software 123:1–32
DOI 10.1016/j.jss.2016.09.049.

Pavlič et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.434 26/26

http://dx.doi.org/10.1007/s10664-012-9208-x
http://dx.doi.org/10.1016/j.scico.2012.04.009
http://publica.fraunhofer.de/documents/N-20848.html
http://publica.fraunhofer.de/documents/N-20848.html
http://dx.doi.org/10.1109/MS.2002.1020285
http://dx.doi.org/10.1145/2019136.2019162
http://www.sei.cmu.edu
http://www.sei.cmu.edu
http://www.sei.cmu.edu/productlines
https://splc.net
http://www.scrumguides.org
http://dx.doi.org/10.1016/j.jss.2016.09.049
http://dx.doi.org/10.7717/peerj-cs.434
https://peerj.com/computer-science/

	A product quality impacts of a mobile software product line: an empirical study
	Introduction
	Related work
	Research method
	Our approach towards several mobile application editions
	Results
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

