
FoBSim: an extensible open-source
simulation tool for integrated
fog-blockchain systems
Hamza Baniata and Attila Kertesz

Department of Software Engineering, University of Szeged, Szeged, Hungary

ABSTRACT
A lot of hard work and years of research are still needed for developing successful
Blockchain (BC) applications. Although it is not yet standardized, BC technology
was proven as to be an enhancement factor for security, decentralization, and
reliability, leading to be successfully implemented in cryptocurrency industries.
Fog computing (FC) is one of the recently emerged paradigms that needs to be
improved to serve Internet of Things (IoT) environments of the future. As hundreds
of projects, ideas, and systems were proposed, one can find a great R&D potential
for integrating BC and FC technologies. Examples of organizations contributing to
the R&D of these two technologies, and their integration, include Linux, IBM,
Google, Microsoft, and others. To validate an integrated Fog-Blockchain protocol or
method implementation, before the deployment phase, a suitable and accurate
simulation environment is needed. Such validation should save a great deal of
costs and efforts on researchers and companies adopting this integration. Current
available simulation environments facilitate Fog simulation, or BC simulation,
but not both. In this paper, we introduce a Fog-Blockchain simulator, namely
FoBSim, with the main goal to ease the experimentation and validation of integrated
Fog-Blockchain approaches. According to our proposed workflow of simulation, we
implement different Consensus Algorithms (CA), different deployment options of
the BC in the FC architecture, and different functionalities of the BC in the
simulation. Furthermore, technical details and algorithms on the simulated
integration are provided. We validate FoBSim by describing the technologies used
within FoBSim, highlighting FoBSim’s novelty compared to the state-of-the-art,
discussing the event validity in FoBSim, and providing a clear walk-through
validation. Finally, we simulate case studies, then present and analyze the obtained
results, where deploying the BC network in the fog layer shows enhanced efficiency in
terms of total run time and total storage cost.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Distributed and Parallel Computing
Keywords Blockchain, Fog computing, Simulation

INTRODUCTION
In light of the general tendency towards skepticism around Blockchain (BC) systems being
reliable, huge research and industrial projects are being encouraged to address issues and
vulnerabilities of those systems. This is because it is believed that a successful BC
deployment would definitely advance Internet-of-Everything (IoE) applications. Dubai,

How to cite this article Baniata H, Kertesz A. 2021. FoBSim: an extensible open-source simulation tool for integrated fog-blockchain
systems. PeerJ Comput. Sci. 7:e431 DOI 10.7717/peerj-cs.431

Submitted 31 October 2020
Accepted 15 February 2021
Published 16 April 2021

Corresponding author
Hamza Baniata,
baniatah@inf.u-szeged.hu

Academic editor
Stefan Schulte

Additional Information and
Declarations can be found on
page 35

DOI 10.7717/peerj-cs.431

Copyright
2021 Baniata and Kertesz

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.431
mailto:baniatah@�inf.�u-szeged.�hu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.431
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

for example, has planned for being the first smart city powered by BC (Smart Dubai
Department, 2020). China had launched, in late 2019, a BC-based smart city ID system
(Global Times, 2019), while it is planning to have its own official digital currency
(Smartcity Press, 2019). Before that, Liberstad, a private smart city in Norway, has officially
adopted City Coin as its official currency (https://www.liberstad.com/).

BC is a Distributed Ledger Technology (DLT) in the form of a distributed transactional
database, secured by cryptography, and governed by a consensus mechanism (Beck et al.,
2017). This technology was first introduced as the backbone of the Bitcoin ecosystem in
2009 (Bitcoin.org, 2009). As BC got high reputation and attention among research and
industry communities, as well as governments, it has proven robustness against the
disadvantages of classical centralized systems. Furthermore, different versions, uses,
paradigms, and platforms were proposed, aiming to extend the deployment of BC beyond
cash and payment purposes.

Concerning smart things, homes, and cities, Fog Computing (FC) paradigms become
reality. FC is a horizontal, physical or virtual resource paradigm that resides between
smart end-devices and traditional cloud data centers (Markakis et al., 2017). FC is
conceptually an extension of the cloud at the edge of the network. Hence, most cloud
services should be introduced by the fog layer as well, except the fog provides better latency
measures.

Different reference architectures were proposed for the FC paradigm, e.g., by Habibi
et al. (2020), Dastjerdi et al. (2016), OpenFog Consortium (2017), and Cisco (Bonomi et al.,
2014). Nevertheless, they all have the same general properties of middling between end-
users and the clouds, providing cloud services at the edge of the network, managing
mobility issues, and introducing reliable and secure communications.

We have previously investigated the integration of BC with FC in Baniata & Kertesz
(2020). Accordingly, we concluded that such integration may ease the optimization of
several current Cloud-Edge issues, such as enhancing security, credibility, and resource
efficiency. Also, decentralizing FC applications decreases the appearance of single points of
failure and the control of a centralized authority. However, we found that major challenges
still need more research efforts such as:

� The lack of individual standardization of both technologies, FC and BC, which leads to
the lack of standardization of the integration of them.

� Many privacy issues and threats remain, such as the location awareness property of fog
components, which raises some concerns.

� Ironically, as FC enhances the latency of end-user applications, BC causes the exact
opposite, if the consensus mechanisms are not properly designed. Other major
issues may also represent barriers if this latency issue was not addressed, such as
authentication, scalability, and heterogeneity problems. This is because solving the
latency problem may require waiving some advantageous protocols or mechanisms
of FC.

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 2/40

https://www.liberstad.com/
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

� The aforementioned challenges may further lead to somewhat low trust levels of the BC-
FC integration, which is the main cause of the illegalization of BC technologies in
general.

Consequently, the research and industry communities have been working hand-in-
hand to solve these major challenges, along with other technical issues. Such efforts require
reliable and flexible simulation environments that can mimic real-life scenarios with
the lowest possible costs. Old, out-dated, or somewhat close simulation tools that were
initially implemented for classical Peer-to-Peer networks, such as PeerSim (Montresor &
Jelasity, 2009), may not be able to cover all the mechanisms of a modern BC system.
Although some recently proposed systems use PeerSim, such as Petri et al. (2020), it surly
required vast amount of changes, modifications, and additions to redesign it into a BC
simulation tool.

In this paper, we propose a Fog-Blockchain simulation environment, called FoBSim,
that is able to simulate different integration scenarios of FC and BC. Concerning our main
contributions, we discuss and analyze the architectural elements of FC- and BC-based
systems, and present the modules, algorithms, and strategies implemented in FoBSim.
We also describe in detail the validation, the incentivization, and the confirmation
mechanisms deployed in the current version of FoBSim. To exemplify its utilization,
we discuss possible application scenarios of FC-BC integration, and we clarify how such
applications can be simulated and optimized using FoBSim. The abbreviations we use
within our paper are declared in Table 1, while the main properties of the current version
of FoBSim are as follows:

1. FoBSim provides different Consensus Algorithms (CA), namely Proof-of-Work (PoW),
Proof-of-Stake (PoS) and Proof-of-Authority (PoA) that are ready to be deployed in any
scenario.

2. FoBSim facilitates the deployment of BC miners in the fog or end-user layer.

3. FoBSim allows different services to be reliably provided by the BC network, namely Data
Management, Identity Management, Computational Services (through Smart Contracts
(SC)), and Payment/Currency transfer Services.

4. FoBSim provides both, parallel execution and non-parallel execution, of mining
processing. While gossiping is optionally and efficiently available so that the distributed
chain is consistent in different possible network topologies.

5. FoBSim is the first simulation environment whose primary goal is to mimic integration
scenarios of FC and BC technologies.

The remainder of the paper is organized as follows: “Related Work” presents and
discusses state-of-the-art simulation environments that are maybe suitable to simulate FC-
BC systems. To properly introduce FoBSim, we discuss, in detail, how FC architectural
elements are deployed in “FC Architectural Elements”. Additionally, we discuss the
categories of BC systems, each with its properties and components in “BC Architectural
Elements”. Accordingly, we propose the components, the algorithms, and the functions

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 3/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

of the FoBSim environment in “The Fobsim Environment”. To validate FoBSim,
we simulate some use cases and present the simulation results in “Case Studies”. Finally,
we present our future work and conclude in “Conclusions”.

RELATED WORK
Searching the literature for tools specifically implemented for simulating FC-BC
integration scenarios, we found that no previous work has directly targeted our objective.
That is, we found several simulation tools that mimic fog-enhanced cloud systems,
IoT-Fog-Cloud scenarios, etc., and several tools that mimic BC scenarios, each with
specific constraints on the used CAs. Nevertheless, some proposals for IoT-BC
simulation tools can be somewhat related to our work. For example, the ABSOLUT tool,
investigated in Kreku et al. (2017), models the deployment of BCs in IoT environments.
Accordingly, some critical analysis were provided regarding network latency, effects of
miners number on the overall efficiency of the IoT network, and simulation errors.

Liaskos, Anand & Alimohammadi (2020) proposed a general architecture that a BC
simulation needs to follow in order to be considered comprehensive. Further, some
properties were declared as necessary for encouraging the adoption and re-usability of the
simulation. The proposed architecture includes extensible connection strategies, BC nodes,
BC chains, Transactions (TXs) and Transaction pools, users, events, Blocks, and most
importantly Consensus mechanisms. Events can include different triggers to other
events—that may be performed by any entity of the network—(such as TX/block arrival,
TX/block validation, connection requests, etc.). Also, Events need to be handled by concise
and well implemented strategies.

In light of the lack of simulation tools similar to our proposal, we found it more suitable
to present this section in two separate groups: namely FC simulation tools, and BC
simulation tools.

FC simulation tools
Recently, our research group has started to investigate the state-of-the-art related to cloud,
IoT and fog simulation tools in Markus & Kertesz (2020). Within this study, several

Table 1 Description of abbreviations used within the manuscript.

Abbreviation Description Abbreviation Description

BC Blockchain PoW Proof of Work

FC Fog Computing PoS Proof of Stake

IoT Internet of Things PoET Proof of Elapsed Time

CA Consensus Algorithm PoA Proof of Authority

IoE Internet-of-Everything TTP Trusted Third Party

DLT Distributed Ledger Technology P2P Peer-to-Peer

SC Smart Contracts TX Transaction

GUI Graphical User Interface TTL Time To Live

QoB Quality of Blockchain DAG Directed Acyclic Graph

PoG Proof of Generation MT Merkle Tree

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 4/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

simulation tools were classified, compared, and analyzed, such as the DockerSim tool
(Nikdel, Gao & Neville, 2017), FogNetSim++ (Qayyum et al., 2018), and EdgeCloudSim
(Sonmez, Ozgovde & Ersoy, 2018). Furthermore, technical details, advantages,
vulnerabilities, and software quality issues were also discussed.

Rahman et al. (2019) surveyed 15 simulation tools for cloud and data centers
networks scenarios. The tools were discussed and compared according to several criteria,
such as the Graphical User Interface (GUI) availability, the language with which the
simulator was implemented, and the communications model. Consequently, they
proposed the Nutshell tool which addresses some drawbacks that were ignored by most of
the surveyed simulators. For example, most surveyed simulators had abstract network
implementation and low-level details were missing. Further, non of the studied tools
provided an addressing scheme, a congestion control mechanism, or a traffic pattern
recognition mechanism. Out of those 15 presented simulation tools, seven were defined as
extensions of the CloudSim toolkit (Calheiros et al., 2011).

Yousefpour et al. (2019) presented a complete survey about FC, referencing 450
publications specifically concerned with FC development and applications. Within their
extended survey, some FC simulation tools, such as iFogSim (Gupta et al., 2017;Naas et al.,
2018), Emufog (Mayer et al., 2017), Fogbed (Coutinho et al., 2018), and MyiFogSim
(Lopes et al., 2017) were discussed. As iFogSim was conceptually built using the CloudSim
communications model, it inherited some of its properties, such as the ability to co-execute
multiple tasks at the same time and the availability of plugable resource management
policies.

Generally speaking, any cloud simulation tool can be extended to be a fog-enabled
simulation tool. This is because of the fundamental property of the fog layer acting as a
bridge between end-users and the cloud. In other words, adding a fog module to a
cloud simulation tool, describing communications, roles, services, and parameters of
fog nodes, is sufficient to claim that the tool is a fog-enhanced cloud simulation tool.
Additionally, in a project that targets a Fog-BC integration applications, many researchers
used a reliable, general-purpose fog simulator and implemented the BC as if it was an
application case, such as in Kumar et al. (2020). The results of such simulation approach
can be trusted valid for limited cases, such as providing a proof of concept of the proposal.
However, critical issues, such as scalability and heterogeneity in huge networks, need
to be simulated in a more specialized simulation environments. To mention one critical
case, the BC protocols deployed in different CAs require more precise and accurate
deployment of the BC entities and inter-operation in different layers of a Fog-enhanced
IoT-Cloud paradigm. Consequently, as some simulation scenarios need an event-driven
implementation, while others need a data-driven implementation, a scenario’s outputs
may differ when simulated using different simulation environments. Such possibility of
fluctuated simulation outputs should normally lead to unreliable simulation results.

BC simulation tools
As we have previously investigated how a Fog-Blockchain integration is envisioned,
we started the implementation of FoBSim with a simple BC simulation tool described in

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 5/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

Baniata (2020). Consequently, we discuss the state of the art regarding BC simulation tools
available in the literature. In later sections, we describe how FoBSim serves as a reliable tool
to mimic an FC-BC integration scenario.

Anilkumar et al. (2019) have compared different available simulation platforms
specifically mimicking the Ethereum BC, namely Remix Ethereum (Ethereum, 2020),
Truffle Suite (Truffle Blockchain Group, 2020), Mist (Bahga & Madisetti, 2017), and Geth
(Bruno, 2018). The comparison includes some guidelines and properties such as the
initialization and the ease of deployment. The authors concluded that Truffle Suite is ideal
for testing and development, Remix is ideal for compilation and error detection and
correction, while Mist and Geth are relatively easy to deploy. Alharby & Van Moorsel
(2019) and Faria & Correia (2019) proposed a somewhat limited simulation tool,
namely BlockSim, implemented in Python, which specifically deploys the PoW algorithm
to mimic the Bitcoin and Ethereum systems. Similarly, Wang et al. (2018) proposed a
simulation model to evaluate what is named Quality of Blockchain (QoB). The proposed
model targets only the PoW-based systems aiming to evaluate the effect on changing
different parameters of the simulated scenarios on the QoB. For example, average block
size, number of TXs per block/day, the size of the memPool, etc. affecting the latency
measurements. Furthermore, the authors identified five main characteristics that must be
available in any BC simulation tool, namely the ability to scale through time, broadcast and
multi-cast messages through the network, be Event-Driven, so that miners can act on
received messages while working on other BC-related tasks, process messages in parallel,
and handle concurrency issues.

Gervais et al. (2016) analyzed some of the probable attacks and vulnerabilities of
PoW-based BCs through emulating the conditions in such systems. Sub-consequently,
they categorized the parameters affecting the emulation into consensus-related,
such as block distribution time, mining power, and the distribution of the miners, and
network-related parameters, such as the block size distribution, the number of reachable
network nodes, and the distribution of those nodes. They basically presented a quantitative
framework to objectively compare PoW-based BCs rather than providing a general-
purpose simulation tool.

Memon et al. (2018) simulated the mining process in PoW-based BCs using the
Queuing Theory, aiming to provide statistics on those, and similar systems. Zhao, Guo &
Chan (2020) simulated a BC system for specifically validating their proposed Proof-of-
Generation (PoG) algorithm. Hence, the implementation objective was comparing the
PoG with other CAs such as PoW and PoS. Another limited BC implementation was
proposed by Piriou & Dumas (2018), where only the blocks appending and broadcasting
aspects are considered. The tool was implemented using Python, and it aimed at
performing Monte Carlo simulations to obtain probabilistic results on consistency and the
ability to discard double-spending attacks of BC protocols. In Deshpande, Nasirifard &
Jacobsen (2018), the eVIBES simulation was presented, which is a configurable simulation
framework for gaining empirical insights into the dynamic properties of PoW-based
Ethereum BCs. However, the PoW computations are excluded in eVIBES, and the last
updates on the code were committed in 2018.

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 6/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

To highlight the comparison between the mentioned BC simulation tools and our
proposed FoBSim tool, we gathered the differences in Table 2. PL, PoW, PoS, PoA, SC,
DM, PM, IDM, and F are abbreviations for Programming Language, Proof-of-Work,
Proof-of-Stake, Proof-of-Authority, Smart Contracts, Data Management, Payment
Management, Identity Management, and Fog-enhanced, respectively. As shown in the
table, none of the previously proposed BC simulation tools makes the PoA algorithm
available for simulation scenarios, provides a suitable simulation environment for identity
management applications, or, most importantly, facilitates the integration of FC in a BC
application.

Many other references can be found in the literature, in which a part of a BC system, or
a specific mechanism is implemented. The simulated “part” is only used to analyze a
specific property in strict conditions, or to validate a proposed technique or mechanism
under named and biased circumstances, such as in Wang et al. (2020) and Raman et al.
(2019). It is also worth mentioning here that some open-source BC projects are available
and can be used to simulate BC scenarios. For example, the HyperLedger (The Linux
Foundation, 2020) projects administered by the Linux Foundation are highly sophisticated
and well-implemented BC systems. One can locally clone any project that suits the
application needs and construct a local network. However, those projects are not targeting
the simulation purposes as much as providing realized BC services for the industrial
projects. Additionally, most of these projects, such as Indy, are hard to re-configure and,
if re-configured, very sensitive to small changes in their code. Indy, for example, uses
specifically a modified version of PBFT CA, namely Plenum, while Fabric uses RAFT.

FC ARCHITECTURAL ELEMENTS
The FC layer can be studied in three levels, namely the node level, the system level, and the
service level (Farhadi et al., 2020). The fog consists of several nodes connected to each
other and to the cloud. The main purpose of the fog layer is to provide cloud services, when
possible, closer to end-users. Further, the fog layer, conceptually, provides enhanced
security and latency measures. Hence, an FC system uses its components in the fog layer to
provide the services that end-users request from the cloud.

In a simple scenario, the fog receives a service request from end-users, performs the
required tasks in the most efficient method available, and sends the results back to

Table 2 Blockchain simulation tools and their properties.

Refs. PL PoW PoS PoA SC DM PM IDM F

Alharby & Van Moorsel (2019) and
Faria & Correia (2019)

Python ✓ χ χ ✓ χ ✓ χ χ

Wang et al. (2018) Python ✓ χ χ χ χ ✓ χ χ

Memon et al. (2018) Java ✓ χ χ ✓ χ χ χ χ

Zhao, Guo & Chan (2020) Python ✓ ✓ χ χ ✓ χ χ χ

Piriou & Dumas (2018) Python χ χ χ χ χ ✓ χ χ

Deshpande, Nasirifard & Jacobsen (2018) Java ✓ χ χ ✓ χ ✓ χ χ

FoBSim Python ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 7/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

end-users. As the clouds mainly provide Infrastructure, Software, and Platform-as-a-
Service models, those three models can be used for computational tasks, storage tasks, or
communication tasks (Maes et al., 2018).

For a fog-enhanced cloud system, a general overview of the workflow is presented in
Fig. 1. As presented in the figure, the service is requested from end-users and the fog layer
provides this service if possible, otherwise, the request is forwarded to the cloud where
complex and time consuming actions are performed. However, information of the
complexity of the system, and the decision making process in the fog layer, should not be
within the concern of end-users. That is, end-users require their tasks to be performed
within a privacy-aware context and the QoS measures implications that were agreed on.

In FoBSim, the fog layer can be configured according to the scenario that needs to
be simulated. For example, the number of fog nodes, the communications within the fog
layer and with other entities of the simulated system, and the services provided by the fog,
can all be modified.

BC ARCHITECTURAL ELEMENTS
BC is a DLT that consists of several elements which need to efficiently interact with
each other, in order to achieve the goal of the system. A general view of BC systems
suggests some fundamental components that need to be present in any BC system.
A BC system implies end-users who request certain types of services from a BC network.
The BC network consists of multiple nodes, who do not trust each other, that perform
the requested services in a decentralized environment. Consequently, the service provided
by a BC network can only be valid if the BC network deployed a trusted method, i.e., CAs,
to validate the services provided by its untrusted entities.

In FoBSim, the BC network can provide two models of services; namely data storage,
and computations. Meanwhile, the communications within the BC network and with the

Figure 1 Workflow of an automated fog-enhanced cloud system.
Full-size DOI: 10.7717/peerj-cs.431/fig-1

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 8/40

http://dx.doi.org/10.7717/peerj-cs.431/fig-1
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

fog layer are configurable. Data storage service model implies that pieces of data are saved
on the immutable distributed ledger. Such data may be of any type including data
records, IDs, digital payment registration, or reputation measures of end-users or fog
components. It can also be noted that some applications require assets to be transferred
between clients, such as cryptocurrency transfer applications or real estate ownership
applications. Other applications do not require transferring assets rather than saving data
on the chain only, such as voting applications and eHealth applications. However, the
mentioned second type of applications may also need, on some level, a digital payment
method be embedded. In such cases, SCs on other payment platforms can be implemented
and generated, such as Bitcoin or Ethereum.

Performing computations for end-users is the second service model that the BC in
FoBSim can be configured to provide. That is, computational tasks can be sent by end-
users/fog entities to the BC in the form of SC, which are small chunks of code, run by BC
nodes upon fulfillment of algorithmically verifiable conditions (Coladangelo & Sattath,
2020). After running the SCs, the results can be saved in a centralized or decentralized form
according to the pre-run configuration. Figure 2 presents how the services, classically
provided by a cloud/fog system, can be interpreted into the form of services that can
be provided by a BC system. We can notice in the figure that SCs can be considered
relevant to cloud computational services, while different types of data saved on the
decentralized BC can be considered a relevant option to the centralized storage model
provided by a cloud system.

Consensus algorithms
Several approaches were proposed as a solution for the aforementioned needs, among
which are the most famous PoW CA. PoW was deployed in 2009 in the first BC system, i.
e., Bitcoin (Nakamoto, 2019), and is currently used in other robust BC systems; such as
Ethereum (Vujičic, Jagodić & Ranđić, 2018). Although PoW methods have proven strong
security and support to BC systems, they have some drawbacks, such as high energy
consumption and high latency, that encouraged the R&D communities to search for other
trusted methods.

Figure 2 Service models provided by cloud/fog systems, and their relevant service models provided
by BC systems. Full-size DOI: 10.7717/peerj-cs.431/fig-2

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 9/40

http://dx.doi.org/10.7717/peerj-cs.431/fig-2
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

The PoS algorithm (King & Nadal, 2012) was proposed a couple of years later in order
to solve the high energy consumption problem implied by PoW. PoS is currently being
optimized to provide similar advantages as PoW. Ethereum, for example, is planning
to substitute PoW with PoS in the very near future. However, some drawbacks of PoS
need to be solved before its official deployment, such as The Monopoly Problem
(Larimer, 2013), The Bribe Attack (Bentov, Gabizon & Mizrahi, 2016; Deirmentzoglou,
Papakyriakopoulos & Patsakis, 2019), and relatively low reliability (Zhang & Chan, 2020).

In PoW-based BCs, a BC node proves the validity of its generated block of data by
coupling a puzzle solution within the block. The puzzle solution is generally characterized
by hardship to be obtained while it can easily be validated once found. Generally, the
puzzle is a mathematical problem that requires high computational power to be obtained.
In PoS-based BCs, the BC node that is allowed to generate the next block is chosen
randomly by the system. To encourage the system to pick a specific BC node, staking
more digital coins in deposit shall increase the probability of being chosen. This provides
high trust measures as faulty generated blocks are not tolerated by the system, and the
staked coins of the malicious/faulty BC node would be burned as a penalty.

Other approaches were proposed that provide trust in BCs. Examples include the PoET
(Buntinx, 2017), and the PoA (Avasthi & Saxena, 2018). PoET-based BCs generate
randomly selected times for BC nodes. The one node whose randomly picked time elapses
first, is the one who is granted the opportunity to generate the next block. PoA, on the
other hand, implies that only blocks signed by authorized members are validated and
confirmed by the BC network. Those authorized nodes must be known trusted participants
that can be tracked and penalized in case of faulty behavior. Both of these CAs share the
property of being suitable for private and permissioned BCs, while PoW and PoS are
known for being suitable for public and permissionless BCs.

FoBSim allows to choose the suitable CA according to the simulated scenario. While
there are many versions of each CA mentioned, we currently provide the simplest version
of each so that modifications can be performed with no complexities. To obtain more
information about them, more details can be found at Sheikh (2018), Singh et al. (2019),
and Chen et al. (2017).

Transactions
In a very simple scenario, an end-user sends a request to the BC network, which consists of
BC nodes, to perform a defined TX. As stated at the beginning of this section, TXs may be
data to be stored (i.e., payment data, reputation data, identity data, etc.), or can be SCs
whose results can be either saved in a centralized (in the case of Cloud) or distributed
manner (in the cases of fog or BC). Once the TX is performed, it should be agreed on by the
majority of BC nodes if to be saved on the distributed ledger and, sub-consequently, be
added to the chain saved in all BC nodes.

On the other hand, if the fog layer is controlling and automating the communications
between the end-user layer and the BC network, as in Baniata & Kertész (2020), the
TXs are sent from end-users to the fog. After that, some communication takes place

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 10/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

between the fog layer and the BC network in order to successfully perform the tasks
requested by end-users. In such system model, we assume that the BC network lays in a
different layer than the fog layer. The case where the BC network is placed in the fog layer
is covered in “Functionality of the BC Deployment”. Nevertheless, a feedback with the
appropriate result of each TX should be easily achievable by end-users.

Distributed ledger
In the case were data needs to be stored in a decentralized manner, no Trusted Third Party
(TTP) needs to be included in the storing process. The entity considered as a TTP in
regular fog-enhanced cloud systems is the cloud, where data is stored. However,
computations can take place in the fog layer to enhance the QoS.

Within DLT-enabled systems, such as BC, groups of data are accumulated in blocks,
and coupled with a proof of validity, as explained in “Consensus Algorithms”. Once a
new block of TXs is generated, and the proof is coupled with them, the new block is
broadcast among all BC nodes. Nodes who receive the new blocks verify the proof and
the data within each TX, and if everything is confirmed valid, the new block is added to
the local chain. With each BC node behaving this way, the new block is added to the
chain in a distributed manner. That is, a copy of the same chain, with the same exact
order of blocks, exists in each BC node. Further, a hash of the previous block is added to
the new block, so that any alteration attack of this block in the future will be impractical,
and hence almost impossible.

Functionality of the BC deployment
As a BC-assisted FC system can provide computational and storage services, the BC
placement within the FC architecture may differ. That is, BC can be placed in the fog layer,
the end-user layer, or the cloud layer. In FoBSim, however, we consider only the first two
mentioned placement cases.

When the BC is deployed in the fog layer, storage and computational services are
performed by the fog nodes themselves. In other words, fog nodes wear a second hat,
which is a BC network hat. Thus, when storage to be provided by the fog while fog nodes
are also BC nodes, data is stored in all fog nodes in the fog layer. A simple system
model is demonstrated in Fig. 3A, where only one chain is constructed in the lower
fog layer and one fog control point in the upper layer monitors the BC functionality.
However, such a model is not practical and more complexities appear in a real-life
scenario, including heterogeneous fog nodes, multiple BC deployments, different CAs, and
different service models. In such complex systems, FoBSim can be easily extended by
adding the needed classes and modules and, hence, cover necessary proposed scenario
entities. A note is worth underlining here is the importance of differentiating between the
services provided by fog nodes which are BC nodes, and the services provided by fog nodes
which are not BC nodes. The first type gets incentivized by end-users for providing both
fog services and BC services, while the second type gets incentivized by end-users for
providing only fog services. Such critical issues need to be taken care of, when simulating
Fog-BC scenarios, to maximize the reliability of the obtained results.

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 11/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

In a system model where the BC is deployed in the end-user layer, we can distinguish
two types of end-users; namely task requester and BC node. In a fog-enhanced BC system,
the fog controls the communication between the two types of end-users. Specifically,
BC nodes perform the tasks that were sent to the BC network by the fog, which originally
were requested by task requester end-users. Further, the fog can control the privacy
preservation of data and incentivize BC nodes in the form of digital currency, as in
Baniata, Anaqreh & Kertesz (2021). To be specific, BC nodes can be further sub-
categorized according to the scenario to be simulated. Adding other types of BC nodes is
up to the developers and the system model. For example, the Bitcoin system is modeled in
a simpler way, where BC is directly connected to task requester end-users, and it only
provides a payment ledger service. Ethereum, on the other hand, provides computational
and data management services. This makes Ethereum surpass Bitcoin because it can
provide more services to end-users. FoBSim improves both system models by optionally
adding the fog layer. The system model provided by FoBSim when the BC is deployed in
the end-user layer is demonstrated in Fig. 3B.

THE FOBSIM ENVIRONMENT
To cover all architectural elements described in “FC Architectural Elements” and “BC
Architectural Elements”, we implemented FoBSim according to the conceptual workflow
demonstrated in Fig. 4. The current version of FoBSim covers all the architectural elements
of a BC system and an FC system. This means that FoBSim successfully inlines with
the general architecture of a reliable BC simulation presented in Liaskos, Anand &
Alimohammadi (2020). In fact, many more services and scenarios can be simulated using
FoBSim, covering the fog layer inclusion besides the BC. As presented in Fig. 4, different
CAs can be used, different services of the BC network can be declared, and different
placement scenarios of the BC network can be chosen. When the BC network is located in
the fog layer, the number of BC nodes does not need to be input because, as described
earlier, each fog node is also a BC node. Nevertheless, the number of task requester end-

Figure 3 FC-BC integration system model, where (A) the BC is deployed in the fog layer, and (B) the BC is deployed in the end-user layer.
Full-size DOI: 10.7717/peerj-cs.431/fig-3

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 12/40

http://dx.doi.org/10.7717/peerj-cs.431/fig-3
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

users connected to each fog node needs to be input, while some fog nodes in a PoA-based
scenario might not be authorized to mint new blocks. Once the network is built, running
and testing the system model can take place.

The FoBSim environment is implemented using Python v3.8, with the inclusion of some
common packages such as: random, randrange, multiprocessing, time, and hashlib.
The current version of FoBSim can be cloned and directly run as all the variables, lists,
dictionaries, and sets have been given initial values. However, these parameters can be
modified before running the code in the Sim_parameters.json file. FoBSim tool is open-
source and freely available at Baniata & Kertesz (2020).

FoBSim modules
To facilitate the understanding of FoBSim, we demonstrate the methods within each
FoBSim module in Fig. 5. Further, we show the classes and methods of FoBSim modules

Figure 4 Workflow of a simulation run using the FoBSim environment.
Full-size DOI: 10.7717/peerj-cs.431/fig-4

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 13/40

http://dx.doi.org/10.7717/peerj-cs.431/fig-4
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

in tables of the Supplemental Material for this paper. Some notes to be taken care of need
to be underlined as well:

1. There is a big opportunity for developers to implement new methods in the fog
layer. For example, the fog nodes can be extensible to provide privacy-preserving
mechanisms (such as described in Baniata, Almobaideen & Kertesz (2020)),
computational services (such as described in Fröhlich, Gelenbe & Nowak (2020)), or
reputation and trust management services (such as described in Debe et al. (2019)).

Figure 5 The interaction among modules and methods of the FoBSim environment.
Full-size DOI: 10.7717/peerj-cs.431/fig-5

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 14/40

http://dx.doi.org/10.7717/peerj-cs.431#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.431/fig-5
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

2. memPool.py: In this module, the mempool, where TXs are accumulated, is a Python
multiprocessing queue that allows different processes to synchronously add() and get()
TXs.

3. There are other minor methods from other modules also called by FoBSim entities that
mint a new Block, or receive a new TX/Block, in order to synchronously and smoothly
apply each different CA’s policies, as declared in its simple version.

4. After each simulation run, some temporary files can be found in the temporary folder of
FoBSim. These files are originally initiated by the main module, the BC module, or
the miner module. The temporary files are used synchronously by different FoBSim
entities, mimicking the real-world interaction between BC entities. The current version
of FoBSim generates some or all of the following files depending on the simulated
scenario:

� Miners’ local chains.

� Miners’ local records of users’ wallets.

� Log of blocks confirmed by the majority of miners.

� Log of final amounts in miners’ wallets (initial values − staked values + awards).

� Log of coin amounts which were staked by miners.

� The longest confirmed chain.

� Forking log

Genesis block generation
The first block added to the chain in each simulation run is the most important block
of the chain. Different scenarios imply different formats of this block, and different
methods to broadcast it among, and be accepted by, miner nodes. In the current version of
FoBSim, however, a genesis block is initiated with a list of TXs containing only the
string “genesis_block” and the labels of the miners available when this block was generated.
The block number is 0, the nonce is 0, the generator_id is “The Network”, the previous
hash is 0, and the hash is generated using the hashing_function in the blockchain.py
module. The timestamp of the genesis block indicates when the chain was launched, hence
all blocks shall have bigger timestamp values than the genesis timestamp. Figure 1 of the
Supplemental Material of this paper shows a standard FoBSim genesis block, generated in
a BC network that consists of two miner nodes.

FoBSim consensus algorithms
Currently, there are three available CAs ready to be used in different simulation scenarios.
Next, we describe each one individually as to facilitate any modifications by developers.
However, we need to indicate that the three included CAs are in their simplest versions
and may require some individual modification in case of the need of more sophisticated
ones. Before delving into the CAs, however, we need to discuss the Gossip protocol in
FoBSim, as it is deployed regardless of what CA is chosen.

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 15/40

http://dx.doi.org/10.7717/peerj-cs.431#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

Gossip protocol
A Gossip Protocol (Blywis et al., 2011) is usually deployed in P2P systems for maintaining
the consistency of distributed data saved in decentralized networks. Specifically in BC
systems, miner nodes regularly, yet randomly, gossip to their neighbors about their current
version of the chain, aiming to reach consensus finality as soon as possible. According to
specific characteristics of the BC, the locally saved chains are updated so that all confirmed
chains are equivalent at any given moment (He, Cui & Jiang, 2019). The equivalency that
any BC system is seeking is defined by the contents similarity of the chains (i.e., TXs,
hashes, etc.), and the order similarity of the confirmed blocks. That is, a chain [b1, b2, b3] is
not equivalent to [b1, b3, b2] despite the fact that both have similar contents.

Gossiping protocols are usually fault tolerant as many failing nodes do not affect
the protocol. Furthermore, they can adapt to the dynamics of the network, so some
solutions have been proposed in the literature for nodes joining and leaving the network.
However, gossiping is an iterative method that never quits as long as the network is up,
and it may take time to converge. Additionally, a high level of communication costs is
expected for gossiping, while randomly chosen neighbors are informed about updates.
Thus, one cannot provide precise analysis about the time needed for the network
agreement on a piece of data.

Although the implementation of such protocol is relatively simple, it is differently
implemented in different systems. Some famous examples of efficient gossiping protocols
include the Push-Sum protocol (Kempe, Dobra & Gehrke, 2003), the Push-Flow algorithm
(Gansterer et al., 2013), and different versions of the Push-Pull averaging protocol
(Gabor & Jelasity, 2018). Furthermore, we found that its application in FoBSim is useful,
when the PoW CA is used in a multiprocessing scenario, with a relatively low puzzle
difficulty. Additionally, it can be easily noted that the number of simulated TXs/blocks and
the initial TX per block configuration affect the speed of the system to reach consensus
finality. That is, for low numbers of TXs, blocks, and low ratios of TXs per block, miners
might not have the required time to converge locally saved chains. Accordingly, final
versions of local chains in some FoBSim simulations, under such circumstances, may
not coincide, which is normal and expected as described in Fan et al. (2020). Nevertheless,
we deployed a simple Push-Pull Gossip version in FoBSim that works perfectly fine,
so that modifications can be easily conducted if needed. In the current version of FoBSim,
a Time To Live (TTL) parameter was not added to the Pull requests when gossiping.
This, as expected, floods the network with Pull and Push requests each time a node wants
to gossip. Nevertheless, we faced no problem whatsoever when the network consisted of up
to 1,500 miners. If more miners need to be deployed in the simulation scenario, where
gossiping is activated, we recommend either configuring the gossiping requests to have a
TTL (i.e., a number of hops the requests perform before they are terminated), and/or
decreasing the number of neighbors the gossiping node is sending the gossip request to.
That is, instead of gossiping with all neighbors, a miner can randomly choose a neighbor to
gossip with. Consequently, each neighbor will gossip with a randomly chosen neighbor
of his, etc. More details on such implementation approach can be found in Lan et al.

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 16/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

(2003), while detailed analysis regarding the success rate of gossiping, with a given TTL in a
given P2P network, can be found in Bisnik & Abouzeid (2007).

Algorithm 1 describes how the Pull-request in the default Gossip protocol of the current
version of FoBSim works. If the gossiping property was set to true, Each miner runs
this algorithm each time the Gossip() function is called for that miner (as a default, the
Gossip function is called each time a miner is triggered to build a new block and when
a new block is received). As demonstrated in the algorithm, a default FoBSim miner
requests information about the longest chain, and adopts it if its contents were agreed
on by the majority of the network, which is a condition tested using Algorithm 2.
Additionally, if a miner receives a new valid block, and the resulting local chain was longer
than the global chain, the miner updates the global chain instantly, which represent the
Push request of the Gossip protocol in FoBSim.

In big BC networks, the mentioned issues need to be carefully designed, so that the
consistency of the distributed ledger by the end of the simulation run is guaranteed, while
the efficiency of the algorithm is optimized.

The proof of work
In a simplified scenario of a PoW-based BC, miners collect TXs from the mempool
(which is a shared queue in FoBSim) and accumulate them in blocks that they mint.
Specifically, all available miners compete to produce the next block that will be added to the
chain. The fastest miner producing the next block is the miner whose block is accepted by
all other miners of the BC. Synchronously, all blocks that are being minted by other
miners are withdrawn, and all TXs within are sent back to the mempool. To mimic this

Algorithm 1 The default Gossip protocol in FoBSim.

Result: Confirmed Local_chain in μg

initialization: Self(miner μg);

confirmed_chain = self.local_chain;

temporary_global_chain = longest_chain;

Condition_1 = len(temporary_global_chain) > len(confirmed_chain);

Condition_2 =blocks in temporary_global_chain are confirmed by network majority;

if Condition_1 AND Condition_2 then

confirmed_chain = temporary_global_chain;

self.local_chain = confirmed_chain;

self.top_block = confirmed_chain[str(len(confirmed_chain)-1)];

if BC_function is Payment then

self.log_users_wallets = confirmed_chain_from.log_users_wallets

end

end

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 17/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

scenario in FoBSim, we needed to deploy the multiprocessing package of Python and
trigger all miners to work together on the next block.

Each miner then works within an isolated core of the device on which the simulation is
conducted. Using this approach is doable and explainable in simple scenarios, where each
process needs to access one or few shared objects. However, we found it challenging to
mimic complex scenarios, where huge number of processes require accessing the same
shared lists. For example, when the BC functionality is payment, the BC is deployed in the
fog layer, and the CA is PoS, the wallets of end-users, fog nodes, and mining nodes need to
be all global for read and update by all processes. We also experimented the Python
package: multiprocessing.shared_memory, which partially solved the problem as multi
processes can read and update values in a Shareable List object. However, as declared in the
official Python documentation (The Python Software Foundation, 2020), the Shareable List
object lacks the dynamicity required in terms of length and slicing. According to the
mentioned insights, we implemented two approaches for PoWmining in FoBSim, the first
starts all miners in parallel (using the multiprocessing package), while the second
consequentially calls for miners to mint new blocks (using a FOR loop). Both approaches
are available in the miners_trigger() function in the main.py module, and developers
are free to use either. We do encourage developers, however, to be cautious and
carefully test their results when using the parallel processing approach, as each different
scenario may require different access management scheme to different FoBSim entities.
Hence, a complex scenario simulation may require some modifications to some variables
and lists so that they become shareable by all processes in different modules. Detailed
instructions for implementing different memory-sharing scenarios can be found in the
Python official documentation (The Python Software Foundation, 2020).

When a miner receives a new block, it checks whether the hash of the block (in which
the nonce or the puzzle solution is included) is in line with the acceptance condition

Algorithm 2 The default chain confirmation function in FoBSim.

Result: bool chain_is_confirmed

Passed parameters: Chain C, network size;

initialization: chain_is_confirmed = True;

block_confirmation_log = blockchain.confirmation_log;

Condition_1 = not (C[block][’hash’] in block_confirmation_log);

Condition_2 = block_confirmation_log[chain[block][’hash’]][’votes’] <= (network size / 2);

for block in C do

if Condition_1 OR Condition_2 then

chain_is_confirmed = False;

break

end

end

return chain_is_confirmed

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 18/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

enforced by the blockchain.py module. Further, the receiver miner checks whether
sender end-users have sufficient amounts of digital coins to perform the TXs (in the case
of payment functionality). Unlike PoS and PoA, all miners work at the same time for
achieving the next block. Hence, any miner is authorized to produce a block and there is no
miner verification required. Algorithm 3 presents how PoW is implemented in FoBSim.

The proof of stake
In a simplified version of PoS, miners stake different amounts of digital coins (which they
temporarily are not allowed to claim) in the BC network. The network then randomly
chooses a miner to mint the next block, with higher probability to be chosen for miners
who stake more coins. Once a miner is chosen, it is the only one authorized to mint

Algorithm 3 The default PoW mining algorithm in FoBSim miner.

Result: New block β confirmation

initialization Self(miner μg);

Collect TXs from memPool;

Gossip();

if BC_function is Payment then

validate collected TXs

else

if BC_function is Computational Services then

eval(TXs);

add the evaluation results to TXs

end

Accumulate TXs in a new BC block β;

Find the puzzle solution of β (nonce);

Broadcast β to neighbors;

end

if New block β is received then

Gossip();

if β nonce is correct then

if BC_function is Payment then

validate and confirm TXs in β

end

add block β to the local chain;

Broadcast β to neighbors;

report a successful block addition [β, μg]

end

end

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 19/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

and broadcast the next block. In case of faulty TXs/blocks, the minter loses its staked coins
as a penalty, while in case of correct blocks, the minter is awarded some digital coins.

To mimic this in FoBSim, each miner is initiated with a specific amount of coins in its
wallet. After that, a randomly generated number of coins (up to the amount of coins in its
wallet) is staked by each miner. This way, every miner has a different probability to be
chosen by the network. Next, the network randomly chooses, say 10% of the available,
miners and picks the one with the highest stake. This chosen miner’s address is
immediately broadcast to all miners so that any block received from any other miner is
rejected. Once the new block is received, it is validated and added to the local chain.
Algorithm 4 presents how PoS is implemented in FoBSim.

Here, a very wide space is available for implementing reputation management schemes
in FoBSim. Different scenarios and different applications require different parameters
affecting entities’ reputation. Further, adding other types of miners, end-users, or even fogs
implies that different DBs can be suggested.

It is also worth mentioning here that we found it unnecessary to use the multiprocessing
package because only one miner is working on the next block. Hence, no competition is
implied in the PoS scenario.

The proof of authority
In a simplified version of the PoA algorithm. only authorized network entities (by the
network administrators) are illegible to mint new blocks. Regardless of the BC
functionality, there is also no need to deploy the multiprocessing package for PoA-based
scenarios as there is no competition as in PoS-based scenarios.

To mimic the PoA in FoBSim, we allow the user to declare which entities are authorized
to mint new blocks. The declaration requested from the user appears in the case of BC
deployment in the fog or end-user layer. That is, each fog node is administering a group
of end-users, and providing communications (and probably computations) services to
them. However, it is not necessary for each fog node in the fog layer to be a BC node
as well, but it should be there as only a fog node. Authorized fog nodes then are wearing
both hats, fog nodes and BC miners. When the BC is deployed in the end-user layer,
authorized miners are responsible for minting new blocks and maintaining the distributed
ledger. Meanwhile, unauthorized miners are only responsible for validating new blocks,
received from their neighbors, and for maintaining the distributed ledger.

This approach allows for comfortably emulating a scenario where the BC in the fog
layer and part of the fogs are included in the BC functionality. Notice that a fog node that is
also a BC node performs all the required tasks in logical isolation. This means that a
fog node that is administering a group of end-users has a buffer to save the end-users TXs,
but it does not use these TXs to mint a new block. Rather, it sends these TXs to the
mempool as required, and then, only if it was authorized, it collects TXs from the
mempool. Notice also, that the mempool is a simple queue in FoBSim, yet it can be
implemented for some scenarios to be a priority queue. Our implementation of isolating
the services provided by a fog node that is also a BC miner facilitates the simulation of
scenarios where TXs need to be processed according to their priority. For example, miner

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 20/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

Algorithm 4 The default PoS mining algorithm in FoBSim.

Result: Confirmed new block β

initialization miners μ[0,1,…n], miners.wallets, stake random no. of coins from each miner.;

The Network:;

while mempool.qsize() > 0 do

Randomly choose a predefined no. of miners;

Choose the miner with the highest Stake value;

Inform all miners of the ID of the next block generator μg;

end

The Miner:;

if a new ID μg is received from the Network then

if MyAddress == μg then

Collect TXs from memPool;

if BC_function is Payment then

validate collected TXs

else

if BC_function is Computational Services then

eval(TXs);

add the evaluation results to TXs

end

end

Accumulate TXs in a new BC block β;

Broadcast β;

else

wait for a new block from μg;

if b is received then

if μg == β.generator then

if BC function is Payment then

validate and confirm TXs in β

end

add block β to the local chain;

broadcast β to neighbors;

report a successful block addition [β, μg]

end

end

end

end

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 21/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

nodes in Ethereum usually choose the SCs with the highest Gas/award provided by
end-users. This is a type of prioritizing that can be simulated in FoBSim. Similarly, in
Bitcoin, a priority value is computed for each TX according to Eq. (1), and TXs with higher
fees and higher priority values are processed faster (Narayanan et al., 2016). The default
PoA algorithm implemented in FoBSim is clarified in Algorithm 5.

Priority ¼
P

inputAge � inputValue
TXsize

(1)

Transaction/block validation in FoBSim
Here, we need to underline some differences between the terms verification, validation,
and confirmation, and we need to see how FoBSim differentiates between those terms
in different scenarios. As we have touched on these differences in Baniata & Kertész
(2020), we need to accurately define each of these terms in order to correctly describe how
FoBSim works.

Validation is the process when a miner (either a minter or receiver) checks the
correctness of a claim. That is, in the case of a minter miner, the puzzle solution (or nonce)
provided with the minted block needs to be correct before the block is broadcast. If the
nonce was valid, the block is broadcast, otherwise, a new solution is searched for.
While in the case of a receiver miner, the nonce is checked once. If in this later case the
solution was valid, the block is accepted, otherwise, the block is rejected.

In the case of payment functionality, the validity of TXs fetched from the mempool is
tested. This means that the amount of coins in the wallet of the sender of each TX, in
the payment functionality, is compared to the amount to be transferred. If the wallet
contains less than the transferred amount, the TX is withdrawn from the block. Later when
the new block is received by a miner, the same hash validation and TXs validation take
place, except if one of the TXs were invalid, the whole block is rejected. In the case of a
block rejection, the minter miner is usually reported in a reputation-aware context.
If all the contents of a newly received block are valid (i.e., the hash, the TXs, the wallets, the
block number, and the nonce) the block is added to the locally saved chain. Here, we can
say that TXs are confirmed, because the block is added to the chain (i.e. the block is
confirmed).

The verification, on the other hand, is the process of verifying the identity of an
entity. For example, in the case of PoA, only authorized miners are allowed to mint new
blocks. Similarly, in the case of PoS, a received block should be generated by a miner that
all other miners expect to receive the new block from. Additionally, public information
about end-users’ wallets need to be accessible by miners to validate their TXs. Thus, a
received block, with some TXs generated by end-users who do not have wallets, or
whose wallets contents are not readable by miners, can not be validated and confirmed.
Failing to confirm a TX is not necessarily caused by end-users not having sufficient coins to
transfer, but may also happen for end-users who can not be verified.

All of these critical principles are, by default, taken care of in FoBSim. All miners
are informed about the end-users public identities and wallets’ contents. After that,

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 22/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

transferred coins are updated locally in each miner. Consequently, a new TX from the
same end-user will be compared to the updated amount of coins in its wallet. Invalid TXs
are not included in the block being minted, while invalid TXs cause the rejection of the

Algorithm 5 The default PoA mining algorithm in FoBSim.

Result: Confirmed new block β

initialization Fog nodes Ψ[0,1,…n];

if BC placement is Fog Layer then

User Input(“address of authorized fog nodes”)

else

Input(“address of authorized miners”)

end

save authorized miners μ[0,1,…n] in Miners_List;

The Miner:;

while mempool.qsize() > 0 do

if self.address ∈ μlist then

collect TXs from memPool;

if BC function is Payment then

validate collected TXs

else

if BC function is Computational Services then

eval(TXs);

add the evaluation results to TXs

end

end

accumulate TXs in a new BC block β;

broadcast β to neighbors;

end

end

if β is received then

if μg ∈ μlist then

if BC function is Payment then

validate and confirm TXs in β

end

add block β to the local chain;

broadcast β to neighbors;

report a successful block addition [β, μg]

end

end

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 23/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

whole received block. Once a block’s contents are validated, and the TXs/block generators
are verified, the TXs are confirmed, the locally saved wallets amounts are updated, and
the block is locally confirmed and added to the chain. The most interesting thing is that the
very small probability of a double spend attack (Karame, Androulaki & Capkun, 2012)
which can appear in PoW-based scenarios, can be easily simulated in FoBSim. All
processes are actually happening during each simulation run, rather than substituting
them with a small delay as in most BC simulation tools we checked. Hence, validation,
verification, and confirmation processes can be modified according to the scenario to
be simulated. Nevertheless, Bitcoin decreases the double spend attack probability by
regularly raising the difficulty of the puzzle, which is a property that can be modified in
FoBSim as well. To facilitate the simulation of such critical scenarios, we deployed two
broadcasting approaches for newly minted blocks. The first allows the broadcast process
using a simple FOR loop, where miners sequentially validate and confirm new blocks.
The second allows the broadcast process using the multiprocessing package, which
allows all miners to receive and process new blocks at the same time. Relatively, developers
need to be cautious when using the second approach, because of some critical challenges
similar to those mentioned in “The Proof of Work”.

Awarding winning miners
Generally speaking, BC miners get rewarded by two system entities for providing the BC
service (i.e., BC functionality). The first is the end-user who generated the TX, who pays a
small fee once the TX is confirmed (e.g., Gas in Ethereum). The second is the BC network
itself (i.e., all miner nodes), which updates the winning miner’s wallet once a new block
(minted by the winning miner) is confirmed. We can notice here how important it is to
clarify the difference between validation, verification, and confirmation. That is, a miner is
verified by its public label and public wallet key/address (ID). Then, a miner being
authorized to mint a new block is validated (claim). Finally, a miner is awarded for minting
a conformable block (miner’s wallet is updated).

In FoBSim, we implemented the second mechanism, where miners get rewarded for
their services by the network. We assume this part is hard because it, also, needs to be
agreed on by the majority of BC miners (i.e., at least 51%), and it requires the condition
that they confirm the block. The default implementation of FoBSim does that. For the first
incentivization mechanism, we thought that it is not applicable in many different
scenarios, hence we left it for the developers to add it if needed. For example, to allow
end-users to provide fees for getting tasks in the BC, one field can be added to generated
TXs, containing the amount of fees the end-user is willing to pay for the service.
Once a miner picks a TX (mostly, TXs with higher fees are faster to be picked and
processed by miners) and the block containing the TX is confirmed, all miners add the
TX fees to the winning miner’s wallet. Figure 2A of the Supplemental Material presents
a screenshot of FoBSim output, concluding that a new block was received fromMiner_2 by
Miner_3, and that the BC module just obtained the needed confirmations to consider
the new block confirmed by the whole BC network. Thus, the minter is awarded. Later, the
receiver miner presents its updated local chain according to the successful network

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 24/40

http://dx.doi.org/10.7717/peerj-cs.431#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

confirmation. On the other hand, Figure 2B of the Supplemental Material presents a
screenshot of the miner_wallets_log after a simulation run, where the PoA CA was used
and all miners, except for Miner_5, were authorized to mint new blocks (initial wallet value
was 1,000).

Strategies in FoBSim
As had been discussed so far, there are some default strategies used by FoBSim entities
throughout each simulation run. To mention some, TXs are picked by miners with no
preference, e.g., the highest Gas or priority. Also, a default chain is a single linear chain and
new blocks are added to the top of this chain. Some applications, however, have multiple
chains or multi-dimentional chains, e.g., Directed Acyclic Graph (DAG) based chains.
Additionally, if two blocks appear in the network, the block that was accepted by the
majority of miners is confirmed rather than, in some BC systems, the older one is
confirmed even if it was confirmed by the minority. Further, a valid block is immediately
announced, once found, into the FoBSim network, while in some applications, there might
be a conditional delay. For instance, if a selfish mining attack scenario is to be simulated,
miners would prefer to keep their newly found blocks secret, hoping they will find the next
block as well (Negy, Rizun & Sirer, 2020).

The current version of FoBSim supposes that the data flows from end-users to the
fog, and from the fog to the BC network. However, there are other possible data flow
schemes that can be simulated, as depicted in Fig. 6. For example, the BC in the current
version provides DLT services to end-users, which are communicating with the BC
through the fog layer, while services might be provided by the fog layer to the BC network
or from the BC network to the fogs in some applications. Further, an application
where end-users may need to request data directly from the BC might be possible,
which implies different data flow scheme as well. FoBSim facilitates the modification of the
data flow in the simulated application, and presents an extra Cloud module that can add
more possibilities to the application.

Network connectivity characteristics are a major and critical concern in any BC system.
To facilitate network architects job, FoBSim allows to define the number of nodes in
each layer, the number of neighbors of each BC node, and the general topology of the
network. Additionally, all BC nodes are connected into one giant component by default,
whether they were deployed in the fog layer or end-user layer. Accordingly, the effect of
manipulating the topology of simulated networks can be easily captured.

FoBSim constraints
Some properties have not been implemented in the current version of FoBSim, such as
MT, Digital Signatures and Mining Pools. Additionally, FoBSim source code can be run on
a PC with Microsoft Windows or Linux OS, but it may need some modifications if to be
run on a PC with a MAC OS (some functions require access to OS operations such as
deleting or modifying files located at the secondary memory). Finally, the default limit of
recursion in Python may restrict the number of miners to 1,500, which may raise some

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 25/40

http://dx.doi.org/10.7717/peerj-cs.431#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

error regarding the maximum allowed memory use by the interpreter. To solve this, one
can modify the maximum limit using the sys.setrecursionlimit in the main function.

Merkle trees
An MT, or a Hash Tree, is a data structure which is mostly a binary tree, whose leaves are
chunks of data. Sub-consequently, each leaf is double hashed with its siblings to produce
their new parent, which represents its two children. Hashes are recursively hashed
together, in a binary manner, until obtaining one root that represents the whole tree. MTs
are used in BCs such as Bitcoin to decrease the probability of security attacks, along with
other security measures, to reach a level where it is (a) easy for light-weight nodes to
validate new TXs and (b) computationally impractical to attack/alter a BC. That is, each
TX in any given block is hashed with the next, and so on, so that one root hash of all
TXs is saved in the block header. Using this root hash, and other components of the block,
the hash of the block is generated. This means that not only a confirmed block is
impossible to alter, but also a confirmed TX within a confirmed block.

However, not all BC systems deploy an MT approach due to some probable
conflicts with system requirements or objectives. Thus, we decided to leave this to be
implemented by developers according to the systems that need to be simulated, and we
decided that the default configuration of BC nodes in the current version of FoBSim is to
make all miners full node miners. That is, every miner locally stores a complete copy of the
chain so that any TX can be validated according to TXs recorded locally. Additionally,
there are different deployment models of MT approaches in different BC systems. That is,
some BCs may deploy MTs for hashing other chunks of data/tokens instead of TXs.

To implement an MT approach in FoBSim, one can add a function that performs a
loop through all TXs in a newly minted block, up to the last TX. After that, the root of the
MT is added to the block before it is broadcast to the BC and the hash of the block is
computed accordingly. Miners who receive a new block shall, accordingly, validate the
added root. Hence, a validation step, to test the correctness of the MT root compared with
TXs within the new block, needs to be added to the validation function in the miner

Figure 6 Possible data flow schemes in an integrated Fog-BC system.
Full-size DOI: 10.7717/peerj-cs.431/fig-6

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 26/40

http://dx.doi.org/10.7717/peerj-cs.431/fig-6
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

module of FoBSim. To make use of such added property, one can define a light-weight
miner type which saves only the header of a newly confirmed block instead of the whole
block. Accordingly, such type of miners validate new TXs according to this light chain of
headers, hence consume less time, energy, and storage to maintain the work of the BC
system.

Digital signatures
As our main aim is to generally simulate TX generation, validation, and confirmation, in
different BC-based, inter-operation, and consensus scenarios, we did not target security
issues. This is because such issues are determined individually for each case to be
simulated, leading to different mining economics. The security techniques and approaches
in BC-based fog and IoT systems had been discussed in many previous works, such as
Sodhro et al. (2020). Specifically, digitally signed coins/tokens are primarily used in real-
world applications of cryptocurrencies in order to prevent security attacks, such as the
double spend attack. Different BC-based cryptocurrency systems use different mechanisms
and protocols regarding signing and minting new coins, hence, different scenarios require
the implementation of the reference coins and digital signing techniques to be simulated.
Examples might include a research work that aims at comparing different signing
protocols in different CAs. This being said, FoBSim does not target a specific
cryptocurrency system, such as Bitcoin, yet it provides the generalized environment used
in such systems, where problems and solutions can be implemented and emulated by
researchers.

What the default version of FoBSim provides, however, is a simplified protocol of coin
transfer between users. That is, each miner holds a locally saved record of user wallets,
which is used in TX validation in case of payment BC functionality. We found that this
approach can output similar results to those output by systems with signed coins,
except that this approach allows a double spend attack in case of malicious end-users. If a
scenario to be simulated, where there are some faulty/malicious entities among system
users (which is not implemented in the default version of FoBSim), then digitally
signed coins need to be implemented as well. Additionally, miner nodes in FoBSim are
assumed to be trusted to send reports of confirmed blocks. Thus, reports sent by miner
nodes to the network aiming to participate in voting regarding winning miners are
assumed always legitimate. To sum up, FoBSim miners can track who, paid whom,
how much, and they are trusted to participate in voting without a cryptographic proof.
While, in other implementation approaches, FoBSim miners may track who has
transferred, what units, of which stocks (i.e. digitally signed coins/tokens), to whom, and
their votes regarding winning miners must be verified by network entities (i.e., by also
adding the new block to their local chains, and following this addition with other new
blocks, each newly added block can be considered, in a sense, a confirmation). Similarly,
end-users who generate new TXs do not need to sign their generated TXs as they are
assumed trusted (i.e. the default implementation of FoBSim does not include malicious
end-users).

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 27/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

Mining pools
Pool mining is the collaboration between miners to form mining pools and to distribute
the earned rewards in accordance with pool policies to earn a steady income per miner
(Majeed, Kim & Hong, 2020). Examples of such mining pools include BTC.com, F2Pool,
and Slush Pool. Mining pools provide the advantages of making mining profits more
predictable to miners and allowing small miners to participate. However, the existence
of pool mining increases the probability of system centralization and discourages full
nodes. The necessity of adding a mining pool extension to FoBSim is dependant on the
scenario to be simulated. As the general idea of mining pools is to allow miners to perform
mining under the umbrella of a named group, if one of the group miners finds a block,
the award is divided among all group members according to the computational power each
member provides. A mining pool is managed by a pool manager, whose protocol is defined
according to the business model of the pool.

In the current version of FoBSim, all miners are full node miners. That is, each miner
attempts to solve the puzzle using its own resources, to validate newly generated TXs
and to accumulate them into new blocks. When a block is received by a full node, it is
validated and confirmed locally (all miners save the whole BC for validation, verification,
and confirmation). Consequently, any profits and awards, obtained because of the full
miner work, are directly added to the miner’s wallet. On the contrary, a miner receives an
award that is proportional to the computational power it provides, even if it was the one
who found the next block.

CASE STUDIES
Following the validation and verification methods of simulation models presented in
Sargent (2013), we have so far discussed the technologies and the paradigms lying within
our proposed FoBSim environment. Further, we highlighted our proposal novelty
compared to other related works, discussed the event validity in FoBSim, and presented the
algorithms and modules lying within to facilitate a structured walk-through validation.

Next, we follow an operational validity approach by presenting case studies that we
simulated using FoBSim. The setup and behavior of FoBSim is discussed, and the results of
the simulation runs are presented afterwards.

Case 1: Comparing time consumption of PoW, PoS, and PoA
When we compare PoW, PoS and PoA in terms of average time consumed for block
confirmation, PoW is expected to present the highest time consumption. This is because
of the mathematical puzzle that each minter needs to solve in order to prove its illegibility
to mint the next block. In PoS, on the other hand, the network algorithm randomly
chooses the next minter, while it (slightly) prefers a miner with a higher amount of staked
coins. Once a minter is chosen, all miners are informed about the generator of the next
block and, thus, the minter needs to perform no tasks other than accumulating TXs in a
new standard block. Other miners then accept the new block if it was generated by the
minter they were informed about, hence the verification process takes nearly no time
(assuming that the transmission delay between miners is set to 0). In simple versions of

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 28/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

those two algorithms, all miners have the same source code, thus all miners may be
minters, verifiers, and chain maintainers.

The PoA algorithm is the tricky one though. This is because all authorized miners mint
new blocks, verify newly minted blocks, and maintain the chain locally. Meanwhile, other
BC nodes verify new blocks and maintain the chain, but do not mint new blocks
(De Angelis et al., 2018). Consequently, every BC node has a list of authorized entities,
including the methods to verify their newly minted blocks. This implies that the more
authorized entities, the more complex the verification can be on the receiver side.
Accordingly, it is advised that a small number of entities be given authorization for
decreasing the complexity of verification (Binance Academy, 2020). Meanwhile, the more
maintainers in a PoA-based BC, the higher the overall security level of the system.

In this case study, we run FoBSim several times, with which we deploy different CAs
under similar conditions. The simulation runs targeted specifically the measurement of
the average time consumed by each CA, from the moment where a miner is triggered
to mint a new block, until the minted block by this miner is confirmed by, at least, 51% of
other BC miners. To accurately measure this average, we added some variables holding the
starting time and the elapsed time, exactly before calling the build_block() function and
right after a block is confirmed by reaching the required number of confirmations.

As described in Table 3, we changed the difficulty of the puzzle during the PoW-based
BC simulation runs from an easy level (5), to a harder level (10), and finally to very hard
levels (15) and (20). During the runs where PoA was used, we changed the number of
authorized miners from 2/5 (2 authorized out of a total of 5 miners), 5/10, 10/20, and 25
authorized miners for the rest of runs.

As we wanted to abstractly measure the average confirmation time, we avoided the
computational services and payment functionality, because both imply extra time
consumption for performing the computational tasks, and validating the payments,
respectively. We also avoided the identity management functionality because the number
of TXs per end-user is limited by the number of ID attributes required to be saved on
the chain. Hence, our best choice was the data management functionality. We kept the
total number of TXs delivered to the mempool unchanged, which gives equivalent
input for all simulation runs. However, we changed the number of TXs generated by each
user as to be equal to the number of miners in each run. More precisely, as the total

Table 3 Simulation parameters configuration for Case 1.

Simulation parameter\ Consensus PoW PoS PoA

No. of miners 5–500 5–500 5–500

No. of neighbors per miner 4 4 4

Puzzle difficulty 5–20 – –

Authorized miners All Random choice 2–25

Initial wallet – 1,000 –

BC functionality Data Management Data Management Data Management

BC deployment end-user layer end-user layer end-user layer

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 29/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

number of TXs is determined using Eq. (2), where a, b and c are the number of fog nodes,
the number of end-users, and the number of TXs per end-user, respectively, the values of
those variables fluctuated in each run. Concerning the runs where a PoS is deployed,
miner nodes were initiated with a wallet that has 1,000 coins, allowing miners to stake
random amounts of coins. Additionally, winning miners were awarded 5 coins for each
confirmed block they had minted.

jTXsj ¼ a� b� c (2)

We deployed the FoBSim environment on Google Cloud Platform, using a C2-
standard-16 (up to 3.8 GHz, 16 vCPUs, 64 GB memory), with Debian OS. We have chosen
to place the BC in the end-user layer for all runs, not for any reason other than testing
the reliability and stability, of FoBSim components and results, in such complex inter-
operable (Belchior et al., 2020) Edge-Fog-BC scenarios. Table 4 presents the exact results
we obtained, which are depicted in Figs. 7A and 7B.

According to the results obtained from the simulation runs, one can notice that
PoW-based BCs consume much more time to confirm a block, than PoA- and PoS-based
BCs, which is inline with the theoretical and experimental results of most previous
research. Additionally, the average block confirmation time, in PoW-based and PoA-based
BCs, seems to be directly proportional to the BC network size, which complies with the

Table 4 Results of Case-1, where the PoW puzzle difficulty ranges from 5 to 20, and the number of
Miners (M) ranges from 5 to 500.

M = 5 M = 10 M = 20 M = 50 M = 100 M = 500

PoS algorithm 0.018 0.06 0.18 0.046 0.09 0.19

PoA algorithm 0.002 0.008 0.03 0.2 0.41 2.94

PoW-5 algorithm 0.08 0.36 2.1 1.31 6.15 60.6

PoW-10 algorithm 0.07 0.44 2.1 2.03 5.21 58.9

PoW-15 algorithm 0.25 0.42 2.23 2.26 6.18 74.76

PoW-20 algorithm 6.02 9.5 24.2 59.62 – –

Figure 7 Average block confirmation time (A) consumed by PoS-based BC vs. PoA-based BC,
relatively to the number of miner nodes (B) consumed by PoW-based BC (the cases of difficulty =
5, 10, 15, and 20), relatively to the number of miner nodes.

Full-size DOI: 10.7717/peerj-cs.431/fig-7

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 30/40

http://dx.doi.org/10.7717/peerj-cs.431/fig-7
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

results recently presented inMisic, Misic & Chang (2020). Comparatively, an average block
confirmation time in a PoS-based BC seems unaffected by the network size, which
complies with the expectations recently presented in Cao et al. (2020).

Case 2: Capturing the effect of using the gossip protocol
In this case, we compare the number of chain forks at the end of several simulation
runs, where we interchangeably activate and deactivate the gossiping property in a
PoW-based BC. Accordingly, one can notice the effect of gossiping on ledger finality under
different conditions, namely the puzzle difficulty and the transmission delay between
miners. As it was mentioned in “Gossip Protocol”, gossiping is a continuous process
during the life time of the network, which implies that miners would mostly have
different chain versions at any given moment. In this case, we detect the number of
chain versions at the end of simulation runs, which can be decreased to one version under
strictly designed parameters, such as medium network size, high puzzle difficulty, low
transmission delay, low number of neighbors per miner, etc. Nevertheless, our goal in
this case is to demonstrate how the activation of the gossiping property during a
simulation run on FoBSim can decrease the number of chain versions and, thus, it can
positively contribute to the consistency of the distributed ledger. For this case, we also
deployed the FoBSim environment on the Google Cloud Platform, using a C2-standard-16
VM (up to 3.8 GHz, 16 vCPUs, 64 GB memory), with Ubuntu OS.

Table 5 presents the initial configuration in each simulation scenario, while Tables 6
and 7 present the results we obtained by running the described scenarios, which are
depicted in Figs. 8A and 8B. As can be noted from the results, the default gossip protocol in
FoBSim could decrease the number of chain versions at the end of each simulation run.
Although the number of chain versions did not reach the optimum value (i.e., one
chain version), it is obvious that activating the gossiping property decreases the number of

Table 5 Simulation parameters configuration for Case-2, where the Gossiping property is
interchangeably activated and deactivated.

Simulation parameter Puzzle difficulty effect Transmission delay effect

No. of fog nodes 5 5

No. of users per fog node 5 5

No. of TX per user 5 5

No. of miners 100 100

No. of neighbors per miner 2 2

No. of TX per block 5 5

Puzzle difficulty 5, 10, 15, 20 20

Max end-user payment 100 100

Miners’ initial wallet value 100 100

Mining award 5 5

Delay between neighbors 0 0, 5, 10, 15, 20

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 31/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

chain versions at each simulation run and, thus, enhances the distributed ledger
consistency.

Case 3: Comparing deployment efficiency of BC in the fog layer vs.
end-user layer
In this case, we compare BC deployment efficiency in the fog layer and end-user layer.
The efficiency we are seeking is determined by both the total time needed to perform all
requested BC services and total storage cost. That is, less time and storage needed to
perform all tasks (e.g., confirm all newly minted blocks or run the generated SCs) indicates
higher efficiency of the BC system. To fairly compare the BC efficiency when deployed in
those two layers, we stabilize all BC parameters that are configurable in FoBSim, except for
the number of miner nodes to deduce the trend in total time consumption when the
network dynamically allows for new nodes to join the network. We deployed the
FoBSim tool on the Google Cloud Platform, using a C2-standard-16 VM (up to 3.8 GHz,

Figure 8 The effect of activating the gossiping protocol in FoBSim, on the number of chain versions
at the end of PoW-based BC simulation runs, where (A) the puzzle difficulty fluctuates from 5 to 20
and (B) the transmission delay between neighboring miners fluctuates from 0 to 25 ms.

Full-size DOI: 10.7717/peerj-cs.431/fig-8

Table 6 Results of Case-2, where the puzzle difficulty ranges from 5–20, and the Gossiping in
FoBSim was interchangeably activated and deactivated.

Configuration diff. = 5 diff. = 10 diff. = 15 diff. = 20

Gossip activated 81 70 57 16

Gossip deactivated 92 98 100 67

Table 7 Results of Case-2, where the transmission delay between neighbors ranged from 0–25 ms.,
and the Gossiping in FoBSim was interchangeably activated and deactivated.

Configuration T.D. = 0 T.D. = 5 T.D. = 10 T.D. = 15 T.D. = 25

Gossip activated 12 18 14 26 33

Gossip deactivated 15 39 59 68 76

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 32/40

http://dx.doi.org/10.7717/peerj-cs.431/fig-8
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

16 vCPUs, 64 GB memory), with Ubuntu OS. The detailed parameter configuration while
running the described scenarios is presented in Table 8.

Recalling the results presented in Bi, Yang & Zheng (2018) and Li et al. (2017),
average transmission delay between miners in the fog layer can be estimated by 12 ms.,
while it can be estimated between miners in the end-user layer to 1,000 ms. (higher
transmission delays were reported in well known BC networks, such as Bitcoin, in
Sallal (2018)). We simulated the data management BC service and PoW consensus with
gossiping activated. According to Eq. (2), the number of requested tasks was automatically
modified due to the continuous change in the number of fog nodes (since we oscillated
the number of fog nodes to deduce the trend of total time consumption). The total average
time for performing requested BC services, in similar simulation sittings, while the BC is
deployed in end-user and fog layers, is compared in Fig. 9A.

To accurately measure the storage cost during the simulation run, we implemented an
independent Python code, available in the FoBSim repository, namely storage_cost_analysis.

Table 8 Simulation parameters configuration for Case-3, where the efficiency of BC is assessed in the
fog layer and end-user layer, in terms of total run time and total storage cost.

Simulation parameter For total time efficiency For total storage efficiency

No. of fog nodes 10–100 100

No. of users per fog node 2 5

No. of TX per user 2 5

No. of miners 10–100 100

No. of neighbors per miner 3 5

No. of TX per block 5 5

Puzzle difficulty 20 15

Max end-user payment 100 100

Miners’ initial wallet value 1,000 1,000

Mining award 5 5

Delay between neighbors fog layer: 12 ms., fog layer: 12 ms.,

end-user layer: 1,000 ms end-user layer: 1,000 ms

Figure 9 BC efficiency comparison while deployed in end-user layer vs. fog layer, in terms of
(A) total elapsed time for the BC network to perform requested services, and (B) total storage
used by the BC network to perform requested services. Full-size DOI: 10.7717/peerj-cs.431/fig-9

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 33/40

http://dx.doi.org/10.7717/peerj-cs.431/fig-9
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

py. As described in “FoBSim Modules”, the output analysis files, ledgers, wallets, etc. of
running a given simulation scenario using FoBSim, are automatically saved in a folder
titled “temporary” within the same repository. Thus, our implemented storage analyzer
aims at regularly (i.e., every one second as a default sitting) measuring the size of this
temporary folder while the simulation is running. The measured sizes are then saved into
an Excel sheet to facilitate performing the analysis we are seeking. To exemplify this, the
total storage used by the BC network is compared in Fig. 9B, where similar simulation
sittings were configured (detailed in Table 8), except for the layer where the BC is
deployed.

It can be noted from the results presented in the third case that deploying the BC
network in the fog layer may enhance its efficiency in terms of total time consumed to
perform similar tasks in similar configuration, and in terms of total storage cost by the BC
network to maintain the same distributed ledger (same number of confirmed blocks by the
end of the simulation run).

CONCLUSIONS
In this paper, we proposed a novel simulation tool called FobSim that mimics the
interaction between the entities of an integrated Fog-Blockchain system. We briefly
described the architectural elements of Fog Computing (FC) and Blockchain (BC)
technologies, and designed FoBSim in order to cover all the elements we described.
We deployed three different consensus algorithms, namely PoW, PoS and PoA, and
different deployment options of the BC in an FC architecture, namely the end-user layer
and the fog layer. Additionally, we fine tuned the FoBSim modules so that various services,
provided by FC and BC, can be adopted for any proposed integration scenario.
The services that can be simulated are distributed payment services, distributed identity
services, distributed data storage and distributed computational services (through Smart
Contracts). In our paper, we described the modules of FoBSim, the TX modeling, the
Genesis block generation, the gossiping in FoBSim, the Consensus Algorithms, TX and
block validation, incentive mechanisms, and other FoBSim strategies. We validated
FoBSim with case studies: the first compares the average time consumption for block
confirmation in different consensus algorithms, while the second analyzes the effect of
gossiping on the consistency of the distributed ledger, in fluctuated puzzle difficulty and
transmission delay configurations. The last case compared the efficiency of the BC
network, in terms of total time consumption and total storage required to perform similar
tasks, when deployed in the fog layer against the end-user layer. The results of the first case
showed that the PoS algorithm provides the least average block confirmation time,
followed by PoA and PoW, respectively. The results of the second case showed how the
gossiping protocol, implemented within FoBSim, effectively contributes to enhance the
consistency of the distributed ledger. The last case showed that deploying the BC network
in the fog layer may drastically enhance the BC performance, in terms of total execution
time and total storage cost, due to low transmission delay between miners.

In the future releases of FoBSim, we are willing to make more CAs available, as well
as enhancing the identity management scheme in FoBSim. We will further investigate

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 34/40

http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

adding the reputation management service in a generalized and simple manner so that
analysis can be provided, while proposed reputation management ideas, conditions, or
properties can be easily implemented/modified.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by the Hungarian Scientific Research Fund under the grant
number OTKA FK 131793, by the grant NKFIH-1279-2/2020 of the Ministry for
Innovation and Technology, Hungary, and by the National Research, Development and
Innovation Office within the framework of the Artificial Intelligence National Laboratory
Programme. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Hungarian Scientific Research Fund: OTKA FK 131793.
Ministry for Innovation and Technology, Hungary: NKFIH-1279-2/2020.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Hamza Baniata conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Attila Kertesz conceived and designed the approach and the experiments, analyzed the
data, authored and reviewed drafts of the paper, and approved the final submission.

Data Availability
The following information was supplied regarding data availability:

The source code of the simulator is available at GitHub: https://github.com/sed-szeged/
FobSim.

Supplemental Information
Supplemental material for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.431#supplemental-information.

REFERENCES
Alharby M, Van Moorsel A. 2019. Blocksim: a simulation framework for blockchain systems.

ACM SIGMETRICS Performance Evaluation Review 46(3):135–138.

Anilkumar V, Joji JA, Afzal A, Sheik R. 2019. Blockchain simulation and development platforms:
survey, issues and challenges. In: International Conference on Intelligent Computing and Control
Systems (ICCS). IEEE, 935–939.

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 35/40

https://github.com/sed-szeged/FobSim
https://github.com/sed-szeged/FobSim
http://dx.doi.org/10.7717/peerj-cs.431#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.431#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

Avasthi AA, Saxena A. 2018. Two hop blockchain model: resonating between proof of work
(PoW) and proof of authority (PoA). International Journal of Information Systems &
Management Science 1(1):1 DOI 10.1504/IJISAM.2018.10014439.

Bahga A, Madisetti V. 2017. Blockchain applications: a hands-on approach. Blacksburg: VPT.

Baniata H, Kertész A. 2020. PF-BVM: a privacy-aware fog-enhanced blockchain validation
mechanism. In: CLOSER. 430–439.

Baniata H. 2020. Fog-enhanced blockchain simulation. In: The 12th Conference of PhD Students in
Computer Science (CS2). University of Szeged. 83–87.

Baniata H, Almobaideen W, Kertesz A. 2020. A privacy preserving model for Fog1013 enabled
MCC systems using 5G connection. In: Fifth International Conference on Fog and Mobile Edge
Computing (FMEC). Piscataway: IEEE, 223–230.

Baniata H, Anaqreh A, Kertesz A. 2021. PF-BTS: a privacy-aware fog-enhanced blockchain-
assisted task scheduling. In: Information Processing and Management. Vol. 58.

Baniata H, Kertesz A. 2020. FoBSim. GitHub. Available at https://github.com/sed-szeged/FobSim
(accessed 27 October 2020).

Baniata H, Kertesz A. 2020. A survey on blockchain-fog integration approaches. IEEE Access
8:102657–102668 DOI 10.1109/ACCESS.2020.2999213.

Beck R, Avital M, Rossi M, Thatcher JB. 2017. Blockchain technology in business and information
systems research. Business & Information Systems Engineering 59:381–384.

Belchior R, Vasconcelos A, Guerreiro S, Correia M. 2020. A survey on blockchain
interoperability: past, present, and future trends. Available at https://arxiv.org/abs/2005.14282.

Bentov I, Gabizon A, Mizrahi A. 2016. Cryptocurrencies without proof of work. In: International
Conference on Financial Cryptography and Data Securitys. Springer, 142–157.

Bi W, Yang H, Zheng M. 2018. An accelerated method for message propagation in blockchain
networks. arXiv. Available at https://arxiv.org/abs/1809.00455.

Binance Academy. 2020. Proof of authority explained. Available at https://academy.binance.com/
en/articles/proof-of-authority-explained (accessed 27 October 2020).

Bisnik N, Abouzeid AA. 2007. Optimizing random walk search algorithms in P2P networks.
Computer Networks 51(6):1499–1514.

Bitcoin.org. 2009. Bitcoin is an innovative payment network and a new kind of money.
Available at https://bitcoin.org/en/ (accessed 27 October 2020).

Blywis B, Günes M, Juraschek F, Hahm O, Schmittberger N. 2011. A survey of flooding, gossip
routing, and related schemes for wireless multi-hop networks. Tech. rep. Berlin, Germany: Freie
Universitat. Available at https://refubium.fu-berlin.de/ bitstream/handle/fub188/18401/2010-
Gossip-Routing.pdf?sequence=1.

Bonomi F, Milito R, Natarajan P, Zhu J. 2014. Fog computing: a platform for internet of things
and analytics. In: Big Data and Internet of Things: A Roadmap for Smart Environments. Springer,
169–186.

Bruno. 2018. Explaining ethereum tools: what are geth and mist? Available at https://bitfalls.com/
2018/02/12/explaining-ethereum-tools-geth-mist/#:~:text=When%20Geth%20is%20running%2C
%20it,fromWei(eth. (accessed 27 October 2020).

Buntinx JP. 2017.What is proof of elapsed time. Available at https://themerkle. com/what-is-proof-
of-elapsed-time/ (accessed 8 August 2020).

Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. 2011. CloudSim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and Experience 41(1):23–50.

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 36/40

http://dx.doi.org/10.1504/IJISAM.2018.10014439
https://github.com/sed-szeged/FobSim
http://dx.doi.org/10.1109/ACCESS.2020.2999213
https://arxiv.org/abs/2005.14282
https://arxiv.org/abs/1809.00455
https://academy.binance.com/en/articles/proof-of-authority-explained
https://academy.binance.com/en/articles/proof-of-authority-explained
https://bitcoin.org/en/
https://refubium.fu-berlin.de/bitstream/handle/fub188/18401/2010-Gossip-Routing.pdf?sequence=1
https://refubium.fu-berlin.de/bitstream/handle/fub188/18401/2010-Gossip-Routing.pdf?sequence=1
https://bitfalls.com/2018/02/12/explaining-ethereum-tools-geth-mist/#:~:text=When%20Geth%20is%20running%2C%20it,fromWei(eth.
https://bitfalls.com/2018/02/12/explaining-ethereum-tools-geth-mist/#:~:text=When%20Geth%20is%20running%2C%20it,fromWei(eth.
https://bitfalls.com/2018/02/12/explaining-ethereum-tools-geth-mist/#:~:text=When%20Geth%20is%20running%2C%20it,fromWei(eth.
https://themerkle.com/what-is-proof-of-elapsed-time/
https://themerkle.com/what-is-proof-of-elapsed-time/
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

Cao B, Zhang Z, Feng D, Zhang S, Zhang L, Peng M, Li Y. 2020. Performance analysis and
comparison of PoW, PoS and DAG based blockchains. Digital Communications and Networks
6(4):480–485 DOI 10.1016/j.dcan.2019.12.001.

Chen L, Xu L, Shah N, Gao Z, Lu Y, Shi W. 2017. On security analysis of proof-of-elapsed-time
(poet). In: International Symposium on Stabilization, Safety, and Security of Distributed Systems.
Springer, 282–297.

Coladangelo A, Sattath O. 2020.A quantummoney solution to the blockchain scalability problem.
Available at https://arxiv.org/abs/2002.11998.

Coutinho A, Greve F, Prazeres C, Cardoso J. 2018. Fogbed: a rapid-prototyping emulation
environment for fog computing. In: IEEE International Conference on Communications (ICC).
IEEE, 1–7.

Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R. 2016. Fog computing: principles,
architectures, and applications. In: Internet of Things. Amsterdam: Elsevier, 61–75.

De Angelis S, Aniello L, Baldoni R, Lombardi F, Margheri M, Sassone V. 2018. PBFT vs proof-
of-authority: applying the CAP theorem to permissioned blockchain. Available at eprints.soton.
ac.uk.

Debe M, Salah K, Rehman MHU, Svetinovic D. 2019. IoT public fog nodes reputation system: a
decentralized solution using Ethereum blockchain. IEEE Access 7:178082–178093
DOI 10.1109/ACCESS.2019.2958355.

Deirmentzoglou E, Papakyriakopoulos G, Patsakis C. 2019. A survey on long-range attacks for
proof of stake protocols. IEEE Access 7:28712–28725 DOI 10.1109/ACCESS.2019.2901858.

Deshpande A, Nasirifard P, Jacobsen H-A. eVIBES: configurable and interactive ethereum
blockchain simulation framework. In: Proceedings of the 19th International Middleware
Conference (Posters). 11–12.

Ethereum. 2020. Remix platform. Available at https://remix.ethereum.org/ (accessed 27 October
2020).

Fan C, Ghaemi S, Khazaei H, Musilek P. 2020. Performance evaluation of blockchain systems: a
systematic survey. IEEE Access 8:126927–126950.

Farhadi M, Lanet J-L, Pierre G, Miorandi D. 2020. A systematic approach toward security in fog
computing: assets, vulnerabilities, possible countermeasures. Software: Practice and Experience
50(6):973–997.

Faria C, Correia M. 2019. BlockSim: blockchain simulator. In: IEEE International Conference on
Blockchain (Blockchain). Piscataway: IEEE, 439–446.

Fröhlich P, Gelenbe E, Nowak MP. 2020. Smart SDN management of fog services. In: 2020 Global
Internet of Things Summit (GIoTS). Piscataway: IEEE, 1–6.

Gabor D, Jelasity M. 2018. Robust decentralized mean estimation with limited communication. In:
European Conference on Parallel Processing. Springer, 447–461.

Gansterer WN, Niederbrucker G, Straková H, Grotthoff SS. 2013. Scalable and fault tolerant
orthogonalization based on randomized distributed data aggregation. Journal of Computational
Science 4(6):480–488.

Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf H, Capkun S. 2016. On the security and
performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. 3–16.

Global Times. 2019. China launches blockchain-based smart city identification system.
Available at https://www.globaltimes.cn/content/1168878.shtml (accessed 27 October 2020).

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 37/40

http://dx.doi.org/10.1016/j.dcan.2019.12.001
https://arxiv.org/abs/2002.11998
eprints.soton.ac.uk
eprints.soton.ac.uk
http://dx.doi.org/10.1109/ACCESS.2019.2958355
http://dx.doi.org/10.1109/ACCESS.2019.2901858
https://remix.ethereum.org/
https://www.globaltimes.cn/content/1168878.shtml
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

Gupta H, Dastjerdi AV, Ghosh SK, Buyya R. 2017. iFogSim: a toolkit for modeling and
simulation of resource management techniques in the Internet of Things, Edge and Fog
computing environments. Software: Practice and Experience 47(9):1275–1296.

Habibi P, Farhoudi M, Kazemian S, Khorsandi S, Leon-Garcia A. 2020. Fog computing: a
comprehensive architectural survey. IEEE Access 8:69105–69133
DOI 10.1109/ACCESS.2020.2983253.

He X, Cui Y, Jiang Y. 2019. An improved gossip algorithm based on semi- distributed blockchain
network. In: International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC). Piscataway: IEEE, 24–27.

Karame GO, Androulaki E, Capkun S. Double-spending fast payments in bitcoin. In: Proceedings
of the 2012 ACM Conference on Computer and Communications Security. 906–917.

Kempe D, Dobra A, Gehrke J. Gossip-based computation of aggregate informa1028 tion. In: 44th
Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings. Piscataway:
IEEE, 482–491.

King S, Nadal S. 2012. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. In: Self-published
Paper. 1.

Kreku J, Vallivaara VA, Halunen K, Suomalainen J, Ramachandran M, Muñoz VM, Kantere V,
Wills G, Walters RJ. 2017. Evaluating the efficiency of blockchains in IoT with simulations. In:
IoTBDS. 216–223.

Kumar T, Harjula E, Ejaz M, Manzoor A, Porambage P, Ahmad I, Liyanage M, Braeken A,
Ylianttila M. 2020. BlockEdge: blockchain-edge framework for industrial IoT networks. In:
IEEE Access. Piscataway: IEEE.

Lan J, Liu X, Shenoy P, Ramamritham K. 2003. Consistency maintenance in peer-to-peer file
sharing networks. In: Proceedings the Third IEEE Workshop on Internet Applications. WIAPP
2003. Piscataway: IEEE, 90–94.

Larimer D. 2013. Transactions as proof-of-stake. Available at https://steemit.com/bitshares/@testz/
bitshares-history-transactions-as-proof-of-stake-tapos.

Li J, Zhang T, Jin J, Yang Y, Yuan D, Gao L. 2017. Latency estimation for fog-based internet of
things. In: 27th International Telecommunication Networks and Applications Conference
(ITNAC). Piscataway: IEEE, 1–6.

Liaskos S, Anand T, Alimohammadi N. 2020. Architecting blockchain network simulators: a
model-driven perspective. In: IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). Piscataway: IEEE, 1–3.

Lopes MM, Higashino WA, Capretz MAM, Bittencourt LF. 2017. Myifogsim: a simulator for
virtual machine migration in fog computing. In: Companion Proceedings of the10th
International Conference on Utility and Cloud Computing. 47–52.

Maes SH, Perreira M, Murray BP, Bharadhwaj R. 2018. US Patent 9,882,829.

Majeed U, Kim K, Hong CS. 2020. Mining pool selection strategy in blockchain networks: a
probabilistic approach. KIISE Transactions on Computing Practices 26(6):280–285.

Markakis EK, Karras K, Zotos N, Sideris A, Moysiadis T, Corsaro A, Alexiou G, Skianis C,
Mastorakis G, Mavromoustakis CX, Pallis E. 2017. EXEGESIS: extreme edge resource
harvesting for a virtualized fog environment. IEEE Communications Magazine 55(7):173–179.

Markus A, Kertesz A. 2020. A survey and taxonomy of simulation environments modelling fog
computing. Simulation Modelling Practice and Theory 101:102042
DOI 10.1016/j.simpat.2019.102042.

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 38/40

http://dx.doi.org/10.1109/ACCESS.2020.2983253
https://steemit.com/bitshares/@testz/bitshares-history-transactions-as-proof-of-stake-tapos
https://steemit.com/bitshares/@testz/bitshares-history-transactions-as-proof-of-stake-tapos
http://dx.doi.org/10.1016/j.simpat.2019.102042
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

Mayer R, Graser L, Gupta H, Saurez E, Ramachandran U. 2017. Emufog: extensible and scalable
emulation of large-scale fog computing infrastructures. In: 2017 IEEE Fog World Congress
(FWC). Piscataway: IEEE, 1–6.

Memon RA, Li J, Ahmed J, Khan A, Mangrio MI. 2018. Modeling of blockchain based systems
using queuing theory simulation. In: 15th International Computer Conference on Wavelet Active
Media Technology and Information Processing (ICCWAMTIP). IEEE, 107–111.

Misic J, Misic VB, Chang X. 2020. Performance of Bitcoin network with syn1070 chronizing nodes
and a mix of regular and compact blocks. In: IEEE Transactions on Network Science and
Engineering. Piscataway: IEEE.

Montresor A, Jelasity M. 2009. PeerSim: a scalable P2P simulator. In: IEEE Ninth International
Conference on Peer-to-Peer Computing. Piscataway: IEEE, 99–100.

Naas MI, Boukhobza J, Parvedy PR, Lemarchand L. 2018. An extension to ifogsim to enable the
design of data placement strategies. In: IEEE 2nd International Conference on Fog and Edge
Computing (ICFEC). Piscataway: IEEE, 1–8.

Nakamoto S. 2019. Bitcoin: a peer-to-peer electronic cash system. Available at https://bitcoin.org/
bitcoin.pdf.

Narayanan A, Bonneau J, Felten E, Miller A, Goldfeder S. 2016. Bitcoin and cryptocurrency
technologies: a comprehensive introduction. Princeton: Princeton University Press.

Negy KA, Rizun PR, Sirer EG. 2020. Selfish mining re-examined. In: International Conference on
Financial Cryptography and Data Security. Springer, 61–78.

Nikdel Z, Gao B, Neville SW. 2017. DockerSim: full-stack simulation of container based Software-
as-a-Service (SaaS) cloud deployments and environments. In: IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM). Piscataway: IEEE, 1–6.

OpenFog Consortium. 2017. OpenFog reference architecture for fog computing. In: Architecture
Working Group. 1–162.

Petri I, Barati M, Rezgui Y, Rana OF. 2020. Blockchain for energy sharing and trading in
distributed prosumer communities. Computers in Industry 123(8):103282
DOI 10.1016/j.compind.2020.103282.

Piriou P-Y, Dumas J-F. 2018. Simulation of stochastic blockchain models. In: 14th European
Dependable Computing Conference (EDCC). Piscataway: IEEE, 150–157.

Qayyum T, Malik AW, Khan Khattak MA, Khalid O, Khan SU. 2018. FogNetSim++: a toolkit for
modeling and simulation of distributed fog environment. IEEE Access 6:63570–63583
DOI 10.1109/ACCESS.2018.2877696.

Rahman UU, Bilal K, Erbad A, Khalid O, Khan SU. 2019. Nutshell: simulation toolkit for
modeling data center networks and cloud computing. IEEE Access 7:19922–19942.

Raman RK, Vaculin R, Hind M, Remy SL, Pissadaki EK, Bore NK, Daneshvar R, Srivastava B,
Varshney KR. 2019. A scalable blockchain approach for trusted computation and verifiable
simulation in multi-party collaborations. In: IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). Piscataway: IEEE, 277–284.

Sallal MF. 2018. Evaluation of security and performance of clustering in the bitcoin network, with
the aim of improving the consistency of the blockchain. PhD thesis, University of Portsmouth.

Sargent RG. 2013.Verification and validation of simulation models. Journal of Simulation 1:12–24.

Sheikh S. 2018. Proof-of-work vs proof-of-stake: a comparative analysis and an approach to
blockchain consensus mechanism. . International Journal for Research in Applied Science &
Engineering Technology 6(12):786–791.

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 39/40

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1016/j.compind.2020.103282
http://dx.doi.org/10.1109/ACCESS.2018.2877696
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

Singh PK, Singh R, Nandi SK, Nandi S. 2019. Managing smart home appliances with proof of
authority and blockchain. In: International Conference on Innova- tions for Community Services.
Springer, 221–232.

Smart Dubai Department. 2020. Blockchain. Available at https://www.smartdubai.ae/initiatives/
blockchain (accessed 27 October 2020).

Smartcity Press. 2019. China taking a big leap with blockchain. Available at https://www.smartcity.
press/blockchain-technology-china/ (accessed 27 October 2020).

Sodhro AH, Pirbhulal S, Muzammal M, Zongwei L. 2020. Towards blockchain-enabled security
technique for industrial internet of things based decentralized applications. Journal of Grid
Computing 18:1–14.

Sonmez C, Ozgovde A, Ersoy C. 2018. Edgecloudsim: an environment for performance
evaluation of edge computing systems. Transactions on Emerging Telecommunications
Technologies 29(11):e3493 DOI 10.1002/ett.3493.

The Linux Foundation. 2020. What is hyperledger? Available at https://www.hyperledger.org/
(accessed 27 October 2020).

The Python Software Foundation. 2020. The Python standard library. Available at https://docs.
python.org/3/library/multiprocessing.shared_memory.html (accessed 14 September 2020).

The Python Software Foundation. 2020. The Python standard library. Available at https://docs.
python.org/2/library/multiprocessing.html (accessed 14 September 2020).

Truffle Blockchain Group. 2020. Truffle overview. Available at https://www.trufflesuite.com/docs/
truffle/overview (accessed 27 October 2020).

Vujičic D, Jagodić D, Ranđić S. 2018. Blockchain technology, bitcoin, and Ethereum: a brief
overview. In: 17th International Symposium Infoteh-Jahorina (infoteh). Piscataway: IEEE, 1–6.

Wang B, Chen S, Yao L, Liu B, Xu X, Zhu L. 2018. A simulation approach for studying behavior
and quality of blockchain networks. In: International Conference on Blockchain. Cham: Springer,
18–31.

Wang B, Wang Q, Chen S, Xiang Y. 2020. Security analysis on tangle-based blockchain through
simulation. In: Australasian Conference on Information Security and Privacy. Cham: Springer,
653–663.

Yousefpour A, Fung C, Nguyen T, Kadiyala K, Jalali F, Niakanlahiji A, Kong J, Jue JP. 2019. All
one needs to know about fog computing and related edge computing paradigms: a complete
survey. Journal of Systems Architecture 98(2011):289–330 DOI 10.1016/j.sysarc.2019.02.009.

Zhang R, ChanWKV. 2020. Evaluation of energy consumption in block-chains with proof of work
and proof of stake. Journal of Physics: Conference Series 1584:012023.

Zhao F, Guo X, Chan WK. 2020. Individual green certificates on blockchain: a simulation
approach. Sustainability 12(9):3942 DOI 10.3390/su12093942.

Baniata and Kertesz (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.431 40/40

https://www.smartdubai.ae/initiatives/blockchain
https://www.smartdubai.ae/initiatives/blockchain
https://www.smartcity.press/blockchain-technology-china/
https://www.smartcity.press/blockchain-technology-china/
http://dx.doi.org/10.1002/ett.3493
https://www.hyperledger.org/
https://docs.python.org/3/library/multiprocessing.shared_memory.html
https://docs.python.org/3/library/multiprocessing.shared_memory.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://www.trufflesuite.com/docs/truffle/overview
https://www.trufflesuite.com/docs/truffle/overview
http://dx.doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.3390/su12093942
http://dx.doi.org/10.7717/peerj-cs.431
https://peerj.com/computer-science/

	FoBSim: an extensible open-source simulation tool for integrated fog-blockchain systems
	Introduction
	Related work
	Fc architectural elements
	Bc architectural elements
	The fobsim environment
	Case studies
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

