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A large number of clinical concepts are categorized under standardized formats that ease
the manipulation, understanding, analysis, and exchange of information. One of the most
extended codifications is the International Classification of Diseases (ICD) used for
characterizing diagnoses and clinical procedures. With formatted ICD concepts, a patient
profile can be described through a set of standardized and sorted attributes according to
the relevance or chronology of events. This structured data is fundamental to quantify the
similarity between patients and detect relevant clinical characteristics. Data visualization
tools allow the representation and comprehension of data patterns, usually of a high
dimensional nature, where only a partial picture can be projected.

In this paper, we provide a visual analytics approach for the identification of homogeneous
patient cohorts by combining custom distance metrics with a flexible dimensionality
reduction technique. First we define a new metric to measure the similarity between
diagnosis profiles through the concordance and relevance of events. Second we describe a
variation of the STAD (Simplified Topological Abstraction of Data) dimensionality reduction
technique to enhance the projection of signals preserving the global structure of data.

The MIMIC-III clinical database is used for implementing the analysis into an interactive
dashboard, providing a highly expressive environment for the exploration and comparison
of patients groups with at least one identical diagnostic ICD code. The combination of the
distance metric and STAD not only allows the identification of patterns but also provides a
new layer of information to establish additional relationships between patient cohorts. The
method and tool presented here add a valuable new approach for exploring heterogeneous
patient populations. In addition, the distance metric described can be applied in other
domains that employ ordered lists of categorical data.
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ABSTRACT

A large number of clinical concepts are categorized under standardized formats that ease the manipulation,
understanding, analysis, and exchange of information. One of the most extended codifications is the
International Classification of Diseases (ICD) used for characterizing diagnoses and clinical procedures.
With formatted ICD concepts, a patient profile can be described through a set of standardized and sorted
attributes according to the relevance or chronology of events. This structured data is fundamental to
quantify the similarity between patients and detect relevant clinical characteristics. Data visualization
tools allow the representation and comprehension of data patterns, usually of a high dimensional nature,
where only a partial picture can be projected.

In this paper, we provide a visual analytics approach for the identification of homogeneous patient cohorts
by combining custom distance metrics with a flexible dimensionality reduction technique. First we define
a custom metric to measure the similarity between diagnosis profiles through the concordance and
relevance of events. Second we describe a variation of the STAD (Simplified Topological Abstraction
of Data) dimensionality reduction technique to enhance the projection of signals preserving the global
structure of data.

An, MIMIC-III clinical database is used to demonstrate the approach, presented as an interactive dash-
board, providing a highly expressive environment for the exploration and comparison of patients groups
with at least one identical diagnostic ICD code. The combination of the distance metric and STAD not only
allows the identification of patterns but also provides a new layer of information to establish additional
relationships between patient cohorts. The method and tool presented here add a potentially valuable
new approach for exploring heterogeneous patient populations. In addition, the distance metric described
can be applied in other domains that employ ordered lists of categorical data.

INTRODUCTION

Patient profiling and selection are a crucial step in the setup of clinical trials. The process involves
analytical methods to handle the increasing amount of healthcare data but is still extremely labor-intensive
(Sahoo et al., 2014). Nevertheless, the input from an expert in this selection is important.

To support the expert in the selection of suitable patients, visual analytics solutions can enable the
exploration of a patient population, make recruitment consistent across studies, enhance selection accuracy,
increase the number of selected participants, and significantly reduce the overall cost of the selection
process (Fink et al., 2003; Damen et al., 2013). Visual analytics relies on interactive and integrated
visualizations for exploratory data analysis in order to identify unexpected trends, outliers, or patterns. It
can indicate relevant hypotheses that can be complemented with additional algorithms, and help define
parameter spaces for these algorithms (Franken, 2009). A major challenge in creating visual solutions
is to find effective tools which allow the projection of all data dimensions. One popular solution is to
visualize the relationship between elements rather than raw data through similarity metrics which quantify
the closeness between data objects (Liu et al., 2016). Similarity metrics are a fundamental part for most
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of the case-based reasoning algorithms (Kolodner, 2014) such as the detection of consistent cohorts of
patients within a patient population. One of the remaining open challenges in the analysis of patient
similarity is to establish relevant and practical ways based on clinical concepts (Jia et al., 2019).

Many types of information about the patient profile such as diagnosis, procedures, and prescriptions
are available under standardized categories contained in taxonomies or dictionaries, e.g., the International
Classification of Diseases (ICD), Medical Dictionary for Regulatory Activities (MedDRA) and the
Anatomical Therapeutic Chemical (ATC) Classification System. Each patient is for example linked
to an ordered list of diagnoses, which are semantic concepts that are (in the case of MIMIC (Johnson
et al., 2016)) ordered from most to least important (as per the MIMIC-III documentation ”"ICD diagnoses
are ordered by priority - and the order does have an impact on the reimbursement for treatment”).
These standardized formats provide a non-numerical data structure facilitating both understanding and
management of the data. Several methods have been proposed to define similarity between lists of clinical
concepts based on presence of absence of specific terms (Gottlieb et al. 2013; Zhang et al. 2014; Brown
2016; Girardi et al. 2016; Rivault et al. 2017; Jia et al. 2019). However, the diagnostic profile of a patient
is not merely an independent list of semantic concepts but also includes an intrinsic order indicated by
the position of the terms in the list reflecting the relevance vis-a-vis the actual patient status. To the best
of our knowledge, no previous work has combined the categorical and ordinal nature of clinical events
into a single distance function. This dualism can contribute to improving the detection of cohorts through
diagnostic and procedural data. This can have a significant impact as diagnoses or procedures are part of
recruitment criteria in most clinical trials (Boland et al., 2012).

In this paper, a novel approach for exploring clinical patient data is introduced. In particular, we focus
on patient profiles represented by a set of diagnosis ICD codes sorted by relevance. The distance metric
considers the sorted concepts as input, and the resulting pairwise values are projected into a dimensionality
reduction graph.

The remaining part of this paper is organized as follows. In the section ‘Background’, we give an
overview of related work in categorical events and graphical projections of patient similarity. The section
‘Materials and Methods’ describes the proposed distance metric and modifications applied on the base
algorithms STAD for visualizing patient population. In *Results’, we demonstrate the effectiveness of
the approach in a real-world dataset. The section ’Discussion’ compares other methods and alternative
metrics for similar data. Finally, the section ‘Conclusion’ presents conclusions and possible directions for
future work.

BACKGROUND

The exploration and analysis of patients through similarity measures has been presented in different areas
of bioinformatics and biomedicine, and also data mining and information visualization. In this section,
we review the related literature on these areas below, and we focus on the notion of similarity measures
for categorical events and graphical representation of patient similarity.

Patient similarity and distance measures for categorical events

Different distance metrics exist for unordered lists of categorical data, including the overlap coefficient
(Vijaymeena and Kavitha, 2016), the Jaccard index (Real and Vargas, 1996), and the simple matching
coefficient (§ulc and Iviezankové, 2014). These methods compute the number of matched attributes
between two lists using different criteria. Although they treat each entry in the list as independent of the
others, they have been used successfully to measure patient similarity to support clinical decision making
and have demonstrated their effectiveness in exploratory and predictive analytics (Zhang et al. 2014;
Lee et al. 2015). Similarly, different ways of computing distances between ordered lists are available
(Van Dongen and Enright, 2012). The Spearman’s rank coefficient (Corder and Foreman, 2014) is useful
for both numerical and categorical data and has been used in clinical studies (Mukaka, 2012). However,
correlation between ordered lists cannot be calculated when the lists are of different lengths (Pereira et al.,
2009).

In the context of medical diagnoses, the ICD (International Classification of Diseases) codes have
been widely used for describing patient similarity. However, these typically consider the hierarchical
structure of the ICD codes. Gottlieb et al. (2013), for example, proposed a method combining the Jaccard
score of two lists with the nearest common ancestor in the ICD hierarchy. The similarity measure for the
ICD ontology was previously presented in Popescu and Khalilia (2011). Each term is assigned to a weight
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based on its importance within the hierarchy, which was defined as 1 — 1/n where n corresponded to its
level in the hierarchy.

In our work, however, we will not leverage the hierarchical structure of the ICD codes, but employ the
ICD grouping as described by Healthcare Cost and Utilization Project (2019). Our approach takes the
position of the term in the list of diagnoses into account, which is a proxy to their relevance for the patient
status. The metric assigns a higher weight to terms located infirst positions-than the last ones;

Alternative approaches such as those by Le and Ho (2005) and Ahmad and Dey (2007) consider the
similarity between two attributes as the shared relationship with the other elements in the sample, i.e.,
two elements are similar if they appear with a common set of attributes. From a different perspective,
the latent concept of these metrics is also present in the identification of comorbidity diseases (Moni
et al. 2014; Ronzano et al. 2019) although these studies aim to find heterogeneous types of diseases
rather than different profiles of patients. The main drawback of metrics based on co-occurrence is the
assumption of an intrinsic dependency between attributes without considering their relevance. The work
presented by Ienco et al. (2012) and Jia et al. (2015) use the notion of context which identifies the set of
relevant categories to a defined attribute. The similarity measure in Jia et al. (2015) is determined by the
correlation of their context attributes.

Graphical projections of patient similarity

Visually representing pairwise distance matrices remains a challenge. Most often, dimensionality reduction
techniques are used to bring the number of dimensions down to two so that the data can be represented in
a scatterplot (Nguyen et al. 2014; Girardi et al. 2016; Urpa and Anders 2019). Such scatterplots can not
only indicate clusters and outliers, but are also very useful for assessing sample quality. In the case of
patient data, each point in such plot represents a patient, and relative positions between them in the 2D
plane correspond to the distance between them in the original higher dimensional space. Multidimensional
scaling (MDS) is arguably one of the most commonly used dimensionality reduction methods (Mukherjee
et al., 2018). It arranges points on two or three dimensions by minimizing the discrepancy between the
original distance space and the distance in the two-dimensional space. Derived MDS methods have been
presented, proposing modified versions of the minimization function but conserving the initial aim (Saeed
et al., 2018). Besides MDS, recent methods have been proposed to highlight the local structure of the
different patterns in high-dimensional data. For example, t-distributed stochastic neighbor embedding
(t-SNE) (Maaten and Hinton, 2008) and uniform manifold approximation (UMAP) (McInnes et al., 2018)
have been used in many publications on heterogeneous patient data (Abdelmoula et al. 2016; Simoni et al.
2018; Becht et al. 2019). Unlike MDS, t-SNE projects the conditional probability instead of the distances
between points by centering a normalized Gaussian distribution for each point based on a predefined
number of nearest neighbors. This approach generates robustness in the projection, which allows the
preservation of local structure in the data. In a similar fashion, UMAP aims to detect the local clusters but
at the same time generates a better intuition of the global structure of data.

In addition to scatterplot representations, alternative visual solutions are also possible, for example
heatmaps (Baker and Porollo, 2018), treemaps (Zillner et al., 2008), and networks. The latter are often
built using a combination of dimensionality reduction and topological methods (Li et al. 2015; Nielson
et al. 2015; Dagliati et al. 2019). This approach has for example been used with success to visually
validate the automated patient classification in analytical pipelines (Pai and Bader 2018; Pai et al. 2019).
In general, the created network encodes the distance between two datapoints in high-dimensional space
into an edge between them and the full dataset can therefore be represented as a fully connected graph.
The STAD method (Alcaide and Aerts, 2020) reduces the number of edges allowing a more scalable
visualization of distances. The original distance in high-dimensional space between two datapoints is
correspondent to the path-length in the resulting graph between these datapoints. The main advantage of
networks to display high-dimensional data is that users not only can perceive patterns by the location of
points but also by the connection of elements, thereby increasing trust in the data signals.

MATERIAL AND METHODS

The International Classification of Diseases (ICD) is a diagnosis and procedure coding system used by
hospitals to bill for care provided. They are further used by health researchers in the study of electronic
medical records (EMR) due to the ease of eliciting clinical information regarding patient status. Although
these administrative databases were not designed for research purposes, their efficiency compared to the
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manual review of records and demonstrated reliability of information extracted have democratized the
analysis of health data in this way (Humphries et al., 2000). Even though ICD codification is hierarchically
organized, some concepts in the database may be under-reported (Campbell et al., 2011). To make analysis
feasible, the ICD codes are in practice often grouped in higher categories to reduce noise and facilitate the
comparison and analysis with automatic systems (Choi et al. 2016; Miotto et al. 2016; Baumel et al. 2018).
In our approach, we adopt the ICD generalization introduced by the Clinical Classification Software (CSS)
which groups diseases and procedures into clinically meaningful sections (Healthcare Cost and Utilization
Project, 2019). Here we introduce a method to compare unequal sets of ordered lists of categories and
explore the different cohorts of patients through visual representations of data. This approach employs a
custom distance metric presented in section *Diagnosis similarity and distances’ within the visual analytics
method as presented in section ’Spanning Trees as Abstraction of Data’.

Diagnosis similarity and distances

In the MIMIC dataset which was used for this work (Johnson et al., 2016), each patient’s diagnosis is a
list of ICD codes, as exemplified in Table 1. The average number of concepts per profile in the MIMIC
IIT dataset is 13 with a standard deviation of 5. Diagnoses are sorted by relevance for the patient status.
This order determines the reimbursement for treatment, and, from an analysis perspective, can help us to
distinguish similar medical profiles even with different initial causes. The similarity metric presented
in this work takes this duality into account and provides support for comparing profiles with an unequal
length of elements.

Patient A (115057) Patient B (117154)
ICD section | Label (ICD9) ICD section | Label (ICD9)
1 996-999. Infection and inflammatory | 1 430-438. Unspecified intracranial
reaction due to other vas- hemorrhage (4329)
cular device, implant, and
graft (99662)
2 990-995. Sepsis (99591) 2 430-438. Cerebral artery occlusion,

unspecified with cerebral
infarction (43491)
3 590-599. Urinary tract infection, | 3 996-999. Iatrogenic cerebrovascular

site not specified (5990) infarction or hemorrhage
(99702)
4 401-405. Unspecified essential hy- | 4 990-995. Sepsis (99591)
pertension (4019)

5 590-599. Urinary tract infection,
site not specified (5990)

6 401-405. Unspecified essential hy-
pertension (4019)

Table 1. Objective function in STAD and STAD-R. The correlation p is computed between the original
distance matrix Dy and the distance matrix derived from the shortest path graph in Dy. The ratio R is
calculated from the network at each iteration considering the edges included in the network. Note that
distance dyerywork edge are normalized values between zero and one.

The similarity between two patients (diagnosis profiles) A and B is based on which diagnoses (i.e.
ICD9 codes) are present in both, as well as the position of these elements in the list. Consider a match M
between two concepts c4 and cp, which contributes to the similarity according to the following formula:

1
Mc(A,B)=In|1
c(4,B) =In ( + max( position(cy ), position(cg) )>

The position mentioned in the formula corresponds to the positional index in the list. As an exam-
ple, the individual contribution of the concept ’Sepsis” for patients A and B in Table 1 is Ms,pss =

In (1 + m) = In1.25. The total similarity between patients is the sum of individual contributions

414

Peer] Comput. Sci. reviewing PDF | (CS-2020:09:52883:1:1:NEW 21 Nov 2020)



Peer]

178
179
180
181
182
183
184
185
186
187
188

189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

2

1

@ DIAGNOSIS DISTANCE DISTRIBUTION OF OBJECTIVE FUNCTION: CORRELATION. STAD @ OBJECTIVE FUNCTION: CORRELATION * RATIO.
PATIENTS WITH SEPSIS (ICD-9: 99591) IN MIMIC- > PROCESS USING SEPSIS DATASET - STAD-R PROCESS USING SEPSIS DATASET
1l DATABASE 4

Number of patients

Figure 1. Distance distributions of a population of patients with sepsis, STAD, and STAD-R projections.
The dataset is composed of a selection of 1,271 patients from MIMIC-III diagnosed with sepsis (ICD-9:
99591). Predefined conditions cause more homogeneous populations that mitigate the skewness of the
diagnosis similarity distribution. (A) Distribution of diagnosis distance. (B) Correlation between original
distance matrix and distance matrix based on STAD graph, given different numbers of edges. (C) Idem as
(B) using STAD-R. (D) STAD network. (E) STAD-R network.

from the matched concepts S(X,Y) = Y'='M(X N Y). Applying this formula to the example in Ta-
ble 1 gives: S(PatientA, PatientB) = Msepsis + My rinaryiractinfection + MHypertension = In1.25 4+ In1.20 +
In1.17 ~0.56

To perform the patient analysis in STAD (Section ’Simplified Topological Abstraction of Data’), the
similarity measure S needs to be converted into a distance measure D = 1 — S,,,,maiized Where Syormatized =
S/max(S).

Distance measures in categorical variables are built based on a binary statement of zero or one. Unlike
other data types, categorical data generate a bimodal distribution, which can be considered as a normal
when the element contains multiple dimensions (Schork and Zapala, 2012). The similarity in diagnosis
metric not only depends on the matching of elements but also on their positions on the list. These two
conditions tend to generate left-skewed distance distributions, as shown in (Figure 1A). In other words,
most patients are very different from other patients.

Simplified Topological Abstraction of Data

Simplified Topological Abstraction of Data (STAD) (Alcaide and Aerts, 2020) is a dimensionality
reduction method which projects the structure of a distance matrix Dx into a graph U. This method
converts datapoints in multi-dimensional space into an unweighted graph in which nearby points in input
space are mapped to neighboring vertices in graph space. This is achieved by maximizing the Pearson
correlation between the original distance matrix and a distance matrix based on the shortest paths between
any two nodes in the graph (which is the objective function to be optimized). STAD projections of
multi-dimensional data allow the extraction of complex patterns. The input for a STAD transformation
consists of a distance matrix of the original data, which in this case is based on the metric as defined in
the previous section.

As mentioned above, high dissimilarity between datapoints (i.e. patients) results in a left-skewed
distance distribution. Unfortunately, this skew poses a problem for STAD analysis. As mentioned above,
the STAD method visualizes the distances between elements by means of the path length between nodes.
Hence, to represent a big distance between two elements, STAD needs to use a set of intermediate
connections that help to describe a long path. In case no intermediate nodes can be found, the algorithm
forces a direct connection between the two nodes. As a result, in a left-skewed distribution, STAD tends to
generate networks with an excessively high number of links, even when high correlation can be achieved
as shown in Figure 1B and D. This means that the principle that nodes that are closely linked are also
close in the original space (i.e. are similar) does not hold anymore (Koftka, 2013).

Therefore, we propose a modification of the STAD algorithm, named STAD-R (where the R stands for
”Ratio”), which avoids the problem on datasets of dissimilar items through the use of a modified objective
function. To reduce the number of links between dissimilar datapoints we alter the STAD method to
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Figure 2. Creation of the STAD-R network for different iterations. (A) Distance matrix Dy: Pairwise
distances between all elements in a point cloud are calculated using a defined distance metric. (B)
Distance list: Transformation of the matrix into a edges list. Edges are sorted by their distance. Smaller
distances are first candidates to become part of the network U. (C) The Minimum spanning tree connects
all nodes with minimum distance. It guarantees that a path exists between all nodes and becomes the
initial iteration in the evaluation of the optimal STAD network (D) The addition of edges over the MST
may improve the correlation between the two distance matrices. Edges are added in sequential order
following the list in B. (E) The optimal network is found at the iteration with the maximum combination
of correlation between Dy and Dy and the ratio R.

Y l_dnetworkedge
X . Y 1+dnctworkedge . .
213 of edges included in the network (see Figure 2). Note that edges represent the distance between two

214 elements of the dataset and constitute a cell in the pairwise distance matrix.

215 This ratio R is added to the objective function of the algorithm, which maximizes the correlation p

216 between the distance matrices Dy (of the input dataset) and Dy (based on shortest path distances in the

217 graph). When including the ratio R, the objective function in STAD-R is not only a maximization problem
218 based on the Pearson correlation but also a maximization of ratio R. Table 2 shows the difference between

219 STAD and STAD-R.

220 The ratio R is the sum of those distances of datapoints in Dy that are directly connected in network U.
221 Figure 2 provides-an-intuitionof the creation of a STAD-R network during different iterations.

222 The result of STAD-R over STAD is presented in Figure 1E. The network has a considerable lower,
223 number-of links (Figure 1C), and patterns in the data are much more apparent.

224 The STAD-R algorithm generates networks with considerably lower number of links compared to the

225 correlation-based version. The ratio R restricts the inclusion of dissimilarities and therefore, the number
226 of edges in the network. This new constraint also alters the number of edges in networks generated from
227 other distributions types, e.g., right-skewed or normal. Nevertheless, the general ’shape” of the resulting

28 network remains the same. An example is presented in Figure 3A, showing a right-skewed distance

212 incorporate the ratio R = , in which the sum of dyerwork edge Tefers to the sum of distances
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Table 2. Objective function in STAD and STAD-R. The correlation p is computed between the original
distance matrix Dy and the distance matrix derived from the shortest path graph in Dy . The ratio R is
calculated from the network at each iteration considering the edges included in the network. Note that
distance dyeryork edge are normalized values between zero and one.

OBJECTIVE FUNCTION: CORRELATION. STAD OBJECTIVE FUNCTION: CORRELATION * RATIO.
(8), DISTANCE D o BARCELONA ®, PROCESS USING TRAFFIC DATASET STAD-R PROCESS USING TRAFFIC DATASET

c
rrelat

%00 3300 42500
Num. edges

(D) STAD NETWORK WITH 4701 EDGES (@) (E) STAD-R NETWORK WITH 1304 EDGES ()

i s

Figure 3. Distance distributions of traffic activity, STAD, and STAD-R projections. The dataset contains
the traffic activity in the city of Barcelona from October 2017 until November 2018. The dataset was
presented and analyzed in (Alcaide and Aerts, 2020). (A) Distribution of diagnosis distance. (B)
Correlation between original distance matrix and distance matrix based on STAD graph, given different
numbers of edges. (C) Idem as (B) using STAD-R. (D) STAD network. (E) STAD-R network.

distribution, leading to networks with different numbers of edges for STAD and STAD-R, respectively.
However, the structure is still preserved in both networks (Figure 3D and E).

RESULTS

We applied this approach to the MIMIC-III database (Johnson et al., 2016), which is a publicly available
dataset developed by the MIT Lab for Computation, Physiology, containing anonymized health data
from intensive care unit admissions between 2008 and 2014. The MIMIC-III dataset includes the
diagnosis profiles of 58,925 patients. Their diagnoses are described using the ICD-9 codification and
sorted according to their relevance to the patient. To reduce the number of distinct terms in the list
of diagnoses, ICD codes were first grouped as described in the ICD guidelines Healthcare Cost and
Utilization Project (2019). The proof-of-principle interface as well as the underlying code can be found
on http://vda-lab.be/mimic.html.

The interface is composed of two main parts: an overview node-link network visualization including
all patients (Figure 4A), and a more detailed view of selected profile groups (Figure 4B). Networks for
each ICD code are precomputed: for each ICD-9 code the relevant patient subpopulations were extracted
from the data, diagnosis distances and the resulting graph were computed using STAD-R. When the
user selects an ICD-9 code from the interface (in this case code 2910; alcohol withdrawal delirium), the
corresponding precomputed network is displayed.

The output of Louvain community detection (De Meo et al., 2011) is added as post-hoc annotation
to facilitate the selection and exploration of the most evident patterns. The Louvain algorithm defines
clusters by measuring the density of links inside the group compared to the links between them, which
is close to the user interpretation of networks. However, the interpretation of a STAD-R network is not
limited to discrete clusters. It aims to represent all relationships between points, including other types of
patterns, such as trends or loops. The user can subsequently select either a cluster in this visualisation or
individual patients, which will then trigger the display of a barchart which gives more information for that
particular cluster (Figure 4B). This stacked barchart shows how different ICD codes are spread across the
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Diagnosis explorer is an interface to investigate diagnosis profiles of ~60,000 patients from MIMIC database.
The information analyzed is contained in table DIAGNOSES_ICD which includes the ICD Code of patients and the order (SEQ_NUM) in which the ICD diagnoses relate to
the patient. ICD diagnoses are ordered by priority - and the order does have an impact on the reimbursement for treatment.

Select a ICD Code to explore:

2910: Alcohol withdrawal delirium (303) -

ICD Code 2910: Alcohol withdrawal delirium

Selection =

Select a group or groups to analyze the network and press the button under the network (“Select patients”) to analyze them. You can use the drop-down menu “Select
by the group” or double-click on the nodes. Multiselect is available by pressing (CTRL in Windows/Linux and % in Mac)
The node size can be controlled through the slides located on top of the navigation bar “Node size". @

Change node size ~

| Selectbygroup %

Group A (28,4%)

(Cra9%) C(A284%) '\.

- o Group B (15,2%)
- B152% r
Py . .‘ ;
12% CFao%) L i &
&
@ ® "#a_ ®
ClOIC] e®

R Select patients

78 patients were diagnosed with a diagnosis between

the ICD @ 290-299 as the most important pathology. 43 patients were diagnosed with the group of ®
Mouseover interaction pops up the list ICD9 codes ICD 800-829 as the most representative diagnosis,
contained in the selected groups of patients. In this corresponding to fractures of bones. The "alcoholic
case, the exploration reveals that all codes correspond withdrawal delirium" is located between positions 2
to ICD9-2910: Alcohol withdrawal delirium. and 8 in the list of diagnoses.
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Figure 4. The interface to explore the diagnosis profiles in the MIMIC-III database. (A) Network
visualization of those patients who have alcohol withdrawal delirium as one of their diagnoses. The
network is visualized using a force-directed layout. Node colors are assigned automatically following
Louvain community detection. (B) Bar-charts to compare the diagnosis profiles of selected groups in the
network. Color corresponds to ICD category. In this example Group A contains patients with alcohol
withdrawal delirium as the primary diagnosis; in contrast, Group B lists closed fractures as the most
relevant diagnosis, and alcohol withdrawal delirium is only in the 2nd to 8th position.

254 different positions in the list of diagnoses: how many patients have code 2910 at the first position in the
255 diagnosis list, how many at the second position, etc; the same goes for the other ICD codes. Total bar
26 lengths decrease as the position in the list decreases due to the fact that different patients have different
257 lengths of diagnosis lists.
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Figure 5. Comparison of STAD-R, MDS, t-SNE and UMAP using the population of patients with
patients with alcohol withdrawal delirium (ICD-9 291.0). The three communities were determined by the
Louvain algorithm. Community 1 are patients diagnosed with alcohol withdrawal delirium in the first
positions of the list. Community 2 were patients with intracranial injuries as concussions. Community 3
are patients with fractures of bones as the primary diagnosis.

DISCUSSION

The definition of a custom similarity metric together with a flexible dimensionality reduction technique
constitute the key elements of our approach. In this section, we evaluate the benefits of STAD to detect
patterns in diagnostic data compared to other popular methods and further discuss the application of the
presented distance metric in a different but similar context.

Comparing STAD to other dimensionality reduction methods
The projection of distances in STAD-R aims to enhance the representation of similarities using networks.
Similar groups of patients tend to be inter-connected, which are perceived as a homogeneous cohort. The
outputs of three popular algorithms (MDS, t-SNE, and UMAP) are compared with STAD-R in Figure 5.
The population used in this example is the collection of MIMIC-III patients with alcohol withdrawal
delirium (ICD-9 291.0), which was also used for Figure 4. The MDS projection endeavors to approximate
all distances in data by defining the two most informative dimensions. Dimensionality methods such as
t-SNE and UMAP favor the detection of local structures over the global, although UMAP also retains part
of the general relations. Conversely, the abstract graph produced by STAD-R must still be embedded to
be visualized, and the selection of the layout may produce slightly different results. Unlike scatterplots,
node-link representations provide a more flexible platform for exploring data, especially when node
positions can be readjusted according to the analyst and data needs (Henry et al., 2007).

In the four plots of Figure 5, the same points were highlighted to ease the comparison between them.
These groups correspond to three communities identified by the Louvain method in the interface. For
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instance, community 1 and 3 correspond to the patients analyzed in section 'Results’. Community 1 were
patients diagnosed with alcohol withdrawal delirium as the primary diagnosis (Group A in Figure 4);
community 3 are patients with fractures of bones as the primary diagnosis (Group B in Figure 4);
community 2 are patients with intracranial injuries such as concussions. Despite the simple comparison
presented, further analysis between these groups confirmed qualitative differences between profiles and
a closer similarity between communities 2 and 3 than 1. The initial causes of communities 2 and 3 are
associated with injuries while the primary diagnosis of patients in community 1 is the delirium itself.

In Figure 5, we can see that communities that are defined in the network (Figure S5A) are relatively
well preserved in t-SNE (Figure 5C) but less so in MDS (Figure 5B). However, t-SNE does not take the
global structure into account which is apparent from the fact that communities 2 and 3 are very far apart
in t-SNE but actually are quite similar (STAD-R and MDS). UMAP (Figure 5D) improves on the t-SNE
output and results in a view similar to MDS.

Although the interpretation of these visualizations is difficult to assess, quality metrics may help
quantify the previous intuitions. Table 3 presents the quantitative measures for global distance and local
distance preservation of projections in Figure 5. Global distance preservation was measured using the
Spearman rank correlation (psp). It compares the distances for every pair of points between the original
data space and the two-dimensional projection (Zar, 2005). Local distance preservations were measured
by the proportion of neighbors identified in the projection. This metric quantifies how many of the
neighbors in the original space are neighbors in the projection (Espadoto et al., 2019). We evaluated this
metric using a neighborhood of fourteen neighbors, which is the average cluster size in the MIMIC-III
dataset using Louvain community detection (14 — nn).

The richness of the node-link diagram representation of STAD-R cannot be captured using node
position in the 2D plane alone. Therefore, STAD-R is analyzed from two perspective, First, the abstract
graph as generated by STAD-R (STAD-R graph) and, second, the two-dimensional projection after graph
drawing (STAD-R layout). The abstract graph only considers the connections between nodes to determine
the distances between them, whereas the graph drawing results only consider the node placement in the
2D plane.

Based on the values from Table 3, the STAD-R obtained equivalent results to other dimensionality
reduction methods in the preservation of the global and local structures. The abstract graph (STAD-R
graph) is a not directly visible object as other methods. However, the node placement (STAD-R layout) is
able to capture the information from the graph obtaining measures, in this example, close to UMAP, both
global and local distances. Besides;node-link diagrams provide the-intangible information of links that
enhance the interpretation of relationships and allow thorough exploration through interactions such as
drag nodes to other positions.

Global/local focus | Measure | MDS | t-SNE | UMAP | STAD-R graph | STAD-R layout
Global Psp 0.54 0.41 0.47 0.52 0.47
Local 14—nn | 0.34 0.60 0.53 0.62 0.52

Table 3. Distance preservation measures of projections in Figure 5. The table describes the Spearman’s
rank correlation (ps),) and the proportion of the first fourteen nearest neighbors preserved (14 — nn). The
selection of fourteen neighbors corresponds to the average cluster size in the MIMIC-III dataset using
Louvain community detection. Column ”STAD-R graph” represents the abstract graph and column
”STAD-R layout” represents the node placement generated by a ForceAtlas2 layout (Jacomy et al., 2014)
which is the layout implemented in the interface.

Similarity measures for ICD procedures

The diagnosis similarity described in section *Diagnosis similarity and distances’ is designed for assessing
distance between diagnosis profiles, but the principles presented here can be generalized to other termi-
nologies. For example, the procedures which patients receive during a hospital stay are also recorded and
also follow an ICD codification: they also contain a list of categories similar to diagnosis. Unlike ICD
diagnoses list, which encode priority, the order of procedure code lists indicate the sequence in which
encode procedures were performed. Thus the weight distribution in the similarity that was used for the
diagnosis metric must be adapted to the nature of the procedure data. Therefore,we can alter the formula
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Figure 6. The population of patients who received a partial hip replacement (ICD 9: 81.52). The
network was computed using STAD-R, and distances were estimated using an adapted version of
diagnosis similarity for procedures. Color is based on Louvain community detection.

to include the relative distance between positions of matched elements instead of the top position in the
diagnosis case. Formally, the similarity between two procedure concepts can be described as follows:

1
Mc(A,B) = In (1 i |position(Cy) — position(Cg)| + 1 >

As with diagnosis similarity, the metric is estimated as the sum of individual contributions of matched
concepts, S(X,Y) =Y  M(XNY).

Figure 6 shows a STAD network generated using this adapted similarity for procedures. This example
illustrates the population of patients with partial hip replacement (ICD 9: 81.52) in the MIMIC-III
population. We can identify three clusters which describe three types of patients: group A are patients
with the largest list of activities and are often characterized by venous catheterization and mechanical
ventilation; patients in group B are mainly patients with a single procedure of partial hip replacement;
patients in group C are characterized by the removal of an implanted device and a blood transfusion (data
not shown).

CONCLUSIONS

In this paper, we introduced a custom distance metric for lists of diagnoses and procedures, as well as
an extension to STAD for dissimilar datapoints. The diagnosis similarity measure can be applied to any
ordered list of categories in a manner that is not possible with the measures available in the literature so far.
The metric is designed to identify differences between patients through standardized concepts (diagnosis
and procedures) where the weights of matching concepts are adapted to highlight the most relevant terms.
As mentioned in Boriah et al. (2008), selecting a similarity measure must be based on an understanding of
how it handles different data characteristics. The projection of data using STAD-R allows both for the
detection of local structures and the representation of the global data structure. While no dimensionality
reduction output from a high-dimensional dataset can completely project all relationships in the data, the
connection of nodes in the graph allows a granular selection and exploration of cohorts. Furthermore, the
embedding of the network into an interactive dashboard provides a level of convenience that supports
interpretation of the analysis results of the network.

Moreover, as discussed previously, STAD-R can reveal equivalent data signals at multiple levels to
other dimensionality reduction methods. Quantitative and qualitative (user) evaluation of the method
can be further extended with other datasets to assess both the information captured by the graph and the
benefits of node-links diagrams to represent the similarity between datapoints. Following this direction,
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we plan to further explore STAD-R in collaboration with domain experts in diverse case studies. Besides;
_we plan to build a more robust interface that allows the computation and exploration of STAD-R networks
from a friendlier environment.
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