

A visual analytic approach for the identification of ICU patient subpopulations using ICD diagnostic codes

Daniel Alcaide¹, Jan Aerts^{Corresp. 1, 2}

¹ Department of Electrical Engineering (ESAT) STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium

² UHasselt, I-BioStat, Data Science Institute, Hasselt, Belgium

Corresponding Author: Jan Aerts

Email address: jan.aerts@uhasselt.be

A large number of clinical concepts are categorized under standardized formats that ease the manipulation, understanding, analysis, and exchange of information. One of the most extended codifications is the International Classification of Diseases (ICD) used for characterizing diagnoses and clinical procedures. With formatted ICD concepts, a patient profile can be described through a set of standardized and sorted attributes according to the relevance or chronology of events. This structured data is fundamental to quantify the similarity between patients and detect relevant clinical characteristics. Data visualization tools allow the representation and comprehension of data patterns, usually of a high dimensional nature, where only a partial picture can be projected.

In this paper, we provide a visual analytics approach for the identification of homogeneous patient cohorts by combining custom distance metrics with a flexible dimensionality reduction technique. First we define a new metric to measure the similarity between diagnosis profiles through the concordance and relevance of events. Second we describe a variation of the STAD (Simplified Topological Abstraction of Data) dimensionality reduction technique to enhance the projection of signals preserving the global structure of data.

The MIMIC-III clinical database is used for implementing the analysis into an interactive dashboard, providing a highly expressive environment for the exploration and comparison of patients groups with at least one identical diagnostic ICD code. The combination of the distance metric and STAD not only allows the identification of patterns but also provides a new layer of information to establish additional relationships between patient cohorts. The method and tool presented here add a valuable new approach for exploring heterogeneous patient populations. In addition, the distance metric described can be applied in other domains that employ ordered lists of categorical data.

1 A visual analytic approach for the 2 identification of ICU patient subpopulations 3 using ICD diagnostic codes

4 **Daniel Alcaide¹ and Jan Aerts^{1,2}**

5 ¹**Department of Electrical Engineering (ESAT) STADIUS Center for Dynamical Systems,
6 Signal Processing and Data Analytics, KU Leuven, Belgium**

7 ²**I-BioStat, Data Science Institute, UHasselt, Belgium**

8 Corresponding author:

9 Jan Aerts

10 Email address: jan.aerts@uhasselt.be

11 ABSTRACT

12 A large number of clinical concepts are categorized under standardized formats that ease the manipulation,
13 understanding, analysis, and exchange of information. One of the most extended codifications is the
14 International Classification of Diseases (ICD) used for characterizing diagnoses and clinical procedures.
15 With formatted ICD concepts, a patient profile can be described through a set of standardized and sorted
16 attributes according to the relevance or chronology of events. This structured data is fundamental to
17 quantify the similarity between patients and detect relevant clinical characteristics. Data visualization
18 tools allow the representation and comprehension of data patterns, usually of a high dimensional nature,
19 where only a partial picture can be projected.

20 In this paper, we provide a visual analytics approach for the identification of homogeneous patient cohorts
21 by combining custom distance metrics with a flexible dimensionality reduction technique. First we define
22 a custom metric to measure the similarity between diagnosis profiles through the concordance and
23 relevance of events. Second we describe a variation of the STAD (Simplified Topological Abstraction
24 of Data) dimensionality reduction technique to enhance the projection of signals preserving the global
25 structure of data.

26 An MIMIC-III clinical database is used to demonstrate the approach, presented as an interactive dash-
27 board, providing a highly expressive environment for the exploration and comparison of patients groups
28 with at least one identical diagnostic ICD code. The combination of the distance metric and STAD not only
29 allows the identification of patterns but also provides a new layer of information to establish additional
30 relationships between patient cohorts. The method and tool presented here add a potentially valuable
31 new approach for exploring heterogeneous patient populations. In addition, the distance metric described
32 can be applied in other domains that employ ordered lists of categorical data.

33 INTRODUCTION

34 Patient profiling and selection are a crucial step in the setup of clinical trials. The process involves
35 analytical methods to handle the increasing amount of healthcare data but is still extremely labor-intensive
36 (Sahoo et al., 2014). Nevertheless, the input from an expert in this selection is important.

37 To support the expert in the selection of suitable patients, visual analytics solutions can enable the
38 exploration of a patient population, make recruitment consistent across studies, enhance selection accuracy,
39 increase the number of selected participants, and significantly reduce the overall cost of the selection
40 process (Fink et al., 2003; Damen et al., 2013). Visual analytics relies on interactive and integrated
41 visualizations for exploratory data analysis in order to identify unexpected trends, outliers, or patterns. It
42 can indicate relevant hypotheses that can be complemented with additional algorithms, and help define
43 parameter spaces for these algorithms (Franken, 2009). A major challenge in creating visual solutions
44 is to find effective tools which allow the projection of all data dimensions. One popular solution is to
45 visualize the relationship between elements rather than raw data through similarity metrics which quantify
46 the closeness between data objects (Liu et al., 2016). Similarity metrics are a fundamental part for most

47 of the case-based reasoning algorithms (Kolodner, 2014) such as the detection of consistent cohorts of
48 patients within a patient population. One of the remaining open challenges in the analysis of patient
49 similarity is to establish relevant and practical ways based on clinical concepts (Jia et al., 2019).

50 Many types of information about the patient profile such as diagnosis, procedures, and prescriptions
51 are available under standardized categories contained in taxonomies or dictionaries, e.g., the International
52 Classification of Diseases (ICD), Medical Dictionary for Regulatory Activities (MedDRA) and the
53 Anatomical Therapeutic Chemical (ATC) Classification System. Each patient is for example linked
54 to an ordered list of diagnoses, which are semantic concepts that are (in the case of MIMIC (Johnson
55 et al., 2016)) ordered from most to least important (as per the MIMIC-III documentation "ICD diagnoses
56 are ordered by priority - and the order does have an impact on the reimbursement for treatment").
57 These standardized formats provide a non-numerical data structure facilitating both understanding and
58 management of the data. Several methods have been proposed to define similarity between lists of clinical
59 concepts based on presence of absence of specific terms (Gottlieb et al. 2013; Zhang et al. 2014; Brown
60 2016; Girardi et al. 2016; Rivault et al. 2017; Jia et al. 2019). However, the diagnostic profile of a patient
61 is not merely an independent list of semantic concepts but also includes an intrinsic order indicated by
62 the position of the terms in the list reflecting the relevance vis-a-vis the actual patient status. To the best
63 of our knowledge, no previous work has combined the categorical and ordinal nature of clinical events
64 into a single distance function. This dualism can contribute to improving the detection of cohorts through
65 diagnostic and procedural data. **This can have a significant impact as diagnoses or procedures are part of**
66 **recruitment criteria in most clinical trials** (Boland et al., 2012).

67 In this paper, a novel approach for exploring clinical patient data is introduced. In particular, we focus
68 on patient profiles represented by a set of diagnosis ICD codes sorted by relevance. The distance metric
69 considers the sorted concepts as input, and the resulting pairwise values are projected into a **dimensionality**
70 **reduction** graph.

71 The remaining part of this paper is organized as follows. In the section 'Background', we give an
72 overview of related work in categorical events and graphical projections of patient similarity. The section
73 'Materials and Methods' describes the proposed distance metric and modifications applied on the base
74 algorithms STAD for visualizing patient population. In 'Results', we demonstrate the effectiveness of
75 the approach in a real-world dataset. The section 'Discussion' compares other methods and alternative
76 metrics for similar data. Finally, the section 'Conclusion' presents conclusions and possible directions for
77 future work.

78 **BACKGROUND**

79 The exploration and analysis of patients through similarity measures has been presented in different areas
80 of bioinformatics and biomedicine, and also data mining and information visualization. In this section,
81 we review the related literature on these areas below, and we focus on the notion of similarity measures
82 for categorical events and graphical representation of patient similarity.

83 **Patient similarity and distance measures for categorical events**

84 Different distance metrics exist for unordered lists of categorical data, including the overlap coefficient
85 (Vijaymeena and Kavitha, 2016), the Jaccard index (Real and Vargas, 1996), and the simple matching
86 coefficient (Šulc and Řezanková, 2014). These methods compute the number of matched attributes
87 between two lists using different criteria. Although they treat each entry in the list as independent of the
88 others, they have been used successfully to measure patient similarity to support clinical decision making
89 and have demonstrated their effectiveness in exploratory and predictive analytics (Zhang et al. 2014;
90 Lee et al. 2015). Similarly, different ways of computing distances between ordered lists are available
91 (Van Dongen and Enright, 2012). The Spearman's rank coefficient (Corder and Foreman, 2014) is useful
92 for both numerical and categorical data and has been used in clinical studies (Mukaka, 2012). However,
93 correlation between ordered lists cannot be calculated when the lists are of different lengths (Pereira et al.,
94 2009).

95 In the context of medical diagnoses, the ICD (International Classification of Diseases) codes have
96 been widely used for describing patient similarity. However, these typically consider the hierarchical
97 structure of the ICD codes. Gottlieb et al. (2013), for example, proposed a method combining the Jaccard
98 score of two lists with the nearest common ancestor in the ICD hierarchy. The similarity measure for the
99 ICD ontology was previously presented in Popescu and Khalilia (2011). Each term is assigned to a weight

100 based on its importance within the hierarchy, which was defined as $1 - 1/n$ where n corresponded to its
101 level in the hierarchy.

102 In our work, however, we will not leverage the hierarchical structure of the ICD codes, but employ the
103 ICD grouping as described by Healthcare Cost and Utilization Project (2019). Our approach takes the
104 position of the term in the list of diagnoses into account, which is a proxy to their relevance for the patient
105 status. The metric assigns a higher weight to terms located in first positions than the last ones.

106 Alternative approaches such as those by Le and Ho (2005) and Ahmad and Dey (2007) consider the
107 similarity between two attributes as the shared relationship with the other elements in the sample, i.e.,
108 two elements are similar if they appear with a common set of attributes. From a different perspective,
109 the latent concept of these metrics is also present in the identification of comorbidity diseases (Moni
110 et al. 2014; Ronzano et al. 2019) although these studies aim to find heterogeneous types of diseases
111 rather than different profiles of patients. The main drawback of metrics based on co-occurrence is the
112 assumption of an intrinsic dependency between attributes without considering their relevance. The work
113 presented by Ienco et al. (2012) and Jia et al. (2015) use the notion of context which identifies the set of
114 relevant categories to a defined attribute. The similarity measure in Jia et al. (2015) is determined by the
115 correlation of their context attributes.

116 **Graphical projections of patient similarity**

117 Visually representing pairwise distance matrices remains a challenge. Most often, dimensionality reduction
118 techniques are used to bring the number of dimensions down to two so that the data can be represented in
119 a scatterplot (Nguyen et al. 2014; Girardi et al. 2016; Urpa and Anders 2019). Such scatterplots can not
120 only indicate clusters and outliers, but are also very useful for assessing sample quality. In the case of
121 patient data, each point in such plot represents a patient, and relative positions between them in the 2D
122 plane correspond to the distance between them in the original higher dimensional space. Multidimensional
123 scaling (MDS) is arguably one of the most commonly used dimensionality reduction methods (Mukherjee
124 et al., 2018). It arranges points on two or three dimensions by minimizing the discrepancy between the
125 original distance space and the distance in the two-dimensional space. Derived MDS methods have been
126 presented, proposing modified versions of the minimization function but conserving the initial aim (Saeed
127 et al., 2018). Besides MDS, recent methods have been proposed to highlight the local structure of the
128 different patterns in high-dimensional data. For example, t-distributed stochastic neighbor embedding
129 (t-SNE) (Maaten and Hinton, 2008) and uniform manifold approximation (UMAP) (McInnes et al., 2018)
130 have been used in many publications on heterogeneous patient data (Abdelmoula et al. 2016; Simoni et al.
131 2018; Becht et al. 2019). Unlike MDS, t-SNE projects the conditional probability instead of the distances
132 between points by centering a normalized Gaussian distribution for each point based on a predefined
133 number of nearest neighbors. This approach generates robustness in the projection, which allows the
134 preservation of local structure in the data. In a similar fashion, UMAP aims to detect the local clusters but
135 at the same time generates a better intuition of the global structure of data.

136 In addition to scatterplot representations, alternative visual solutions are also possible, for example
137 heatmaps (Baker and Porollo, 2018), treemaps (Zillner et al., 2008), and networks. The latter are often
138 built using a combination of dimensionality reduction and topological methods (Li et al. 2015; Nielson
139 et al. 2015; Dagliati et al. 2019). This approach has for example been used with success to visually
140 validate the automated patient classification in analytical pipelines (Pai and Bader 2018; Pai et al. 2019).
141 In general, the created network encodes the distance between two datapoints in high-dimensional space
142 into an edge between them and the full dataset can therefore be represented as a fully connected graph.
143 The STAD method (Alcaide and Aerts, 2020) reduces the number of edges allowing a more scalable
144 visualization of distances. The original distance in high-dimensional space between two datapoints is
145 correspondent to the path-length in the resulting graph between these datapoints. The main advantage of
146 networks to display high-dimensional data is that users not only can perceive patterns by the location of
147 points but also by the connection of elements, thereby increasing trust in the data signals.

148 **MATERIAL AND METHODS**

149 The International Classification of Diseases (ICD) is a diagnosis and procedure coding system used by
150 hospitals to bill for care provided. They are further used by health researchers in the study of electronic
151 medical records (EMR) due to the ease of eliciting clinical information regarding patient status. Although
152 these administrative databases were not designed for research purposes, their efficiency compared to the

153 manual review of records and demonstrated reliability of information extracted have democratized the
 154 analysis of health data in this way (Humphries et al., 2000). Even though ICD codification is hierarchically
 155 organized, some concepts in the database may be under-reported (Campbell et al., 2011). To make analysis
 156 feasible, the ICD codes are in practice often grouped in higher categories to reduce noise and facilitate the
 157 comparison and analysis with automatic systems (Choi et al. 2016; Miotto et al. 2016; Baumel et al. 2018).
 158 In our approach, we adopt the ICD generalization introduced by the Clinical Classification Software (CSS)
 159 which groups diseases and procedures into clinically meaningful sections (Healthcare Cost and Utilization
 160 Project, 2019). Here we introduce a method to compare unequal sets of ordered lists of categories and
 161 explore the different cohorts of patients through visual representations of data. This approach employs a
 162 custom distance metric presented in section 'Diagnosis similarity and distances' within the visual analytics
 163 method as presented in section 'Spanning Trees as Abstraction of Data'.

164 Diagnosis similarity and distances

165 In the MIMIC dataset which was used for this work (Johnson et al., 2016), each patient's diagnosis is a
 166 list of ICD codes, as exemplified in Table 1. The average number of concepts per profile in the MIMIC
 167 III dataset is 13 with a standard deviation of 5. Diagnoses are sorted by relevance for the patient status.
 168 This order determines the reimbursement for treatment, and, from an analysis perspective, can help us to
 169 distinguish similar medical profiles even with different initial causes. The similarity metric presented
 170 in this work takes this duality into account and provides support for comparing profiles with an unequal
 171 length of elements.

Patient A (115057)			Patient B (117154)		
	ICD section	Label (ICD9)		ICD section	Label (ICD9)
1	996-999.	Infection and inflammatory reaction due to other vascular device, implant, and graft (99662)	1	430-438.	Unspecified intracranial hemorrhage (4329)
2	990-995.	Sepsis (99591)	2	430-438.	Cerebral artery occlusion, unspecified with cerebral infarction (43491)
3	590-599.	Urinary tract infection, site not specified (5990)	3	996-999.	Iatrogenic cerebrovascular infarction or hemorrhage (99702)
4	401-405.	Unspecified essential hypertension (4019)	4	990-995.	Sepsis (99591)
			5	590-599.	Urinary tract infection, site not specified (5990)
			6	401-405.	Unspecified essential hypertension (4019)

Table 1. Objective function in STAD and STAD-R. The correlation ρ is computed between the original distance matrix D_X and the distance matrix derived from the shortest path graph in D_U . The ratio R is calculated from the network at each iteration considering the edges included in the network. Note that distance $d_{network edge}$ are normalized values between zero and one.

172 The similarity between two patients (diagnosis profiles) A and B is based on which diagnoses (i.e.
 173 ICD9 codes) are present in both, as well as the position of these elements in the list. Consider a match M
 174 between two concepts c_A and c_B , which contributes to the similarity according to the following formula:

$$M_C(A, B) = \ln \left(1 + \frac{1}{\max(\text{position}(c_A), \text{position}(c_B))} \right)$$

175 The position mentioned in the formula corresponds to the positional index in the list. As an example,
 176 the individual contribution of the concept "Sepsis" for patients A and B in Table 1 is $M_{Sepsis} =$
 177 $\ln \left(1 + \frac{1}{\max(2,4)} \right) = \ln 1.25$. The total similarity between patients is the sum of individual contributions

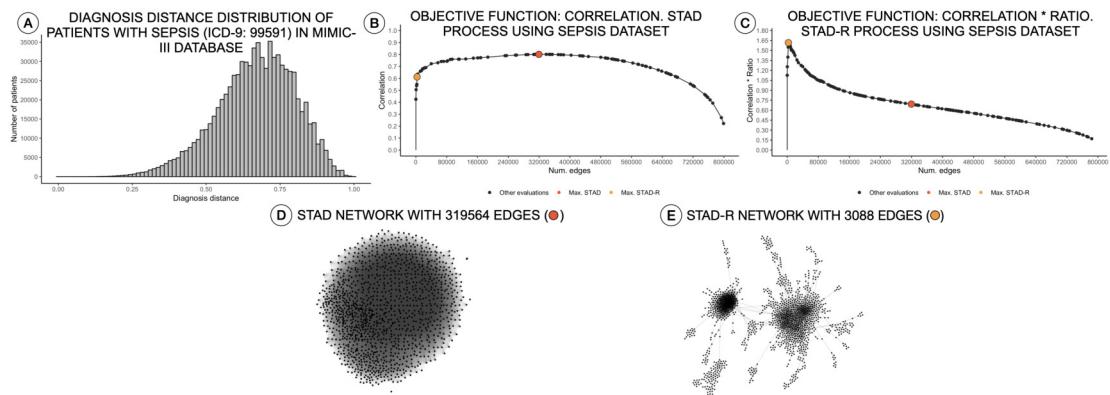


Figure 1. Distance distributions of a population of patients with sepsis, STAD, and STAD-R projections. The dataset is composed of a selection of 1,271 patients from MIMIC-III diagnosed with sepsis (ICD-9: 99591). Predefined conditions cause more homogeneous populations that mitigate the skewness of the diagnosis similarity distribution. (A) Distribution of diagnosis distance. (B) Correlation between original distance matrix and distance matrix based on STAD graph, given different numbers of edges. (C) Idem as (B) using STAD-R. (D) STAD network. (E) STAD-R network.

178 from the matched concepts $S(X, Y) = \sum_{n=1}^{i=1} M(X \cap Y)$. Applying this formula to the example in Table 1 gives: $S(\text{PatientA}, \text{PatientB}) = M_{\text{Sepsis}} + M_{\text{Urinarytractinfection}} + M_{\text{Hypertension}} = \ln 1.25 + \ln 1.20 + \ln 1.17 \simeq 0.56$

181 To perform the patient analysis in STAD (Section 'Simplified Topological Abstraction of Data'), the 182 similarity measure S needs to be converted into a distance measure $D = 1 - S_{\text{normalized}}$ where $S_{\text{normalized}} = 183 S / \max(S)$.

184 Distance measures in categorical variables are built based on a binary statement of zero or one. Unlike 185 other data types, categorical data generate a bimodal distribution, which can be considered as a normal 186 when the element contains multiple dimensions (Schork and Zapala, 2012). The similarity in diagnosis 187 metric not only depends on the matching of elements but also on their positions on the list. These two 188 conditions tend to generate left-skewed distance distributions, as shown in (Figure 1A). In other words, 189 most patients are very different from other patients.

190 Simplified Topological Abstraction of Data

191 Simplified Topological Abstraction of Data (STAD) (Alcaide and Aerts, 2020) is a dimensionality 192 reduction method which projects the structure of a distance matrix D_X into a graph U . This method 193 converts datapoints in multi-dimensional space into an unweighted graph in which nearby points in input 194 space are mapped to neighboring vertices in graph space. This is achieved by maximizing the Pearson 195 correlation between the original distance matrix and a distance matrix based on the shortest paths between 196 any two nodes in the graph (which is the objective function to be optimized). STAD projections of 197 multi-dimensional data allow the extraction of complex patterns. The input for a STAD transformation 198 consists of a distance matrix of the original data, which in this case is based on the metric as defined in 199 the previous section.

200 As mentioned above, high dissimilarity between datapoints (i.e. patients) results in a left-skewed 201 distance distribution. Unfortunately, this skew poses a problem for STAD analysis. As mentioned above, 202 the STAD method visualizes the distances between elements by means of the path length between nodes. 203 Hence, to represent a big distance between two elements, STAD needs to use a set of intermediate 204 connections that help to describe a long path. In case no intermediate nodes can be found, the algorithm 205 forces a direct connection between the two nodes. As a result, in a left-skewed distribution, STAD tends to 206 generate networks with an excessively high number of links, even when high correlation can be achieved 207 as shown in Figure 1B and D. This means that the principle that nodes that are closely linked are also 208 close in the original space (i.e. are similar) does not hold anymore (Koffka, 2013).

209 Therefore, we propose a modification of the STAD algorithm, named STAD-R (where the R stands for 210 "Ratio"), which avoids the problem on datasets of dissimilar items through the use of a modified objective 211 function. To reduce the number of links between dissimilar datapoints we alter the STAD method to

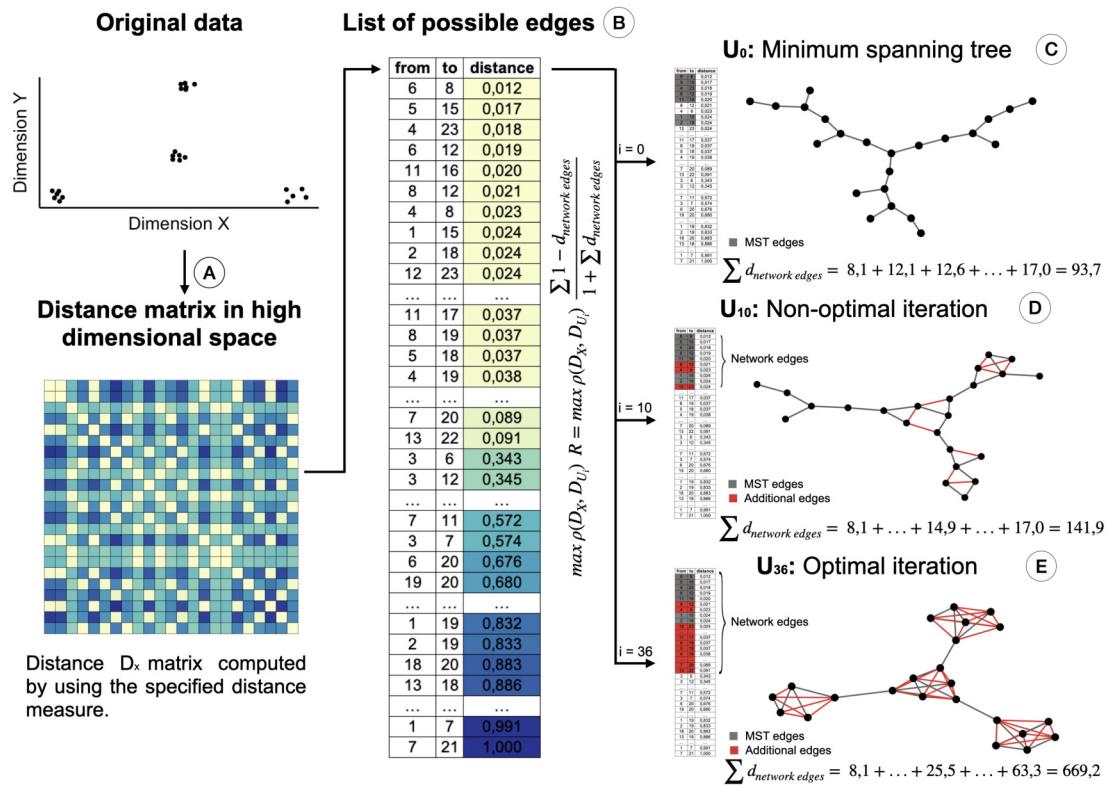


Figure 2. Creation of the STAD-R network for different iterations. (A) Distance matrix D_X : Pairwise distances between all elements in a point cloud are calculated using a defined distance metric. (B) Distance list: Transformation of the matrix into a edges list. Edges are sorted by their distance. Smaller distances are first candidates to become part of the network U . (C) The Minimum spanning tree connects all nodes with minimum distance. It guarantees that a path exists between all nodes and becomes the initial iteration in the evaluation of the optimal STAD network (D) The addition of edges over the MST may improve the correlation between the two distance matrices. Edges are added in sequential order following the list in B. (E) The optimal network is found at the iteration with the maximum combination of correlation between D_X and D_U and the ratio R .

212 incorporate the ratio $R = \frac{\sum 1 - d_{\text{network edge}}}{\sum 1 + d_{\text{network edge}}}$, in which the sum of $d_{\text{network edge}}$ refers to the sum of distances
 213 of edges included in the network (see Figure 2). Note that edges represent the distance between two
 214 elements of the dataset and constitute a cell in the pairwise distance matrix.

215 This ratio R is added to the objective function of the algorithm, which maximizes the correlation ρ
 216 between the distance matrices D_X (of the input dataset) and D_U (based on shortest path distances in the
 217 graph). When including the ratio R , the objective function in STAD-R is not only a maximization problem
 218 based on the Pearson correlation but also a maximization of ratio R . Table 2 shows the difference between
 219 STAD and STAD-R.

220 The ratio R is the sum of those distances of datapoints in D_X that are directly connected in network U .
 221 Figure 2 provides an intuition of the creation of a STAD-R network during different iterations.

222 The result of STAD-R over STAD is presented in Figure 1E. The network has a considerable lower
 223 number of links (Figure 1C), and patterns in the data are much more apparent.

224 The STAD-R algorithm generates networks with considerably lower number of links compared to the
 225 correlation-based version. The ratio R restricts the inclusion of dissimilarities and therefore, the number
 226 of edges in the network. This new constraint also alters the number of edges in networks generated from
 227 other distributions types, e.g., right-skewed or normal. Nevertheless, the general "shape" of the resulting
 228 network remains the same. An example is presented in Figure 3A, showing a right-skewed distance

STAD	STAD-R
$\max \rho(D_X, D_U)$	$\max \rho(D_X, D_U)R = \max \rho \frac{\sum 1-d_{\text{network edges}}}{\sum 1+d_{\text{network edges}}}$

Table 2. Objective function in STAD and STAD-R. The correlation ρ is computed between the original distance matrix D_X and the distance matrix derived from the shortest path graph in D_U . The ratio R is calculated from the network at each iteration considering the edges included in the network. Note that distance $d_{\text{network edge}}$ are normalized values between zero and one.

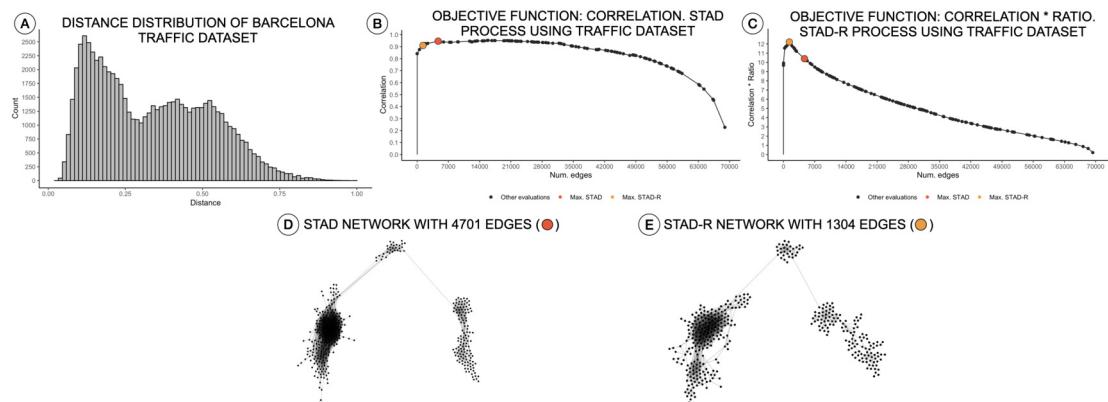


Figure 3. Distance distributions of traffic activity, STAD, and STAD-R projections. The dataset contains the traffic activity in the city of Barcelona from October 2017 until November 2018. The dataset was presented and analyzed in (Alcaide and Aerts, 2020). (A) Distribution of diagnosis distance. (B) Correlation between original distance matrix and distance matrix based on STAD graph, given different numbers of edges. (C) Idem as (B) using STAD-R. (D) STAD network. (E) STAD-R network.

229 distribution, leading to networks with different numbers of edges for STAD and STAD-R, respectively.
 230 However, the structure is still preserved in both networks (Figure 3D and E).

RESULTS

232 We applied this approach to the MIMIC-III database (Johnson et al., 2016), which is a publicly available
 233 dataset developed by the MIT Lab for Computation Physiology, containing anonymized health data
 234 from intensive care unit admissions between 2008 and 2014. The MIMIC-III dataset includes the
 235 diagnosis profiles of 58,925 patients. Their diagnoses are described using the ICD-9 codification and
 236 sorted according to their relevance to the patient. To reduce the number of distinct terms in the list
 237 of diagnoses, ICD codes were first grouped as described in the ICD guidelines Healthcare Cost and
 238 Utilization Project (2019). The proof-of-principle interface as well as the underlying code can be found
 239 on <http://vda-lab.be/mimic.html>.

240 The interface is composed of two main parts: an overview node-link network visualization including
 241 all patients (Figure 4A), and a more detailed view of selected profile groups (Figure 4B). Networks for
 242 each ICD code are precomputed: for each ICD-9 code the relevant patient subpopulations were extracted
 243 from the data, diagnosis distances and the resulting graph were computed using STAD-R. When the
 244 user selects an ICD-9 code from the interface (in this case code 2910; alcohol withdrawal delirium), the
 245 corresponding precomputed network is displayed.

246 The output of Louvain community detection (De Meo et al., 2011) is added as post-hoc annotation
 247 to facilitate the selection and exploration of the most evident patterns. The Louvain algorithm defines
 248 clusters by measuring the density of links inside the group compared to the links between them, which
 249 is close to the user interpretation of networks. However, the interpretation of a STAD-R network is not
 250 limited to discrete clusters. It aims to represent all relationships between points, including other types of
 251 patterns, such as trends or loops. The user can subsequently select either a cluster in this visualisation or
 252 individual patients, which will then trigger the display of a barchart which gives more information for that
 253 particular cluster (Figure 4B). This stacked barchart shows how different ICD codes are spread across the

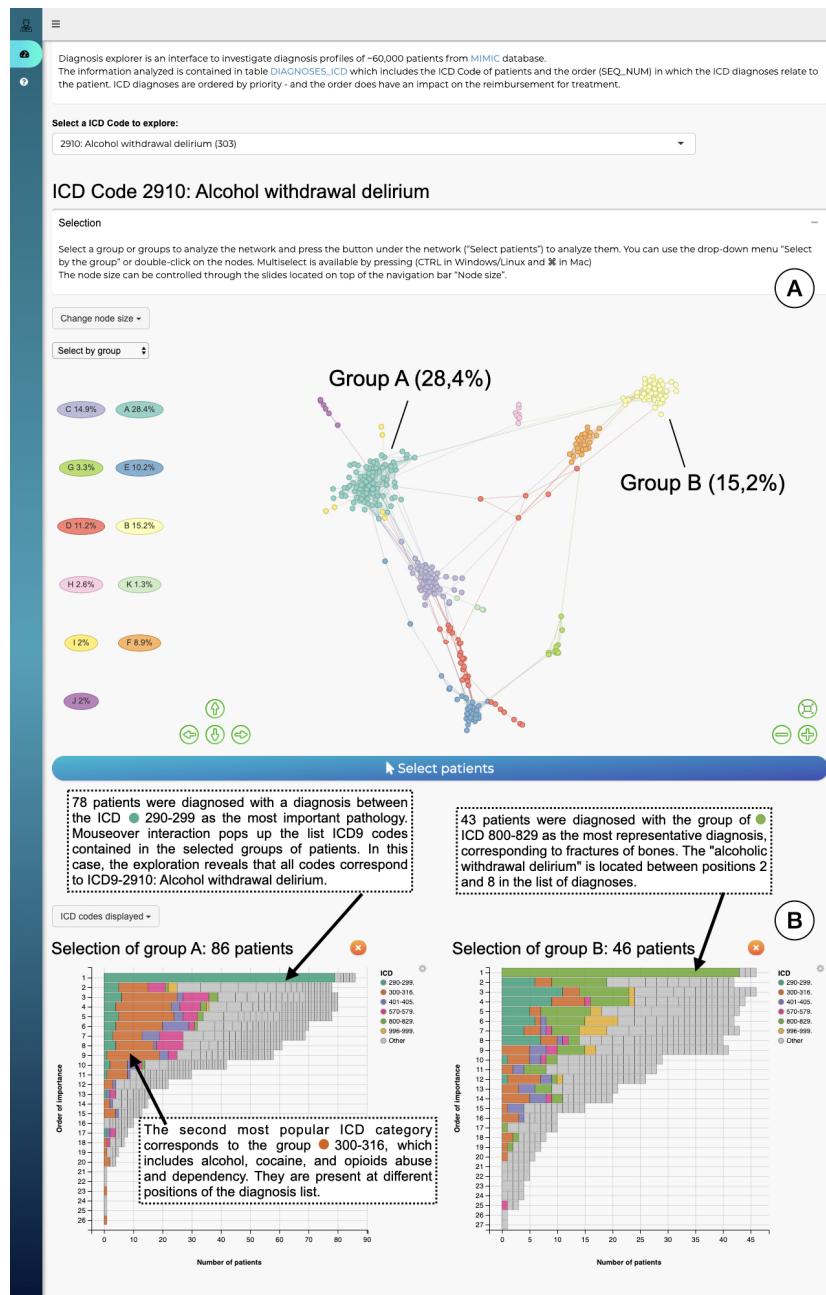


Figure 4. The interface to explore the diagnosis profiles in the MIMIC-III database. (A) Network visualization of those patients who have alcohol withdrawal delirium as one of their diagnoses. The network is visualized using a force-directed layout. Node colors are assigned automatically following Louvain community detection. (B) Bar-charts to compare the diagnosis profiles of selected groups in the network. Color corresponds to ICD category. In this example Group A contains patients with alcohol withdrawal delirium as the primary diagnosis; in contrast, Group B lists closed fractures as the most relevant diagnosis, and alcohol withdrawal delirium is only in the 2nd to 8th position.

254 different positions in the list of diagnoses: how many patients have code 2910 at the first position in the
 255 diagnosis list, how many at the second position, etc; the same goes for the other ICD codes. Total bar
 256 lengths decrease as the position in the list decreases due to the fact that different patients have different
 257 lengths of diagnosis lists.

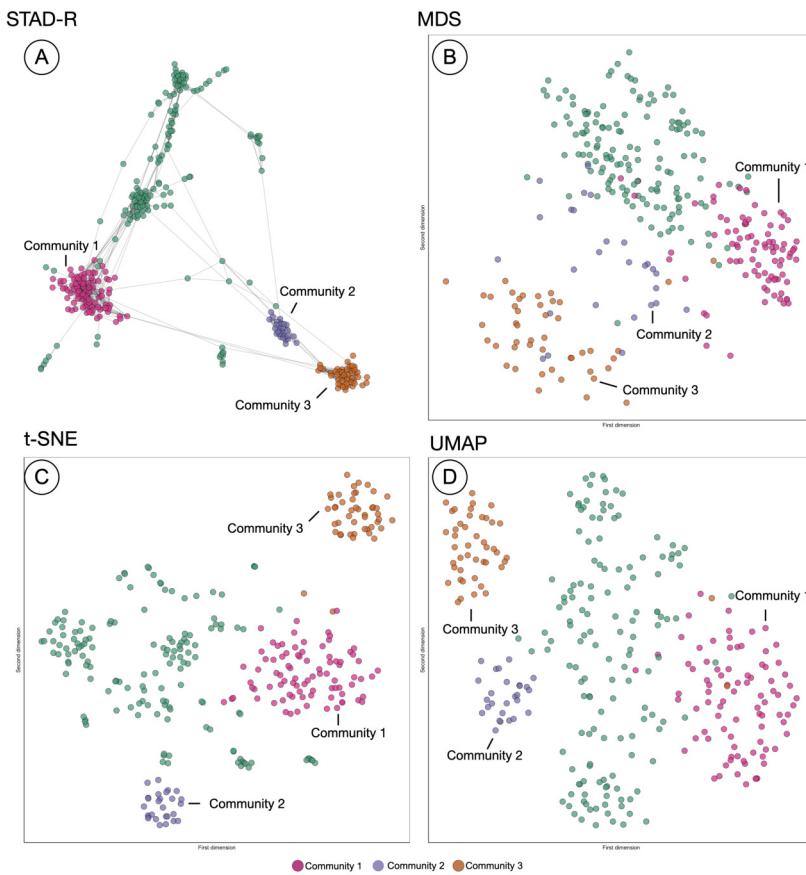


Figure 5. Comparison of STAD-R, MDS, t-SNE and UMAP using the population of patients with patients with alcohol withdrawal delirium (ICD-9 291.0). The three communities were determined by the Louvain algorithm. Community 1 are patients diagnosed with alcohol withdrawal delirium in the first positions of the list. Community 2 were patients with intracranial injuries as concussions. Community 3 are patients with fractures of bones as the primary diagnosis.

258 DISCUSSION

259 The definition of a custom similarity metric together with a flexible dimensionality reduction technique
 260 constitute the key elements of our approach. In this section, we evaluate the benefits of STAD to detect
 261 patterns in diagnostic data compared to other popular methods and further discuss the application of the
 262 presented distance metric in a different but similar context.

263 Comparing STAD to other dimensionality reduction methods

264 The projection of distances in STAD-R aims to enhance the representation of similarities using networks.
 265 Similar groups of patients tend to be inter-connected, which are perceived as a homogeneous cohort. The
 266 outputs of three popular algorithms (MDS, t-SNE, and UMAP) are compared with STAD-R in Figure 5.
 267 The population used in this example is the collection of MIMIC-III patients with alcohol withdrawal
 268 delirium (ICD-9 291.0), which was also used for Figure 4. The MDS projection endeavors to approximate
 269 all distances in data by defining the two most informative dimensions. Dimensionality methods such as
 270 t-SNE and UMAP favor the detection of local structures over the global, although UMAP also retains part
 271 of the general relations. Conversely, the abstract graph produced by STAD-R must still be embedded to
 272 be visualized, and the selection of the layout may produce slightly different results. Unlike scatterplots,
 273 node-link representations provide a more flexible platform for exploring data, especially when node
 274 positions can be readjusted according to the analyst and data needs (Henry et al., 2007).

275 In the four plots of Figure 5, the same points were highlighted to ease the comparison between them.
 276 These groups correspond to three communities identified by the Louvain method in the interface. For

277 instance, community 1 and 3 correspond to the patients analyzed in section 'Results'. Community 1 were
 278 patients diagnosed with alcohol withdrawal delirium as the primary diagnosis (Group A in Figure 4);
 279 community 3 are patients with fractures of bones as the primary diagnosis (Group B in Figure 4);
 280 community 2 are patients with intracranial injuries such as concussions. Despite the simple comparison
 281 presented, further analysis between these groups confirmed qualitative differences between profiles and
 282 a closer similarity between communities 2 and 3 than 1. The initial causes of communities 2 and 3 are
 283 associated with injuries while the primary diagnosis of patients in community 1 is the delirium itself.

284 In Figure 5, we can see that communities that are defined in the network (Figure 5A) are relatively
 285 well preserved in t-SNE (Figure 5C) but less so in MDS (Figure 5B). However, t-SNE does not take the
 286 global structure into account which is apparent from the fact that communities 2 and 3 are very far apart
 287 in t-SNE but actually are quite similar (STAD-R and MDS). UMAP (Figure 5D) improves on the t-SNE
 288 output and results in a view similar to MDS.

289 Although the interpretation of these visualizations is difficult to assess, quality metrics may help
 290 quantify the previous intuitions. Table 3 presents the quantitative measures for global distance and local
 291 distance preservation of projections in Figure 5. Global distance preservation was measured using the
 292 Spearman rank correlation (ρ_{Sp}). It compares the distances for every pair of points between the original
 293 data space and the two-dimensional projection (Zar, 2005). Local distance preservations were measured
 294 by the proportion of neighbors identified in the projection. This metric quantifies how many of the
 295 neighbors in the original space are neighbors in the projection (Espadoto et al., 2019). We evaluated this
 296 metric using a neighborhood of fourteen neighbors, which is the average cluster size in the MIMIC-III
 297 dataset using Louvain community detection ($14 - nn$).

298 The richness of the node-link diagram representation of STAD-R cannot be captured using node
 299 position in the 2D plane alone. Therefore, STAD-R is analyzed from two perspectives. First, the abstract
 300 graph as generated by STAD-R (STAD-R graph) and, second, the two-dimensional projection after graph
 301 drawing (STAD-R layout). The abstract graph only considers the connections between nodes to determine
 302 the distances between them, whereas the graph drawing results only consider the node placement in the
 303 2D plane.

304 Based on the values from Table 3, the STAD-R obtained equivalent results to other dimensionality
 305 reduction methods in the preservation of the global and local structures. The abstract graph (STAD-R
 306 graph) is a not directly visible object as other methods. However, the node placement (STAD-R layout) is
 307 able to capture the information from the graph obtaining measures, in this example, close to UMAP, both
 308 global and local distances. Besides, node-link diagrams provide the intangible information of links that
 309 enhance the interpretation of relationships and allow thorough exploration through interactions such as
 310 drag nodes to other positions.

Global/local focus	Measure	MDS	t-SNE	UMAP	STAD-R graph	STAD-R layout
Global	ρ_{Sp}	0.54	0.41	0.47	0.52	0.47
Local	$14 - nn$	0.34	0.60	0.53	0.62	0.52

Table 3. Distance preservation measures of projections in Figure 5. The table describes the Spearman's rank correlation (ρ_{Sp}) and the proportion of the first fourteen nearest neighbors preserved ($14 - nn$). The selection of fourteen neighbors corresponds to the average cluster size in the MIMIC-III dataset using Louvain community detection. Column "STAD-R graph" represents the abstract graph and column "STAD-R layout" represents the node placement generated by a ForceAtlas2 layout (Jacomy et al., 2014) which is the layout implemented in the interface.

311 Similarity measures for ICD procedures

312 The diagnosis similarity described in section 'Diagnosis similarity and distances' is designed for assessing
 313 distance between diagnosis profiles, but the principles presented here can be generalized to other terminologies.
 314 For example, the procedures which patients receive during a hospital stay are also recorded and
 315 also follow an ICD codification: they also contain a list of categories similar to diagnosis. Unlike ICD
 316 diagnoses list, which encode priority, the order of procedure code lists indicate the sequence in which
 317 encode procedures were performed. Thus the weight distribution in the similarity that was used for the
 318 diagnosis metric must be adapted to the nature of the procedure data. Therefore, we can alter the formula

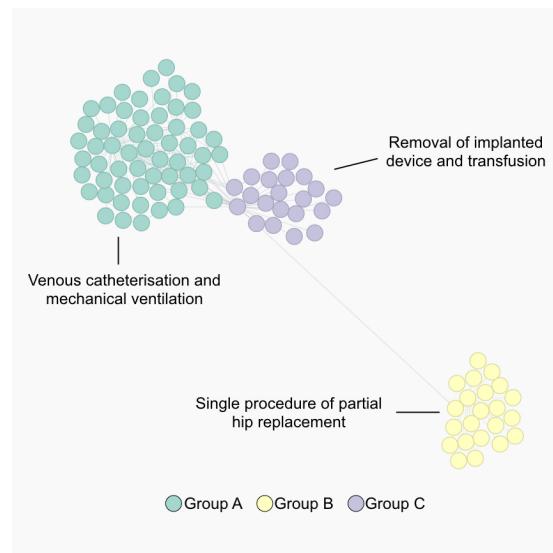


Figure 6. The population of patients who received a partial hip replacement (ICD 9: 81.52). The network was computed using STAD-R, and distances were estimated using an adapted version of diagnosis similarity for procedures. Color is based on Louvain community detection.

319 to include the relative distance between positions of matched elements instead of the top position in the
 320 diagnosis case. Formally, the similarity between two procedure concepts can be described as follows:

$$M_C(A, B) = \ln \left(1 + \frac{1}{|position(C_A) - position(C_B)| + 1} \right)$$

321 As with diagnosis similarity, the metric is estimated as the sum of individual contributions of matched
 322 concepts, $S(X, Y) = \sum_{i=1}^n M(X \cap Y)$.

323 Figure 6 shows a STAD network generated using this adapted similarity for procedures. This example
 324 illustrates the population of patients with partial hip replacement (ICD 9: 81.52) in the MIMIC-III
 325 population. We can identify three clusters which describe three types of patients: group A are patients
 326 with the largest list of activities and are often characterized by venous catheterization and mechanical
 327 ventilation; patients in group B are mainly patients with a single procedure of partial hip replacement;
 328 patients in group C are characterized by the removal of an implanted device and a blood transfusion (data
 329 not shown).

330 CONCLUSIONS

331 In this paper, we introduced a custom distance metric for lists of diagnoses and procedures, as well as
 332 an extension to STAD for dissimilar datapoints. The diagnosis similarity measure can be applied to any
 333 ordered list of categories in a manner that is not possible with the measures available in the literature so far.
 334 The metric is designed to identify differences between patients through standardized concepts (diagnosis
 335 and procedures) where the weights of matching concepts are adapted to highlight the most relevant terms.
 336 As mentioned in Boriah et al. (2008), selecting a similarity measure must be based on an understanding of
 337 how it handles different data characteristics. The projection of data using STAD-R allows both for the
 338 detection of local structures and the representation of the global data structure. While no dimensionality
 339 reduction output from a high-dimensional dataset can completely project all relationships in the data, the
 340 connection of nodes in the graph allows a granular selection and exploration of cohorts. Furthermore, the
 341 embedding of the network into an interactive dashboard provides a level of convenience that supports
 342 interpretation of the analysis results of the network.

343 Moreover, as discussed previously, STAD-R can reveal equivalent data signals at multiple levels to
 344 other dimensionality reduction methods. Quantitative and qualitative (user) evaluation of the method
 345 can be further extended with other datasets to assess both the information captured by the graph and the
 346 benefits of node-links diagrams to represent the similarity between datapoints. Following this direction,

347 we plan to further explore STAD-R in collaboration with domain experts in diverse case studies. **Besides**,
348 we plan to build a more robust interface that allows the computation and exploration of STAD-R networks
349 from a friendlier environment.

350 ACKNOWLEDGEMENTS

351 This project is financed through the IWT SBO ACCUMULATE Grant nr 150056 and the Flemish
352 Government "Onderzoeksprogramma Artificiele Intelligentie (AI) Vlaanderen" programme.

353 REFERENCES

354 Abdelmoula, W. M., Balluff, B., Englert, S., Dijkstra, J., Reinders, M. J., Walch, A., McDonnell, L. A.,
355 and Lelieveldt, B. P. (2016). Data-driven identification of prognostic tumor subpopulations using
356 spatially mapped t-sne of mass spectrometry imaging data. *Proceedings of the National Academy of
357 Sciences*, 113(43):12244–12249.

358 Ahmad, A. and Dey, L. (2007). A method to compute distance between two categorical values of same
359 attribute in unsupervised learning for categorical data set. *Pattern Recognition Letters*, 28(1):110–118.

360 Alcaide, D. and Aerts, J. (2020). Spanning trees as approximation of data structures. *IEEE Transactions
361 on Visualization and Computer Graphics*.

362 Baker, F. and Porollo, A. (2018). Coeviz: A web-based integrative platform for interactive visualization
363 of large similarity and distance matrices. *Data*, 3(1):4.

364 Baumel, T., Nassour-Kassis, J., Cohen, R., Elhadad, M., and Elhadad, N. (2018). Multi-label classification
365 of patient notes: case study on icd code assignment. In *Workshops at the Thirty-Second AAAI
366 Conference on Artificial Intelligence*.

367 Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I. W., Ng, L. G., Ginhoux, F., and Newell, E. W.
368 (2019). Dimensionality reduction for visualizing single-cell data using umap. *Nature biotechnology*,
369 37(1):38.

370 Boland, M. R., Tu, S. W., Carini, S., Sim, I., and Weng, C. (2012). Elixr-time: a temporal knowledge rep-
371 resentation for clinical research eligibility criteria. *AMIA summits on translational science proceedings*,
372 2012:71.

373 Boriah, S., Chandola, V., and Kumar, V. (2008). Similarity measures for categorical data: A comparative
374 evaluation. In *Proceedings of the 2008 SIAM international conference on data mining*, pages 243–254.
375 SIAM.

376 Brown, S.-A. (2016). Patient similarity: emerging concepts in systems and precision medicine. *Frontiers
377 in physiology*, 7:561.

378 Campbell, P. G., Malone, J., Yadla, S., Chitale, R., Nasser, R., Maltenfort, M. G., Vaccaro, A., and Ratliff,
379 J. K. (2011). Comparison of icd-9-based, retrospective, and prospective assessments of perioperative
380 complications: assessment of accuracy in reporting. *Journal of Neurosurgery: Spine*, 14(1):16–22.

381 Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., and Sun, J. (2016). Doctor ai: Predicting clinical
382 events via recurrent neural networks. In *Machine Learning for Healthcare Conference*, pages 301–318.

383 Corder, G. W. and Foreman, D. I. (2014). *Nonparametric statistics: A step-by-step approach*. John Wiley
384 & Sons.

385 Dagliati, A., Geifman, N., Peek, N., Holmes, J. H., Sacchi, L., Sajjadi, S. E., and Tucker, A. (2019).
386 Inferring temporal phenotypes with topological data analysis and pseudo time-series. In *Conference on
387 Artificial Intelligence in Medicine in Europe*, pages 399–409. Springer.

388 Damen, D., Luyckx, K., Hellebaut, G., and Van den Bulcke, T. (2013). Pastel: A semantic platform
389 for assisted clinical trial patient recruitment. In *2013 IEEE International Conference on Healthcare
390 Informatics*, pages 269–276. IEEE.

391 De Meo, P., Ferrara, E., Fiumara, G., and Provetti, A. (2011). Generalized louvain method for community
392 detection in large networks. In *2011 11th International Conference on Intelligent Systems Design and
393 Applications*, pages 88–93. IEEE.

394 Espadoto, M., Martins, R. M., Kerren, A., Hirata, N. S., and Telea, A. C. (2019). Towards a quantitative
395 survey of dimension reduction techniques. *IEEE Transactions on Visualization and Computer Graphics*,
396 pages 1–20.

397 Fink, E., Hall, L. O., Goldgof, D. B., Goswami, B. D., Boonstra, M., and Krischer, J. P. (2003). Experi-
398 ments on the automated selection of patients for clinical trials. In *SMC'03 Conference Proceedings*.

399 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System
400 Security and Assurance (Cat. No. 03CH37483), volume 5, pages 4541–4545. IEEE.

401 Franken, N. (2009). Visual exploration of algorithm parameter space. In 2009 IEEE Congress on
402 Evolutionary Computation, pages 389–398. IEEE.

403 Girardi, D., Wartner, S., Halmerbauer, G., Ehrenmüller, M., Kosorus, H., and Dreiseitl, S. (2016). Using
404 concept hierarchies to improve calculation of patient similarity. *Journal of biomedical informatics*,
405 63:66–73.

406 Gottlieb, A., Stein, G. Y., Ruppin, E., Altman, R. B., and Sharan, R. (2013). A method for inferring
407 medical diagnoses from patient similarities. *BMC medicine*, 11(1):194.

408 Healthcare Cost and Utilization Project (2019). Clinical classifications software (icd-9-
409 cm) summary and download. summary and downloading information. <https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccsfactsheet.jsp>. Accessed: September 11, 2020.

410 Henry, N., Fekete, J.-D., and McGuffin, M. J. (2007). Nodetrix: a hybrid visualization of social networks.
411 *IEEE transactions on visualization and computer graphics*, 13(6):1302–1309.

412 Humphries, K. H., Rankin, J. M., Carere, R. G., Buller, C. E., Kiely, F. M., and Spinelli, J. J. (2000).
413 Co-morbidity data in outcomes research are clinical data derived from administrative databases a
414 reliable alternative to chart review? *Journal of clinical epidemiology*, 53(4):343–349.

415 Ienco, D., Pensa, R. G., and Meo, R. (2012). From context to distance: Learning dissimilarity for
416 categorical data clustering. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 6(1):1.

417 Jacomy, M., Venturini, T., Heymann, S., and Bastian, M. (2014). Forceatlas2, a continuous graph layout
418 algorithm for handy network visualization designed for the gephi software. *PloS one*, 9(6):e98679.

419 Jia, H., Cheung, Y.-m., and Liu, J. (2015). A new distance metric for unsupervised learning of categorical
420 data. *IEEE transactions on neural networks and learning systems*, 27(5):1065–1079.

421 Jia, Z., Lu, X., Duan, H., and Li, H. (2019). Using the distance between sets of hierarchical taxonomic
422 clinical concepts to measure patient similarity. *BMC medical informatics and decision making*, 19(1):91.

423 Johnson, A. E., Pollard, T. J., Shen, L., Li-wei, H. L., Feng, M., Ghassemi, M., Moody, B., Szolovits, P.,
424 Celi, L. A., and Mark, R. G. (2016). Mimic-iii, a freely accessible critical care database. *Scientific
425 data*, 3:160035.

426 Koffka, K. (2013). *Principles of Gestalt psychology*. Routledge.

427 Kolodner, J. (2014). *Case-based reasoning*. Morgan Kaufmann.

428 Le, S. Q. and Ho, T. B. (2005). An association-based dissimilarity measure for categorical data. *Pattern
429 Recognition Letters*, 26(16):2549–2557.

430 Lee, J., Maslove, D. M., and Dubin, J. A. (2015). Personalized mortality prediction driven by electronic
431 medical data and a patient similarity metric. *PloS one*, 10(5):e0127428.

432 Li, L., Cheng, W.-Y., Glicksberg, B. S., Gottesman, O., Tamler, R., Chen, R., Bottinger, E. P., and
433 Dudley, J. T. (2015). Identification of type 2 diabetes subgroups through topological analysis of patient
434 similarity. *Science translational medicine*, 7(311):311ra174–311ra174.

435 Liu, S., Maljovec, D., Wang, B., Bremer, P.-T., and Pascucci, V. (2016). Visualizing high-dimensional
436 data: Advances in the past decade. *IEEE transactions on visualization and computer graphics*,
437 23(3):1249–1268.

438 Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-SNE. *Journal of machine learning
439 research*, 9(Nov):2579–2605.

440 McInnes, L., Healy, J., and Melville, J. (2018). UMAP: Uniform manifold approximation and projection
441 for dimension reduction. *arXiv preprint arXiv:1802.03426*.

442 Miotto, R., Li, L., Kidd, B. A., and Dudley, J. T. (2016). Deep patient: an unsupervised representation to
443 predict the future of patients from the electronic health records. *Scientific reports*, 6:26094.

444 Moni, M. A., Xu, H., and Lio, P. (2014). Cytocom: a cytoscape app to visualize, query and analyse
445 disease comorbidity networks. *Bioinformatics*, 31(6):969–971.

446 Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in medical research. *Malawi
447 Medical Journal*, 24(3):69–71.

448 Mukherjee, S., Sinha, B. K., and Chattopadhyay, A. K. (2018). Multidimensional Scaling. In *Statistical
449 Methods in Social Science Research*, pages 113–122. Springer.

450 Nguyen, Q. V., Nelles, G., Huang, M. L., Simoff, S., and Catchpoole, D. (2014). Interactive visualization
451 for patient-to-patient comparison. *Genomics & informatics*, 12(1):21.

452 Nielson, J. L., Paquette, J., Liu, A. W., Guandique, C. F., Tovar, C. A., Inoue, T., Irvine, K.-A., Gensel,

454 J. C., Kloke, J., Petrossian, T. C., Lum, P. Y., Carlsson, G. E., Manley, G. T., Young, W., Beattie, M. S.,
455 Bresnahan, J. C., and Ferguson, A. R. (2015). Topological data analysis for discovery in preclinical
456 spinal cord injury and traumatic brain injury. *Nature communications*, 6:8581.

457 Pai, S. and Bader, G. D. (2018). Patient similarity networks for precision medicine. *Journal of molecular
458 biology*, 430(18):2924–2938.

459 Pai, S., Hui, S., Isserlin, R., Shah, M. A., Kaka, H., and Bader, G. D. (2019). netdx: Interpretable patient
460 classification using integrated patient similarity networks. *Molecular systems biology*, 15(3).

461 Pereira, V., Waxman, D., and Eyre-Walker, A. (2009). A problem with the correlation coefficient as a
462 measure of gene expression divergence. *Genetics*, 183(4):1597–1600.

463 Popescu, M. and Khalilia, M. (2011). Improving disease prediction using icd-9 ontological features. In
464 *2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)*, pages 1805–1809. IEEE.

465 Real, R. and Vargas, J. M. (1996). The probabilistic basis of jaccard's index of similarity. *Systematic
466 biology*, 45(3):380–385.

467 Rivault, Y., Le Meur, N., and Dameron, O. (2017). A similarity measure based on care trajectories as
468 sequences of sets. In *Conference on Artificial Intelligence in Medicine in Europe*, pages 278–282.
469 Springer.

470 Ronzano, F., Gutiérrez-Sacristán, A., and Furlong, L. I. (2019). Comorbidity4j: a tool for interactive
471 analysis of disease comorbidities over large patient datasets. *Bioinformatics*.

472 Saeed, N., Nam, H., Haq, M. I. U., and Muhammad Saqib, D. B. (2018). A survey on multidimensional
473 scaling. *ACM Computing Surveys (CSUR)*, 51(3):47.

474 Sahoo, S. S., Tao, S., Parchman, A., Luo, Z., Cui, L., Mergler, P., Lanese, R., Barnholtz-Sloan, J. S.,
475 Meropol, N. J., and Zhang, G.-Q. (2014). Trial prospector: matching patients with cancer research
476 studies using an automated and scalable approach. *Cancer informatics*, 13:CIN–S19454.

477 Schork, N. J. and Zapala, M. A. (2012). Statistical properties of multivariate distance matrix regression
478 for high-dimensional data analysis. *Frontiers in genetics*, 3:190.

479 Simoni, Y., Becht, E., Fehlings, M., Loh, C. Y., Koo, S.-L., Teng, K. W. W., Yeong, J. P. S., Nahar, R.,
480 Zhang, T., Kared, H., Duan, K., Ang, N., Poidinger, M., Lee, Y. Y., Larbi, A., Khng, A. J., Tan, E., Fu,
481 C., Mathew, R., Teo, M., Lim, W. T., Toh, C. K., Ong, B.-H., Koh, T., Hillmer, A. M., Takano, A., Lim,
482 T. K. H., Tan, E. H., Zhai, W., Tan, D. S. W., Tan, I. B., and Newell, E. W. (2018). Bystander cd8+ t
483 cells are abundant and phenotypically distinct in human tumour infiltrates. *Nature*, 557(7706):575.

484 Šulc, Z. and Řezáková, h. (2014). Evaluation of recent similarity measures for categorical data. In
485 *Proceedings of the 17th International Conference Applications of Mathematics and Statistics in
486 Economics. Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu*, Wrocław, pages 249–258.

487 Urpa, L. M. and Anders, S. (2019). Focused multidimensional scaling: interactive visualization for
488 exploration of high-dimensional data. *BMC bioinformatics*, 20(1):221.

489 Van Dongen, S. and Enright, A. J. (2012). Metric distances derived from cosine similarity and pearson
490 and spearman correlations. *arXiv preprint arXiv:1208.3145*.

491 Vijaymeena, M. and Kavitha, K. (2016). A survey on similarity measures in text mining. *Machine
492 Learning and Applications: An International Journal*, 3(2):19–28.

493 Zar, J. H. (2005). Spearman rank correlation. *Encyclopedia of Biostatistics*, 7.

494 Zhang, P., Wang, F., Hu, J., and Sorrentino, R. (2014). Towards personalized medicine: leveraging
495 patient similarity and drug similarity analytics. *AMIA Summits on Translational Science Proceedings*,
496 2014:132.

497 Zillner, S., Hauer, T., Rogulin, D., Tsymbal, A., Huber, M., and Solomonides, T. (2008). Semantic
498 visualization of patient information. In *2008 21st IEEE International Symposium on Computer-Based
499 Medical Systems*, pages 296–301. IEEE.