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A large number of clinical concepts are categorized under standardized formats that ease
the manipulation, understanding, analysis, and exchange of information. One of the most
extended codifications is the International Classification of Diseases (ICD) used for
characterizing diagnoses and clinical procedures. With formatted ICD concepts, a patient
profile can be described through a set of standardized and sorted attributes according to
the relevance or chronology of events. This structured data is fundamental to quantify the
similarity between patients and detect relevant clinical characteristics. Data visualization
tools allow the representation and comprehension of data patterns, usually of a high
dimensional nature, where only a partial picture can be projected.
In this paper, we provide a visual analytics approach for the identification of homogeneous
patient cohorts by combining custom distance metrics with a flexible dimensionality
reduction technique. First we define a new metric to measure the similarity between
diagnosis profiles through the concordance and relevance of events. Second we describe a
variation of the STAD (Simplified Topological Abstraction of Data) dimensionality reduction
technique to enhance the projection of signals preserving the global structure of data.
The MIMIC-III clinical database is used for implementing the analysis into an interactive
dashboard, providing a highly expressive environment for the exploration and comparison
of patients groups with at least one identical diagnostic ICD code. The combination of the
distance metric and STAD not only allows the identification of patterns but also provides a
new layer of information to establish additional relationships between patient cohorts. The
method and tool presented here add a valuable new approach for exploring heterogeneous
patient populations. In addition, the distance metric described can be applied in other
domains that employ ordered lists of categorical data.
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ABSTRACT11

A large number of clinical concepts are categorized under standardized formats that ease the manipulation,

understanding, analysis, and exchange of information. One of the most extended codifications is the

International Classification of Diseases (ICD) used for characterizing diagnoses and clinical procedures.

With formatted ICD concepts, a patient profile can be described through a set of standardized and sorted

attributes according to the relevance or chronology of events. This structured data is fundamental to

quantify the similarity between patients and detect relevant clinical characteristics. Data visualization

tools allow the representation and comprehension of data patterns, usually of a high dimensional nature,

where only a partial picture can be projected.
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In this paper, we provide a visual analytics approach for the identification of homogeneous patient cohorts

by combining custom distance metrics with a flexible dimensionality reduction technique. First we define

a custom metric to measure the similarity between diagnosis profiles through the concordance and

relevance of events. Second we describe a variation of the STAD (Simplified Topological Abstraction

of Data) dimensionality reduction technique to enhance the projection of signals preserving the global

structure of data.
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An MIMIC-III clinical database is used to demonstrate the approach, presented as an interactive dash-

board, providing a highly expressive environment for the exploration and comparison of patients groups

with at least one identical diagnostic ICD code. The combination of the distance metric and STAD not only

allows the identification of patterns but also provides a new layer of information to establish additional

relationships between patient cohorts. The method and tool presented here add a potentially valuable

new approach for exploring heterogeneous patient populations. In addition, the distance metric described

can be applied in other domains that employ ordered lists of categorical data.
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INTRODUCTION33

Patient profiling and selection are a crucial step in the setup of clinical trials. The process involves34

analytical methods to handle the increasing amount of healthcare data but is still extremely labor-intensive35

(Sahoo et al., 2014). Nevertheless, the input from an expert in this selection is important.36

To support the expert in the selection of suitable patients, visual analytics solutions can enable the37

exploration of a patient population, make recruitment consistent across studies, enhance selection accuracy,38

increase the number of selected participants, and significantly reduce the overall cost of the selection39

process (Fink et al., 2003; Damen et al., 2013). Visual analytics relies on interactive and integrated40

visualizations for exploratory data analysis in order to identify unexpected trends, outliers, or patterns. It41

can indicate relevant hypotheses that can be complemented with additional algorithms, and help define42

parameter spaces for these algorithms (Franken, 2009). A major challenge in creating visual solutions43

is to find effective tools which allow the projection of all data dimensions. One popular solution is to44

visualize the relationship between elements rather than raw data through similarity metrics which quantify45

the closeness between data objects (Liu et al., 2016). Similarity metrics are a fundamental part for most46
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of the case-based reasoning algorithms (Kolodner, 2014) such as the detection of consistent cohorts of47

patients within a patient population. One of the remaining open challenges in the analysis of patient48

similarity is to establish relevant and practical ways based on clinical concepts (Jia et al., 2019).49

Many types of information about the patient profile such as diagnosis, procedures, and prescriptions50

are available under standardized categories contained in taxonomies or dictionaries, e.g., the International51

Classification of Diseases (ICD), Medical Dictionary for Regulatory Activities (MedDRA) and the52

Anatomical Therapeutic Chemical (ATC) Classification System. Each patient is for example linked53

to an ordered list of diagnoses, which are semantic concepts that are (in the case of MIMIC (Johnson54

et al., 2016)) ordered from most to least important (as per the MIMIC-III documentation ”ICD diagnoses55

are ordered by priority - and the order does have an impact on the reimbursement for treatment”).56

These standardized formats provide a non-numerical data structure facilitating both understanding and57

management of the data. Several methods have been proposed to define similarity between lists of clinical58

concepts based on presence of absence of specific terms (Gottlieb et al. 2013; Zhang et al. 2014; Brown59

2016; Girardi et al. 2016; Rivault et al. 2017; Jia et al. 2019). However, the diagnostic profile of a patient60

is not merely an independent list of semantic concepts but also includes an intrinsic order indicated by61

the position of the terms in the list reflecting the relevance vis-a-vis the actual patient status. To the best62

of our knowledge, no previous work has combined the categorical and ordinal nature of clinical events63

into a single distance function. This dualism can contribute to improving the detection of cohorts through64

diagnostic and procedural data. This can have a significant impact as diagnoses or procedures are part of65

recruitment criteria in most clinical trials (Boland et al., 2012).66

In this paper, a novel approach for exploring clinical patient data is introduced. In particular, we focus67

on patient profiles represented by a set of diagnosis ICD codes sorted by relevance. The distance metric68

considers the sorted concepts as input, and the resulting pairwise values are projected into a dimensionality69

reduction graph.70

The remaining part of this paper is organized as follows. In the section ‘Background’, we give an71

overview of related work in categorical events and graphical projections of patient similarity. The section72

‘Materials and Methods’ describes the proposed distance metric and modifications applied on the base73

algorithms STAD for visualizing patient population. In ’Results’, we demonstrate the effectiveness of74

the approach in a real-world dataset. The section ’Discussion’ compares other methods and alternative75

metrics for similar data. Finally, the section ‘Conclusion’ presents conclusions and possible directions for76

future work.77

BACKGROUND78

The exploration and analysis of patients through similarity measures has been presented in different areas79

of bioinformatics and biomedicine, and also data mining and information visualization. In this section,80

we review the related literature on these areas below, and we focus on the notion of similarity measures81

for categorical events and graphical representation of patient similarity.82

Patient similarity and distance measures for categorical events83

Different distance metrics exist for unordered lists of categorical data, including the overlap coefficient84

(Vijaymeena and Kavitha, 2016), the Jaccard index (Real and Vargas, 1996), and the simple matching85

coefficient (Šulc and Řezanková, 2014). These methods compute the number of matched attributes86

between two lists using different criteria. Although they treat each entry in the list as independent of the87

others, they have been used successfully to measure patient similarity to support clinical decision making88

and have demonstrated their effectiveness in exploratory and predictive analytics (Zhang et al. 2014;89

Lee et al. 2015). Similarly, different ways of computing distances between ordered lists are available90

(Van Dongen and Enright, 2012). The Spearman’s rank coefficient (Corder and Foreman, 2014) is useful91

for both numerical and categorical data and has been used in clinical studies (Mukaka, 2012). However,92

correlation between ordered lists cannot be calculated when the lists are of different lengths (Pereira et al.,93

2009).94

In the context of medical diagnoses, the ICD (International Classification of Diseases) codes have95

been widely used for describing patient similarity. However, these typically consider the hierarchical96

structure of the ICD codes. Gottlieb et al. (2013), for example, proposed a method combining the Jaccard97

score of two lists with the nearest common ancestor in the ICD hierarchy. The similarity measure for the98

ICD ontology was previously presented in Popescu and Khalilia (2011). Each term is assigned to a weight99
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based on its importance within the hierarchy, which was defined as 1−1/n where n corresponded to its100

level in the hierarchy.101

In our work, however, we will not leverage the hierarchical structure of the ICD codes, but employ the102

ICD grouping as described by Healthcare Cost and Utilization Project (2019). Our approach takes the103

position of the term in the list of diagnoses into account, which is a proxy to their relevance for the patient104

status. The metric assigns a higher weight to terms located in first positions than the last ones.105

Alternative approaches such as those by Le and Ho (2005) and Ahmad and Dey (2007) consider the106

similarity between two attributes as the shared relationship with the other elements in the sample, i.e.,107

two elements are similar if they appear with a common set of attributes. From a different perspective,108

the latent concept of these metrics is also present in the identification of comorbidity diseases (Moni109

et al. 2014; Ronzano et al. 2019) although these studies aim to find heterogeneous types of diseases110

rather than different profiles of patients. The main drawback of metrics based on co-occurrence is the111

assumption of an intrinsic dependency between attributes without considering their relevance. The work112

presented by Ienco et al. (2012) and Jia et al. (2015) use the notion of context which identifies the set of113

relevant categories to a defined attribute. The similarity measure in Jia et al. (2015) is determined by the114

correlation of their context attributes.115

Graphical projections of patient similarity116

Visually representing pairwise distance matrices remains a challenge. Most often, dimensionality reduction117

techniques are used to bring the number of dimensions down to two so that the data can be represented in118

a scatterplot (Nguyen et al. 2014; Girardi et al. 2016; Urpa and Anders 2019). Such scatterplots can not119

only indicate clusters and outliers, but are also very useful for assessing sample quality. In the case of120

patient data, each point in such plot represents a patient, and relative positions between them in the 2D121

plane correspond to the distance between them in the original higher dimensional space. Multidimensional122

scaling (MDS) is arguably one of the most commonly used dimensionality reduction methods (Mukherjee123

et al., 2018). It arranges points on two or three dimensions by minimizing the discrepancy between the124

original distance space and the distance in the two-dimensional space. Derived MDS methods have been125

presented, proposing modified versions of the minimization function but conserving the initial aim (Saeed126

et al., 2018). Besides MDS, recent methods have been proposed to highlight the local structure of the127

different patterns in high-dimensional data. For example, t-distributed stochastic neighbor embedding128

(t-SNE) (Maaten and Hinton, 2008) and uniform manifold approximation (UMAP) (McInnes et al., 2018)129

have been used in many publications on heterogeneous patient data (Abdelmoula et al. 2016; Simoni et al.130

2018; Becht et al. 2019). Unlike MDS, t-SNE projects the conditional probability instead of the distances131

between points by centering a normalized Gaussian distribution for each point based on a predefined132

number of nearest neighbors. This approach generates robustness in the projection, which allows the133

preservation of local structure in the data. In a similar fashion, UMAP aims to detect the local clusters but134

at the same time generates a better intuition of the global structure of data.135

In addition to scatterplot representations, alternative visual solutions are also possible, for example136

heatmaps (Baker and Porollo, 2018), treemaps (Zillner et al., 2008), and networks. The latter are often137

built using a combination of dimensionality reduction and topological methods (Li et al. 2015; Nielson138

et al. 2015; Dagliati et al. 2019). This approach has for example been used with success to visually139

validate the automated patient classification in analytical pipelines (Pai and Bader 2018; Pai et al. 2019).140

In general, the created network encodes the distance between two datapoints in high-dimensional space141

into an edge between them and the full dataset can therefore be represented as a fully connected graph.142

The STAD method (Alcaide and Aerts, 2020) reduces the number of edges allowing a more scalable143

visualization of distances. The original distance in high-dimensional space between two datapoints is144

correspondent to the path-length in the resulting graph between these datapoints. The main advantage of145

networks to display high-dimensional data is that users not only can perceive patterns by the location of146

points but also by the connection of elements, thereby increasing trust in the data signals.147

MATERIAL AND METHODS148

The International Classification of Diseases (ICD) is a diagnosis and procedure coding system used by149

hospitals to bill for care provided. They are further used by health researchers in the study of electronic150

medical records (EMR) due to the ease of eliciting clinical information regarding patient status. Although151

these administrative databases were not designed for research purposes, their efficiency compared to the152
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manual review of records and demonstrated reliability of information extracted have democratized the153

analysis of health data in this way (Humphries et al., 2000). Even though ICD codification is hierarchically154

organized, some concepts in the database may be under-reported (Campbell et al., 2011). To make analysis155

feasible, the ICD codes are in practice often grouped in higher categories to reduce noise and facilitate the156

comparison and analysis with automatic systems (Choi et al. 2016; Miotto et al. 2016; Baumel et al. 2018).157

In our approach, we adopt the ICD generalization introduced by the Clinical Classification Software (CSS)158

which groups diseases and procedures into clinically meaningful sections (Healthcare Cost and Utilization159

Project, 2019). Here we introduce a method to compare unequal sets of ordered lists of categories and160

explore the different cohorts of patients through visual representations of data. This approach employs a161

custom distance metric presented in section ’Diagnosis similarity and distances’ within the visual analytics162

method as presented in section ’Spanning Trees as Abstraction of Data’.163

Diagnosis similarity and distances164

In the MIMIC dataset which was used for this work (Johnson et al., 2016), each patient’s diagnosis is a165

list of ICD codes, as exemplified in Table 1. The average number of concepts per profile in the MIMIC166

III dataset is 13 with a standard deviation of 5. Diagnoses are sorted by relevance for the patient status.167

This order determines the reimbursement for treatment, and, from an analysis perspective, can help us to168

distinguish similar medical profiles even with different initial causes. The similarity metric presented169

in this work takes this duality into account and provides support for comparing profiles with an unequal170

length of elements.171

Patient A (115057) Patient B (117154)

ICD section Label (ICD9) ICD section Label (ICD9)

1 996-999. Infection and inflammatory

reaction due to other vas-

cular device, implant, and

graft (99662)

1 430-438. Unspecified intracranial

hemorrhage (4329)

2 990-995. Sepsis (99591) 2 430-438. Cerebral artery occlusion,

unspecified with cerebral

infarction (43491)

3 590-599. Urinary tract infection,

site not specified (5990)

3 996-999. Iatrogenic cerebrovascular

infarction or hemorrhage

(99702)

4 401-405. Unspecified essential hy-

pertension (4019)

4 990-995. Sepsis (99591)

5 590-599. Urinary tract infection,

site not specified (5990)

6 401-405. Unspecified essential hy-

pertension (4019)

Table 1. Objective function in STAD and STAD-R. The correlation ρ is computed between the original

distance matrix DX and the distance matrix derived from the shortest path graph in DU . The ratio R is

calculated from the network at each iteration considering the edges included in the network. Note that

distance dnetwork edge are normalized values between zero and one.

The similarity between two patients (diagnosis profiles) A and B is based on which diagnoses (i.e.172

ICD9 codes) are present in both, as well as the position of these elements in the list. Consider a match M173

between two concepts cA and cB, which contributes to the similarity according to the following formula:174

MC(A,B) = ln

(

1+
1

max( position(cA), position(cB) )

)

The position mentioned in the formula corresponds to the positional index in the list. As an exam-175

ple, the individual contribution of the concept ”Sepsis” for patients A and B in Table 1 is MSepsis =176

ln
(

1+ 1
max(2,4))

)

= ln 1.25. The total similarity between patients is the sum of individual contributions177
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Figure 1. Distance distributions of a population of patients with sepsis, STAD, and STAD-R projections.

The dataset is composed of a selection of 1,271 patients from MIMIC-III diagnosed with sepsis (ICD-9:

99591). Predefined conditions cause more homogeneous populations that mitigate the skewness of the

diagnosis similarity distribution. (A) Distribution of diagnosis distance. (B) Correlation between original

distance matrix and distance matrix based on STAD graph, given different numbers of edges. (C) Idem as

(B) using STAD-R. (D) STAD network. (E) STAD-R network.

from the matched concepts S(X ,Y ) = ∑
i=1
n M(X

⋂

Y ). Applying this formula to the example in Ta-178

ble 1 gives: S(PatientA,PatientB) = MSepsis + MUrinarytractin f ection + MHypertension = ln 1.25 + ln 1.20 +179

ln 1.17 ≃ 0.56180

To perform the patient analysis in STAD (Section ’Simplified Topological Abstraction of Data’), the181

similarity measure S needs to be converted into a distance measure D = 1−Snormalized where Snormalized =182

S/max(S).183

Distance measures in categorical variables are built based on a binary statement of zero or one. Unlike184

other data types, categorical data generate a bimodal distribution, which can be considered as a normal185

when the element contains multiple dimensions (Schork and Zapala, 2012). The similarity in diagnosis186

metric not only depends on the matching of elements but also on their positions on the list. These two187

conditions tend to generate left-skewed distance distributions, as shown in (Figure 1A). In other words,188

most patients are very different from other patients.189

Simplified Topological Abstraction of Data190

Simplified Topological Abstraction of Data (STAD) (Alcaide and Aerts, 2020) is a dimensionality191

reduction method which projects the structure of a distance matrix DX into a graph U. This method192

converts datapoints in multi-dimensional space into an unweighted graph in which nearby points in input193

space are mapped to neighboring vertices in graph space. This is achieved by maximizing the Pearson194

correlation between the original distance matrix and a distance matrix based on the shortest paths between195

any two nodes in the graph (which is the objective function to be optimized). STAD projections of196

multi-dimensional data allow the extraction of complex patterns. The input for a STAD transformation197

consists of a distance matrix of the original data, which in this case is based on the metric as defined in198

the previous section.199

As mentioned above, high dissimilarity between datapoints (i.e. patients) results in a left-skewed200

distance distribution. Unfortunately, this skew poses a problem for STAD analysis. As mentioned above,201

the STAD method visualizes the distances between elements by means of the path length between nodes.202

Hence, to represent a big distance between two elements, STAD needs to use a set of intermediate203

connections that help to describe a long path. In case no intermediate nodes can be found, the algorithm204

forces a direct connection between the two nodes. As a result, in a left-skewed distribution, STAD tends to205

generate networks with an excessively high number of links, even when high correlation can be achieved206

as shown in Figure 1B and D. This means that the principle that nodes that are closely linked are also207

close in the original space (i.e. are similar) does not hold anymore (Koffka, 2013).208

Therefore, we propose a modification of the STAD algorithm, named STAD-R (where the R stands for209

”Ratio”), which avoids the problem on datasets of dissimilar items through the use of a modified objective210

function. To reduce the number of links between dissimilar datapoints we alter the STAD method to211
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Figure 2. Creation of the STAD-R network for different iterations. (A) Distance matrix DX : Pairwise

distances between all elements in a point cloud are calculated using a defined distance metric. (B)

Distance list: Transformation of the matrix into a edges list. Edges are sorted by their distance. Smaller

distances are first candidates to become part of the network U . (C) The Minimum spanning tree connects

all nodes with minimum distance. It guarantees that a path exists between all nodes and becomes the

initial iteration in the evaluation of the optimal STAD network (D) The addition of edges over the MST

may improve the correlation between the two distance matrices. Edges are added in sequential order

following the list in B. (E) The optimal network is found at the iteration with the maximum combination

of correlation between DX and DU and the ratio R.

incorporate the ratio R =
∑ 1−dnetwork edge

∑ 1+dnetwork edge
, in which the sum of dnetwork edge refers to the sum of distances212

of edges included in the network (see Figure 2). Note that edges represent the distance between two213

elements of the dataset and constitute a cell in the pairwise distance matrix.214

This ratio R is added to the objective function of the algorithm, which maximizes the correlation ρ215

between the distance matrices DX (of the input dataset) and DU (based on shortest path distances in the216

graph). When including the ratio R, the objective function in STAD-R is not only a maximization problem217

based on the Pearson correlation but also a maximization of ratio R. Table 2 shows the difference between218

STAD and STAD-R.219

The ratio R is the sum of those distances of datapoints in DX that are directly connected in network U .220

Figure 2 provides an intuition of the creation of a STAD-R network during different iterations.221

The result of STAD-R over STAD is presented in Figure 1E. The network has a considerable lower222

number of links (Figure 1C), and patterns in the data are much more apparent.223

The STAD-R algorithm generates networks with considerably lower number of links compared to the224

correlation-based version. The ratio R restricts the inclusion of dissimilarities and therefore, the number225

of edges in the network. This new constraint also alters the number of edges in networks generated from226

other distributions types, e.g., right-skewed or normal. Nevertheless, the general ”shape” of the resulting227

network remains the same. An example is presented in Figure 3A, showing a right-skewed distance228
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STAD STAD-R

max ρ(DX ,DU ) max ρ(DX ,DU )R = max ρ
∑1−dnetwork edges

∑1+dnetwork edges

Table 2. Objective function in STAD and STAD-R. The correlation ρ is computed between the original

distance matrix DX and the distance matrix derived from the shortest path graph in DU . The ratio R is

calculated from the network at each iteration considering the edges included in the network. Note that

distance dnetwork edge are normalized values between zero and one.

Figure 3. Distance distributions of traffic activity, STAD, and STAD-R projections. The dataset contains

the traffic activity in the city of Barcelona from October 2017 until November 2018. The dataset was

presented and analyzed in (Alcaide and Aerts, 2020). (A) Distribution of diagnosis distance. (B)

Correlation between original distance matrix and distance matrix based on STAD graph, given different

numbers of edges. (C) Idem as (B) using STAD-R. (D) STAD network. (E) STAD-R network.

distribution, leading to networks with different numbers of edges for STAD and STAD-R, respectively.229

However, the structure is still preserved in both networks (Figure 3D and E).230

RESULTS231

We applied this approach to the MIMIC-III database (Johnson et al., 2016), which is a publicly available232

dataset developed by the MIT Lab for Computation Physiology, containing anonymized health data233

from intensive care unit admissions between 2008 and 2014. The MIMIC-III dataset includes the234

diagnosis profiles of 58,925 patients. Their diagnoses are described using the ICD-9 codification and235

sorted according to their relevance to the patient. To reduce the number of distinct terms in the list236

of diagnoses, ICD codes were first grouped as described in the ICD guidelines Healthcare Cost and237

Utilization Project (2019). The proof-of-principle interface as well as the underlying code can be found238

on http://vda-lab.be/mimic.html.239

The interface is composed of two main parts: an overview node-link network visualization including240

all patients (Figure 4A), and a more detailed view of selected profile groups (Figure 4B). Networks for241

each ICD code are precomputed: for each ICD-9 code the relevant patient subpopulations were extracted242

from the data, diagnosis distances and the resulting graph were computed using STAD-R. When the243

user selects an ICD-9 code from the interface (in this case code 2910; alcohol withdrawal delirium), the244

corresponding precomputed network is displayed.245

The output of Louvain community detection (De Meo et al., 2011) is added as post-hoc annotation246

to facilitate the selection and exploration of the most evident patterns. The Louvain algorithm defines247

clusters by measuring the density of links inside the group compared to the links between them, which248

is close to the user interpretation of networks. However, the interpretation of a STAD-R network is not249

limited to discrete clusters. It aims to represent all relationships between points, including other types of250

patterns, such as trends or loops. The user can subsequently select either a cluster in this visualisation or251

individual patients, which will then trigger the display of a barchart which gives more information for that252

particular cluster (Figure 4B). This stacked barchart shows how different ICD codes are spread across the253
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Figure 4. The interface to explore the diagnosis profiles in the MIMIC-III database. (A) Network

visualization of those patients who have alcohol withdrawal delirium as one of their diagnoses. The

network is visualized using a force-directed layout. Node colors are assigned automatically following

Louvain community detection. (B) Bar-charts to compare the diagnosis profiles of selected groups in the

network. Color corresponds to ICD category. In this example Group A contains patients with alcohol

withdrawal delirium as the primary diagnosis; in contrast, Group B lists closed fractures as the most

relevant diagnosis, and alcohol withdrawal delirium is only in the 2nd to 8th position.

different positions in the list of diagnoses: how many patients have code 2910 at the first position in the254

diagnosis list, how many at the second position, etc; the same goes for the other ICD codes. Total bar255

lengths decrease as the position in the list decreases due to the fact that different patients have different256

lengths of diagnosis lists.257

8/14PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52883:1:1:NEW 21 Nov 2020)

Manuscript to be reviewedComputer Science



Figure 5. Comparison of STAD-R, MDS, t-SNE and UMAP using the population of patients with

patients with alcohol withdrawal delirium (ICD-9 291.0). The three communities were determined by the

Louvain algorithm. Community 1 are patients diagnosed with alcohol withdrawal delirium in the first

positions of the list. Community 2 were patients with intracranial injuries as concussions. Community 3

are patients with fractures of bones as the primary diagnosis.

DISCUSSION258

The definition of a custom similarity metric together with a flexible dimensionality reduction technique259

constitute the key elements of our approach. In this section, we evaluate the benefits of STAD to detect260

patterns in diagnostic data compared to other popular methods and further discuss the application of the261

presented distance metric in a different but similar context.262

Comparing STAD to other dimensionality reduction methods263

The projection of distances in STAD-R aims to enhance the representation of similarities using networks.264

Similar groups of patients tend to be inter-connected, which are perceived as a homogeneous cohort. The265

outputs of three popular algorithms (MDS, t-SNE, and UMAP) are compared with STAD-R in Figure 5.266

The population used in this example is the collection of MIMIC-III patients with alcohol withdrawal267

delirium (ICD-9 291.0), which was also used for Figure 4. The MDS projection endeavors to approximate268

all distances in data by defining the two most informative dimensions. Dimensionality methods such as269

t-SNE and UMAP favor the detection of local structures over the global, although UMAP also retains part270

of the general relations. Conversely, the abstract graph produced by STAD-R must still be embedded to271

be visualized, and the selection of the layout may produce slightly different results. Unlike scatterplots,272

node-link representations provide a more flexible platform for exploring data, especially when node273

positions can be readjusted according to the analyst and data needs (Henry et al., 2007).274

In the four plots of Figure 5, the same points were highlighted to ease the comparison between them.275

These groups correspond to three communities identified by the Louvain method in the interface. For276
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instance, community 1 and 3 correspond to the patients analyzed in section ’Results’. Community 1 were277

patients diagnosed with alcohol withdrawal delirium as the primary diagnosis (Group A in Figure 4);278

community 3 are patients with fractures of bones as the primary diagnosis (Group B in Figure 4);279

community 2 are patients with intracranial injuries such as concussions. Despite the simple comparison280

presented, further analysis between these groups confirmed qualitative differences between profiles and281

a closer similarity between communities 2 and 3 than 1. The initial causes of communities 2 and 3 are282

associated with injuries while the primary diagnosis of patients in community 1 is the delirium itself.283

In Figure 5, we can see that communities that are defined in the network (Figure 5A) are relatively284

well preserved in t-SNE (Figure 5C) but less so in MDS (Figure 5B). However, t-SNE does not take the285

global structure into account which is apparent from the fact that communities 2 and 3 are very far apart286

in t-SNE but actually are quite similar (STAD-R and MDS). UMAP (Figure 5D) improves on the t-SNE287

output and results in a view similar to MDS.288

Although the interpretation of these visualizations is difficult to assess, quality metrics may help289

quantify the previous intuitions. Table 3 presents the quantitative measures for global distance and local290

distance preservation of projections in Figure 5. Global distance preservation was measured using the291

Spearman rank correlation (ρSp). It compares the distances for every pair of points between the original292

data space and the two-dimensional projection (Zar, 2005). Local distance preservations were measured293

by the proportion of neighbors identified in the projection. This metric quantifies how many of the294

neighbors in the original space are neighbors in the projection (Espadoto et al., 2019). We evaluated this295

metric using a neighborhood of fourteen neighbors, which is the average cluster size in the MIMIC-III296

dataset using Louvain community detection (14−nn).297

The richness of the node-link diagram representation of STAD-R cannot be captured using node298

position in the 2D plane alone. Therefore, STAD-R is analyzed from two perspective. First, the abstract299

graph as generated by STAD-R (STAD-R graph) and, second, the two-dimensional projection after graph300

drawing (STAD-R layout). The abstract graph only considers the connections between nodes to determine301

the distances between them, whereas the graph drawing results only consider the node placement in the302

2D plane.303

Based on the values from Table 3, the STAD-R obtained equivalent results to other dimensionality304

reduction methods in the preservation of the global and local structures. The abstract graph (STAD-R305

graph) is a not directly visible object as other methods. However, the node placement (STAD-R layout) is306

able to capture the information from the graph obtaining measures, in this example, close to UMAP, both307

global and local distances. Besides, node-link diagrams provide the intangible information of links that308

enhance the interpretation of relationships and allow thorough exploration through interactions such as309

drag nodes to other positions.310

Global/local focus Measure MDS t-SNE UMAP STAD-R graph STAD-R layout

Global ρSp 0.54 0.41 0.47 0.52 0.47

Local 14−nn 0.34 0.60 0.53 0.62 0.52

Table 3. Distance preservation measures of projections in Figure 5. The table describes the Spearman’s

rank correlation (ρSp) and the proportion of the first fourteen nearest neighbors preserved (14−nn). The

selection of fourteen neighbors corresponds to the average cluster size in the MIMIC-III dataset using

Louvain community detection. Column ”STAD-R graph” represents the abstract graph and column

”STAD-R layout” represents the node placement generated by a ForceAtlas2 layout (Jacomy et al., 2014)

which is the layout implemented in the interface.

Similarity measures for ICD procedures311

The diagnosis similarity described in section ’Diagnosis similarity and distances’ is designed for assessing312

distance between diagnosis profiles, but the principles presented here can be generalized to other termi-313

nologies. For example, the procedures which patients receive during a hospital stay are also recorded and314

also follow an ICD codification: they also contain a list of categories similar to diagnosis. Unlike ICD315

diagnoses list, which encode priority, the order of procedure code lists indicate the sequence in which316

encode procedures were performed. Thus the weight distribution in the similarity that was used for the317

diagnosis metric must be adapted to the nature of the procedure data. Therefore, we can alter the formula318

10/14PeerJ Comput. Sci. reviewing PDF | (CS-2020:09:52883:1:1:NEW 21 Nov 2020)

Manuscript to be reviewedComputer Science

jprocter
Inserted Text
the first 

jprocter
Cross-Out

jprocter
Inserted Text
since 14 

jprocter
Inserted Text
found 

jprocter
Inserted Text
s

jprocter
Inserted Text
 - 

jprocter
Cross-Out

jprocter
Inserted Text
In comparison with other projection methods, we note that 

jprocter
Cross-Out

jprocter
Cross-Out

jprocter
Inserted Text
, which

jprocter
Cross-Out

jprocter
Inserted Text
,

jprocter
Inserted Text
ging

jprocter
Inserted Text
s

jprocter
Inserted Text

jprocter
Cross-Out

jprocter
Inserted Text
W

jprocter
Inserted Text
as 

jprocter
Cross-Out

jprocter
Cross-Out

jprocter
Inserted Text
through

jprocter
Highlight
Please revise the first part of this paragraph (line 304-308) to more clearly reflect observations from Table 3 (and avoid repetition of aspects already introduced in the previous paragraph).

My interpretation of the values in Table 3 are
- MDS captures global relationships most effectively but STAD-R layout performs as well as UMAP.
- Local community structure is most effectively captured in the t-SNE layout (at the expense of global structure). Whilst STAD-R's graph is more effective, local structure is lost on embedding. 

Please also note in the text that confidence estimates were not computed (I presume that is the case).  As you may be well aware, normally confidence estimates and variances should always be provided for such observed correlations in order to identify significant differences amongst the different projection methods. Since this is a supporting analysis, however, I do not consider it essential in this context - particularly since Table 3 reflects what is shown in Figure 5. 

You may wish to also mention that since two of these projection methods are stochastic (t-SNE and ForceAtlas2), a robust analysis would require technical repetitions in order to compute variances .



Figure 6. The population of patients who received a partial hip replacement (ICD 9: 81.52). The

network was computed using STAD-R, and distances were estimated using an adapted version of

diagnosis similarity for procedures. Color is based on Louvain community detection.

to include the relative distance between positions of matched elements instead of the top position in the319

diagnosis case. Formally, the similarity between two procedure concepts can be described as follows:320

MC(A,B) = ln

(

1+
1

|position(CA)− position(CB)|+1

)

As with diagnosis similarity, the metric is estimated as the sum of individual contributions of matched321

concepts, S(X ,Y ) = ∑
n
i=1 M(X ∩Y ).322

Figure 6 shows a STAD network generated using this adapted similarity for procedures. This example323

illustrates the population of patients with partial hip replacement (ICD 9: 81.52) in the MIMIC-III324

population. We can identify three clusters which describe three types of patients: group A are patients325

with the largest list of activities and are often characterized by venous catheterization and mechanical326

ventilation; patients in group B are mainly patients with a single procedure of partial hip replacement;327

patients in group C are characterized by the removal of an implanted device and a blood transfusion (data328

not shown).329

CONCLUSIONS330

In this paper, we introduced a custom distance metric for lists of diagnoses and procedures, as well as331

an extension to STAD for dissimilar datapoints. The diagnosis similarity measure can be applied to any332

ordered list of categories in a manner that is not possible with the measures available in the literature so far.333

The metric is designed to identify differences between patients through standardized concepts (diagnosis334

and procedures) where the weights of matching concepts are adapted to highlight the most relevant terms.335

As mentioned in Boriah et al. (2008), selecting a similarity measure must be based on an understanding of336

how it handles different data characteristics. The projection of data using STAD-R allows both for the337

detection of local structures and the representation of the global data structure. While no dimensionality338

reduction output from a high-dimensional dataset can completely project all relationships in the data, the339

connection of nodes in the graph allows a granular selection and exploration of cohorts. Furthermore, the340

embedding of the network into an interactive dashboard provides a level of convenience that supports341

interpretation of the analysis results of the network.342

Moreover, as discussed previously, STAD-R can reveal equivalent data signals at multiple levels to343

other dimensionality reduction methods. Quantitative and qualitative (user) evaluation of the method344

can be further extended with other datasets to assess both the information captured by the graph and the345

benefits of node-links diagrams to represent the similarity between datapoints. Following this direction,346
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we plan to further explore STAD-R in collaboration with domain experts in diverse case studies. Besides,347

we plan to build a more robust interface that allows the computation and exploration of STAD-R networks348

from a friendlier environment.349
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