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With the increase in the use of private transportation, developing more efficient ways to
distribute routes in a traffic network has become more and more important. Several
attempts to address this issue have already been proposed, either by using a central
authority to assign routes to the vehicles, or by means of a learning process where drivers
select their best routes based on their previous experiences. The present work addresses a
way to connect reinforcement learning to new technologies such as car-to-infrastructure
communication in order to augment the drivers knowledge in an attempt to accelerate the
learning process. Our method was compared to both a classical, iterative approach, as well
as to standard reinforcement learning without communication. Results show that our
method outperforms both of them. Further, we have performed robustness tests, by
allowing messages to be lost, and by reducing the storage capacity of the communication
devices. We were able to show that our method is not only tolerant to information loss, but
also points out to improved performance when not all agents get the same information.
Hence, we stress the fact that, before deploying communication in urban scenarios, it is
necessary to take into consideration that the quality and diversity of information shared
are key aspects.
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ABSTRACT10

With the increase in the use of private transportation, developing more efficient ways to distribute routes

in a traffic network has become more and more important. Several attempts to address this issue

have already been proposed, either by using a central authority to assign routes to the vehicles, or by

means of a learning process where drivers select their best routes based on their previous experiences.

The present work addresses a way to connect reinforcement learning to new technologies such as

car-to-infrastructure communication in order to augment the drivers knowledge in an attempt to accelerate

the learning process. Our method was compared to both a classical, iterative approach, as well as to

standard reinforcement learning without communication. Results show that our method outperforms both

of them. Further, we have performed robustness tests, by allowing messages to be lost, and by reducing

the storage capacity of the communication devices. We were able to show that our method is not only

tolerant to information loss, but also points out to improved performance when not all agents get the same

information. Hence, we stress the fact that, before deploying communication in urban scenarios, it is

necessary to take into consideration that the quality and diversity of information shared are key aspects.
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INTRODUCTION24

With the COVID-19 related pandemic, there has been several reports that the use of private transportation25

means (e.g., individual vehicles) is increasing as people try to avoid public transit as much as possible.26

This leads to even more congestion and hence makes the question of selecting a route to go from A to27

B more and more prominent. This is especially the case for commuters, who make a given trip nearly28

every day and, hence, have the opportunity to learn and/or adapt to the traffic patterns faced daily. To29

address the challenges posed by an ever increasing demand, transportation authorities and traffic experts30

try to distribute the flow among existing routes in order to minimize the overall travel time. Often, this31

task involves some form of communication with the drivers. Traditional approaches such as variable32

message panels or radio broadcast are now being replaced by directed (and potentially personalized)33

communication, via new kinds of communication devices.34

While the current pattern is that each individual driver selects a route based on his/her own experi-35

ence, this is changing as new technologies allow all sorts of information exchange. Examples of these36

technologies are not only based on broadcast (e.g., GPS or cellphone information) but also a two-way37

communication channel, where drivers not only receive traffic information but also provide them. Hence,38

currently, many traffic-related applications for cellphones deal with the idea of a central authority in39

charge of somehow assigning routes for drivers. Examples are Waze, Google apps, etc. Since their40

specific algorithms are not published, one can only guess that they try to find a feasible solution, given41

a set of constraints that they are able to infer from the current data they collect. What seems certain is42

that these platforms work in a centralized way, based on data they collect when their customers or users43

use their specific apps. Also, they do not handle locally collected and processed data. This leads to them44

being ineffective when the penetration of their services is low as, e.g., during the initial stages of the 202045
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pandemics, when few drivers were using the system. A way to mitigate this could be to decentralize the46

processing of information, as proposed here, and passing it to drivers to make their route choices.47

Our method has some resemblance with the notion of traffic assignment (see next section), since it is48

based on the fact that drivers collect experience by trying out several routes until they settle on those that49

lead to the least travel time.50

Traffic assignment approaches work (and indeed were developed for this purpose) well for planning51

tasks, i.e., how to plan a traffic network (or change an existing one) in order to minimize travel costs.52

However, route choice is not related to planning tasks but, rather, is an operational aspect, especially53

in commuting situations, where drivers repeatedly travel from the same origin to the same destination.54

Besides, traffic assignment is a centralized approach, in which the drivers do not actively select routes.55

Rather, routes are assigned to them. Thus, it is important to investigate how drivers do select routes in56

their daily commuting tasks.57

Multi-agent reinforcement learning (MARL) can be used for such purpose, as it fits the task of letting58

agents decide, autonomously, how to select routes to go from A to B. This is realized by letting agents59

iteratively choose their least costly route based on their own learning experiences. Such approach has been60

tried before, as described in the section on related works. In fact, it has been shown that reinforcement61

learning is a good technique to investigate route choice. However, the learning process can be inefficient,62

as for instance, it may take time, since the agents have to collect experiences by themselves. As this63

happens to be a very noisy environment, the signal an agent gets can be little discriminatory (e.g., due64

to the presence of other learning agents, an agent may get the same signal for very different actions,65

or, conversely, different signals for the same action). Thus, our long term aim is to investigate forms66

of accelerating the learning process. One of these forms is by giving more information to the agents.67

There are only few works that consider new technologies to this experience, as for instance those tied to68

vehicular communication in general.69

In the present paper, we extend a method that connects MARL to new technologies such as car-70

to-infrastructure communication (C2I). These were formulated with the goal of investigating how C2I71

communication could act to augment the information drivers use in their learning processes associated72

with choices of routes. In such approach, whole routes are not imposed or recommended to drivers, but73

rather, these receive local information about the most updated state of the links that happen to be near their74

current location. This way, drivers can change their route on-the-fly (the so-called en route trip building).75

Further, that approach assumes that the infrastructure is able to communicate with the vehicles, both76

collecting information about their most recent travel times (on given links), as well as providing them77

with information that was collected from other vehicles. However, another assumption is that messages78

are never lost, which is not realistic. Thus, in the present paper, we relax this assumption and admit loses79

of messages, as well as investigate the impact of them on the overall performance.80

As a result of such extension, we are able to confirm that the MARL technique combined with a C2I81

model can accelerate the learning process. Moreover, our approach is tolerant to information loses.82

In short, the contribution of the present work is manifold. First, we employ MARL to the task of83

learning how to go from A to B. Second, we do this using a non trivial scenario (as it is the case in most84

of the literature), in which there are more than one origin-destination pair. Third, we depart from most of85

the literature where the learning task considers that the driver agents already know a set of (pre-computed)86

routes to select among. Rather, we let these agents build their trips en route. This in turn requires the use87

of a microscopic, agent-based approach, where agents can potentially use different pieces of information88

in order to perform en route choice. This again contrasts to most of the literature, which uses macroscopic89

modeling (e.g., by means of abstract cost functions to compute travel times). Fourth, we connect MARL90

with the aforementioned communication technologies, in order to investigate whether the learning process91

can be accelerated by exchange of local information only. Lastly, we extend a previous approach by92

investigating its robustness to loses of messages.93

This paper is organized as follows. The next section briefly presents some background concepts on94

traffic assignment and reinforcement learning, as well as the panorama on the related work. Following,95

our methods and experimental results are presented and discussed. We review the general conclusions96

and outline the future work in the last section.97
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BACKGROUND AND RELATED WORK98

The Traffic Assignment Problem99

In transportation, the traffic assignment problem (TAP) refers to how to connect a supply (traffic infrastruc-100

ture) to its demand, so that the travel time of vehicles driving within a network is reduced. This network101

can be seen as a graph G = (N,E), where N is the set of nodes that operate as junctions/intersections,102

and E is a set of directed links (or edges, as both terms are used interchangeably) that connect the nodes.103

Hence the goal is then to assign vehicles to routes so that the travel time is minimized.104

For more details, the reader is referred to Chapter 10 in Ortúzar and Willumsen (2011). For our105

purposes it suffices to mention that classical approaches aim at planning tasks, are centralized (i.e., trips106

are assigned by a central authority, not selected by individual drivers). Also, the main approaches are107

based on iterative methods that seeks convergence to the user equilibrium (see next).108

User Equilibrium109

When it comes to reaching a solution to the TAP, one can take into account two perspectives: one110

that considers the system as a whole, and one that considers each user’s point of view. In the system111

perspective, the best solution refers to the system reaching the best average travel time possible; this is the112

so called system optimum (SO), or Wardrop’s second principle (Wardrop, 1952). We stress that the SO is113

a desirable property, but hardly achievable given that it comes at the cost of some users, who are not able114

to select a route leading to their personal best travel times.115

On the other hand, and most relevant for our current work, at the user’s perspective, the system reaches116

the user (or Nash) equilibrium (UE) when there is no advantage for any individual to change its routes in117

order to minimize their travel time, as stated in the first Wardrop’s principle (Wardrop, 1952). The UE can118

be achieved by means of reinforcement learning, as discussed next.119

Reinforcement Learning120

Reinforcement learning (RL) is a machine learning method whose main objective is to make agents learn121

a policy, i.e., how to map a given state to a given action, by means of a value function. RL can be modeled122

as a Markov decision process (MDP), where there is a set of states S, a set of actions A, a reward function123

R : S×A→ R, and a probabilistic state transition function T (s,a,s′)→ [0,1], where s ∈ S is a state the124

agent is currently in, a ∈ A is the action the agent takes, and s′ ∈ S is a state the agent might end up, taking125

action a in state s, so the tuple (s,a,s′,r) states that an agent was in state s, then took action a, ended up126

in state s′ and received a reward r. The key idea of RL is to find an optimal policy π∗, which maps states127

to actions in a way that maximizes future reward.128

RL methods fall within two main categories: model-based and model-free. While in the model-based129

approaches the reward function and the state transition are known, in the model-free case, the agents learn130

R and T by interacting with an environment. One method that is frequently used in many applications is131

Q-Learning (Watkins and Dayan, 1992), which is a model-free approach.132

In Q-learning, the agent keeps a table of Q-values that estimate how good it is for it to take an action a133

in state s, in other words, a Q-value Q(s,a) holds the maximum discounted value of going from state s,134

taking an action a and keep going through an optimal policy. In each learning episode, the agents update135

their Q-values using the Equation 1, where α and γ are, respectively, the learning rate and the discounting136

factor for future values.137

Q(s,a) = Q(s,a)+α(r+ γmaxa[Q(s′,a′)−Q(s,a)]) (1)

In a RL task, it is also important to define how the agent selects actions, while also exploring the138

environment. A common action selection strategy is the ε-greedy, in which the agent chooses to follow139

the optimal values with a probability 1− ε , and takes a random action with a probability ε .140

While this basic approach also works in MARL, it is important to stress some challenging issues that141

arise in an environment where multiple agents are learning simultaneously. Complicating issues arise142

firstly due to the fact that while one agent is trying to model the environment (other agents included), the143

others are doing the same and potentially changing the environment they share. Hence the environment is144

inherently non-stationary. In this case, convergence guarantees, as previously known from single agent145

reinforcement learning (e.g., Watkins and Dayan (1992) regarding Q-learning), no longer hold.146
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A further issue in multi-agent reinforcement learning is the fact that aligning the optimum of the147

system (from the perspective of a central authority) and the optimum of each agent in a multi-agent system148

is even more complicated when there is a high number of agents interacting.149

Related Work150

Solving the TAP is not a new problem; there have been several works that aim at solving it. In one151

front, there are have classical methods (see Chapter 10 in Ortúzar and Willumsen (2011)), which, as152

aforementioned, mostly deal with planning tasks. Further, the TAP can also be solved by imposing tolls on153

drivers (e.g., Sharon et al. (2017); Buriol et al. (2010); Tavares and Bazzan (2014)). The latter specifically154

connects road pricing with RL. However, the focus is on learning which prices to charge. Besides these155

two fronts, RL for route choice is turning popular.156

When we refer to RL methods to solve the TAP, these usually fall into two categories: a traditional157

RL method, and a stateless one. Contrarily to the traditional approach, in the stateless case, the agents158

actually have only one state that is associated with its origin-destination pair, and they choose which159

actions to take. Actions here correspond to the selection of one among k pre-computed routes. Works in160

this category are Ramos and Grunitzki (2015) (using a learning automata approach), and Grunitzki and161

Bazzan (2017) (using Q-learning). In Zhou et al. (2020) the authors used a learning automata approach162

combined with a congestion game to reach the UE. Tumer et al. (2008) adds a reward shaping component163

(difference utilities) to Q-learning, aiming at aligning the UE to a socially efficient solution.164

Apart from the stateless formulation, in the traditional case, agents may found themselves in multiple165

states, which are normally the nodes (intersections) of the network. Actions then correspond to the166

selection of one particular link (edge) that leaves that node. In Bazzan and Grunitzki (2016) this is used167

to allow agents to learn how to build routes. However, they use a macroscopic perspective by means168

of cost functions that compute the abstract travel time. In the present paper, the actual travel time is169

computed by means of a microscopic simulator (details ahead). A microscopic approach is required to170

handle communication issues.171

As aforementioned, our approach also includes C2I communication, as these kinds of new technologies172

may lead agents to benefit from sharing their experiences (in terms of travel times), thus reducing the173

time needed to explore, as stated in Tan (1993). The use of communication in transportation systems, as174

proposed in the present paper, has also been studied previously (Grunitzki and Bazzan, 2016; Bazzan et al.,175

2006; Koster et al., 2013; Auld et al., 2019). However, these works handle communication at abstract176

levels, using macroscopic approaches. In some cases, the information is manipulated to bias the agents177

to reach an expected outcome. Moreover, most of these works deal with vehicular communication (i.e.,178

messages are shared among the vehicles), or are based on broadcast of messages by one or few entities.179

This scheme approaches either systems such as traffic apps we see nowadays (Waze, etc.), or messages180

distributed by the traffic authority (as it used to be the case some time ago, using radio or variable message181

panels on main roads as in Wahle et al. (2000)). Neither vehicular communication nor broadcast are182

appropriate to investigate the impact of sharing local information, as we do here. A previous work by us183

(Santos and Bazzan, 2020) has presented preliminary results about the performance of combining RL with184

C2I against RL without communication. However, in this work, it is assumed that messages exchanged185

among the various actors do not get lost, which is irrealistic. Therefore, in the present paper we focus on186

the impact of communication failure and also on what type of information yields better results.187

In a different perspective, works such as Yu et al. (2020) evaluate the impact of incomplete information188

sharing in the TAP. They do not employ a RL-based but rather a classical approach, namely multinomial189

Logit model.190

More recently, Bazzan and Klügl (2020) discuss the effects of a travel app, in which driver agents191

share their experiences. The idea is to "mimic" what happens in an office where colleagues chat about192

their habits and route choice experiences. In the present paper, driver agents do not directly share their193

experiences since the work in Bazzan and Klügl (2020) has shown that this process may lead to sub-194

optimal results, due to agents not taking local issues into account. This is hardly possible in that work195

since Bazzan and Klügl (2020) use a macroscopic simulator, where location is an abstract concept. Rather,196

the present paper proposes – as shown in the next section – that the information is exchanged via an197

intersection manager, i.e., a manager of a portion of the network.198

In any case, this sharing of knowledge was proposed in other scenarios (Tan, 1993) and refers generally199

to the research on transfer learning (Taylor et al. (2014); Torrey and Taylor (2013); Fachantidis et al.200
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(2019); Zimmer et al. (2014)). It is important to note though, that virtually all these works deal with201

cooperative environments, where it makes sense to transfer knowledge. In non-cooperative learning tasks,202

as it is the case of route choice, naive transfer of learned policies may lead to every agent behaving the203

same, which runs against the notion of efficient distribution of agents in the road network.204

METHODS205

Our approach is based on using communication to augment the information each agent1 has and, hence,206

the learning performance. The next three subsections discuss, respectively: how the infrastructure is207

represented; how communication occurs; and the details of the RL algorithm. We then formalize the208

details as an algorithm.209

Representing the Infrastructure210

We assume that every node n ∈ N present in the network G is equipped with a communication device211

(henceforth, CommDev) that is able to send and receive messages in a short range signal (e.g., with212

vehicles around the intersection). Figure 1 shows an scheme that represents G and CommDevs within G.213

Using the short-range signal, the CommDevs are able to communicate with vehicles that are close214

enough, and are able to exchange information related to local traffic data (refer to next section for details).215

Moreover, these CommDevs are able to store the data exchanged with the agents in order to propagate216

this information to other agents that may use nearby intersections in the near future.217

The arrows that connect CommDevs in Figure 1 represent a planar graph, meaning that every218

CommDev is connected and can communicate to its neighboring devices. This permits that CommDevs219

get information about the traffic situation in neighboring edges, which is then passed to the agents.220

How Communication Works221

Figure 1. Scheme of the communication infrastructure2

Every time an agent reaches an intersection, prior to choosing an action (the next intersection to visit),222

it communicates with the intersection’s CommDev (see Figure 1) to exchange information. The actual223

piece of information sent from agents to CommDevs is travel times (hence, rewards) received by the224

agents, regarding their last action performed.225

Conversely, the infrastructure communicates to the agent information about the state of the nearby226

edges, in terms of which rewards an agent can expect if it selects to use that particular link. This227

information can be of various forms. In all cases, the expected reward is computed by taking into account228

the rewards informed by other agents, when they have used nearby links. In the experiments, we show229

results where CommDevs communicate expected rewards that are either an aggregation (over a time230

window) or just a single value.231

1Henceforth, the term agent is used to refer to a vehicle and/or driver agent.
2This figure was designed using assets from https://www.vectorportal.com/, and https://www.freepik.com.

All assets used fall under license CC BY 4.0.
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In any of these cases, an agent receiving such information will then take it into account when selecting232

an action (choice of a link) in that particular state (a node). Next, details about how the information is233

processed, by both the CommDevs and the vehicle agents, are given.234

Information Hold by Infrastructure235

Each CommDev uses queue based data structures to hold the rewards informed by each agent that passes236

through it. Specifically, each edge is associated with one data queue. These queues have a maximum size,237

and when new information arrives after the queue is full, the oldest reward stored is discarded to make238

room to the most recent one.239

When an agent requests information, the CommDev retrieves the rewards collected for the agent’s240

possible actions and passes it to that agent. Recall that an action corresponds to a link to be traveled next,241

in order to form a route to the agent’s destination.242

Information Used by the Agent243

In a standard Q-learning algorithm, the agents update their Q-values based on the feedback from the244

action they have just taken. However, in our case agents also update their Q-values based on the expected245

rewards received by the infrastructure. This means that every time they reach an intersection, they update246

their Q-values with the information provided by the CommDevs. We do this in order to accelerate the247

learning process. Instead of just considering its own past experiences, the information provided by the248

CommDevs augment the knowledge each agent has.249

It is worth noting that a distinguishing characteristic of our approach is that it deals with local250

information, thus the information received from the CommDev only concerns actions that can be selected251

from that particular node.252

Algorithm253

Algorithm 1 Q-learning with C2I

1: Input: G,D,P,M,α,γ,ε,B

2: s← 0

3: while s < M do

4: for v in V do

5: if v. f inished_trip() then

6: v.update_Q_table(B− v.last_edge_travel_time)
7: G.commDev[v.curr_node].update_queue(v.last_reward,v.last_edge)
8: v.start_new_commuting_trip()
9: else if v.has_reached_a_node() then

10: v.update_Q_table(−v.last_edge_travel_time)
11: G.commDev[v.curr_node].update_queue(v.last_reward,v.last_edge)
12: v.update_Q_values(G.commDev[v.curr_node].in f o)
13: v.choose_action()
14: end if

15: end for

16: s← s+1

17: end while

Given a network G, every agent (vehicle) v ∈ V has a pair (o,d) ∈ N×N, that defines its origin-254

destination pair (OD-pair). Nodes n ∈ N are seen as states the agents might be in, and the outgoing edges255

of a node n are the possible actions for that given state. Hence, the agents build their routes on-the-fly by256

visiting nodes and edges.257

Upon choosing an action (edge) e, v perceives its reward. We recall that being a microscopic model,258

this reward is actually computed by the simulator, rather than by an abstract cost function, as it would be259

the case in a macroscopic model.260

Assuming that the simulator reports a travel time of tv
e for agent v traveling on edge e, the reward is261

−tv
e , as we want to make sure the agents prefer to take edges that minimize travel times.262
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Figure 2. 5x5 Grid Network

Origin Destination Demand

Bottom0 Top4 102

Bottom1 Top3 86

Bottom3 Top1 86

Bottom4 Top0 102

Left0 Right4 102

Left1 Right3 86

Left3 Right1 86

Left4 Right0 102

Table 1. Demand per OD-pair

This alone does not guarantee that the agents will reach their destination fast, as they might end up263

running in loops throughout the network. Hence a positive bonus B is given to each agent that reaches its264

destination, giving them incentives to end their trips as fast as possible.265

We deal with a commuting scenario, where each agent performs day-to-day experiments in order to266

reach an equilibrium situation, in which no agent can reduce its travel time by changing routes. Because267

agents belong to different OD pairs and/or select different routes, their trips take different number of268

simulation steps. These steps represent elapsed seconds in simulation time. Hence, this means that not269

every agent finishes its trip simultaneously and, therefore, the standard notion of a learning episode cannot270

be used here. Rather, each agent has its own learning episode that will take as many simulation steps as271

necessary to reach its destination.272

Next, we explain the main parts of our approach, which can be seen in Algorithm 1.273

Line 1 list the inputs of Algorithm 1: G is the topology of the network, D is the demand (flow rate) that274

is inserted in the network, P is the set of OD-pairs, and M is the maximum number of steps to simulate.275

It is also necessary to set α , γ (both relating to Eq. 1), ε for controlling the action selection and the276

exploration-exploitation strategy, and the bonus B.277

The main loop is presented between lines 3 – 17, where the learning and the communication actually278

take place. The first if statement shown in line 5 takes care of all agents that finished their trips in the279

current step: agents perceive their reward plus the bonus for finishing the trip. At Line 7, each agent280

informs the corresponding CommDevs the rewards, and since its trip has ended, it gets reinserted at the281

origin node to start a new learning episode (as this is a commuting scenario).282

The if statement at line 9 represents the intermediary nodes, where each agent also perceives its283

reward and informs the CommDev (line 11) about the reward just experienced, so that the CommDev can284

update its queue structure. In line 10, each agent updates its Q-value for the last action based on its own285

experience, i.e., with the actual reward received for traveling through the last link.286

Following, a CommDev also informs agents about the rewards that can be expected from the actions287

each agent might take next (line 12). Each agent then updates its Q-table and chooses an action.288

EXPERIMENTS, RESULTS, AND ANALYSIS289

Scenario: Network and Demand290

Simulations were performed using a microscopic tool called Simulation of Urban Mobility (SUMO,291

Lopez et al. (2018)). SUMO’s API was used to allow vehicle agents to interact with the simulator en292

route, i.e., during simulation time.293

The scenario chosen is a 5x5 grid depicted in Figure 2; each line in the figure represents bi-directed294

edges containing two lanes, one for each traffic direction. It is also worth noting that each directed edge is295

200m long.296

The demand was set to maintain the network populated at around 20−30% of its maximum capacity,297

which is considered a medium to high density. Recall that no real-world network is fully occupied at all298

times, and that the just mentioned density level does not mean that there will not be edges fully occupied,299

which happens from time to time; this percentage is just the average over all 50 edges.300
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Table 2. Travel time measured for DUA and QL with C2I at time step 50,000

Method Travel Time at Step 50k

DUA ≈ 560

QL with C2I ≈ 470

This demand was then distributed between the OD-pairs as represented in Table 1. The last column301

represents the volume of vehicles per OD-pair. Those values were selected so that the shorter the path, the302

smaller the demand, which seems to be a more realistic assumption than a uniform distribution of the303

demand.304

Two points are worth reinforcing here. First, vehicles get reinserted at their corresponding origin305

nodes, so that we are able to keep a roughly constant insertion rate of vehicles in the network, per OD306

pair. However, this does not mean that the flow per link is constant, since the choice of which link to take307

varies a lot from vehicle to vehicle, and from time to time. Second, despite being a synthetic grid network,308

it is not trivial, since it has 8 OD pairs, which makes the problem complex as routes from each OD pair309

are coupled with others. As seen in Table 1, we have also increased such coupling by designing the OD310

pairs so that all routes traverse the network, thus increasing the demand for using the central links.311

Q-learning Parameters312

A study conducted by Bazzan and Grunitzki (2016) shows that, in an en route trip building approach,313

the learning rate α does not play a major role, while the discount factor γ usually needs to be high in314

discounted future rewards, as it is the case here. Thus a value of α = 0.5 suits our needs. We remark315

however that we have also played with this parameter.316

As for the discount factor γ , we have performed extensive tests and found that a value of γ = 0.9317

performs best.318

For the epsilon-greedy action selection, empirical analysis pointed to using a fixed value of ε = 0.05.319

This guarantees that the agents will mostly take a greedy action (as they only have a 5% chance to make320

a non-greedy choice), and also take into account that the future rewards have a considerable amount of321

influence in the agent’s current choice, since γ has a high value.322

For the bonus at the end of each trip, after tests, a value of B = 1000 was used. Recall that this bonus323

aims at compensating the agent for selecting a jammed link, if it is close to its destination, rather than324

trying out detours via a link that, locally, seems less congested, but that will lead the agent to wander325

around, rather than directly go to its destination. We remark that trips take a rough average of 450 time326

steps thus this value of B fits the magnitude of the rewards.327

Performance Metric and Results328

While each agent perceives its own travel time, both after traversing each link, and after finishing its trip,329

we need an overall performance to assess the quality of the proposed method. For this, we use a moving330

average (over 100 time steps) of the complete route travel time, for each agent that has finished its trip.331

Given the probabilistic nature of the process, it is necessary to run repetitions of simulations. Thus, 30332

runs were performed. Plots shown ahead thus depict the average and the standard deviations. In order to333

evaluate how the communication affects the learning process, some different policies and comparisons334

were performed, these different methods are described in the following sections.335

QL with C2I versus Dynamic User Assignment336

For sake of contrasting with a classical approach, Figure 3 shows a comparison between our QL with337

C2I approach and a method called Dynamic User Assignment (DUA), which is an iteractive method338

implemented by the SUMO developers. We remark that DUA is a centralized, not based on RL approach.339

DUA works as follows: it performs iterative assignment of pre-computed, full routes to the given340

OD-pairs in order to find the UE3. In our tests, DUA was run for 100 iterations. Note that a DUA341

iteration corresponds to a trip, and a new iteration only starts when all trips have reached their respective342

3For details on how the DUA method is made the reader may refer to https://sumo.dlr.de/docs/Demand/Dynamic_

User_Assignment.html
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Figure 3. QL with C2I vs DUA

destinations. The output of DUA is a route that is then followed by each vehicle, without en route changes.343

Since DUA also has a stochastic nature, our results correspond to 30 repetitions of DUA as well.344

Figure 3 shows that, obviously, at the beginning, the performance of our approach reflects the fact that345

the agents are still exploring, whereas DUA has a better performance since a central authority determines346

which route each agent should take. This is possible since this central authority holds all the information,347

which is not the case in the MARL based approach, where each agent has to explore in order to gain348

information.349

In our approach, after a certain time, the agents have learned a policy to map states to action and, by350

using it, they are able to reduce their travel times.351

Before discussing the actual results, we remark that a SUMO time step corresponds roughly to one352

second. Our experiments were run for about 50,000 time steps. A learning episode comprehends hundreds353

of time steps, as the agent has to travel from its origin to its destination. In short, a learning episode is not354

the same as a simulation time step. Given that the agents re-start their trips immediately, different agents355

have different lengths for their respective learning episodes, thus the learning process is non-synchronous.356

Using our approach, on average, an episode takes roughly 500 time steps, thus agent reach the user357

equilibrium in about 100 episodes. For RL standards, this is a fast learning process, especially considering358

that we deal with a highly non-stationary environment, where agents get noisy signals. However, we also359

remark that, for practical purposes, the policy can be learned off-line, and, later, embedded in the vehicle.360

To give a specific picture, Table 2 shows the actual travel times after time step 50,000. We remark361

that we could have measured roughly the same around step 30,000. It can be seen that our approach362

outperforms DUA shortly after time step 10,000. Also noteworthy is the fact that, at any time step,363

agents still explore with probability ε = 5% thus there is room for improvements if other forms of action364

selection are used.365

QL with C2I versus QL Without Communication366

Our approach is also compared to standard Q-learning, thus without communication, which means that367

the agents learn their routes only by their own previous experiences, without any augmented knowledge368

regarding the traffic situation and the experiences of other agents.369

In Figure 4, we can divide the learning process in both cases shown in Figure 4 in two distinct phases:370

the exploration phase, where the agents have yet no information about the network and explore it to find371

their destination – that is when the spikes in the learning curves can be seen –; and the exploitation phase,372
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Table 3. Travel time measured for QL and QL with C2I at time step 20,000

Method Travel Time at Step 20k

QL ≈ 676

QL with C2I ≈ 483

Figure 4. QL with C2I vs QL Without Communication

when agents know the best actions to take in order to experience the lowest travel time possible.373

Both approaches converge to the same average travel times in the exploitation phase. However, the374

advantage of our approach comes in the exploration phase. As we see in Figure 4, the exploration phase375

in the QL with C2I algorithm is reduced by a considerable amount when compared to the traditional QL376

algorithm, meaning that in our case the user equilibrium is reached earlier.377

Table 3 compares the travel time measured in both cases at the time step 20,000, when our approach378

has already converged, but the standard Q-learning has not.379

Communication Success Rate380

In the real world, it might be the case that some information gets lost due to failure in the communication381

devices. In order to test what happens when not all messages reach the recipient, a success rate was382

implemented to test how the our approach performs if communication does not work as designed.383

Specifically, every time an agent needs to communicate with the infrastructure, the message will384

reach the destination with a given success rate. This was implemented by means of a randomly generated385

value, which is then compared to the success rate to determine whether or not the simulator should ignore386

the message, thus being a metaphor for a non-delivered message. Such a scheme is applied to any kind387

of communication between the infrastructure and the agent, i.e., regardless if it is from an agent to a388

CommDev, or vice-versa.389

If a message is lost, then: (i) a CommDev does not get to update its data structure, and (ii) an390

agent does not get to update its Q-table. Other than that, the method behaves exactly as described by391

Algorithm 1.392

Experiments were performed varying the target success rate. For clarity, we show the results in two393

plots.394
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Figure 5. QL with C2I: Comparison Between 75% and 100% Success Rate

Figure 6. QL with C2I: Comparison Between 25% and 50% Success Rate
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Figure 7. QL with C2I With Different Strategies

Table 4. Travel time measured for each success rate at time step 20,000

Success Rate Travel Time at Step 20k

25% ≈ 501

50% ≈ 467

75% ≈ 461

100% ≈ 483

Figure 5 compares the approach when the success rate is with 100% (thus the performance already395

discussed regarding the two previous figures), to one where the communication succeeds in only 75% of396

the times. In Figure 6, we depict the cases for success rate of 25% and 50%.397

For specific values, Table 4 lists the average travel times for all these cases at time step 20,000, since398

at that time the learning processes have nearly converged.399

It is remarkable that the system not only tolerates some loss of information, but also performs slightly400

better when the success rate is 75% or even 50%. If one compares this case to the one in which 100% of401

the messages reach their destinations, one sees that the learning process is accelerated if agents do not402

have the very same information that other agents also receive. This is no surprise, as pointed out in the403

literature on the disadvantages of giving the same information to everyone. What is novel here is the fact404

that we can show that this is also the case when information is shared only at local level, as well as when405

the communication is between vehicles and the infrastructure, not among all vehicles themselves.406

As expected, when we look at the case with a low success rate of 25%, we observe several drawbacks407

since the communication rate is getting closer to no communication at all: (i) the average travel time408

increases, (ii) the learning process takes longer, and (iii) the standard deviation also increases (meaning409

that different trips may take very different travel times and, possibly, different routes).410

Different Strategies for Storing Information at the Infrastructure411

Apart from investigating what happens when information is lost, we also change the way CommDevs412

compute and share the reward information to the driver agents. Here the main motivation was to test what413

happens when the infrastructure is constrained by a simpler type of hardware, namely one that can store414
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Table 5. Travel time measured for each strategy at time step 20,000

Strategy Travel Time at Step 20k

Highest Travel Time ≈ 472

Latest Travel Time ≈ 467

Lowest Travel Time ≈ 538

QL with C2I ≈ 483

much less information (recall that the original approach is based on a queue-like data structure).415

To this aim, we conducted experiments in which the goal was to test which type of information is best416

for the infrastructure to hold and pass on to the agents. We have devised three ways to do this: (i) the417

infrastructure only holds and informs the highest travel time (hence the most negative reward) value to the418

agents; (ii) the infrastructure informs the lowest reward (hence the least negative) to the agents; (iii) the419

infrastructure holds only the latest (most recent) travel time value received. Note that, in all these cases,420

the infrastructure only needs to store a single value, as opposed to the case in which the infrastructure421

stores a queue of values in order to compute a moving average.422

Figure 7 shows a comparison between the different policies. For clarity, we omit the deviations but423

note that they are in the same order as the previous ones.424

The best case seems to be associated with the use of the most recent travel time information, as seen425

both in Figure 7 and Table 5. Communicating the lowest travel time might look good at first sight. But426

it has as drawback that this leads all agents to a act greedly and thus using the option with least travel427

time. This ends up not being efficient as seen in Figure 7. Conversely, communicating the highest travel428

time is motivated by the fact that the infrastructure might want to distribute the agents among the options429

available, thus communicating a high travel time leads to not all agents considering it: since some would430

have experienced a better option before and hence have this knowledge in their Q-tables, they will not431

use the information received. This proves to be the second best strategy, only behind the aforementioned432

strategy on communicating the latest information. The reason for the good performance of the latter is the433

fact that the latest information is diverse enough (i.e., varies from recipient agent to agent) so that it also434

guarantees a certain level of diversity in the action selection, thus contributing to a more even distribution435

of routes.436

CONCLUSIONS AND FUTURE WORK437

A wise route choice is turning more and more important when the demand is increasing and road438

networks are not being expanded in the same proportion. MARL is an attractive method for letting agents439

autonomously learn how to construct routes while they are traveling from A to B.440

This paper presented a method that combines MARL with C2I communication. Vehicles interact with441

the infrastructure every time they reach an intersection. While they communicate the travel times they442

have experienced in nearby links, they also receive the expect travel times regarding their next possible443

link choices. We have extended a previous approach by relaxing the assumption that all messages are sent444

and received, i.e, there is no loss of messages. To the best of our knowledge, this is a novel investigation445

to scenarios dealing with learning based route choice, where the there is a sharing of local information via446

C2I.447

This work thus has the following contributions: we employ MARL to the task of learning; we do this448

using a non trivial scenario with more than one origin-destination pair; we depart from the assumption449

that driver agents already know a set of (pre-computed) routes to select among; we use a microscopic,450

agent-based approach; we connect MARL with new communication technologies, in order to investigate451

whether the learning process can be accelerated. Also, we have employed our method to test some452

real-world situations that may arise, namely communication loses and the need to use simpler hardware453

devices to store information by the infrastructure.454

Our results show that, before deploying C2I communication in the real-world, one has to take into455

account the various effects of sharing information, even at local level. We were able to show that one has456

to strive to communicate information that is diverse enough, in order to avoid sub-optimal route choices,457

i.e., those that are made by drivers having similar information. As these drivers tend to act greedly, a wise458
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strategy on sharing information is key.459

Specifically, our results point out to our approach being tolerant to information loses; further, there460

was even a slight improvement in the overall performance (i.e., learning speed) since less information461

also mean that not all agents will act the same way. As for the different strategies regarding storage of462

information in the infrastructure, we could show that communicating only the latest known travel time is463

able to speed up the learning process.464

We remark that in all cases we have tested, MARL was able to reach the user equilibrium. The major465

difference is the speed of such process.466

For future work, one possible investigation is the addition of a biased information provided by the467

infrastructure in order to reach a different outcome, namely, to reach the system optimum (socially efficient468

distribution of routes to vehicles), rather than converging to the user equilibrium. We also plan to change469

the demand during simulation time, to check how the learners deal with such changes. Preliminary work470

on using Q-learning in such dynamic environments point out that it is able to handle different situations.471

However, it remains to be investigated whether this is also the case for changes in flow rates. Moreover,472

we would like to study whether the proposed combination of Q-learning with C2I is able to speed up the473

learning processes as much as it was the case in the present work.474
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