
Sharing diverse information gets driver
agents to learn faster: an application in
en route trip building
Guilherme Dytz dos Santos and Ana L.C. Bazzan

Computer Science, UFRGS (Universidade Federal do Rio Grande do Sul), Porto Alegre, RS, Brazil

ABSTRACT
With the increase in the use of private transportation, developing more efficient ways
to distribute routes in a traffic network has become more and more important.
Several attempts to address this issue have already been proposed, either by using
a central authority to assign routes to the vehicles, or by means of a learning process
where drivers select their best routes based on their previous experiences. The present
work addresses a way to connect reinforcement learning to new technologies such
as car-to-infrastructure communication in order to augment the drivers knowledge
in an attempt to accelerate the learning process. Our method was compared to both a
classical, iterative approach, as well as to standard reinforcement learning without
communication. Results show that our method outperforms both of them. Further,
we have performed robustness tests, by allowing messages to be lost, and by reducing
the storage capacity of the communication devices. We were able to show that
our method is not only tolerant to information loss, but also points out to improved
performance when not all agents get the same information. Hence, we stress the
fact that, before deploying communication in urban scenarios, it is necessary to
take into consideration that the quality and diversity of information shared are
key aspects.

Subjects Agents and Multi-Agent Systems
Keywords Multiagent systems, Reinforcement learning, Route choice

INTRODUCTION
With the COVID-19 related pandemic, there has been several reports that the use of
private transportation means (e.g., individual vehicles) is increasing as people try to avoid
public transit as much as possible. This leads to even more congestion and hence makes
the question of selecting a route to go from A to B more and more prominent. This is
especially the case for commuters, who make a given trip nearly every day and, hence, have
the opportunity to learn and/or adapt to the traffic patterns faced daily. To address the
challenges posed by an ever increasing demand, transportation authorities and traffic
experts try to distribute the flow among existing routes in order to minimize the overall
travel time. Often, this task involves some form of communication with the drivers.
Traditional approaches such as variable message panels or radio broadcast are now being
replaced by directed (and potentially personalized) communication, via new kinds of
communication devices.

How to cite this article dos Santos GD, Bazzan ALC. 2021. Sharing diverse information gets driver agents to learn faster: an application in
en route trip building. PeerJ Comput. Sci. 7:e428 DOI 10.7717/peerj-cs.428

Submitted 11 November 2020
Accepted 13 February 2021
Published 16 March 2021

Corresponding author
Ana L.C. Bazzan,
bazzan@inf.ufrgs.br

Academic editor
José Manuel Galán

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.428

Copyright
2021 dos Santos and Bazzan

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.428
mailto:bazzan@�inf.�ufrgs.�br
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.428
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

While the current pattern is that each individual driver selects a route based on his/her
own experience, this is changing as new technologies allow all sorts of information
exchange. Examples of these technologies are not only based on broadcast (e.g., GPS
or cellphone information) but also a two-way communication channel, where drivers
not only receive traffic information but also provide them. Hence, currently, many
traffic-related applications for cellphones deal with the idea of a central authority in charge
of somehow assigning routes for drivers. Examples are Waze, Google apps, etc. Since their
specific algorithms are not published, one can only guess that they try to find a feasible
solution, given a set of constraints that they are able to infer from the current data they
collect. What seems certain is that these platforms work in a centralized way, based on data
they collect when their customers or users use their specific apps. Also, they do not
handle locally collected and processed data. This leads to them being ineffective when the
penetration of their services is low as, for example, during the initial stages of the 2020
pandemics, when few drivers were using the system. A way to mitigate this could be to
decentralize the processing of information, as proposed here, and passing it to drivers to
make their route choices.

Our method has some resemblance with the notion of traffic assignment (see “Background
and Related Work”), since it is based on the fact that drivers collect experience by trying
out several routes until they settle on those that lead to the least travel time.

Traffic assignment approaches work (and indeed were developed for this purpose) well
for planning tasks, that is, how to plan a traffic network (or change an existing one) in
order to minimize travel costs. However, route choice is not related to planning tasks
but, rather, is an operational aspect, especially in commuting situations, where drivers
repeatedly travel from the same origin to the same destination. Besides, traffic assignment
is a centralized approach, in which the drivers do not actively select routes. Rather, routes
are assigned to them. Thus, it is important to investigate how drivers do select routes
in their daily commuting tasks.

Multi-agent reinforcement learning (MARL) can be used for such purpose, as it fits the
task of letting agents decide, autonomously, how to select routes to go from A to B. This is
realized by letting agents iteratively choose their least costly route based on their own
learning experiences. Such approach has been tried before, as described in the section on
related works. In fact, it has been shown that reinforcement learning is a good technique
to investigate route choice. However, the learning process can be inefficient, as for
instance, it may take time, since the agents have to collect experiences by themselves.
As this happens to be a very noisy environment, the signal an agent gets can be little
discriminatory (e.g., due to the presence of other learning agents, an agent may get the
same signal for very different actions, or, conversely, different signals for the same action).
Thus, our long term aim is to investigate forms of accelerating the learning process. One of
these forms is by giving more information to the agents. There are only few works that
consider new technologies to this experience, as for instance those tied to vehicular
communication in general.

In the present article, we extend a method that connects MARL to new technologies
such as car-to-infrastructure communication (C2I). These were formulated with the goal

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 2/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

of investigating how C2I communication could act to augment the information drivers use
in their learning processes associated with choices of routes. In such approach, whole
routes are not imposed or recommended to drivers, but rather, these receive local
information about the most updated state of the links that happen to be near their current
location. This way, drivers can change their route on-the-fly (the so-called en route trip
building). Further, that approach assumes that the infrastructure is able to communicate
with the vehicles, both collecting information about their most recent travel times
(on given links), as well as providing them with information that was collected from other
vehicles. However, another assumption is that messages are never lost, which is not
realistic. Thus, in the present article, we relax this assumption and admit loses of messages,
as well as investigate the impact of them on the overall performance.

As a result of such extension, we are able to confirm that the MARL technique
combined with a C2I model can accelerate the learning process. Moreover, our approach is
tolerant to information loses.

In short, the contribution of the present work is manifold. First, we employ MARL
to the task of learning how to go from A to B. Second, we do this using a non trivial
scenario (as it is the case in most of the literature), in which there are more than one
origin-destination pair. Third, we depart from most of the literature where the learning
task considers that the driver agents already know a set of (pre-computed) routes to select
among. Rather, we let these agents build their trips en route. This in turn requires the
use of a microscopic, agent-based approach, where agents can potentially use different
pieces of information in order to perform en route choice. This again contrasts to most
of the literature, which uses macroscopic modeling (e.g., by means of abstract cost
functions to compute travel times). Fourth, we connect MARL with the aforementioned
communication technologies, in order to investigate whether the learning process can be
accelerated by exchange of local information only. Lastly, we extend a previous
approach by investigating its robustness to loses of messages.

This article is organized as follows. The “Background and Related Work” briefly
presents some background concepts on traffic assignment and reinforcement learning,
as well as the panorama on the related work. Following, our methods and experimental
results are presented and discussed. We review the general conclusions and outline the
future work in the last section.

BACKGROUND AND RELATED WORK
The traffic assignment problem
In transportation, the traffic assignment problem (TAP) refers to how to connect a supply
(traffic infrastructure) to its demand, so that the travel time of vehicles driving within a
network is reduced. This network can be seen as a graph G = (N, E), where N is the set of
nodes that operate as junctions/intersections, and E is a set of directed links (or edges,
as both terms are used interchangeably) that connect the nodes. Hence the goal is then to
assign vehicles to routes so that the travel time is minimized.

For more details, the reader is referred to Chapter 10 in Ortúzar & Willumsen (2011).
For our purposes it suffices to mention that classical approaches aim at planning tasks, are

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 3/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

centralized (i.e., trips are assigned by a central authority, not selected by individual drivers).
Also, the main approaches are based on iterative methods that seeks convergence to the
user equilibrium (see “User Equilibrium”).

User equilibrium
When it comes to reaching a solution to the TAP, one can take into account two
perspectives: one that considers the system as a whole, and one that considers each user’s
point of view. In the system perspective, the best solution refers to the system reaching
the best average travel time possible; this is the so called system optimum (SO), or
Wardrop’s second principle (Wardrop, 1952). We stress that the SO is a desirable property,
but hardly achievable given that it comes at the cost of some users, who are not able to
select a route leading to their personal best travel times.

On the other hand, and most relevant for our current work, at the user’s perspective, the
system reaches the user (or Nash) equilibrium (UE) when there is no advantage for any
individual to change its routes in order to minimize their travel time, as stated in the
first Wardrop’s principle (Wardrop, 1952). The UE can be achieved by means of
reinforcement learning, as discussed next.

Reinforcement learning
Reinforcement learning (RL) is a machine learning method whose main objective is to
make agents learn a policy, that is, how to map a given state to a given action, by means of a
value function. RL can be modeled as a Markov decision process (MDP), where there is
a set of states S, a set of actions A, a reward function R : S� A ! R, and a probabilistic
state transition function T(s, a, s′) / [0, 1], where s ∈ S is a state the agent is currently
in, a ∈ A is the action the agent takes, and s′ ∈ S is a state the agent might end up, taking
action a in state s, so the tuple (s, a, s′, r) states that an agent was in state s, then took
action a, ended up in state s′ and received a reward r. The key idea of RL is to find an
optimal policy p�, which maps states to actions in a way that maximizes future reward.

Reinforcement learning methods fall within two main categories: model-based and
model-free. While in the model-based approaches the reward function and the state
transition are known, in the model-free case, the agents learn R and T by interacting with
an environment. One method that is frequently used in many applications is Q-Learning
(Watkins & Dayan, 1992), which is a model-free approach.

In Q-learning, the agent keeps a table of Q-values that estimate how good it is for it to
take an action a in state s, in other words, aQ-valueQ(s, a) holds the maximum discounted
value of going from state s, taking an action a and keep going through an optimal
policy. In each learning episode, the agents update their Q-values using the Eq. (1), where
a and γ are, respectively, the learning rate and the discounting factor for future values.

Qðs; aÞ ¼ Qðs; aÞ þ aðr þ gmaxa½Qðs0; a0Þ � Qðs; aÞ�Þ (1)

In a RL task, it is also important to define how the agent selects actions, while also
exploring the environment. A common action selection strategy is the ε-greedy, in which

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 4/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

the agent chooses to follow the optimal values with a probability 1 − ε, and takes a random
action with a probability ε.

While this basic approach also works in MARL, it is important to stress some
challenging issues that arise in an environment where multiple agents are learning
simultaneously. Complicating issues arise firstly due to the fact that while one agent is
trying to model the environment (other agents included), the others are doing the same
and potentially changing the environment they share. Hence the environment is inherently
non-stationary. In this case, convergence guarantees, as previously known from single
agent reinforcement learning (e.g., Watkins & Dayan (1992) regarding Q-learning), no
longer hold.

A further issue in multi-agent reinforcement learning is the fact that aligning the
optimum of the system (from the perspective of a central authority) and the optimum of
each agent in a multi-agent system is even more complicated when there is a high number
of agents interacting.

Related work
Solving the TAP is not a new problem; there have been several works that aim at solving it.
In one front, there are have classical methods (see Chapter 10 in Ortúzar & Willumsen
(2011)), which, as aforementioned, mostly deal with planning tasks. Further, the TAP can
also be solved by imposing tolls on drivers (Sharon et al., 2017; Buriol et al., 2010;
Tavares & Bazzan, 2014). The latter specifically connects road pricing with RL. However,
the focus is on learning which prices to charge. Besides these two fronts, RL for route
choice is turning popular.

When we refer to RL methods to solve the TAP, these usually fall into two categories: a
traditional RL method, and a stateless one. Contrarily to the traditional approach, in
the stateless case, the agents actually have only one state that is associated with its
origin-destination pair, and they choose which actions to take. Actions here correspond to
the selection of one among k pre-computed routes. Works in this category are Ramos &
Grunitzki (2015) (using a learning automata approach), and Grunitzki & Bazzan (2017)
(using Q-learning). In Zhou et al. (2020) the authors used a learning automata approach
combined with a congestion game to reach the UE. Tumer, Welch & Agogino (2008)
adds a reward shaping component (difference utilities) to Q-learning, aiming at aligning
the UE to a socially efficient solution.

Apart from the stateless formulation, in the traditional case, agents may found
themselves in multiple states, which are normally the nodes (intersections) of the network.
Actions then correspond to the selection of one particular link (edge) that leaves that node.
In Bazzan & Grunitzki (2016) this is used to allow agents to learn how to build routes.
However, they use a macroscopic perspective by means of cost functions that compute the
abstract travel time. In the present article, the actual travel time is computed by means of a
microscopic simulator (details ahead). A microscopic approach is required to handle
communication issues.

As aforementioned, our approach also includes C2I communication, as these kinds of
new technologies may lead agents to benefit from sharing their experiences (in terms of

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 5/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

travel times), thus reducing the time needed to explore, as stated in Tan (1993). The use of
communication in transportation systems, as proposed in the present paper, has also
been studied previously (Grunitzki & Bazzan, 2016; Bazzan, Fehler & Klügl, 2006; Koster
et al., 2013; Auld, Verbas & Stinson, 2019). However, these works handle communication
at abstract levels, using macroscopic approaches. In some cases, the information is
manipulated to bias the agents to reach an expected outcome. Moreover, most of these
works deal with vehicular communication (i.e., messages are shared among the vehicles),
or are based on broadcast of messages by one or few entities. This scheme approaches
either systems such as traffic apps we see nowadays (Waze, etc.), or messages distributed by
the traffic authority (as it used to be the case some time ago, using radio or variable
message panels on main roads as inWahle et al. (2000)). Neither vehicular communication
nor broadcast are appropriate to investigate the impact of sharing local information, as
we do here. A previous work by us (Santos & Bazzan, 2020) has presented preliminary results
about the performance of combining RL with C2I against RL without communication.
However, in this work, it is assumed that messages exchanged among the various actors do
not get lost, which is irrealistic. Therefore, in the present article we focus on the impact of
communication failure and also on what type of information yields better results.

In a different perspective, works such as Yu, Han & Ochieng (2020) evaluate the impact
of incomplete information sharing in the TAP. They do not employ a RL-based but rather
a classical approach, namely multinomial Logit model.

More recently, Bazzan & Klügl (2020) discuss the effects of a travel app, in which driver
agents share their experiences. The idea is to “mimic” what happens in an office where
colleagues chat about their habits and route choice experiences. In the present article,
driver agents do not directly share their experiences since the work in Bazzan & Klügl
(2020) has shown that this process may lead to sub-optimal results, due to agents not
taking local issues into account. This is hardly possible in that work since Bazzan & Klügl
(2020) use a macroscopic simulator, where location is an abstract concept. Rather, the
present paper proposes—as shown in the “Methods”—that the information is exchanged
via an intersection manager, that is, a manager of a portion of the network.

In any case, this sharing of knowledge was proposed in other scenarios (Tan, 1993) and
refers generally to the research on transfer learning (Taylor et al., 2014; Torrey &
Taylor, 2013; Fachantidis, Taylor & Vlahavas, 2019; Zimmer, Viappiani & Weng, 2014).
It is important to note though, that virtually all these works deal with cooperative
environments, where it makes sense to transfer knowledge. In non-cooperative learning
tasks, as it is the case of route choice, naive transfer of learned policies may lead to every
agent behaving the same, which runs against the notion of efficient distribution of agents
in the road network.

METHODS
Our approach is based on using communication to augment the information each agent1

has and, hence, the learning performance. The next three subsections discuss, respectively:
how the infrastructure is represented; how communication occurs; and the details of
the RL algorithm. We then formalize the details as an algorithm.

1 Henceforth, the term agent is used to
refer to a vehicle and/or driver agent.

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 6/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

Representing the infrastructure
We assume that every node n ∈ N present in the network G is equipped with a
communication device (henceforth, CommDev) that is able to send and receive messages
in a short range signal (e.g., with vehicles around the intersection). Figure 1 shows an
scheme that represents G and CommDevs within G.

Using the short-range signal, the CommDevs are able to communicate with vehicles
that are close enough, and are able to exchange information related to local traffic data
(refer to next section for details). Moreover, these CommDevs are able to store the data
exchanged with the agents in order to propagate this information to other agents that may
use nearby intersections in the near future.

The arrows that connect CommDevs in Fig. 1 represent a planar graph, meaning
that every CommDev is connected and can communicate to its neighboring devices.
This permits that CommDevs get information about the traffic situation in neighboring
edges, which is then passed to the agents.

How communication works
Every time an agent reaches an intersection, prior to choosing an action (the next
intersection to visit), it communicates with the intersection’s CommDev (see Fig. 1) to
exchange information. The actual piece of information sent from agents to CommDevs is
travel times (hence, rewards) received by the agents, regarding their last action performed.

Conversely, the infrastructure communicates to the agent information about the
state of the nearby edges, in terms of which rewards an agent can expect if it selects to use
that particular link. This information can be of various forms. In all cases, the expected

Figure 1 Scheme of the communication infrastructure. This figure was designed using assets
from https://www.vectorportal.com/ and https://www.freepik.com. All assets used fall under license
CC BY 4.0. Full-size DOI: 10.7717/peerj-cs.428/fig-1

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 7/20

https://www.vectorportal.com/
https://www.freepik.com
http://dx.doi.org/10.7717/peerj-cs.428/fig-1
http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

reward is computed by taking into account the rewards informed by other agents, when
they have used nearby links. In the experiments, we show results where CommDevs
communicate expected rewards that are either an aggregation (over a time window) or
just a single value.

In any of these cases, an agent receiving such information will then take it into account
when selecting an action (choice of a link) in that particular state (a node). Next,
details about how the information is processed, by both the CommDevs and the vehicle
agents, are given.

Information hold by infrastructure
Each CommDev uses queue based data structures to hold the rewards informed by each
agent that passes through it. Specifically, each edge is associated with one data queue.
These queues have a maximum size, and when new information arrives after the queue
is full, the oldest reward stored is discarded to make room to the most recent one.

When an agent requests information, the CommDev retrieves the rewards collected for
the agent’s possible actions and passes it to that agent. Recall that an action corresponds to
a link to be traveled next, in order to form a route to the agent’s destination.

Information used by the agent
In a standard Q-learning algorithm, the agents update their Q-values based on the
feedback from the action they have just taken. However, in our case agents also update
their Q-values based on the expected rewards received by the infrastructure. This means
that every time they reach an intersection, they update their Q-values with the information
provided by the CommDevs. We do this in order to accelerate the learning process.
Instead of just considering its own past experiences, the information provided by the
CommDevs augment the knowledge each agent has.

It is worth noting that a distinguishing characteristic of our approach is that it deals with
local information, thus the information received from the CommDev only concerns
actions that can be selected from that particular node.

Given a network G, every agent (vehicle) v ∈ V has a pair (o, d) ∈ N × N, that defines its
origin-destination pair (OD-pair). Nodes n ∈ N are seen as states the agents might be
in, and the outgoing edges of a node n are the possible actions for that given state. Hence,
the agents build their routes on-the-fly by visiting nodes and edges.

Upon choosing an action (edge) e, v perceives its reward. We recall that being a
microscopic model, this reward is actually computed by the simulator, rather than by an
abstract cost function, as it would be the case in a macroscopic model.

Assuming that the simulator reports a travel time of tve for agent v traveling on edge e,
the reward is −tve, as we want to make sure the agents prefer to take edges that minimize
travel times.

This alone does not guarantee that the agents will reach their destination fast, as they
might end up running in loops throughout the network. Hence a positive bonus B is
given to each agent that reaches its destination, giving them incentives to end their trips as
fast as possible.

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 8/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

We deal with a commuting scenario, where each agent performs day-to-day
experiments in order to reach an equilibrium situation, in which no agent can reduce its
travel time by changing routes. Because agents belong to different OD pairs and/or
select different routes, their trips take different number of simulation steps. These steps
represent elapsed seconds in simulation time. Hence, this means that not every agent
finishes its trip simultaneously and, therefore, the standard notion of a learning episode
cannot be used here. Rather, each agent has its own learning episode that will take as many
simulation steps as necessary to reach its destination.

Next, we explain the main parts of our approach, which can be seen in Algorithm 1.
Line 1 list the inputs of Algorithm 1: G is the topology of the network, D is the

demand (flow rate) that is inserted in the network, P is the set of OD-pairs, and M is the
maximum number of steps to simulate. It is also necessary to set α, γ (both relating to
Eq. (1)), ε for controlling the action selection and the exploration-exploitation strategy,
and the bonus B.

The main loop is presented between lines 3 and 17, where the learning and the
communication actually take place. The first if statement shown in line 5 takes care of all
agents that finished their trips in the current step: agents perceive their reward plus the
bonus for finishing the trip. At Line 7, each agent informs the corresponding CommDevs
the rewards, and since its trip has ended, it gets reinserted at the origin node to start a
new learning episode (as this is a commuting scenario).

The if statement at line 9 represents the intermediary nodes, where each agent also
perceives its reward and informs the CommDev (line 11) about the reward just

Algorithm 1 Q-learning with C2I.

1: Input: G, D, P, M, α, γ, ε, B

2: s←0

3: while s < M do

4: for v in V do

5: if v. f inished_trip() then

6: v.update_Q_table(B−v.last_edge_travel_time)

7: G.commDev[v.curr_node].update_queue(v.last_reward, v.last_edge)

8: v.start_new_commuting_trip()

9: else if v.has_reached_a_node() then

10: v.update_Q_table(−v.last_edge_travel_time)

11: G.commDev[v.curr_node].update_queue(v.last_reward, v.last_edge)

12: v.update_Q_values(G.commDev[v.curr_node].in f o)

13: v.choose_action()

14: end if

15: end for

16: s←s+1

17: end while

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 9/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

experienced, so that the CommDev can update its queue structure. In line 7, each agent
updates its Q-value for the last action based on its own experience, that is, with the actual
reward received for traveling through the last link.

Following, a CommDev also informs agents about the rewards that can be expected
from the actions each agent might take next (line 12). Each agent then updates its Q-table
and chooses an action.

EXPERIMENTS, RESULTS, AND ANALYSIS
Scenario: network and demand
Simulations were performed using a microscopic tool called Simulation of Urban Mobility
(SUMO, Lopez et al. (2018)). SUMO’s API was used to allow vehicle agents to interact with
the simulator en route, that is, during simulation time.

The scenario chosen is a 5 × 5 grid depicted in Fig. 2; each line in the figure represents
bi-directed edges containing two lanes, one for each traffic direction. It is also worth noting
that each directed edge is 200 m long.

The demand was set to maintain the network populated at around 20–30% of its
maximum capacity, which is considered a medium to high density. Recall that no
real-world network is fully occupied at all times, and that the just mentioned density level
does not mean that there will not be edges fully occupied, which happens from time to
time; this percentage is just the average over all 50 edges.

This demand was then distributed between the OD-pairs as represented in Table 1.
The last column represents the volume of vehicles per OD-pair. Those values were selected
so that the shorter the path, the smaller the demand, which seems to be a more realistic
assumption than a uniform distribution of the demand.

A0

A1

A2

A3

A4

B0

B1

B2

B3

B4

C0

C1

C2

C3

C4

D0

D1

D2

D3

D4

E0

E1

E2

E3

E4

Left0

Left1

Left2

Left3

Left4

Right0

Right1

Right2

Right3

Right4

Bottom0 Bottom1 Bottom2 Bottom3 Bottom4

Top0 Top1 Top2 Top3 Top4

Figure 2 5 × 5 Grid Network. Full-size DOI: 10.7717/peerj-cs.428/fig-2

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 10/20

http://dx.doi.org/10.7717/peerj-cs.428/fig-2
http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

Two points are worth reinforcing here. First, vehicles get reinserted at their corresponding
origin nodes, so that we are able to keep a roughly constant insertion rate of vehicles in the
network, per OD pair. However, this does not mean that the flow per link is constant,
since the choice of which link to take varies a lot from vehicle to vehicle, and from time to
time. Second, despite being a synthetic grid network, it is not trivial, since it has 8 OD pairs,
which makes the problem complex as routes from each OD pair are coupled with others.
As seen in Table 1, we have also increased such coupling by designing the OD pairs so
that all routes traverse the network, thus increasing the demand for using the central links.

Q-learning parameters
A study conducted by Bazzan & Grunitzki (2016) shows that, in an en route trip building
approach, the learning rate a does not play a major role, while the discount factor γ
usually needs to be high in discounted future rewards, as it is the case here. Thus a value of
a = 0.5 suits our needs. We remark however that we have also played with this parameter.

As for the discount factor γ, we have performed extensive tests and found that a
value of γ = 0.9 performs best.

For the epsilon-greedy action selection, empirical analysis pointed to using a fixed value
of ε = 0.05. This guarantees that the agents will mostly take a greedy action (as they only
have a 5% chance to make a non-greedy choice), and also take into account that the
future rewards have a considerable amount of influence in the agent’s current choice,
since γ has a high value.

For the bonus at the end of each trip, after tests, a value of B = 1,000 was used. Recall that
this bonus aims at compensating the agent for selecting a jammed link, if it is close to its
destination, rather than trying out detours via a link that, locally, seems less congested,
but that will lead the agent to wander around, rather than directly go to its destination.
We remark that trips take a rough average of 450 time steps thus this value of B fits the
magnitude of the rewards.

Performance metric and results
While each agent perceives its own travel time, both after traversing each link, and after
finishing its trip, we need an overall performance to assess the quality of the proposed

Table 1 Demand per OD-pair.

Origin Destination Demand

Bottom0 Top4 102

Bottom1 Top3 86

Bottom3 Top1 86

Bottom4 Top0 102

Left0 Right4 102

Left1 Right3 86

Left3 Right1 86

Left4 Right0 102

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 11/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

method. For this, we use a moving average (over 100 time steps) of the complete route
travel time, for each agent that has finished its trip.

Given the probabilistic nature of the process, it is necessary to run repetitions of
simulations. Thus, 30 runs were performed. Plots shown ahead thus depict the average and
the standard deviations. In order to evaluate how the communication affects the learning
process, some different policies and comparisons were performed, these different methods
are described in the following sections.

QL with C2I vs dynamic user assignment

For sake of contrasting with a classical approach, Fig. 3 shows a comparison between our
QL with C2I approach and a method called Dynamic User Assignment (DUA), which is an
iteractive method implemented by the SUMO developers. We remark that DUA is a
centralized, not based on RL approach.

Dynamic User Assignment works as follows: it performs iterative assignment of
pre-computed, full routes to the given OD-pairs in order to find the UE2. In our tests, DUA
was run for 100 iterations. Note that a DUA iteration corresponds to a trip, and a new
iteration only starts when all trips have reached their respective destinations. The output of
DUA is a route that is then followed by each vehicle, without en route changes. Since DUA
also has a stochastic nature, our results correspond to 30 repetitions of DUA as well.

Figure 3 shows that, obviously, at the beginning, the performance of our approach
reflects the fact that the agents are still exploring, whereas DUA has a better performance
since a central authority determines which route each agent should take. This is possible
since this central authority holds all the information, which is not the case in the
MARL based approach, where each agent has to explore in order to gain information.

In our approach, after a certain time, the agents have learned a policy to map states to
action and, by using it, they are able to reduce their travel times.

Figure 3 QL with C2I vs DUA. Full-size DOI: 10.7717/peerj-cs.428/fig-3

2 For details on how the DUA method is
made the reader may refer to https://
sumo.dlr.de/docs/Demand/Dynamic_
User_Assignment.html.

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 12/20

http://dx.doi.org/10.7717/peerj-cs.428/fig-3
https://sumo.dlr.de/docs/Demand/Dynamic_User_Assignment.html
https://sumo.dlr.de/docs/Demand/Dynamic_User_Assignment.html
https://sumo.dlr.de/docs/Demand/Dynamic_User_Assignment.html
http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

Before discussing the actual results, we remark that a SUMO time step corresponds
roughly to one second. Our experiments were run for about 50,000 time steps. A learning
episode comprehends hundreds of time steps, as the agent has to travel from its
origin to its destination. In short, a learning episode is not the same as a simulation
time step. Given that the agents re-start their trips immediately, different agents have
different lengths for their respective learning episodes, thus the learning process is
non-synchronous. Using our approach, on average, an episode takes roughly 500 time
steps, thus agent reach the user equilibrium in about 100 episodes. For RL standards, this is
a fast learning process, especially considering that we deal with a highly non-stationary
environment, where agents get noisy signals. However, we also remark that, for practical
purposes, the policy can be learned off-line, and, later, embedded in the vehicle.

To give a specific picture, Table 2 shows the actual travel times after time step 50,000.
We remark that we could have measured roughly the same around step 30,000. It can
be seen that our approach outperforms DUA shortly after time step 10,000. Also
noteworthy is the fact that, at any time step, agents still explore with probability ε = 5%
thus there is room for improvements if other forms of action selection are used.

QL with C2I vs QL without communication
Our approach is also compared to standard Q-learning, thus without communication, which
means that the agents learn their routes only by their own previous experiences, without any
augmented knowledge regarding the traffic situation and the experiences of other agents.

In Fig. 4, we can divide the learning process in both cases shown in Fig. 4 in two distinct
phases: the exploration phase, where the agents have yet no information about the network
and explore it to find their destination “that is when the spikes in the learning curves
can be seen”; and the exploitation phase, when agents know the best actions to take in
order to experience the lowest travel time possible.

Both approaches converge to the same average travel times in the exploitation phase.
However, the advantage of our approach comes in the exploration phase. As we see in
Fig. 4, the exploration phase in the QL with C2I algorithm is reduced by a considerable
amount when compared to the traditional QL algorithm, meaning that in our case the
user equilibrium is reached earlier.

Table 3 compares the travel time measured in both cases at the time step 20,000, when
our approach has already converged, but the standard Q-learning has not.

Communication success rate
In the real world, it might be the case that some information gets lost due to failure in the
communication devices. In order to test what happens when not all messages reach the

Table 2 Travel time measured for DUA and QL with C2I at time step 50,000.

Method Travel time at step 50 k

DUA ≈560
QL with C2I ≈470

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 13/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

recipient, a success rate was implemented to test how the our approach performs if
communication does not work as designed.

Specifically, every time an agent needs to communicate with the infrastructure, the
message will reach the destination with a given success rate. This was implemented by
means of a randomly generated value, which is then compared to the success rate to
determine whether or not the simulator should ignore the message, thus being a metaphor
for a non-delivered message. Such a scheme is applied to any kind of communication
between the infrastructure and the agent, that is, regardless if it is from an agent to a
CommDev, or vice-versa.

If a message is lost, then: (i) a CommDev does not get to update its data structure, and
(ii) an agent does not get to update its Q-table. Other than that, the method behaves exactly
as described by Algorithm 1.

Experiments were performed varying the target success rate. For clarity, we show the
results in two plots.

Figure 5 compares the approach when the success rate is with 100% (thus the
performance already discussed regarding the two previous figures), to one where the
communication succeeds in only 75% of the times. In Fig. 6, we depict the cases for success
rate of 25% and 50%.

For specific values, Table 4 lists the average travel times for all these cases at time step
20,000, since at that time the learning processes have nearly converged.

Figure 4 QL with C2I vs QL without communication. Full-size DOI: 10.7717/peerj-cs.428/fig-4

Table 3 Travel time measured for QL and QL with C2I at time step 20,000.

Method Travel time at step 20k

QL ≈676
QL with C2I ≈483

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 14/20

http://dx.doi.org/10.7717/peerj-cs.428/fig-4
http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

It is remarkable that the system not only tolerates some loss of information, but also
performs slightly better when the success rate is 75% or even 50%. If one compares this
case to the one in which 100% of the messages reach their destinations, one sees that
the learning process is accelerated if agents do not have the very same information that
other agents also receive. This is no surprise, as pointed out in the literature on the
disadvantages of giving the same information to everyone. What is novel here is the fact
that we can show that this is also the case when information is shared only at local level, as

Figure 5 QL with C2I: comparison between 75% and 100% success rate.
Full-size DOI: 10.7717/peerj-cs.428/fig-5

Figure 6 QL with C2I: comparison between 25% and 50% success rate.
Full-size DOI: 10.7717/peerj-cs.428/fig-6

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 15/20

http://dx.doi.org/10.7717/peerj-cs.428/fig-5
http://dx.doi.org/10.7717/peerj-cs.428/fig-6
http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

well as when the communication is between vehicles and the infrastructure, not among
all vehicles themselves.

As expected, when we look at the case with a low success rate of 25%, we observe
several drawbacks since the communication rate is getting closer to no communication at
all: (i) the average travel time increases, (ii) the learning process takes longer, and (iii) the
standard deviation also increases (meaning that different trips may take very different
travel times and, possibly, different routes).

Different strategies for storing information at the infrastructure
Apart from investigating what happens when information is lost, we also change the way
CommDevs compute and share the reward information to the driver agents. Here the
main motivation was to test what happens when the infrastructure is constrained by a
simpler type of hardware, namely one that can store much less information (recall that the
original approach is based on a queue-like data structure).

To this aim, we conducted experiments in which the goal was to test which type of
information is best for the infrastructure to hold and pass on to the agents. We have
devised three ways to do this: (i) the infrastructure only holds and informs the highest
travel time (hence the most negative reward) value to the agents; (ii) the infrastructure
informs the lowest reward (hence the least negative) to the agents; (iii) the infrastructure
holds only the latest (most recent) travel time value received. Note that, in all these cases,
the infrastructure only needs to store a single value, as opposed to the case in which
the infrastructure stores a queue of values in order to compute a moving average.

Figure 7 shows a comparison between the different policies. For clarity, we omit the
deviations but note that they are in the same order as the previous ones.

The best case seems to be associated with the use of the most recent travel time
information, as seen both in Fig. 7 and Table 5. Communicating the lowest travel time
might look good at first sight. But it has as drawback that this leads all agents to a act
greedly and thus using the option with least travel time. This ends up not being efficient as
seen in Fig. 7. Conversely, communicating the highest travel time is motivated by the fact
that the infrastructure might want to distribute the agents among the options available,
thus communicating a high travel time leads to not all agents considering it: since some
would have experienced a better option before and hence have this knowledge in their
Q-tables, they will not use the information received. This proves to be the second best
strategy, only behind the aforementioned strategy on communicating the latest
information. The reason for the good performance of the latter is the fact that the latest

Table 4 Travel time measured for each success rate at time step 20,000.

Success rate (%) Travel time at step 20k

25 ≈501
50 ≈467
75 ≈461
100 ≈483

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 16/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

information is diverse enough (i.e., varies from recipient agent to agent) so that it also
guarantees a certain level of diversity in the action selection, thus contributing to a more
even distribution of routes.

CONCLUSIONS AND FUTURE WORK
A wise route choice is turning more and more important when the demand is increasing
and road networks are not being expanded in the same proportion. MARL is an attractive
method for letting agents autonomously learn how to construct routes while they are
traveling from A to B.

This article presented a method that combines MARL with C2I communication.
Vehicles interact with the infrastructure every time they reach an intersection. While they
communicate the travel times they have experienced in nearby links, they also receive
the expect travel times regarding their next possible link choices. We have extended a
previous approach by relaxing the assumption that all messages are sent and received, that
is, there is no loss of messages. To the best of our knowledge, this is a novel investigation to
scenarios dealing with learning based route choice, where the there is a sharing of local
information via C2I.

Figure 7 QL with C2I with different strategies. Full-size DOI: 10.7717/peerj-cs.428/fig-7

Table 5 Travel time measured for each strategy at time step 20,000.

Strategy Travel time at step 20 k

Highest travel time ≈472
Latest travel time ≈467
Lowest travel time ≈538
QL with C2I ≈483

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 17/20

http://dx.doi.org/10.7717/peerj-cs.428/fig-7
http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

This work thus has the following contributions: we employ MARL to the task of learning;
we do this using a non trivial scenario with more than one origin-destination pair; we depart
from the assumption that driver agents already know a set of (pre-computed) routes to
select among; we use a microscopic, agent-based approach; we connect MARL with new
communication technologies, in order to investigate whether the learning process can be
accelerated. Also, we have employed our method to test some real-world situations that may
arise, namely communication loses and the need to use simpler hardware devices to store
information by the infrastructure.

Our results show that, before deploying C2I communication in the real-world, one has
to take into account the various effects of sharing information, even at local level. We were
able to show that one has to strive to communicate information that is diverse enough,
in order to avoid sub-optimal route choices, that is, those that are made by drivers having
similar information. As these drivers tend to act greedly, a wise strategy on sharing
information is key.

Specifically, our results point out to our approach being tolerant to information loses;
further, there was even a slight improvement in the overall performance (i.e., learning
speed) since less information also mean that not all agents will act the same way. As for the
different strategies regarding storage of information in the infrastructure, we could show
that communicating only the latest known travel time is able to speed up the learning
process.

We remark that in all cases we have tested, MARL was able to reach the user
equilibrium. The major difference is the speed of such process.

For future work, one possible investigation is the addition of a biased information
provided by the infrastructure in order to reach a different outcome, namely, to reach
the system optimum (socially efficient distribution of routes to vehicles), rather than
converging to the user equilibrium. We also plan to change the demand during simulation
time, to check how the learners deal with such changes. Preliminary work on using
Q-learning in such dynamic environments point out that it is able to handle different
situations. However, it remains to be investigated whether this is also the case for changes
in flow rates. Moreover, we would like to study whether the proposed combination of
Q-learning with C2I is able to speed up the learning processes as much as it was the case in
the present work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by CNPq under grant no. 307215/2017-2 (Ana Bazzan), by
CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil, Finance
Code 001), and by a FAPERGS grant (Guilherme D. dos Santos). There was no additional
external funding received for this study. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 18/20

http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

Grant Disclosures
The following grant information was disclosed by the authors:
CNPq: 307215/2017-2.
CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil): 001.
FAPERGS.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Guilherme Dytz dos Santos conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Ana L.C. Bazzan conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the
final draft.

Data Availability
The following information was supplied regarding data availability:

Code is available at GitHub: https://github.com/guidytz/SUMO-QL.

REFERENCES
Auld J, Verbas O, Stinson M. 2019. Agent-based dynamic traffic assignment with information

mixing. Procedia Computer Science 151(3):864–869 DOI 10.1016/j.procs.2019.04.119.

Bazzan ALC, Fehler M, Klügl F. 2006. Learning to coordinate in a network of social drivers:
the role of information. In: Tuyls K, Hoen PJ, Verbeeck K, Sen S, eds. Proceedings of the
International Workshop on Learning and Adaptation in MAS (LAMAS 2005), number 3898 in
Lecture Notes in Artificial Intelligence. 115–128.

Bazzan ALC, Grunitzki R. 2016. A multiagent reinforcement learning approach to en-route trip
building. In: 2016 International Joint Conference on Neural Networks (IJCNN), 5288–5295.

Bazzan ALC, Klügl F. 2020. Experience sharing in a traffic scenario. In: Proceedings of the 11th
International Workshop on Agents in Traffic and Transportation, Santiago de Compostella.

Buriol LS, Hirsh MJ, Pardalos PM, Querido T, Resende MG, Ritt M. 2010. A biased random-key
genetic algorithm for road congestion minimization. Optimization Letters 4(4):619–633
DOI 10.1007/s11590-010-0226-6.

Fachantidis A, Taylor ME, Vlahavas IP. 2019. Learning to teach reinforcement learning agents.
Machine Learning and Knowledge Extraction 1(1):21–42 DOI 10.3390/make1010002.

Grunitzki R, Bazzan ALC. 2016. Combining car-to-infrastructure communication and
multi-agent reinforcement learning in route choice. In: Bazzan ALC, Klügl F, Ossowski S,
Vizzari G, eds. Proceedings of the Ninth Workshop on Agents in Traffic and Transportation
(ATT-2016). New York: CEUR-WS.org.

Grunitzki R, Bazzan ALC. 2017.Comparing twomultiagent reinforcement learning approaches for
the traffic assignment problem. In: 2017 Brazilian Conference on Intelligent Systems (BRACIS).

Koster A, Tettamanzi A, Bazzan ALC, Pereira CDC. 2013. Using trust and possibilistic reasoning
to deal with untrustworthy communication in VANETs. In: Proceedings of the 16th IEEE

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 19/20

https://github.com/guidytz/SUMO-QL
http://dx.doi.org/10.1016/j.procs.2019.04.119
http://dx.doi.org/10.1007/s11590-010-0226-6
http://dx.doi.org/10.3390/make1010002
http://dx.doi.org/10.7717/peerj-cs.428
https://peerj.com/computer-science/

Annual Conference on Intelligent Transport Systems (IEEE-ITSC), The Hague, The Netherlands.
Piscataway: IEEE, 2355–2360.

Lopez PA, Behrisch M, Bieker-Walz L, Erdmann J, Flötteröd Y-P, Hilbrich R, Lücken L,
Rummel J, Wagner P, Wießner E. 2018. Microscopic traffic simulation using sumo. In:
The 21st IEEE International Conference on Intelligent Transportation Systems. Piscataway: IEEE.

Ortúzar JDD, Willumsen LG. 2011. Modelling transport. Fourth Edition. Chichester: John
Wiley & Sons.

Ramos GDO, Grunitzki R. 2015. An improved learning automata approach for the route choice
problem. In: Koch F, Meneguzzi F, Lakkaraju K, eds. Agent Technology for Intelligent Mobile
Services and Smart Societies, Volume 498 of Communications in Computer and Information
Science. Berlin, Heidelberg: Springer, 56–67.

Santos GDD, Bazzan ALC. 2020. Accelerating learning of route choices with C2I: a preliminary
investigation. In: Proceedings of the VIII Symposium on Knowledge Discovery, Mining and
Learning, SBC, 41–48.

Sharon G, Hanna JP, Rambha T, Levin MW, Albert M, Boyles SD, Stone P. 2017. Real-time
adaptive tolling scheme for optimized social welfare in traffic networks. In: Das S, Durfee E,
Larson K, Winikoff M, eds. Proceedings of the 16th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2017). São Paulo: IFAAMAS, 828–836.

Tan M. 1993. Multi-agent reinforcement learning: independent vs. cooperative agents.
In: Proceedings of the Tenth International Conference on Machine Learning (ICML 1993).
Morgan Kaufmann, 330–337.

Tavares AR, Bazzan AL. 2014. An agent-based approach for road pricing: system-level
performance and implications for drivers. Journal of the Brazilian Computer Society 20(1):15
DOI 10.1186/1678-4804-20-15.

Taylor A, Dusparic I, López EG, Clarke S, Cahill V. 2014. Accelerating learning in multi-objective
systems through transfer learning. In: International Joint Conference on Neural Networks
(IJCNN), Beijing, China. Piscataway: IEEE, 2298–2305.

Torrey L, Taylor ME. 2013. Teaching on a budget: agents advising agents in reinforcement
learning. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-
Agent Systems, St. Paul, MN, USA, IFAAMAS.

Tumer K, Welch ZT, Agogino A. 2008. Aligning social welfare and agent preferences to alleviate
traffic congestion. In: Padgham L, Parkes D, Müller J, Parsons S, eds. Proceedings of the 7th
International Conference on Autonomous Agents and Multiagent Systems. Estoril: IFAAMAS,
655–662.

Wahle J, Bazzan ALC, Klügl F, Schreckenberg M. 2000. Decision dynamics in a traffic scenario.
Physica A 287(3–4):669–681 DOI 10.1016/S0378-4371(00)00510-0.

Wardrop JG. 1952. Some theoretical aspects of road traffic research. Proceedings of the Institution
of Civil Engineers, Part II 1(36):325–362 DOI 10.1680/ipeds.1952.11259.

Watkins CJCH, Dayan P. 1992. Q-learning. Machine Learning 8(3):279–292.

Yu Y, Han K, Ochieng W. 2020. Day-to-day dynamic traffic assignment with imperfect
information, bounded rationality and information sharing. Transportation Research Part C:
Emerging Technologies 114(1):59–83 DOI 10.1016/j.trc.2020.02.004.

Zhou B, Song Q, Zhao Z, Liu T. 2020. A reinforcement learning scheme for the equilibrium of the
in-vehicle route choice problem based on congestion game. Applied Mathematics and
Computation 371(12):124895 DOI 10.1016/j.amc.2019.124895.

Zimmer M, Viappiani P, Weng P. 2014. Teacher-student framework: a reinforcement learning
approach. In: AAMAS Workshop Autonomous Robots and Multirobot Systems, Paris, France.

dos Santos and Bazzan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.428 20/20

http://dx.doi.org/10.1186/1678-4804-20-15
http://dx.doi.org/10.1016/S0378-4371(00)00510-0
http://dx.doi.org/10.1680/ipeds.1952.11259
http://dx.doi.org/10.1016/j.trc.2020.02.004
http://dx.doi.org/10.1016/j.amc.2019.124895
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.428

	Sharing diverse information gets driver agents to learn faster: an application in en route trip building
	Introduction
	Background and related work
	Methods
	Experiments, results, and analysis
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

