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ABSTRACT
Breast cancer becomes the second major cause of death among women cancer
patients worldwide. Based on research conducted in 2019, there are approximately
250,000 women across the United States diagnosed with invasive breast cancer each
year. The prevention of breast cancer remains a challenge in the current world as
the growth of breast cancer cells is a multistep process that involves multiple cell
types. Early diagnosis and detection of breast cancer are among the greatest
approaches to preventing cancer from spreading and increasing the survival rate.
For more accurate and fast detection of breast cancer disease, automatic diagnostic
methods are applied to conduct the breast cancer diagnosis. This paper proposed the
fuzzy-ID3 (FID3) algorithm, a fuzzy decision tree as the classification method in
breast cancer detection. This study aims to resolve the limitation of an existing
method, ID3 algorithm that unable to classify the continuous-valued data and
increase the classification accuracy of the decision tree. FID3 algorithm combined the
fuzzy system and decision tree techniques with ID3 algorithm as the decision tree
learning. FUZZYDBD method, an automatic fuzzy database definition method,
would be used to design the fuzzy database for fuzzification of data in the FID3
algorithm. It was used to generate a predefined fuzzy database before the generation
of the fuzzy rule base. The fuzzified dataset was applied in FID3 algorithm, which is
the fuzzy version of the ID3 algorithm. The inference system of FID3 algorithm is
simple with direct extraction of rules from generated tree to determine the classes for
the new input instances. This study also analysed the results using three breast cancer
datasets: WBCD (Original), WDBC (Diagnostic) and Coimbra. Furthermore, the
comparison of FID3 algorithm with the existing methods is conducted to verify the
proposed method’s capability and performance. This study identified that the
combination of FID3 algorithm with FUZZYDBD method is reliable, robust and
managed to perform well in breast cancer classification.
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INTRODUCTION
Breast cancer is the most aggressive type of cancers suffered by women worldwide and
becomes the second leading cause of death among women cancer patients (Lee & Han,
2014). Each year, approximately 250,000 women across the United States have been
diagnosed with invasive breast cancer (Watkins, 2019). The primary cause of breast cancer
disease is mainly related to patients inheriting the genetic mutations in their genes (Majeed
et al., 2014). Breast cancer can cause rapid metastasis to occur which leads the primary
tumour to vigorously spreading the breast cancer cells to distant organs like the bone, liver,
lung and brain (Sree Kumar, Radhakrishnan & Cheong, 2010). The metastatic traits of
breast cancer are mostly accountable for the high incurability rate (Sun et al., 2017).
Although advancements in breast cancer treatment lead to a decrement in breast cancer
mortality rates in all age groups, the young age remains a high-risk factor and has a
low survival rate (Lee & Han, 2014). Early diagnosis of breast cancer patients is substantial
for averting the rapid progression of breast cancer aside from the evolution of preventative
procedures (Sun et al., 2017).

Diagnosis of breast cancer can be made manually by the physician, but it will take a
longer period of time and must be very intricate for the physician to implement the
classification (Khuriwal & Mishra, 2018). The incompleteness of relevant data can also
lead to human errors in diagnosis (Zaitseva et al., 2020). Thus, breast cancer detection
through an intelligent system is vital in the medical field. Various methods can be applied
for classification of breast cancer such as Neural Network, Support Vector Machine,
KNN and decision tree (Khuriwal & Mishra, 2018; Kuo et al., 2008). This paper proposed
a new version of the fuzzy-ID3 algorithm (FID3 algorithm) to improve breast cancer
classification efficiency. This study’s primary purpose is to develop a method that can
overcome the limitation of traditional ID3 algorithm that is unable to classify the
continuous-valued data and also increase the classification performance. The ID3
algorithm, which is the most commonly used decision tree learning, treats the
continuous-valued attributes as discrete attributes with many possible values (Al-Ibrahim,
2011; Patil., Agrawal & Baviskar, 2015). It is designed to only handle discrete and
categorical data. The FID3 algorithm implements the data fuzzification and linguistic
variable replacement process to handle the continuous-valued data. The advantage of this
method is that it has high comprehensibility and interpretability of a decision tree and can
cope with inaccurate and uncertain information in fuzzy representation.

Nevertheless, for the FID3 algorithm that conducts data fuzzification, the fuzzy database
must be defined. The automatic definition of the fuzzy database using a genetic algorithm
and clonal selection algorithms has high computational cost and complexity (Cintra,
Camargo & Martin, 2009; Cintra, 2012). Thus, this paper implements the FUZZYDBD
method to design the fuzzy database in the FID3 algorithm as an approach to producing a
fast and effective system. The inference process of the FID3 algorithm is also made simple
by using inductive reasoning like the traditional ID3 algorithm. The testing and
verification process is implemented to validate the performance of the method. The rest of
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this paper was organised as follows, starting from Materials and Methods, Results,
Discussion and lastly the Conclusion.

MATERIALS AND METHODS
Fuzzy system
The fuzzy system is derived from the concept of fuzzy logic proposed by Zadeh in 1965,
which essentially is a precise logic of imprecision and approximate reasoning (Zadeh,
2008). It functions in the form of logical variables which the values are within the range
of 0 and 1. It is usually being implemented to handle the imprecision problems in the
data using the fuzzy set theory (Cintra, Monard & Camargo, 2013a). According to
Ben-mubarak et al. (2012) and Thaker & Nagori (2018), there are four most important
features to implement the fuzzy system which are the fuzzifier, inference engine, fuzzy base
or knowledge base and defuzzifier as illustrated in Fig. 1. The features are required for the
processes in the fuzzy system.

The fuzzy system implementation is comprised of three essential processes which are
fuzzification, inference engine and defuzzification. In order to conduct fuzzification via
fuzzifier, fuzzy systems needed the granulation of the feature of the domain, which are the
fuzzy sets and partitions (Cintra, Monard & Camargo, 2013a). The fuzzy sets and
partitions would form the membership functions. Every fuzzy set is uniquely defined by a
single distinct membership function (Dai, Gao & Dong, 2010). Thus, the particular
membership functions are commonly symbolised as the labels of the respective fuzzy sets.
Range of values correspond to each of the fuzzy set is also assigned to each input factor
(Thaker & Nagori, 2018). Membership functions hold the degree of membership used to
measure the grade of membership for the fuzzy sets. Figure 2 is given the example of
triangular membership functions with three particular fuzzy sets labelled low (blue),
medium (orange) and high (green):

The fuzzy system generally comprises of Rule-Based Fuzzy System that has two critical
elements which are the knowledge base and an inference mechanism (Cintra et al., 2011c).
The knowledge base consists of fuzzy rule base (FRB) that contains a set of fuzzy rules for
the respective domains and fuzzy database which holds the definitions of the fuzzy sets
involving the linguistic variables applied in FRB (Marcos Evandro Cintra & De Arruda
Camargo, 2007). Meanwhile, the inference mechanism generates the outputs from the
system using fuzzy reasoning. Then, the inference mechanism, which is also known as an
inference engine, would utilise the fuzzy rules to map the input to output (Ahmadi et al.,
2018). Inference engine would produce the most desirable consequents for each rule.
Fuzzy parameters like rules and membership functions are codependent and essential in
developing a fuzzy inference system (FIS) (Peña-Reyes & Sipper, 2001). The fuzzy rule can
be expressed by:

IFðV1 i IS A1 iÞ AND ðV2 i IS A2 iÞ AND . . . ðV j i IS Aj iÞ THEN ðCLASSi IS C iÞ
V has represented the linguistic variable, which is the attribute of the data. Meanwhile,

A is the linguistic value, which is the value of the data. Then, j is the number of attributes in
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the data, while i is depicted as the number of rules. The most distinct keys in the fuzzy
system are the use of linguistic variables, the interdependence of the variables through
conditional rules and validation of complex interdependence using the fuzzy method
(Zadeh, 1973). Use of linguistic variables in the fuzzy system means through the
implementation of fuzzy the particular variables can be defined in natural language.
Meanwhile, the interdependence of variables through conditional rules means linguistic
variables in the antecedent section of fuzzy rules express as the attributes while the
consequent section is the class. Validation of complex interdependence using fuzzy
methods deems that the interdependence between class and linguistic variable can be
validated with fuzzy logic.

Lastly, defuzzification is being implemented when the crisp values are required. In
defuzzification, consequents can be aggregated to generate crisp output. It is a step to
interchange the fuzzy output into crisp output using the fuzzy set and degree of
membership which also known as membership value (Thaker & Nagori, 2018).
The process of defuzzification takes place in defuzzifier (Saad & Wahyunggoro, 2010).
There are many methods to execute defuzzification, such as the centre of gravity (COG),
mean of maximum (MOM) and centre average methods (Masoum & Fuchs, 2008).
The fuzzy system is a well-known classification algorithm in machine learning because of
its simplicity but manage to produce high accuracy in classification (Surya et al., 2012).

Figure 1 Features of the fuzzy system. Full-size DOI: 10.7717/peerj-cs.427/fig-1

Figure 2 Shape of the triangular membership function. Full-size DOI: 10.7717/peerj-cs.427/fig-2
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The study performed by Ali & Mutlag (2018) conveys that the fuzzy method’s
implementation is useful in detecting breast cancer as the accuracy reaches over 98%.
The study made by Johra & Shuvo (2017) shows that the fuzzy logic model’s accuracy is
94.26% when applied with histopathology image dataset to classify benign and malignant
cells in breast cancer tumours. Result of breast cancer thermogram classification by
Schaefer et al. (2007) that also implemented the fuzzy method had achieved the diagnostic
accuracy rate of 80%. High accuracies result based on the previous studies show the
efficiency of the method in solving classification problems.

Decision tree: ID3 algorithm
Decision tree (DT) is a well-known method in machine learning to implement
classification. The advantage of using DT includes the high interpretability, scalability, and
ability to illustrate in both graphic and text formation (Begenova & Avdeenko, 2018a).
The most popular decision tree learning algorithm are ID3, C4.5 and CART algorithm.
The decision tree learning algorithm that would be studied in this paper is ID3 algorithm
as it is the most commonly implement learning algorithm at the moment (Chen, Luo &
Mu, 2009; Liu & Wang, 2010; Luo, Chen & Zhang, 2010). Quinlan invented the ID3
algorithm that also known as Iterative Dichotomiser 3 in 1986 (Liu & Xie, 2010; Nijhawan,
Madan & Dave, 2017). Theoretically, ID3 algorithm function based on recursive
partitioning which the training data would undergo splitting to become subsets and
the particular subsets become the partitions that depict the decision tree (Begenova &
Avdeenko, 2018a;Wu et al., 2006). ID3 algorithm uses Shannon’s entropy and information
gain as the attribute selection criteria (Wu et al., 2006).

The main element in the ID3 algorithm is the selection of the attributes for the tree by
using the largest value of information gain. Information gain becomes the attribute
selection criteria for the tree in order to choose the most qualified attribute for branching
(Liu & Xie, 2010). The branching process would occur recursively until the tree
achieves the termination conditions like all the attributes in the datasets being fully
classified or all the balance instances has the same class. The ID3 algorithm can only be
generated if the applied datasets have more than one class attribute (Wu et al., 2006). It will
also produce rules for the class prediction and concurrently point out the respective
class attributes (Teli & Kanikar, 2015). Generally, the algorithm utilises the top-down
greedy approach to generate the decision tree. The significant aspect of the algorithm is
that it would reduce the tree size using the quality measure and logical reasoning.

The research conducted by (Angayarkanni & Kamal, 2012) used MRI mammogram
image dataset to test the performance and capability of the ID3 algorithm in the
classification of breast cancer domain. The particular dataset consists of three class
attributes, which are benign, malignant and normal. Results of the average accuracy of
the ID3 algorithm is 99.9%. Meanwhile, the training time is over 0.03 s. It shows that
method can achieve good classification result in short training time. The study made by
Yang, Guo & Jin (2018), reveals that the algorithm can achieve the correct prediction
accuracy over 90.56 % when tested with Wisconsin Breast Cancer Dataset (WBCD). Aside
from that, the study implements by Jacob & Geetha Ramani (2012) depicts that the ID3
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algorithm managed to perform even better than other classifiers such as Naïve Bayes and
C-PLS in terms of classification accuracy when conducted with Wisconsin Prognostic
Breast Cancer (WPBC). There are many advantages of implementing the ID3 algorithm as
the DT learning algorithm, and the most significant advantage is that it takes short
execution time (Chai & Wang, 2010; Idris & Ismail, 2020).

Fuzzy decision tree
The fuzzy decision tree (FDT) is an extension of a decision tree (Zhai et al., 2018).
The combination of both fuzzy and decision tree classifiers has an advantage in terms of
handling the uncertainties and ambiguity data (Li, Jiang & Li, 2012; Wang et al., 2000).
The application of data fuzzification is common practice to produce a robust model
(Cintra, Monard & Camargo, 2013a). Many types of FDT available shows the high
efficiency of the two combined classifiers (Umanol et al., 1994). The implementation of
FDT commonly being be executed using general Shannon’s entropy or fuzzy entropy such
as Luca-Termini and Kosko (Mitra, Konwar & Pal, 2002; Zhai et al., 2018). Cintra and
Camargo originally invented a new method of FDT in 2010 using the combination of fuzzy
and C4.5 algorithm call FUZZYDT algorithm (Cintra & Camargo, 2010; Cintra, 2012).
FUZZYDT algorithm produces a fuzzy version of C4.5 algorithm as it still implements
information gain, gain ratio and Shannon entropy for attribute selection criteria like traditional
C4.5 algorithm (Cintra, Monard & Camargo, 2013b). Post pruning with the confidence
interval of 25% customarily been applied to soar up the performance of the method but it also
can be applied with pre pruning or without pruning (Cintra, Monard & Camargo, 2013b;
Cintra et al., 2011b; Ribeiro, Camargo & Cintra, 2013). FUZZYDBD method conventionally
had been used to determine the fuzzy set parameters in this method, while the classic
and general fuzzy reasoning had been used to test the testing data (Cintra, 2012). It got error
rates of 1.49% compared to C4.5 algorithm with 5.13% when tested with breast dataset.

Later, the fuzzy decision tree method was further studied by Begenova and Avdeenko
using fuzzy and ID3 algorithm (Begenova & Avdeenko, 2018a). This method applies
the approximate reasoning to the test the testing data, trapezoidal membership functions
and bottom-up partitioning discretisation for distribution of fuzzy sets functions
(Avdeenko, Makarova & Begenova, 2018; Begenova & Avdeenko, 2018a; Fajfer & Janikow,
2000). It acquired an accuracy of 95.65% with Iris dataset (Begenova & Avdeenko, 2018a).
The distinct differences between the two versions of FDT are the selection of decision
tree learning, type of reasonings and the fuzzy sets parameters for data fuzzification,
especially the distribution of fuzzy sets and shape of membership functions. The reliability
and efficiency of the fuzzy database definition method of FDT based on ID3 algorithm by
Begenova and Avdeenko not empirically tested with breast cancer domain. The lacks
of literature resources to explain the complex issues in existing FDT based on ID3
algorithm inspired this paper to study the new automatic fuzzy definition method for FDT
that works well for breast cancer domain. The other notable approach of FDT is by Olaru
and Wehenkel that developed a soft decision tree (SDT) that applies pruning, refitting
and back fitting. This method's strategy is searching for the attribute and split location
using crisp heuristics from the CART regression tree and implementing the fuzzification
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and labelling by explicit linear regression formulas. The back fitting and refitting process in
this version of FDT is the tuning process which the refitting would optimise terminal
nodes parameters, and back fitting would optimize all model-free parameters. The study
finds out that SDT (back fitting) had a lower error rate of only 11.6% than CART and
C4.5 algorithm, which were 19.5% and 19.2 respectively when tested with Omib dataset
(Olaru & Wehenkel, 2003). Another approach like Tolerance Rough FDT used the degree
of tolerance rough fuzzy dependency to select expanded attributes, Luca-Termini entropy
to select optimal cut, and Kosko entropy for the termination condition got 98.19% with
WDBC dataset (Zhai et al., 2018).

Fuzzy decision tree integrates a graphical representation of rules in tree form and
fuzzy formation of data. The benefit for fuzzification of data is that the tree would be better
in handling the continuous values attribute (Begenova & Avdeenko, 2018b). The traditional
decision tree would split the data value into crisp intervals accordingly by minimising
the entropy and maximising information gain which would lead to unnatural divisions
and impacted the interpretability of the generated rules (Cintra, Monard & Camargo,
2013b). The other advantage of implement data fuzzification is the reuse of features or
attributes. Traditional decision tree-like C4.5 algorithm can include the same attribute
several times in one single rule, especially for continuous data with real values and range
forms. It can lead to repetitive use of the same attribute and subdivision of the domain
(Cintra, Monard & Camargo, 2013b). The issue concerning as it also reduces the
interpretation of generated rules. FDT that apply fuzzification of training data is more
robust and managed to overcome the issues in the classic decision tree (Cintra, 2012).

FUZZYDBD method
The fuzzy automatic definition method is significant to develop a fuzzy database, and
there are three elements involve to automatically defining the fuzzy database (Cintra,
Camargo & Martin, 2009). Firstly, the automatic definition method can assist in
determining the shape of the membership functions then, the number of fuzzy sets for each
attribute in the domain and lastly the distribution of fuzzy sets for each attribute in the
domain (Cintra, 2012). The fuzzy automatic definition method existed to enable the setup
of fuzzy sets’ parameters in the fuzzy database more efficiently without burdening the
domain experts. There are various existing methods can be applied for the definition of
fuzzy databases in order to determine the number of fuzzy sets and tune the membership
functions such as genetic algorithm, artificial neural network and fuzzy clustering
algorithm (Aliev et al., 2011; Liao, Celmins & Hammell, 2003; Pulkkinen & Koivisto, 2010).
Despite many methods exist, it is essential to highlight that many studies implement the
definition number of fuzzy sets through empirical testing and just set the distribution
of fuzzy sets evenly for the membership function because of the high complexity of the
available methods and flexibility of fuzzy logic that can be adjusted the parameters to
acquire better performance (Cintra, Camargo & Martin, 2009). Furthermore, there is a
lack of consensus and guidelines on which existing methods can work the best for each
application and domain (Cintra et al., 2011d).

Idris and Ismail (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.427 7/22

http://dx.doi.org/10.7717/peerj-cs.427
https://peerj.com/computer-science/


This article conducts a further study on FUZZYDBD method that firstly proposed in
Cintra, Camargo & Martin (2009) as it is a fast, simple and effective method for definition
of the fuzzy database (Cintra, 2012). It also had been empirically tested in various
domains, including breast cancer. FUZZYDBDmethod aggregates all the needed elements
(ex. distribution of fuzzy sets) and resolves the issues with existing methods to define
the fuzzy database (Cintra, Camargo &Martin, 2009; Cintra et al., 2011a, 2011d). According
to Cintra (2012), the approaches of FUZZYDBD method including the definition of the
number of fuzzy sets for all attributes using Wang Mendel method (Wang & Mendel, 1992),
adoption of Equalized Universe method for the distribution of fuzzy sets for all attributes in
the domains and application of triangle membership functions like in Fig. 3.

The number of fuzzy sets is standardised and same for all attributes in the datasets
which the number of fuzzy sets can be between the range of 2 to 10 triangular membership
functions. The best value between the range can be identified via empirical testing.
The help of domain expert also can be used to define more suitable values of fuzzy sets for
the attributes (Cintra, 2012; Cintra et al., 2014). The Wang Mendel method applies the
same number of fuzzy sets, distribution and fuzzy sets shape to define all attributes in
the collected dataset (Cintra, 2012). Although the range between 2 and 10 can be used to
define the number of fuzzy sets, the values of 3, 5 and 7 are more commonly applied in
the studies of FUZZYDBD method (Cintra et al., 2011b, 2014; Cintra & Neves, 2013;
Cintra, 2012). Both values of 2 and 3 also are the best-estimated number of fuzzy sets for
breast cancer dataset with the lowest error rate (Cintra, Camargo & Martin, 2009).

The Equalised Universe Method adopted by FUZZYDBD method was invented by
Chen &Wang (1999). The method is applied the same width for each fuzzy set to produce
an equal partitioning for the fuzzy sets in the attributes of the domain. The most maximum
value of the respective attribute would be placed at the peak of most right triangular
membership function while the most minimum value of the attribute would be placed at
the peak of the most left triangular membership function. Thus, with this technique,
the generated fuzzy values would not bound to has any error. This method is widely
used in the literature (Cintra, 2012). The application of triangular equally partitioning
membership functions implemented in FUZZYDBD with half overlap between the
membership function ensures that no area has a membership degree more than 0.5.

Figure 3 Approaches of FUZZYDBD Method. Full-size DOI: 10.7717/peerj-cs.427/fig-3
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The most significant advantage of this method is that it is producing fuzzy databases that
are very effortless and interpretable.

Proposed method: FID3 algorithm
The decision tree is well-known as the method with low bias and high variance, and
increasing the tree complexity will further decrease the bias and increase the variance
(Olaru & Wehenkel, 2003). FID3 algorithm was developed to obtain a low complexity
fuzzy decision tree that reduces the traditional decision tree’s high variance. The proposed
method in this research, FID3 algorithm is inspired by FDT based on ID3 algorithm by
Begenova & Avdeenko (2018a) that using information gain and Shannon’s entropy for
attribute selection criteria like the traditional ID3 algorithm and also the method by
Kumar, Varma & Sureka (2011) that apply fuzzification of the dataset. FID3 algorithm
uses the ID3 algorithm as the classifier to handle the fuzzified data while applying the
FUZZYDBD method to determine the fuzzy sets’ parameters used in the fuzzification
process. Implementation of the inference system in FID3 algorithm, which uses all the
rules extracted directly from the fuzzy decision tree is more interpretable and easier to
understand than the existing method. FID3 algorithm computes the membership value
for each input in the attributes and enumerates the confidence degree for every rule.
The test data would automatically apply with the rules that have the highest compatibility
degree with the input pattern to determine the class based on logical reasoning. The
proposed method that applies fuzzification to the whole dataset favourably preserve the
privacy of the patients as the precise data regarding the patients are concealed. Medical
privacy is vital to maintain the security and confidentiality of patients’ records. The use for
the linguistic variable is efficient, mainly when there is a coalition of support of the
linguistic terms cover its entire domain which would effectively generate better accuracy
and performance (Kumar, Varma & Sureka, 2011).

Fuzzy-ID3 algorithm implementation started with defining the membership functions
using the FUZZYDBD method for all continuous attributes in the dataset. All the
continuous attributes in each collected dataset would be defined with triangular equal
partitioning membership functions and the standardised number of fuzzy sets (all
attributes in the domain have the same count of fuzzy sets). The number of fuzzy sets that
more commonly applied in the FUZZYDBDmethod is 3, 5 and 7 (Cintra, 2012). Then, the
value of 3 also is the best-estimated number of fuzzy sets in the breast cancer domain,
together with the value of 2 (Cintra, Camargo & Martin, 2009). Thus, in this research,
all attributes in the collected datasets would adopt the value of 3 unless the medical
expert indicates that the respective attribute might have a different number of fuzzy sets.
A medical expert's assist is recommended in the development phase to obtain human
interpretability as the suitability of the particular attributes’ variables impacts the
classification process. Then, all the continuous attributes values in the dataset being
fuzzified to generate fuzzy values of the data. The fuzzification is a process of
conceptualisation that can reduce information overload in the decision-making task
(Yuan & Shaw, 1995). Replacement of all the continuous attributes data using linguistic
labels of the fuzzy sets with the highest compatibility degree to the input values or also
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known as fuzzy values is made to ensure the dataset in linguistic form. The discrete
attributes (integer) also undergo the definition of membership functions using the
FUZZYDBDmethod, fuzzification of data and replacement of linguistic labels processes to
increase the accuracy results. Then, the split between training data and testing data was
implemented after the whole dataset’s fuzzification process. After that, the training data
will undergo classification with the ID3 algorithm, which is the chosen classifier to handle
the fuzzified data. A fuzzy decision tree is generated using the fuzzified data, and the
generated rules produce by the fuzzy decision tree will be used to test the effectiveness of
the method. The most compatible rules can be directly used to classify the test data as
both in linguistic forms. The classification rates of the method would be determined when
tested with the testing set. The flow of FID3 algorithm has four vital steps as being
illustrated in Fig. 4.

The process of data fuzzification in FID3 algorithm can occur where both fuzzy
values (ex. low and medium) hit 0.5, an intermediate fuzzy value. Thus, the algorithm
can randomly choose between the two linguistic labels or set up the standardisation of
value. Nevertheless, the situation where both fuzzy values hit 0.5 that leads to unable to
conduct the most accurate replacement of the linguistic variable very rarely occurs.
FID3 algorithm's classification process retains the same computational technique with the
ID3 algorithm that use Shannon’s entropy and information gain.

Figure 4 Flow of FID3 algorithm. Full-size DOI: 10.7717/peerj-cs.427/fig-4
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RESULTS
The experiments were conducted using three breast cancer datasets: WBCD (Original)
dataset, WDBC (Diagnostic) dataset and Coimbra dataset. All the datasets are acquired
from the UCI machine learning repository. Table 1 shows the brief descriptions of the
collected breast cancer datasets. The Wisconsin Breast Cancer Database, known as
WBCD (Original) dataset, is divided into two class attributes: benign and malignant.
It contains nine predictive attributes: clump thickness, uniformity of cell size, uniformity of
cell shape, marginal adhesion, single epithelial cell size, bland chromatin, bare nuclei,
normal nucleoli and mitoses. The non-predictive attribute in this dataset is the ID number.
The dataset consists of 699 instances, 458 benign samples and 241 malignant samples.
It has 16 missing values, and listwise deletion was applied to handle the missing data,
leading to 683 instances. The Breast Cancer Coimbra dataset used in this paper came from
the Faculty of Medicine researchers at the University of Coimbra and University Hospital
Centre of Coimbra. This dataset contains 116 instances and divided into two class
attributes which are healthy controls and patients. This dataset also has nine predictive
attributes such as age (years), BMI (kg/m2), glucose (mg/dL), insulin (µU/mL), HOMA,
leptin (ng/mL), adiponectin (µg/mL), resistin (ng/mL) and MCP-1 (pg/dL).

Lastly, this study applied Wisconsin Diagnostic Breast Cancer Dataset, also known as
WDBC (Diagnostic). The source of this dataset is from the University of Wisconsin.
This dataset comprises 569 instances with no missing values and has two class attributes:
benign (B) or malignant (M). The dataset’s predictive attributes consist of ten-real
valued features computed for each nucleus, such as radius, texture, perimeter, area,
smoothness, compactness, concavity, concave points, symmetry, and fractal dimension.
The mean, standard error and radius (mean of three largest values reading) are computed
for each nucleus leading the dataset to have over 32 attributes, including the non-predictive
attribute, patients’ ID and class attributes. For further explanation, field 3 stands for
mean radius, field 13 stands for radius standard error, and field 23 stands for the worst
radius (Oyelade et al., 2018).

The 10-fold cross-validation method is applied to test the effectiveness of the proposed
method. The values of 3, 5 and 7 are more commonly implemented in the studies of the
FUZZYDBD method, but the value of 3 also has lowest-error rates compared to other
values when tested with breast cancer domain (Cintra, Camargo & Martin, 2009; Cintra
et al., 2011b; Cintra & Neves, 2013; Cintra, 2012). Thus, for fuzzification, we defined all
attributes in the datasets with three equally distributed triangular fuzzy sets (low, medium,

Table 1 Details of the datasets applied in the experiment include the number of attributes, number
of instances and classes.

Dataset Number of attributes
(including class attribute)

Number of instances Number of classes

WBCD (original) 11 683 2

WDBC (diagnostic) 32 569 2

Coimbra 10 116 2
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high). The exception did for attributes radius standard error and worst radius in WDBC
(Diagnostic) which will be defined with five triangular fuzzy sets (verylow, low, medium,
high, veryhigh) which is the second most common value in the studies of FUZZYDBD
method. Information and descriptions from the experts had normally been applied for
the transformation of initial data (Zaitseva & Levashenko, 2016). The assist of domain
experts is recommended in the modelling phase to obtain human interpretability
(Seymoens et al., 2019). Linguistic values of radius standard error and worst radius were
selected with the help of a medical expert. The increment in fuzzy sets value of radius
standard error and worst radius determines the competence of mean radius results. The
cell size is significant in determining the presence of cancer as an unhealthy cell always at
the end spectrum, whether it is smaller or larger than a normal cell with an abnormal
shape. Thus, an adequate number of linguistic variables for radius standard error and
worst radius was needed to assess the mean radius results’ competency.

The confusion matrix is being implemented to acknowledge the capability of the
proposed method in classification. The confusion matrix contains information about the
actual classes and the predicted classes. From the confusion matrix information, accuracy,
precision, recall and F1- the measure is being calculated. Meanwhile, the standard
deviation of the accuracy also been calculated to determine the dispersion of the results.
All the results were averaged over ten runs and implemented with the macro-averaged
technique. The experimental results of breast cancer datasets are recorded in Table 2 in
order to evaluate the performance of the proposed method.

The comparative analysis between the proposed method and other existing methods
was performed to determine and verify the proposed model’s capability. Tables 3–5 show
the comparison of accuracy between the proposed method and existing methods for each

Table 2 Experimental results of precision, recall, F1-measure and standard deviation (SD) when
conducted with the collected datasets.

Dataset Precision (%) Recall (%) F1-Measure (%) SD

WBCD (original) 94.192 93.356 93.747 0.0050

WDBC (diagnostic) 94.294 94.000 94.137 0.0043

Coimbra 69.784 69.056 69.278 0.0116

Table 3 Comparison of accuracy between the proposed method and existing works using WBCD
(Original) dataset.

Method Accuracy (%)

SVM (Kumari, Singh & Ahlawat, 2019) 86.100

C4.5 algorithm (Saoud et al., 2019) 92.970

Naïve Bayes (Assiri, Nazir & Velastin, 2020) 91.810

Random forest (Pyingkodi et al., 2020) 91.660

KNN (Mushtaq et al., 2020) 92.570

ID3 algorithm 91.059

Proposed method 94.362

Note:
Values in bold represent the highest accuracy.
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of the collected datasets. The existing methods used in the comparative analysis were
support vector machine (SVM), C4.5 algorithm, naïve Bayes (NB), random forest (RF),
K-Nearest Neighbour (KNN) and ID3 algorithm. The bold values in Tables 3–5 represent
the highest accuracy.

The radar chart also was constructed to review and compare the overall classification
performance of FID3 algorithm with existing ID3 algorithm. The reviewed between the
two methods was carried out to identify whether FID3 algorithm managed to outperform
ID3 algorithm. ID3 algorithm is incapable of conducting the classification process for
the WDBC dataset and the Coimbra dataset as both datasets consisting of real-valued data.
Thus, the comparison of results between the two methods only conducted using the
WBCD dataset. The ID3 algorithm classification process is possible with the WBCD
dataset because it mainly consists of small integer attributes, ranging between one to ten.
ID3 algorithm would treat the attributes in WBCD dataset as categorical data. Figure 5
shows the ID3 algorithm and FID3 algorithm results when applied with WBCD dataset.
The overall performance of FID3 algorithm is better than the ID3 algorithm as all the
plotting points defined as accuracy, precision, recall and F1-measure in the chart have
longer radii.

Table 4 Comparison of accuracy between the proposed method and existing works using WDBC
(Diagnostic) dataset.

Method Accuracy (%)

SVM (Chaurasia & Pal, 2020) 61.9614

C4.5 algorithm (Khan et al., 2017) 94.030

Naïve Bayes (Omondiagbe, Veeramani & Sidhu, 2019) 91.180

Random forest (Gondane & Susheela Devi, 2015) 89.370

KNN (Chaurasia & Pal, 2020) 92.7729

ID3 algorithm –*

Proposed method 94.534

Notes:
* Result was not available as the method does not support the classification.
Values in bold represent the highest accuracy.

Table 5 Comparison of accuracy between the proposed method and existing works using Coimbra
dataset.

Method Accuracy (%)

SVM (Poorani & Balasubramanie, 2019) 65.960

C4.5 algorithm (Kayaalp & Basarslan, 2019) 68.000

Naïve Bayes (Fauziyyah, Abdullah & Nurrohmah, 2020) 67.700

Random forest (Austria et al., 2019) 70.310

KNN (Chiu, Li & Kuo, 2020) 67.120

ID3 algorithm –*

Proposed method 70.690

Notes:
* Result was not available as the method does not support the classification.
Values in bold represent the highest accuracy.
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A statistical test known as t-test was implemented to determine whether the
classification accuracy of traditional ID3 algorithm and FID3 algorithm is statistically
different. The t-value and p-value were identified using the accuracy results of 10
independent runs which the degree of freedom equal to nine (n − 1). The significance
level (α) of the t-test was set as 0.05, and a two-tailed test was applied. If the p-value is greater
than α, then the null hypothesis, H0, stated that no significant difference between the ID3
algorithm and FID3 algorithm would be accepted. Otherwise, if the p-value lower than α,
then the alternative hypothesis, H1, stated that a significant difference would be accepted.
In t-test of independent means for WBCD dataset, the t-value is 18.48666 while the p-value
is <0.00001. The result is significant at p < 0.05. According to the study, p-values were
lower than the significance level. Thus, the null hypothesis, H0 is rejected and H1,
the alternative hypothesis is accepted where the result is significant at p-value < 0.05.
The accuracy of FID3 algorithm significantly increases compared to the ID3 algorithm.

DISCUSSION
Fuzzy- ID3 algorithm acquired an accuracy of 94.362%, which is the best accuracy result
in the comparative analysis when tested with WBCD dataset. The accuracy of FID3
algorithm higher than C4.5 algorithm, the second-best method by 1.392% and KNN,
the third-best method by 1.792%. The proposed method had achieved higher accuracy
than Fuzzy GAP, the hybrid genetic programming-genetic algorithm that develops a
fuzzy classifier for each class by searching for a tree that got an accuracy of 92.53%
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Figure 5 Results of the ID3 algorithm and FID3 algorithm when applied with the WBCD dataset.
Full-size DOI: 10.7717/peerj-cs.427/fig-5
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(Orriols-Puig, Casillas & Bernadó-Mansilla, 2009). Then, the FID3 algorithm obtained the
classification accuracy of 94.534% when implemented with WDBC dataset, which was
better than the C4.5 algorithm, KNN, NB, RF and SVM. The accuracy of FID3 algorithm is
higher by 0.504% than C4.5 algorithm, which is the second-best method and KNN, the
third-best method by 1.7611%. Based on the finding, the result had surpassed PAM LOR
V.2.0, clustering data mining technique by Badiang, Gerardo & Medina (2019) that only
obtain an accuracy of 88.75% when applied with WDBC dataset. FID3 algorithm had
outperforms FUZZY ID3-L-WABL, an improved version of the classic FUZZY ID3
algorithm by Kantarci-Savas & Nasibov (2017) that obtains accuracy of only 90.87%
when implemented with WDBC dataset. This method obtained higher accuracy than
Fuzzy GAP that got only 90.49% with this dataset (Orriols-Puig, Casillas & Bernadó-
Mansilla, 2009). Lastly, FID3 algorithm managed to acquire accuracy of 70.69%, which is
significantly higher than RF, the second-best method that obtained only 70.31% when
tested with Coimbra dataset. This result outdoes PAM LOR V.2.0 by Badiang, Gerardo &
Medina (2019) that only obtain 55.17% when applied with Coimbra dataset. The results
conveyed that the proposed method has better performance and comparable to many
existing works. Based on the statistical test executed, the accuracy of FID3 algorithm
significantly increases compared to the ID3 algorithm where the result is significant at
p-value < 0.05. Overall, the FID3 algorithm is more effective than traditional ID3 algorithm
in solving classification problems and generates better accuracy, precision, recall and
F1-measure. FID3 algorithms also manage to overcome the limitation of the ID3 algorithm
that incapable of handling continuous-valued data. ID3 algorithm treats continuous
attributes as discrete or categorical attributes with many possible values which would
arouse problems, especially in the classification of real-valued data.

FUZZYDBD method comprises of the Wang Mendel method and Equalised Universe
Method that was widely used in literature and had shown excellent performance when
tested with breast cancer dataset. The implementation of FUZZYDBD method in the
fuzzy-ID3 algorithm is used to set up the fuzzy sets parameters in order to increase the
suitability and effectiveness of data fuzzification, especially in breast cancer domain.
FID3 algorithm undergoes both fuzzification of data and the replacement process of
continuous-valued attributes with the linguistic variable of fuzzy sets that has the highest
compatibility degree. These processes allow FID3 algorithm to handle any data type
and overcome the limitation of the ID3 algorithm. The algorithm also generates a decision
tree with lower depth and fewer branches. The existing study identified that a low
complexity decision tree would have lower variance, thus better predictive accuracy
(Olaru & Wehenkel, 2003). FID3 algorithm uses logical reasoning like a traditional ID3
algorithm. The application of a single process of data fuzzification in the FID3 algorithm
allows the decision tree in each fold to select the best rules for the new instances directly as
both training, and testing sets are in the same formation (linguistic form). The decision
tree makes a deduction from the model’s generated rules as it will choose the class of the
rules with the highest compatibility degree or is most compatible with the testing data.
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Nevertheless, there are limitations in the proposed method because it still has the
characteristics of traditional decision tree-like having a high variance, tendency to overfit
and instability. FID3 algorithm having multi-value bias problem despite FUZZYDBD
setting up standardisation number of terms in attributes. The problem happens because
the attributes’ terms and elements would reduce as classification started. There are
stark differences in accuracy performance between the datasets because of the small sample
size limitation, especially in Coimbra dataset (Patrício et al., 2018). Overfitting is hard to
avoid, and despite a cross-validation technique performed to minimise bias, but it is
not possible to entirely eliminate it. The Coimbra dataset also contains noise leading to
poor classification result (De Brito, 2018). Theoretically, FID3 algorithm still retains the
same properties of the traditional ID3 algorithm but more robust. In traditional ID3
algorithm or other decision tree learning, even the differences of 0.01 continuous values in
the data would lead different pathway and classes in the tree, but FID3 algorithm taking
account the membership degree of the particular input and has a high tolerance to data
uncertainty.

CONCLUSION
Fuzzy-ID3 algorithm is reliable and managed to generate good performances in the
classification of breast cancer data. Implementation of FUZZYDBD method as an
automatic fuzzy database definition method in the fuzzification process of the fuzzy
decision tree is compelling, consistent, and straightforward, allowing the fast fuzzification
process to occur. The proposed method resolves the drawback of traditional ID3 algorithm
of incapable of handling continuous-valued data and has higher accuracy results.
The proposed method of FID3 algorithm also has lower complexity, easy to understand
and high interpretability compare to other fuzzy decision tree methods as all the steps in
FID3 algorithm is more straightforward. The proposed method’s limitations, such as
instability and overfitting issues can be resolved through future works like implementing
ensemble methods. Attribute related methods also can be applied for better attribute
selection criteria in FID3 algorithm. Overall, the implementation of FID3 algorithm with
FUZZYDBD method is useful and productive in the classification of data.
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