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Information efficiency is gaining more importance in the development as well as
application sectors of information technology. Data mining is a computer-assisted process
of massive data investigation that extracts meaningful information from the datasets. The
mined information is used in decision-making to understand the behavior of each attribute.
Therefore, a new classification algorithm is introduced in this paper to improve information
management. The classical C4.5 decision tree approach is combined with Selfish Herd
Optimization (SHO) algorithm to tune the gain of given datasets. The optimal weights for
the information gain will be updated based on SHO. Further, the dataset is partitioned into
two classes based on quadratic entropy calculation and information gain. Decision tree
gain optimization is the main aim of our proposed C4.5-SHO method. The robustness of the
proposed method is evaluated on various datasets and compared with classifiers, such as
ID3 and CART. The accuracy and area under ROC (AUROC) parameters are estimated and
compared with existing algorithms like ant colony optimization, particle swarm
optimization and cuckoo search.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54852:2:0:NEW 8 Feb 2021)

Manuscript to be reviewedComputer Science



1 ENTROPY BASED C4.5-SHO ALGORITHM WITH INFORMATION GAIN OPTIMIZATION IN DATA 
2 MINING

3 Abstract. Information efficiency is gaining more importance in the development as well as application sectors of 

4 information technology. Data mining is a computer-assisted process of massive data investigation that extracts 

5 meaningful information from the datasets. The mined information is used in decision-making to understand the 

6 behavior of each attribute. Therefore, a new classification algorithm is introduced in this paper to improve 

7 information management. The classical C4.5 decision tree approach is combined with Selfish Herd Optimization 

8 (SHO) algorithm to tune the gain of given datasets. The optimal weights for the information gain will be updated 

9 based on SHO. Further, the dataset is partitioned into two classes based on quadratic entropy calculation and 

10 information gain. Decision tree gain optimization is the main aim of our proposed C4.5-SHO method. The 

11 robustness of the proposed method is evaluated on various datasets and compared with classifiers, such as ID3 and 

12 CART. The accuracy and area under ROC (AUROC) parameters are estimated and compared with existing 

13 algorithms like ant colony optimization, particle swarm optimization and cuckoo search. 

14 Keywords: C4.5 decision tree, Selfish herd Optimization (SHO), entropy, AUROC, Information gain, C4.5-SHO.

15 1. Introduction

16 Information management is comprised of mining the information, managing data warehouses, visualizing the 

17 data, knowledge extraction from data and so on [Chen et al., 2018]. Consequently, different information 

18 management techniques are now being applied to manage the data to be analyzed. Hence, it is necessary to create 

19 repositories and consolidate data as well as warehouses. However, most of the data may be unstable; so it is essential 

20 to decide the data to be stored and discarded [Amin, Chiam & Varathan, 2019]. In addition, individual storage is 

21 required to manage real-time data to conduct research and predict trends. Data mining techniques are becoming 

22 more popular, recently getting attention towards rule mining methods, such as link analysis, clustering and 

23 association rule mining [Elmaizi et al., 2019]. Data mining discovers the substantial information, reasons and 

24 possible rules from huge datasets. It stands as an important source for information system based decision-making 

25 processes, such as classification, machine learning and so on [Sun et al., 2019]. Data mining is generally a specific 

26 term to define certain computational analysis and results that comply with three main properties like comprehension, 

27 accuracy and user requirements. Data mining techniques are very useful while dealing with large datasets having 

28 vast amount of data. The data mining research community has been active for many years in analyzing various 

29 techniques and different applications of data mining [Jadhav, He & Jenkins, 2018]. 

30  A system that is combined with both data analysis and classification is suggested to create mining rules for 

31 several applications. For extracting the relevant information from systems, functional knowledge or rules 

32 automatically activates the mining process to provide rapid, real-time and significant operational basis. The 

33 classification approaches broadly used in data mining applications is efficient in processing large datasets [Gu et al., 
34 2018]. It maps an input data object into one of the pre-defined classes. Therefore, a classification model must be 

35 established for the given classification problem [Junior & Carmo, 2019]. To perform the classification task, the 

36 dataset is converted into several target classes. The classification approach assigns a target type for each event of the 

37 data and allots the class label to a set of unclassified cases. This process is called supervised learning because all the 

38 training data are assigned as class tags. Therefore, classification is used to refer the data items as various pre-defined 

39 classes [Xie et al., 2020]. The classifier is categorized into two approaches namely logical reasoning and statistical 

40 analysis. To create a well-trained classifier, training data are used to signify the key features of the classification 

41 problem under analysis [Meng et al., 2020]. Once the classifier is trained, then the test dataset is evaluated by the 

42 classifier. The overall performance of any classifier algorithm is comparatively estimated through the sensitivities of 

43 minority target classes. However, the minority target class predictions are usually found below optimal because of 

44 the initial algorithm designs that consider identical class distribution in both model and usage [Ebenuwa et al., 
45 2019]. 

46  The most popular and simple classification technique is decision tree. Decision trees are popular learning 

47 tool utilized in functional research, especially in results analysis to achieve a goal. As a general logical model, a 

48 decision tree repeats the given training data to create hierarchical classification [Es-sabery & Hair, 2020]. It is a 

49 simplest form of classifier that can be stored densely and effectively in order to categorize the new data. It takes 

50 inputs in the form of training data set, attribute list and attribute selection method. A tree node is created by the 

51 algorithm in which attribute selection is applied to compute optimal splitting criteria. Then the final node generated 

52 is named based on the selected attributes [Damanik et al., 2019]. The training tuples subset is formed to split the 
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53 attributes. Hence, parameters (like purity, number of samples, etc.) are still needed for a decision tree. Moreover, it 

54 is capable of handling multidimensional data that offers good classification performance for common datasets [Ngoc 
55 et al., 2019]. Decision tree is also known as decision support tool which utilizes the model of tree-like or graph and 

56 the consequences are resource costs, utility and event outcomes [Lee, 2019]. In practical, the methods utilized to 

57 create decision trees normally produce trees with a low node factor and modest tests at each node. Also, the 

58 classifier contains different algorithms, such as C4.5, ID3 and CART. The C4.5 algorithm is the successor of ID3 

59 which uses gain ratio by splitting criterion for splitting the dataset. The information gain measure used as a split 

60 criterion in ID3 is biased to experiments with multiple outcomes as it desires to select attributes with higher number 

61 of values [Jimnez et al., 2019]. To overcome this, the C4.5 algorithm undergoes information gain normalization 

62 using split information value which in turn avoids over fitting errors as well.

63 In C4.5, two criterions are used to rank the possible tests. The first criterion of information gain is to 

64 minimize the entropy of subsets and the second criterion of gain ratio is to divide the information gain with the help 

65 of test outcome information. As a result, the attributes might be nominal or numeric to determine the format of test 

66 outcomes. [Kuncheva et al., 2019]. On the other hand, the C4.5 algorithm is also a prominent algorithm for data 

67 mining employed for various purposes. The generic decision tree method is created default for balanced datasets; so 

68 it can deal with imbalanced data too [Lakshmanaprabu et al., 2019]. The traditional methods for balanced dataset 

69 when used for imbalanced datasets cause low sensitivity and bias to the majority classes [Lakshmanaprabu et al., 
70 2019]. Some of the imbalance class problems include image annotations, anomaly detection, detecting oil spills 

71 from satellite images, spam filtering, software defect prediction, etc. [Li et al., 2018]. The imbalanced dataset 

72 problem is seen as a classification problem where class priorities are very unequal and unbalanced. In this imbalance 

73 issue, a majority class has larger pre-probability than the minority class [Liu, Zhou & Liu, 2019]. When this 

74 problem occurs, the classification accuracy of the minority class might be disappointing [Tang & Chen, 2019]. 

75 Thus, the aim of the proposed work is to attain high accuracy in addition to high efficiency.  

76 In data classification, accuracy is the main challenge of all applications. Information loss in dataset is 

77 problematic during attribute evaluation and so, the probability of attribute density is estimated.  For this, the 

78 information theory called entropy based gain concept is utilized to enhance the classification task. Furthermore, 

79 common uncertainties of numerical data are used to measure the decision systems. A population based algorithm is 

80 utilized to optimize the gain attributes and to enhance the classification in complex datasets. The Selfish Herd 

81 Optimization (SHO) enhances the feature learning accuracy by effectively removing redundant features thereby 

82 providing good global search capability. The main contribution of the proposed work is summarized as follows.

83  To solve the data classification problem using entropy based C4.5 decision tree approach and gain estimation.

84  Selfish Herd Optimization (SHO) algorithm is utilized to optimize the information gain attributes of decision 

85 tree.

86  The data are classified with high accuracy and AUROC of datasets is compared with existing techniques. 

87 The organization of this paper is described as follows: introduction about the research paper is presented in 

88 Section 1, survey on existing methods and challenges are depicted in Section 2. The preliminaries are explained in 

89 Section 3. The working of proposed method is detailed in Section 4. Efficiency of optimization algorithm is 

90 evaluated in Section 5 and the conclusion of the proposed method is presented in Section 6.

91 2. Related Works

92 Multiple learning process and multi-label datasets are widely used in different fields nowadays. [Yahya, 111 
93 2019] evaluated the efficacy of Particle Swarm Classification (PSC) in data mining. PSC was utilized to design the 

94 classification model which classifies the queries into Bloom's taxonomy six cognitive-levels. Rocchio algorithm 

95 (RA) was used to mitigate the dimensionality of adverse effects in PSC. Finally, RA-based PSC was investigated 

96 with various feature selection methods for a scheme of queries. But it is identified that the multi-label classification 

97 dealt with some problems where the classifier chain label order has a strong effect on the performance of 

98 classification. Nevertheless, it is too hard to find the proper order of chain sequences. Hence, [Sun et al., 2019] had 

99 proposed an ordering method based on the conditional entropy of labels where a single order was generated by this 

100 method. Reduced attributes can improve the accuracy of classification performances. The missed attribute values 

101 were typically not used in entropy or gain calculation. Information gain based algorithms tend to authenticate the 

102 attribute sets. Various measures were certainly affected from redundancy and non-monotonicity during attribute 

103 reduction. Therefore, a forward heuristic attribute reduction algorithm was proposed to solve the uncertainties in 

PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54852:2:0:NEW 8 Feb 2021)

Manuscript to be reviewedComputer Science



104 attribute selection. It simultaneously selects information attributes though unnecessary attributes were reduced in 

105 practice. [Gao et al., 2019] proposed granular maximum decision entropy (GMDE) based on the measurement of 

106 monotonic uncertainty. Extreme decision entropy was developed in which the uncertainties of entropy are integrated 

107 with granulation knowledge. This investigation was validated with various UCI datasets and found to be 

108 computationally inexpensive. 

109 The choice of dataset selection allows the extraction of highly representative information from high-level 

110 data; so computational efforts were reduced among other tasks. A hybrid optimization based feature selection was 

111 proposed by [Ibrahim et al., 2019]. The suggested technique is combined with slap swarm algorithm (SSA) and 

112 particle swarm optimization methods to enhance the efficacy of global and local search steps. Therefore, the hybrid 

113 algorithm was examined on mixed datasets. It requires less time while the nodes quantity is reduced making it more 

114 desirable for large datasets. The SSA-PSO was employed to acquire best features from various UCI datasets.  Also, 

115 redundant features were detached from the original datasets resulting in better accuracy. However, the accuracy is 

116 affected in complex datasets. To improve the classification performance of complex data, [Lin et al., 2019] 

117 introduced an attribute reduction method utilizing neighborhood entropy measures. The systems should have the 

118 ability to handle continuous data while maintaining its information on attribute classification. The concept of 

119 neighborhood entropy was explored to deal with uncertainty and noise of neighborhood systems. It fully reflects the 

120 decision-making ability by combining the degree of reliability with the coverage degree of neighborhood systems. 

121 A clustering method based on functional value sequences has been proposed to accurately identify the 

122 functional equivalent programs with index variations. Because existing clustering programs were limited to 

123 structured metric vectors as in [Wang et al., 2020]. This strategy is implemented for automated program repair to 

124 identify the sample programs from a large set of template programs. The average accuracy and average entropy were 

125 0.95576 and 0.15497, respectively. However, the problem turned out to uncertain as the number of predictions is 

126 higher than the number of previous results. This issue was overcome by an alternative solution of priori weights and 

127 maximum entropy principle to attain the posteriori weights. [Arellano, Bory-Reyes & Hernandez-Simon, 2018] 

128 utilized a machine learning approach with single aggregated prediction from a set of individual predictions. A new 

129 factor presents a problem departing from the well-known maximal entropy hypothetical method and taking the 

130 distance among original and estimated integrated predictions. The suggested method was applied to estimate and 

131 measure predictive capability using prediction datasets.

132 It is difficult to perform feature selection (FS) for multi-label dimension curse in numerous learning 

133 processes. Hence, [Paniri, Dowlatshahi & Nezamabadi-pour, 2020] proposed a multi-label relevance–redundancy 

134 FS scheme based on Ant Colony Optimization (ACO) called ML-ACO. ML-ACO seeks to find the best features 

135 with lowest redundancy and many repetitions with class labels. To speed up the convergence, the cosine similarities 

136 between features as well as class labels are used as starting pheromone for each ant, and can be classified as a filter-

137 based method. Various parametric entropies of decision tree algorithms are investigated by [Bret et al., 2019]. 

138 Partial empirical evidences were provided to support the notion that parameter adjustment of different entropy 

139 activities influences the classification. Receiver operating characteristic (ROC) and Area under the ROC (AUROC) 

140 curve analysis provides an accurate criterion for evaluating decision trees based on parametric entropy. Various 

141 entropies, such as Shannon entropy, Renyi entropy, Tsallis entropy, Abe entropy and Landsberg–Vedral entropy 

142 were discussed.  

143 A new information classification algorithm has been introduced to improve the information management of 

144 restricted properties in [Wang et al., 2019]. Information management efficiency has gained more importance for the 

145 development of information technology through its expanded use. Reduce leaf based on optimization ratio (RLBOR) 

146 algorithm was utilized to optimize the decision tree ratios. ID3 algorithm is a classical method of data mining that 

147 selects attributes with maximum information gain from the dataset at split node. However, decision tree algorithms 

148 have some drawbacks; it is not always optimal and it is biased in favor of properties that have higher values. In data 

149 classification, accuracy is the main challenge of all datasets. The resulting information loss is problematic for 

150 attribute evaluation while estimating the probability density of attributes. Due to the absence of classification 

151 information, it is challenging to perform potential classification. Consequently, an improved algorithm is utilized to 

152 solve the data classification issues.  

153 3. Preliminaries 
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154 Entropy based measurements understands the decision system knowledge, its properties and some relations 

155 about the measurements. An optimization model is explored to enhance the performance of complex dataset 

156 classification. During prediction, the information gain optimal weights will be updated with the help of SHO 

157 algorithm. The nominal attributes of the dataset were designed by the ID3 algorithm. The attributes with missing 

158 values are not permitted. C4.5 algorithm, an extension of ID3 can handle datasets with unknown-values, numeric 

159 and nominal attributes [Agrawal & Gupta, 2013]. C4.5 is one of the best learning based decision tree algorithm in 

160 data mining because of its distinctive features like classifying continuous attributes, deriving rules, handling missing 

161 values and so on [Wu et al., 2008]. In decision tree based classification, the training set is assumed as  and the M
162 number of training samples is mentioned as . Here, the samples are divided into  for various kinds of || M N

163  where the class sizes are labeled into . A set of training sample is denoted asnKKK ,...., 21 |||,...||,| 21 nKKK

164 , and the sample probability formula of class is given in Equation (1).M iK

165                                                                                                    (1)
M

K
Mp

i

i )(

166 3.1 Quadratic Entropy 

167 Entropy is used to measure the uncertainty of a class using the probability of particular event or attribute. The 

168 gain is inversely proportional to entropy. The information gain is normally dependent on the facts of how much 

169 information was offered before knowing the attribute value and after knowing the attribute value. Different types of 

170 entropies are utilized in data classification. For a better performance, quadratic entropy is used in our work 

171 [Adewole & Udeh, 2018]. This entropy considers a random variable  as finite discrete with complete probability X
172 collection as mentioned in Equation (2).

173                                                 (2)



k

i

ii pnip
1

1),,...2,1(0

174 Here, the probability of event is denoted as . The quadratic entropy of information is calculated by Equation (3). ip

175                                                 (3) 
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n
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176 Here,  specifies the information entropy of   (training sample set). For this particular attribute, the entropy )(M M

177 of information is determined by Equation (4).
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179 The entropy of attribute  is represented by Entropy , where  signifies attribute value. Denotes all H ),( HM H G

180 sets of values of  and denotes the subset of  which is the value of . denotes the number of g gM M H || gM

181 elements in  , and number of elements of   in  . gM || M M

182 3.2 Information Gain

183 The information gain is determined by Equation (5).

184                                                              (5)),()(),( HMentropyMentropyHMgain 
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185 In a dataset , Gain denotes the information gain of attribute . Entropy  signifies the M ),( HM H )(M

186 sample set of information entropy and Entropy denotes the information entropy of attribute . In ),( HM H

187 Equation (5), information gain is employed to find additional information that provides high information gain on 

188 classification. C4.5 algorithm chooses the attribute that has high gain in the dataset and use as the split node 

189 attribute. Based on the attribute value, the data subgroup is subdivided and the information gain of each subgroup is 

190 recalculated. The decision tree trained process is enormous and deep compared to neural networks, such as KNN, 

191 ANN and etc. as it does not take into account the number of leaf nodes. Moreover, the gain ratio is different from 

192 information gain. Gain ratio measures the information related to classification obtained on the basis of same 

193 partition. C4.5 uses the information gain and allows measuring a gain ratio. Gain ratio is described in Equation (6).

194               (6)
),(inf_

),(
),(_

HMosplit

HMgain
HMratiogain 

195 Where, 

196                                            (7)
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n

g
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log),(inf_ 




197 The attribute with a maximum gain rate is selected for splitting the attributes. When the split information tactics is 0, 

198 the ratio becomes volatile. A constraint is added to avoid this, whereby the information gain of the test selected must 

199 be large at least as great as the average gain over all tests examined. 

200  3.3 C4.5 decision tree 

201 [Quinlan, 2014] developed the C4.5 algorithm to generate a decision tree. Many scholars have made various 

202 improvements in the tree algorithm. However, the problem is that tree algorithms require multiple scanning and 

203 deployment of data collection during the building process of decision trees. For example, large datasets provided 

204 into the ID3 algorithm improves the performance but not effective whereas small datasets are more effective in 

205 several fields like assessing prospective growth opportunities, demographic data, etc. This is because the processing 

206 speed is slow and the larger dataset is too large to fit into the memory. Besides, C4.5 algorithm gives most effective 

207 performance with large amount of datasets. Hence, the advantages of C4.5 algorithm are considerable but a dramatic 

208 increase in demand for large data would be improved to meet its performance. 

209 Algorithm 1: Pseudo code for C4.5 decision tree algorithm

Input: Dataset

Output: Decision tree

// Start
              for all attributes in data

Calculate information gain

end
HG= Attribute with highest information gain

Tree = Create a decision node for splitting attribute HG
New data= Sub datasets based on HG

for all New data

Tree new=  C4.5(New data)

Attach tree to corresponding branch of Tree

end
return

210  

211 The C4.5 algorithm builds a decision tree by learning from a training set in which every sample is built on an 

212 attribute-value pair. The current attribute node is calculated based on the information gain rate in which the root 
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213 node is selected based on the extreme information gain rate. The data is numeric with only the classification as 

214 nominal leading category of labeled dataset. Hence, it is necessary to perform supervised data mining on the targeted 

215 dataset. This reduces the choice of classifiers in which a pre-defined classification could handle numerical data and 

216 classification in decision tree application. Each attribute is evaluated to find its ratio and rank during the learning 

217 phase of decision trees. Additionally, correlation coefficient is found to investigate the correlation between attributes 

218 as some dataset could not give any relevant result in data mining. In C4.5 decision tree algorithm, the gain is 

219 optimized by proposed SHO technique. The information gain is a rank based approach to compute the entropy. In 

220 this algorithm, the node with a highest normalized gain value is allowed to make decision, so there is a need to tune 

221 the gain parameter. The gain fitness is calculated based on the difference between actual gain value and new gain 

222 value. This is the objective function of the gain optimization technique which is described in Equation (8). 

223                                                                                    (8) ii GGfitness ˆmin 

224 Here, and denotes actual and new gain, respectively. Based on this fitness, the gain error is minimized by iG
iĜ

225 SHO and the gain value will be computed by using Equation (5). SHO can improve the learning accuracy, remove 

226 the redundant features and update the weight function of decision trees. The feature of SHO is random initialization 

227 generating strategy.

228  4. Proposed Method: Selfish Herd Optimization (SHO) 

229 SHO is utilized to minimize the gain error in a better way in optimization process. It improves the balancing 

230 between exploration and exploitation phase without changing the population size [Fausto et al., 2017]. SHO 

231 algorithm is mainly suitable for gain optimization in decision trees. In meta-heuristic algorithms, SHO is a new 

232 branch inspired from group dynamics for gain optimization. SHO is instigated from the simulations of herd and 

233 predators searching their food or prey. The algorithm uses search agents moving in n-dimensional space to find 

234 solution for optimization problem. The populations of SHO are herd and predators where the individuals are known 

235 as search agents. In optimization areas, SHO is proved to be competitive with particle swarm optimization (PSO) 

236 [Fausto et al., 2017] for many tasks. The theory of Selfish Herd has been establishing the predation phase. Every 

237 herd hunts a possible prey to enhance the survival chance by accumulating with other conspecifics in ways that 

238 could increase their chances of surviving a predator attack without regard for how such behavior affects other 

239 individuals’ chances of survival. This may increase the likelihood of a predator escaping from attacks regardless of 

240 how such activities disturb the survival probabilities of other individuals. The proposed SHO algorithm consists of 

241 different kinds of search agents like a flock of prey that lives in aggregation (mean of selfish herd), package of 

242 predators and predators within the said aggregate. This type of search agents is directed separately through fixed 

243 evolutionary operators which are centered on the relationship of the prey and the predator [Anand & Arora, 2020]. 

244 The mathematical model of SHO algorithm is given as follows.

245 4.1 Initialization 

246 The iterative process of SHO’s first step is to initialize the random populations of animals as prey and 

247 predators thereby having one set of separable locations . Here, the population size is denoted by sNssS ,...2,1
248 . The position of animals is limited into lower and upper boundaries and the groups are classified into two, like N
249 prey and predator. Equation (9) is utilized to calculate the number of members in prey group. 

250                                              (9) )9.0,7.0(randnfloorn p 

251 Here, the quantity of prey group members is denoted as  where denotes the population of the prey and the pn n

252 predators. In SHO, the number of prey (herd’s size) is randomly selected within range 70% and 90% of the total 

253 population , while the remainder individuals are labeled as predators. Therefore, 0.7 and 0.9 were the selected n
254 random values.

255 4.2 Assignation of survival value
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256 The survival value of every animal is assigned and it is associated with the current best and worst  SV

257 positions of a known  of whole population members. By optimization process, the present best and worst values SV
258 are mentioned in the optimization problem. Then, the survival value will be determined by using Equation (10).

259                                                               (10)

bw

bi

ff

fxf
SV





)(

260 Where, worst and best fitness values are denoted by , respectively. Here,  represents the location of bw fandf ix

261 the prey or the predator. 

262 4.3 Herd’s leader movement

263 All herd members’ movement is one of the significant steps in SHO. The location of leader of the herd is updated by 

264 Equation (11) as given in [Femando et al., 2017].

265          (11)

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

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1)(2

1)(2
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,

LLbestybestlL
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L
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SVhifhPrh
h

m





266 Here, the tested selfish repulsion towards predators by current herd leader is denoted as , and r denotes the l
267 random number in the range (0, 1). , and are indicated as herd leader, herds center of mass and predators Lh mh mp

268 center of mass, respectively. Indicates the selfish attraction examined by the leader of the flock toward the L
269 global best location . besty

270 Moreover, the location of the herd member  is updated based on two selections. Equation (12) is utilized to ah

271 follow the herd and Equation (14) is utilized to recompense the group. Also, the selection is prepared based on some 

272 random variables. 

273                                                                     (12)aaa fhh 

274 Where,

275                         (13)
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276                                       (14)rSVhyhh
abestL habestyhaa

ˆ)1()(2 ,  

277 Here,  indicates the selfish attractions examined through the herd member towards and
Lama hhhh and ,,  ah bh

278 , while and indicates the random numbers in the range (0, 1) and present herds’ leader position is Lh  , 
279 denoted as . Also,  represents the random direction unit vector. bh r̂

280 4.4 Predator movement

281 The movement of every separable set of predators, the endurance of entities in the attacked flock and the distance 

282 between the predators from assault predators are taken into account in SHO. Based on the pursuit probability, the 

283 predator movement is determined as given in Equation (15).
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284       (15)





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j
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



285 The prey attractiveness amongst and is denoted as . Then the predator position is updated by ip jh
jjpi, PX

286 Equation (16).

287         (16))(2 prPp XhrXX 

288 Where,  indicates randomly chosen herd member. In advance, each member of the predator and the prey group rh

289 survival rate is recomputed by Equation (9).

290 4.5 Predation phase

291 The predation process is executed in this phase. Domain danger is defined by SHO which is signified as area of 

292 finite radius around each prey. The domain danger radius  of each prey is computed by Equation (17). 𝑅𝑟
293                                             (17)

u

j

l

j

n

j

r
yy

R



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294 Where, upper and lower boundary members are represented by  and , respectively and the dimensions are 
u

jy l

jy

295 denoted as . After the radius calculation, a pack of targeted prey is computed by Equation (18).n

296                            (18)KhRhPSVSVHhT jrjiphjp iji
 ,|||||

297 Here, and  denotes the endurance tenets of and correspondingly. ||pi − h j|| signifies the Euclidean 
jhSV

ipSV iP jh

298 distance amongst the entities and , respectively. Also the herds’ population is denoted as . The probabilities iP ih H

299 of the existence hunted are computed for every member of the set and is formulated in Equation (19) where  is set 𝐾
300 of killed herd members .},{ jhKK 

301                                               (19)
i

ipm mi

ji

ji pj

Th hp

hp

hp ThH 
 

,
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,

, 



302 4.6 Restoration phase

303 Finally, the restoration is accomplished by making a set . Here,  represents the set of herd KhM j  K

304 member slayed for the duration of the predation phase. The mating probabilities are also determined by each 

305 member as in Equation (20), 

306                                                      (20)Mh
SV

SV
P j

Mh h

h

r

m m

j 
 

,

)(
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307 Each  is changed by a different result by SHO’s mating operation which is . This Kh j  ]),...,([ 21 rnrr hhhmix

308 SHO algorithm is utilized to optimize the gain function in data classification operation. Figure 1 displays the flow 

309 diagram of SHO algorithm. 

310 Algorithm 2: Peseudo code for the proposed SHO algorithm in data classification 

Start 

Initialize the parametrs and locations of SHO by eq (9)

For

     Each individual

     Compute survival by eq (10)

End for

While maxKK 
      For every prey movement

         If prey’s leader

               Update the location of prey leader by (11)

            Else 

               Update prey location by (14)

         End if

      End for 

         For 

              Every predator’s movement

                For each prey

                     Determine predation probabitity (15) 

                End for 

           Update predator location by (16)

        End for

Re-compute survival value using eq (10)

Compute dangerous radius by (17)

Predation performance by (18) & (19)

Restoration performance by eqn (20)

1 KK
End while 

Global optimal output

Fitness for global optimal output

End

311
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314 5. Result and Discussion 

315 The efficiency of our proposed method is assessed by comparing its accuracy with other popular 

316 classification methods like Particle Swarm Optimization (PSO) [Chen et al., 2014], Ant Colony Optimization 

317 (ACO) [Otero, Freitas & Johnson, 2012], and Cuckoo Search (CS) Optimization [Cao et al., 2015]. We estimated 

318 the performance of proposed algorithm based on the accuracy as tested in 10 UCI datasets. The accuracy of our 

319 proposed method is comparable to other optimization methods and various classifiers. But the cross validation is not 

320 performed in the proposed approach. The proposed method is greater than all existing methods taken for 

321 comparison. SHO is combined with C4.5 classifier to produce greater accuracy than a standard C4.5 classifier. The 

322 proposed decision tree classifier named C4.5-SHO is further compared with C4.5, ID3 and CART. The description 

323 of ten data sets is tabulated in Table 1. These datasets include Monks, Car, Chess, Breast-cancer, Hayes, Abalone, 

324 Wine, Ionosphere, Iris, and Scale [Arellano, Bory-Reyes & Hernandez-Simon, 2018].  Table 2 shows the 

325 algorithm parameters.  Table 3 shows the algorithm parameters for decision tree. 

Data set No of attributes No of samples Classes
Monks 7 432 2

Car 6 1728 4

Chess 6 28056 36

Breast-cancer 10 699 2

Hayes 5 160 3

Abalone 8 4177 2

Wine 13 178 2

Ionosphere 34 351 2

Iris 4 150 2

Scale 4 625 2

326

327 Table 1: Description of data set

SHO ACO PSO CS
Number of 

populations

50 Number of 

populations

50 Number of 

populations

100 Number of 

populations

50

Maximum 

iterations

500 Maximum 

iterations

500 Maximum 

iterations

500 Maximum 

iterations

500

Dimension 5 Phromone 

Exponential 

Weight

-1 Inertia weight -1 Dimension 5

Lower 

boundary

-1 Heuristic 

Exponential 

Weight

1 Inertia weight 

damping ratio

0.99 Lower bound and 

upper bound

-1 &1

Upper 

boundary

1 Evaporation 

rate

1 Personal and 

global learning 

coefficient

1.5 & 

2

Number of nests 20

Prey’s rate 0.7, 

0.9

Lower bound 

and upper 

bound

-1 &1 Lower bound 

and upper 

bound

-10 

&10

Transition 

probability 

coefficient

0.1

Number of 

runs

100 Number of runs 100 Number of 

runs

100 Number of runs 100

328 Table 2: Algorithms parameters and values

329

330

331
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C4.5 ID3 CART
Confidence factor 0.25 Minimum number of 

instances in split

10 Complexity parameter 0.01

Minimum instance per 

leaf

2 Minimum number of 

instances in a leaf

5 Minimum number of 

instances in split

20

Minimum number of 

instances in a leaf

5 Maximum depth 20 Minimum number of 

instances in a leaf

7

use binary splits only False - Maximum depth 30

332 Table 3: Algorithms parameters for decision tree

333 The proposed method is compared with existing entropies, optimization algorithms and different classifiers. 

334 The effectiveness is estimated based on the accuracy, AUROC and classifier. 

335 a) Accuracy

336 The classification accuracy is measured based on Equation (21) [Polat & Gne, 2009],

337                                (21)Aa
A

aassess

Aaccuracy i

A

i

i



 ,

||

)(

)(

||

1

338                                      (22)



 


otherwise

caaclassifyif
aassess

,0

.)(,1
)(

339 Here,  is denoted as the dataset to be classified (test set) , is the class of item  and classify A Aa ca. a )(a

340 returns the classification through C4.5 classifier. 

341 In Table 4, the proposed C4.5-SHO decision tree classification accuracy is compared with other classifiers like C4.5, 

342 ID3 and CART. The accuracy of our proposed work is more stable compared to the accuracy achieved by the other 

343 considered algorithms. The accuracy of classification is depended on the training dataset. The dataset is split up into 

344 a training set and test set. The classifier model is trained with training set. Then to evaluate the accuracy of the 

345 classifier, we use test set to predict the labels (which we know) in the test set. The accuracy of Iris data set is high 

346 (0.9986) compared to other data sets. The lowest accuracy of the proposed C4.5-SHO is 0.9437 in Scale data set. In 

347 comparison with existing classifiers, it is observed that the proposed approach has obtained a good accuracy. 

Data set C4.5-SHO C4.5 ID3 CART
Monks 0.9832 0.966 0.951 0.954

Car 0.9725 0.923 0.9547 0.8415

Chess 0.9959 0.9944 0.9715 0.8954

Breast-cancer 0.9796 0.95 0.9621 0.9531

Hayes 0.9553 0.8094 0.9014 0.7452

Abalone 0.9667 0.9235 0.9111 0.9111

Wine 0.9769 0.963 0.9443 0.9145

Ionosphere 0.9899 0.9421 0.9364 0.9087

Iris 0.9986 0.9712 0.7543 0.8924

Scale 0.9437 0.7782 0.7932 0.7725

Average value 0.97623 0.92208 0.908 0.87884

348 Table 4: Classification accuracy of the proposed classifier C4.5 with C4.5, ID3 and CART

Data set C4.5-SHO ACO PSO CS
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Monks  0.9832 0.9600 0.9435 0.9563

Car 0.9725 0.9322 0.9298 0.9202

Chess 0.9959 0.9944 0.9944 0.9742

Breast-cancer 0.9796 0.9555 0.954 0.9621

Hayes 0.9553 0.90311 0.9322 0.9415

Abalone 0.9667 0.9500 0.9345 0.9247

Wine 0.9769 0.9240 0.8999 0.8924

Ionosphere 0.9899 0.9583 0.9645 0.9645

Iris 0.9986 0.9796 0.9741 0.9764

Scale 0.9437 0.9060 0.9177 0.8911

Average value 0.97623 0.946311 0.94446 0.94034

349 Table 5: Classification accuracy of the proposed Algorithm with ACO, PSO and CS

350 In Table 5, the proposed C4.5-SHO decision tree classification accuracy is compared with other algorithms 

351 like ACO, PSO and CS. The accuracy of our proposed work is more stable compared to the accuracy achieved by 

352 the other considered algorithms. The accuracy of Iris data set is high (0.9986) compared to other data sets. The 

353 lowest accuracy of the proposed C4.5-SHO is 0.9437 in Scale data set. In comparison with existing algorithms, the 

354 proposed approach achieved good accuracy. 

355  b) Area under ROC (AUROC)

356 The performance of classification model is shown through graph analysis of area under the Receiver 

357 Operating Characteristic curve (AUROC). This is dependent upon the attributes as well as classes. The proposed 

358 C4.5-SHO is compared with other classifiers like C4.5, ID3 and CART. The AUROC results presented in Table 6 

359 which shows that the AUROC value of proposed method is better than other algorithms. 

Dataset C4.5-SHO C4.5 ID3 CART

Monks 0.9619 0.95713 0.9636 0.9791

Car 0.9819 0.9393 0.9891 0.8933

Chess 0.9673 0.9252 0.9090 0.9049

Breast-cancer 0.9793 0.9171 0.9730 0.9218

Hayes 0.9874 0.9069 0.9108 0.8360

Abalone 0.9647 0.9224 0.9573 0.9082

Wine 0.9914 0.9772 0.9497 0.9739

Ionosphere 0.9943 0.9680 0.9059 0.9560

Iris 0.9890 0.9048 0.7945 0.9481

Scale 0.9850 0.8562 0.7845 0.8007

Average value 0.98022        0.92742 0.91374 0.9122

360 Table 6: Area under the ROC curve of proposed C4.5 with ID3 and CART

Dataset C4.5-SHO ACO PSO CS
Monks 0.9935 0.9874 0.97668 0.9733

Car 0.98452 0.97908 0.97583 0.9659

Chess 0.99931 0.98612 0.9815 0.9503

Breast-cancer 0.9854 0.9795 0.9695 0.9581

Hayes 0.99616 0.92611 0.9442 0.9571

Abalone 0.9885 0.9828 0.9694 0.9566

Wine 0.9932 0.9830 0.8977 0.8964

Ionosphere 0.9954 0.9741 0.9630 0.9569

Iris 0.9873 0.9687 0.9656 0.9578

Scale 0.9858 0.9266 0.9165 0.8968
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Average value 0.9909         0.96934         0.95599 0.94692

361 Table 7: Area under ROC curve of the proposed Algorithm with ALO, PSO and CS

362 The proposed C4.5-SHO is compared with other optimization algorithms like ACO, PSO and CS. The AUROC 

363 results are presented in Table 7 which shows that the proposed AUROC value is better than existing algorithms. It is 

364 revealed that SHO not only reduces the complexity of decision trees but also enhances the accuracy. 

365 c) Different entropy comparison

366 Based on the Ray’s quadratic entropy, the information gain is optimized through SHO algorithm. The entropy 

367 with SHO is compared to traditional SHO in terms of other entropies, such as C4.5-SHO (Shanon entropy), C4.5–

368 SHO (Havrda & charvt entropy), C4.5- SHO (Renyi entropy) and C4.5- SHO (Taneja entropy).  The quadratic 

369 entropy is the measure of disorder in the range between entire arranged (ordered) and unarranged (disordered) data 

370 in the given dataset. The Quadratic entropy is successfully measured for the disorders in the datasets. The 

371 classification accuracy is improved by the quadratic entropy than other entropies. Hence, the proposed work follows 

372 Ray’s quadratic entropy to get a better output. Compared to other entropies, the Quadratic entropy achieved better 

373 accuracy in data classification for all data sets. Table 8 shows the entropy comparisons with proposed SHO. 

Dataset
C4.5-SHO 
(Shanon 
entropy)

C4.5 – SHO 
(Havrda & 

charvt entropy)

C4.5 – SHO 
(Quadratic 

entropy)

C4.5- SHO 
(Renyi 

entropy)

C4.5- SHO 
(Taneja 
entropy)

Monks 0.9429 0.9756 0.9859 0.9926 0.9415

Car 0.9585 0.9527 0.9753 0.9895 0.9700

Chess 0.9510 0.9535 0.9907 0.9809 0.9401

Breast-cancer 0.9852 0.9558 0.9863 0.9564 0.9672

Hayes 0.9579 0.9460 0.9981 0.9476 0.9102

Abalone 0.9556 0.9618 0.9789 0.9715 0.9447

Wine 0.9485 0.9731 0.9823 0.9297 0.9317

Ionosphere 0.9319 0.9415 0.9665 0.9636 0.9036

Iris 0.9465 0.9807 0.9832 0.9514 0.9428

Scale 0.9725 0.8936 0.9747 0.9617 0.9031

Average Value 
0.95505 0.95343 0.98219 0.96449 0.93549

374 Table 8: Entropy comparison

375

376 Figure 2: Convergence evaluation of SHO
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377

378 Figure 3: Comparison of convergence plot 

379 The gain parameter is optimized by proposed C4.5-SHO algorithm in order to make a decision. An optimal 

380 gain value is selected through the fitness function mentioned in Equation (8). Initially, gain is calculated for each 

381 attribute used in the decision tree. If the number of iteration increases, the gain value will be changed on every 

382 iteration. Further, the fitness is nothing but the difference between actual gain and new gain. Therefore, the gain 

383 values of the attributes are noted for every iteration. The proposed optimization algorithm provided the optimal best 

384 gain value at 100th iteration as seen in the convergence plot in Figure 2. Finally, the gain error was minimized with 

385 the help of C4.5-SHO algorithm. 

386 Figure 3 illustrates the convergence plot of proposed SHO and similar existing algorithms for average of all 

387 datasets. The proposed SHO achieved good convergence compared to existing techniques. The proposed work is 

388 based on gain optimization with SHO algorithm whereas the execution time is also the most important factor in data 

389 classification approach. On comparing the time-taken for analysis, the proposed method needs low computational 

390 time than the existing algorithms like ACO (0.974s), PSO (0.54s) and CS (0.6s). Table 9 and Figure 4 illustrate the 

391 computational time comparison for average of all datasets. 

Algorithm Time(sec)
ACO 0.974

PSO 0.54

CS 0.6

SHO 0.49

392 Table 9: Computational Time
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393

394 Figure 4: Comparison of computational time 

395 6. Conclusion

396 Data mining is a broad area that integrates techniques from several fields including machine learning, 

397 statistics, artificial intelligence, and database systems for the analysis of a large amount of data. This paper presented 

398 a gain optimization technique termed as C4.5-SHO. The effectiveness of quadratic entropy is estimated and 

399 discussed to evaluate the attributes in different datasets. This article presents the most influential algorithms for 

400 classification. The gain of data classification information is optimized by the proposed SHO algorithm. The 

401 evaluation of C4.5 decision tree based SHO results show that the AUROC is the best measure because of the 

402 classification of unbalanced data. The accuracy of proposed C4.5-SHO technique is higher than the existing 

403 techniques like C4.5, ID3 and CART. The proposed approach is compared with the algorithms of ACO, PSO and 

404 CS for AUROC. A better accuracy (average 0.9762), better AUROC (average 0.9909) and a better computational 

405 time (0.49s) are obtained from the gain optimized technique of C.5-SHO. In future, hybrid optimization technique is 

406 utilized to improve the data classification information gain.  
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Figure 1
Flow diagram of SHO
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Figure 2
Convergence evaluation of SHO
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Figure 3
Figure 3

Comparison of convergence plot
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Table 1(on next page)

Description of data set
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Data set No of attributes No of samples Classes

Monks 7 432 2

Car 6 1728 4

Chess 6 28056 36

Breast-cancer 10 699 2

Hayes 5 160 3

Abalone 8 4177 2

Wine 13 178 2

Ionosphere 34 351 2

Iris 4 150 2

Scale 4 625 2

1

2 Table 1: Description of data set

3
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Figure 4
Comparison of computational time
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Table 2(on next page)

Algorithms parameters and values
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SHO ACO PSO CS

Number of 

populations

50 Number of 

populations

50 Number of 

populations

100 Number of 

populations

50

Maximum 

iterations

500 Maximum 

iterations

500 Maximum 

iterations

500 Maximum 

iterations

500

Dimension 5 Phromone 

Exponential 

Weight

-1 Inertia weight -1 Dimension 5

Lower 

boundary

-1 Heuristic 

Exponential 

Weight

1 Inertia weight 

damping ratio

0.99 Lower bound and 

upper bound

-1 &1

Upper 

boundary

1 Evaporation 

rate

1 Personal and 

global learning 

coefficient

1.5 & 

2

Number of nests 20

Prey’s rate 0.7, 

0.9

Lower bound 

and upper 

bound

-1 &1 Lower bound 

and upper 

bound

-10 

&10

Transition 

probability 

coefficient

0.1

Number of 

runs

100 Number of runs 100 Number of 

runs

100 Number of runs 100

1

2 Table 2: Algorithms parameters and values

3
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Table 3(on next page)

Algorithms parameters for decision tree
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C4.5 ID3 CART

Confidence factor 0.25 Minimum number of 

instances in split

10 Complexity 

parameter

0.01

Minimum instance 

per leaf

2 Minimum number of 

instances in a leaf

5 Minimum number of 

instances in split

20

Minimum number of 

instances in a leaf

5 Maximum depth 20 Minimum number of 

instances in a leaf

7

use binary splits only False - Maximum depth 30

1

2 Table 3: Algorithms parameters for decision tree
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Table 4(on next page)

Classification accuracy of the proposed classifier C4.5 with C4.5, ID3 and CART
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Data set C4.5-SHO C4.5 ID3 CART

Monks 0.9832 0.966 0.951 0.954

Car 0.9725 0.923 0.9547 0.8415

Chess 0.9959 0.9944 0.9715 0.8954

Breast-cancer 0.9796 0.95 0.9621 0.9531

Hayes 0.9553 0.8094 0.9014 0.7452

Abalone 0.9667 0.9235 0.9111 0.9111

Wine 0.9769 0.963 0.9443 0.9145

Ionosphere 0.9899 0.9421 0.9364 0.9087

Iris 0.9986 0.9712 0.7543 0.8924

Scale 0.9437 0.7782 0.7932 0.7725

Average value 0.97623 0.92208 0.908 0.87884

1

2 Table 4: Classification accuracy of the proposed classifier C4.5 with C4.5, ID3 and CART

3

PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54852:2:0:NEW 8 Feb 2021)

Manuscript to be reviewedComputer Science



Table 5(on next page)

Classification accuracy of the proposed Algorithm with ACO, PSO and CS
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Data set SHO-C4.5 ACO PSO CS

Monks 0.9832 0.9600 0.9435 0.9563

Car 0.9725 0.9322 0.9298 0.9202

Chess 0.9959 0.9944 0.9944 0.9742

Breast-cancer 0.9796 0.9555 0.954 0.9621

Hayes 0.9553 0.90311 0.9322 0.9415

Abalone 0.9667 0.9500 0.9345 0.9247

Wine 0.9769 0.9240 0.8999 0.8924

Ionosphere 0.9899 0.9583 0.9645 0.9645

Iris 0.9986 0.9796 0.9741 0.9764

Scale 0.9437 0.9060 0.9177 0.8911

Average value 0.97623 0.946311 0.94446 0.94034

1

2 Table 5: Classification accuracy of the Proposed Algorithm with ALO, PSO and CS
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Table 6(on next page)

Area under the ROC curve of proposed C4.5 with ID3 and CART
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Dataset C4.5-SHO C4.5 ID3 CART

Monks 0.9619 0.95713 0.9636 0.9791

Car 0.9819 0.9393 0.9891 0.8933

Chess 0.9673 0.9252 0.9090 0.9049

Breast-cancer 0.9793 0.9171 0.9730 0.9218

Hayes 0.9874 0.9069 0.9108 0.8360

Abalone 0.9647 0.9224 0.9573 0.9082

Wine 0.9914 0.9772 0.9497 0.9739

Ionosphere 0.9943 0.9680 0.9059 0.9560

Iris 0.9890 0.9048 0.7945 0.9481

Scale 0.9850 0.8562 0.7845 0.8007

Average value 0.98022        0.92742 0.91374 0.9122

1

2 Table 6: Area under the ROC curve of proposed C4.5 with ID3 and CART
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Table 7(on next page)

Area under ROC curve of the proposed Algorithm with ALO, PSO and CS
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Dataset C4.5-SHO ACO PSO CS

Monks 0.9935 0.9874 0.97668 0.9733

Car 0.98452 0.97908 0.97583 0.9659

Chess 0.99931 0.98612 0.9815 0.9503

Breast-cancer 0.9854 0.9795 0.9695 0.9581

Hayes 0.99616 0.92611 0.9442 0.9571

Abalone 0.9885 0.9828 0.9694 0.9566

Wine 0.9932 0.9830 0.8977 0.8964

Ionosphere 0.9954 0.9741 0.9630 0.9569

Iris 0.9873 0.9687 0.9656 0.9578

Scale 0.9858 0.9266 0.9165 0.8968

Average value 0.9909         0.96934         0.95599 0.94692

1

2 Table 7: Area under ROC curve of the proposed Algorithm with ALO, PSO and CS
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Table 8(on next page)

Entropy comparison
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Dataset

C4.5-SHO 

(Shanon 

entropy)

C4.5 – SHO 

(Havrda & 

charvt entropy)

C4.5 – SHO 

(Quadratic 

entropy)

C4.5- SHO 

(Renyi 

entropy)

C4.5- SHO 

(Taneja 

entropy)

Monks 0.9429 0.9756 0.9859 0.9926 0.9415

Car 0.9585 0.9527 0.9753 0.9895 0.9700

Chess 0.9510 0.9535 0.9907 0.9809 0.9401

Breast-cancer 0.9852 0.9558 0.9863 0.9564 0.9672

Hayes 0.9579 0.9460 0.9981 0.9476 0.9102

Abalone 0.9556 0.9618 0.9789 0.9715 0.9447

Wine 0.9485 0.9731 0.9823 0.9297 0.9317

Ionosphere 0.9319 0.9415 0.9665 0.9636 0.9036

Iris 0.9465 0.9807 0.9832 0.9514 0.9428

Scale 0.9725 0.8936 0.9747 0.9617 0.9031

Average Value 
0.95505 0.95343 0.98219 0.96449 0.93549

1

2 Table 8: Entropy comparison
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Table 9(on next page)

Computational Time
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Algorithm Time(sec)

ACO 0.974

PSO 0.54

CS 0.6

SHO 0.49

1

2 Table 9: Computational Time
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