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ABSTRACT
In recent years, information-centric networks (ICNs) have gained attention from the
research and industry communities as an efficient and reliable content distribution
network paradigm, especially to address content-centric and bandwidth-needed
applications together with the heterogeneous requirements of emergent networks,
such as the Internet of Things (IoT), Vehicular Ad-hoc NETwork (VANET) and
Mobile Edge Computing (MEC). In-network caching is an essential part of ICN
architecture design, and the performance of the overall network relies on caching
policy efficiency. Therefore, a large number of cache replacement strategies have been
proposed to suit the needs of different networks. The literature extensively presents
studies on the performance of the replacement schemes in different contexts.
The evaluations may present different variations of context characteristics leading to
different impacts on the performance of the policies or different results of most
suitable policies. Conversely, there is a lack of research efforts to understand how the
context characteristics influence policy performance. In this direction, we conducted
an extensive study of the ICN literature through a Systematic Literature Review
(SLR) process to map reported evidence of different aspects of context regarding the
cache replacement schemes. Our main findings contribute to the understanding
of what is a context from the perspective of cache replacement policies and the
context characteristics that influence cache behavior. We also provide a helpful
classification of policies based on context dimensions used to determine the relevance
of contents. Further, we contribute with a set of cache-enabled networks and their
respective context characteristics that enhance the cache eviction process.

Subjects Computer Networks and Communications, Emerging Technologies
Keywords Information-centric network, Cache replacement policy, Context awareness

INTRODUCTION
The Internet architecture was originally designed in a host-centric paradigm to
support end-to-end communication. This model struggles to face key communication
requirements of modern network applications such as high content distribution, node’s
mobility, and network scalability. Therefore, researchers have devoted effort studying
future Internet architectures as alternatives to the IP’s host-centric model. The current
practice moves forward to a more content-centric approach since the massive Internet
usage is to disseminate content regardless of its location. Information-centric networking
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(ICN) (Ahlgren et al., 2012) is one of such initiatives. ICN is a content-centric network
communication model that stand out as potential candidate to substitute the current
TCP/IP model (Rahman et al., 2020). It consists of a receiver-driven networking model
that focuses on the distribution and retrieval of contents through a publish-subscribe
paradigm. In ICNs, a content request is based on the content’s name, not on its location,
such as the content provider’s IP address. Contents should have unique names, and any
network node with the content can respond to the request. To this end, ICN replicates
content in a distributed way in Cache-enabled Routers (CRs) over the network that are
located closer to the user. Therefore, delivering the closest content copies to the user saves
communication resources, thus reducing network congestion, server loads, and access
latency while providing better Quality of Service (QoS) and Quality of Experience (QoE)
levels. In addition, beyond the benefits of in-network caching, decoupling the content
delivery process from the content location brings native support to mobility and multicast
packet forwarding. Content-Centric Networking (CCN) and its successor Named-Data
Networking (NDN) (Zhang et al., 2010) are examples of initiatives implementing ICN
concepts.

In general, any network device can potentially work as a CR with a Content Store (CS)
data structure to implement the cache service. The performance of CS plays a vital role in
the overall packet forwarding engine to guarantee high-speed packet processing of ICN
architectures. According to Pan, Huang & Li (2017), Pan et al. (2019), the performance
bottleneck of the packet forwarding systems relies on CS operation and should be the focus
of ICN optimization strategies. This way, ICN-based initiatives strongly rely on cache
replacement policies to manage the CS and keep relevant content available to the users.
Least Recently Used (LRU) and Least Frequently Used (LFU) (Ioannou &Weber, 2016) are
examples of policies used in ICNs.

The current literature presents a massive number of performance evaluations for cache
replacement policies comparing different policies concerning different network contexts.
A network context refers to a network type—for example, Edge networks, Internet of
Things (IoT) networks, or Vehicular Ad-hoc NETworks (VANETs)—instantiated with
particular characteristics for a given purpose. A network context thus brings up a broader
view that encompasses characteristics regarding the network type and other entities related
to network performance (e.g., user habits while using the network). Each performance
evaluation may present distinct variations in the context characteristics, as well as different
impacts on policy performances, including changes in performance rank. The variance of
results indicates that the policies’ performance tends to vary according to the context’s
characteristics, and the process of choosing the suitable policies should consider the
context in which the caches operate.

Given the above, several works incorporated the adaptation of policies according to
some context. For instance, Beck et al. (2017) proposed a rule-based stream reasoning
technique to allow CCN routers to dynamically switch between existing cache replacement
policies to adapt to network traffic changes. Moreover, Moon et al. (2016) presented a
cache management scheme for wireless NDNs, in which common access points (APs)
and user devices attached to the APs have available cache capacity. The authors advocated
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that each device can choose to work with a different cache replacement policy to improve
network performance. In addition to that, Charpinel et al. (2016) proposed a Software-
Defined Networking (SDN) approach to provide programable cache replacement
algorithms. The replacement algorithms are defined in a control plane. Meanwhile,
a CCN controller can modify the replacement schemes dynamically and allocate different
strategies for each node. Finally, Pacifici & Dán (2013) proposed autonomous caching in
peering ISPs for collaborative deciding their replacement policies.

Although studies recognize the need to adopt policies according to the network context,
the choice itself of a suitable scheme is not trivial. There is no explicit and general
understanding of the relationship between the context characteristics and the policies.
Such understanding is essential to assist the choosing process and, consequently, adapt
policies according to the context. More specifically, there are no overall directions or
categorization in which context may influence policy behavior. Yet, regardless of the
isolated evidence of individual works reporting their contexts and impacts on the policies’
performance, there is no comprehensive work discussing a unified view of the different
contextual characteristics and their effects on the policies. The delimitation of context
characteristics and their common effect can enhance and substantiate the caching
management and the design of caching solutions.

Despite the contributions of previous literature reviews related to caching policies and
ICN aspects (Ahlgren et al., 2012; Bari et al., 2012; Zhang, Li & Lin, 2013; Tyson et al.,
2012; Xylomenos et al., 2013; Fang et al., 2014; Amadeo et al., 2014; Zhang, Luo &
Zhang, 2015; Abdullahi, Arif & Hassan, 2015; Fang et al., 2015; Ioannou & Weber,
2016; Amadeo, Campolo & Molinaro, 2016; Saxena et al., 2016; Din et al., 2017), there is a
lack of guidelines to understand context characteristics and their effect on the cache
replacement policies in ICNs. Furthermore, surveys on web cache replacement policies
(Wang, 1999; Podlipnig & Böszörmenyi, 2003; Balamash & Krunz, 2004; Panda, Patil &
Raveendran, 2016) do not address this subject. To the best of our knowledge, there is
no broad investigation on cache replacement schemes for the ICN domain or an integrated
vision of the impacts of different context characteristics in the policy choice process.
As a result, the lack of suitable schemes hinders the more efficient use of available cache
resources, and therefore the effective extraction of the caching service expected benefits.

In this article, we present a systematic literature review (SLR) that, in contrast to
previous works, investigates evidence in the literature about the effects of context aspects
on cache replacement schemes’ performance. SLR is a straightforward and consistent
process to compile evidence to answer a set of research questions and help further
understand the evidence reported. To this end, we first cataloged the cache replacement
schemes used in ICNs. The current literature presents various proposed strategies
exploring different context aspects to enhance the eviction logic, aiming to achieve
more potentially precise and customized techniques. We mapped context dimensions
related to the content, network, node, and human aspects. We then categorized the
respective context properties used by the replacement schemes proposed for ICNs.
With the context properties, we provide a taxonomy of context dimensions and a policy
categorization accordingly. Taxonomies may support the choosing process in the absence
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of the overall understanding of specific network contexts and what influences policy
behavior.

In addition to the taxonomy, we compiled the context variations with reported relevant
impacts on the policies, especially those leading to changes in the policies’ performance
rank. This SLR was able to identify common context factors that differentiated the
choice of best policy performance. Even so, as expected, there is no single optimal strategy
to meet the requirements of all surveyed network contexts, since the performance of
the caching policies varied according to the characteristics of each network. Last, we
extended the SLR results with the analysis of proper context dimensions to be explored by
the eviction process in different emergent networks, such as information-centric Internet
of Things (Arshad et al., 2018; Dong & Wang, 2016), vehicular named-data networking
(Khelifi et al., 2020), and in-network cache-based edge computing solutions (Zhou et al.,
2017; Zhang et al., 2018). These emergent networks have gained attention from the
research and industry communities, fostering the evolution of heterogeneous ICN
solutions. The taxonomy and policy classification presented in this article can help to infer
the choice among current or new policies adapted to these networks to ensure better
network performance. Hence, the contribution of this article is threefold. It (i) provides
a classification of contexts to assist those engaged in the design of adaptive caching
solutions for ICN that target the more efficient use of available cache resources;
(ii) substantiates the reasoning of the caching policy decision process during the design of
caching systems by presenting and analyzing information from previous works; and
(iii) contributes to the set of knowledge on caching systems regarding emergent networks
and underpins context-aware caching solutions.

The remainder of the article is organized as follows. Background section presents the
basic concepts of ICN and cache replacement schemes. The following section outlines
the SLR methodology process, with the definition of the leading research questions. Results
and analysis section presents the SLR results, with answers to the research questions and
analysis of the main findings. In the ‘Applications’ section, this work contributes with a
discussion of emergent networks and the association with context dimensions that can be
explored to enhance the cache eviction process. The following section discusses relevant
research directions. Finally, the last section concludes the article.

BACKGROUND
In this section, we present introductory concepts of ICN architectures and cache
replacement policies.

Information-centric networks
Information-centric networking is a new Internet architecture proposal widely discussed
in the literature designed to meet the current de facto usage pattern of the Internet: the
dissemination of content, such as videos and web pages. ICN comprises interconnected
core functionalities for content naming, caching, and routing/forwarding to natively
provide a content dissemination network. In its fundamental concept, the content name
becomes an essential element for network routing, enabling the decoupling of content
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location from the content delivery process. Allied to that, ICN replicates contents in
caches distributed across the network at the routers, and the closest copy will be returned
when a user requests a content. Beyond the advantages of caching that provide reductions
of network congestion, server loads, and access latency, the premise of independence of
content location paves the way for efficient content distribution. Therefore, it adds
advantages to ICN architectures, such as native support for mobility and multicast
communication. The informational RFC 8763 (Rahman et al., 2020) presented by the
Internet Research Task Force (IRTF) Information-Centric Networking Research Group
(ICNRG) discusses some approaches for the real-world deployment of ICNs and trial
experiments. Besides the clean-slate approach, there are directions for its coexistence with
the TCP/IP—for example, the ICN adoption as an overlay network. The overlay approach
proposes ICN islands deployed over existing IP infrastructure and connected using
tunneling solutions. In this way, ICN packets are encapsulated inside IP packets through
ICN/IP tunnels. Madureira et al. (2020) propose a resembling overlay approach with an
SDN-based core network connecting edge networks operating NDN. In that case, the SDN
core network encapsulates the NDN packet. Another approach is ICN as an underlay
network, with the ICN islands connected to the Internet through proxies or protocol
conversion gateways.

The literature presents several ICN architectures, such as Data-Oriented Network
Architecture (DONA) (Koponen et al., 2007), Content Mediator architecture for content-
aware Networks (COMET) (Garca et al., 2011), MobilityFirst (Raychaudhuri, Nagaraja &
Venkataramani, 2012), and the previously mentioned NDN. They explore different
architectural decisions about the naming scheme, caching, and routing processes
(Xylomenos et al., 2013). Overall, the support for in-network caching is an essential feature
of ICN design. In general, every router works with a CS structure to temporally store
the contents. This way, when a router receives a content request, the router verifies
whether the content is present in its own CS and immediately returns the content
if stored locally. Otherwise, the router will forward the request to another destination.

Among the different architectures, NDN outstands as a recent and promising trend
to substitute (or coexist with) the current TCP/IP model. In NDN, each CR has three
main structures to support in-network caching: CS, Pending Interest Table (PIT), and
Forwarding Information Base (FIB). Figure 1 illustrates an overview of the interaction
among these structures. A content request comes in the form of an Interest packet to
the CR, which returns a copy of the content in a Data packet format if the content is
already present in its CS for the same incoming interface of the Interest packet. Otherwise,
a new PIT entry records a pending Interest with the respective incoming interface, and the
CR forwards the Interest packet according to some named-based protocol. Multiple
interests for the same data are aggregated in the same PIT entry. Once the Data-packet
arrives at the CR, the corresponding PIT entry is satisfied by forwarding the data to the
saved interfaces. The CS will, therefore, store the passing data according to some cache
management protocols.

There are different policies to tackle the management of the CS structure. They can
be classified as placement and replacement policies. Placement policies, also called
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insertion policies, target the decision of whether a passing content should be stored locally.
Examples of placement policies include Leave Copy Everywhere (LCE), Probabilistic
caching (Prob), Leave Copy Down (LCD) (Laoutaris, Syntila & Stavrakakis, 2004),
Betweenness Centrality (Betw) (Chai et al., 2012), ProbCache (Psaras, Chai & Pavlou,
2012), and CRCache (Wang et al., 2014b). On the other hand, replacement policies are
methods used to choose which content to evict from the cache when there is the need for
storing new content, and no more space is available. Examples of replacement policies
include LRU, LFU, Random, First-In-First-Out (FIFO), Recently/Frequently Used (LRFU)
(Lee et al., 2001) and Recent Usage Frequency (RUF) (Kang, Lee & Ko, 2012). This work
focuses on replacement policies, as we detail in the following sections.

Cache replacement policies
Cache capacity tends to be a small segment of the amount of distinct content distributed
over the network. Thus, it is essential to have an efficient eviction scheme among the
cache management protocols. A replacement policy ensures that the content most
expected to be accessed in a short time will remain in the cache, and the policy will,
therefore, elect to evict the content that is less expected to be accessed. The performance
gain of a network of caches like ICN depends on the reliability of the cache management,
and different policies lead to different performance.

Traditional policies, such as LRU, LFU, or FIFO, are eviction strategies inherited
from computer memory systems and are commonly used in ICN and web-proxy caching
domains. These policies have been massively explored to analyze cache characteristics
and the performance of complex network contexts through approximation models.
Orthogonally, they were not designed to fit the needs of a network of caches and do not
explore its potential. Thus, the literature presents a variety of newly proposed schemes.
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Figure 1 Packet forwarding engine at an NDN router (Zhang et al., 2014).
Full-size DOI: 10.7717/peerj-cs.418/fig-1
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Jin et al. (2017) surveyed solutions for mobile caching in ICN, and among the
contributions, they briefly described sets of cache insertion and replacement policies.
Besides the usual LRU, LFU, FIFO, and simple Random, the list of replacement policies
includes LRFU, LRU-k (O’neil, O’neil & Weikum, 1993), Time Aware Least Recent
Used (TLRU) (Bilal & Kang, 2014), Aging Popularity-based Caching scheme (APC)
(Li, Liu & Wu, 2013), Frequency-Based-FIFO (FB-FIFO) (Gomaa et al., 2013), and
Adaptive Replacement Cache (ARC) (Megiddo & Modha, 2004). However, there is no
broader study on replacement schemes for ICN domains. This SLR cataloged the schemes
proposed for ICN to investigate contextual influences on the policies. Therefore, this work
does not seek to discuss individual policies, and the reader can refer to the original
literature to further information.

SYSTEMATIC LITERATURE REVIEW METHODOLOGY
The SLR methodology specifies a well-defined searching protocol, with the definition of
research questions, research strings, explicit inclusion criteria of articles, among other
steps. The methodology used in this article follows an adaptation of previously adopted
SLRs in the Software Engineering discipline (Kitchenham & Charters, 2007; Petersen et al.,
2008). Figure 2 summarizes the adopted SLR process.

The planning process ensures delimitation of the search scope with the definition of
leading research questions, inclusion criteria, and the necessary inputs to operate the
search. The search process is the article triage phase to collect relevant works and extract
meaningful data that match the research questions. The data analysis evaluates the
extracted data to summarize the primary evidence and point contributions. The following
subsections detail the planning, searching, and analysis processes.

Planning process
This study aims to map context information associated with the performance of cache
replacement strategies to help the choosing and design process while applying ICN.
Since the scope and definition of context information can be relative to the research
domain, we intended to characterize relevant dimensions surrounding the cache
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Outcomes

Steps

Planning Search
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Figure 2 Steps of the SLR process. Full-size DOI: 10.7717/peerj-cs.418/fig-2
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replacement schemes. Additionally, we also intended to identify the cache replacement
strategies applied and their context characteristics, and investigate reported evidence about
how the identified context information influences the behavior of cache replacement
policies in ICNs. To this end, we defined the following research questions (RQs):

RQ1: What is context from the perspective of a cache replacement policy?

RQ2: Which are the context characteristics used by the policies?

RQ3: Which are the cache replacement strategies applied for in-networking caching in
ICN?

RQ4: What context variations had effects on the performance of the cache replacement
strategies?

Notice that the research questions correlate with each other in the sense that they
rely on each other’s outputs in different ways: the first three questions are requisites to
answer the last question; to answer RQ2 it is necessary a primary overview direction
for RQ1 and also the output for RQ3; the complete delimitation of context that answers
RQ1 is an iterative process that relies on RQ2 and RQ3 outcomes.

After the definition of the research questions, we specified a list of relevant keywords
based on the analysis of manually selected articles, and we defined correspondent
search strings using AND and OR operators, as shown in Table 1. The search strings were
meant to drive automatic searches on relevant research engines. We adapted the search
strings according to the syntax of the scientific databases.

The selection criteria included works written in English, addressing any aspects of cache
replacement policy comparisons in ICNs. We also had the articles approaching new
schemes for the eviction process for ICNs as part of the contributions.

Searching process
The first step of the searching process was applying the automatic searches as specified
in the planning phase. We did not set a lower year threshold in the search databases
for the publication year range, and the upper bound was set to 2019. We cataloged a total
of 1,650 articles in this phase. In the following, the screening process comprehended
abstract reading and analysis of all matched articles, to filter according to the inclusion
criteria. Upon abstract filtering, we obtained 275 articles. Those were potential works
where we could find answers to the predefined research questions. Finally, we performed
full article reading and analysis of the potential works to extract relevant information and
evidence about the research questions. As a result, we reached a total of 168 articles
pertinent to our research. Additionally, we incremented the results by carrying out a
non-systematic snowballing research process on the read articles and search engines to

Table 1 Search string example.

(“ICN” OR “NDN” OR “CCN” OR “information centric” OR “information-centric” OR “named data” OR
“named-data” OR “content centric” OR “content-centric”) AND (“cache” OR “caching”) AND
(“replacement” OR “eviction” OR “performance” OR “management” OR “policy” OR “policies”)
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update with new works not covered in the first search. This process resulted in the addition
of two relevant documents.

Analysis process
The resulting articles and their correspondent extracted data consisted the input for
our study. In this phase, we categorized and correlated data from different articles to
empirically mining relevant information patterns. We report our main findings regarding
the research questions in the following section.

RESULTS AND ANALYSIS
The SLR process described in the previous section enabled us to answer the main research
questions introduced in this manuscript. The following subsections describe the process to
accomplished this.

RQ1: context dimensions
Many definitions of context have been given in the literature as well as different methods to
model and design context-aware applications (Abowd et al., 1999; Bettini et al., 2010;
Dey, 2001; Liu, Li & Huang, 2011; Vieira, Tedesco & Salgado, 2011; Alegre, Augusto &
Clark, 2016; Van Engelenburg, Janssen & Klievink, 2019). Although there is no single
consensual definition, they all converge on the importance and benefits of integrating the
awareness of any relevant information from relevant entities with the computational
environment.

As a result of the literature review analysis process, our definition of context comprises,
in a broad sense, information that can be used by the policy as input data to direct the
eviction process. Also, it includes information “external” to the policy that can be used
within a computational environment and could influence the policy’s performance.

To understand and delimit what entities could represent the context from the
perspective of cache replacement strategies, we direct the article reading and extraction of
possibly relevant information based on leading questions related to the content. Since
the process of dealing with contents is the overall purpose of having caching policies,
we placed content as a feedstock for caching policies, and we defined questions from the
content’s point of view, as follows:

� What content is being requested? In this dimension, we seek for characteristics of the
content itself (and the application), such as content size, popularity, type;

� When is the content requested? This dimension specifies time-related information
regarding the content and its relation to the user—for instance, time of access, time of
creation, or user delay to receive the content.

� Where is the content located and distributed? This dimension specifies network
characteristics, such as topology and link capacity, and features about the node/routers
that store the content, such as cache capacity and the number of interfaces.

� Who is requesting the content? Also, who is publishing the content? This dimension
relates to the human aspect, in which preferences, behavior, and routines are mapped as
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a context dimension. The dimension can also refer to machine-to-machine
communication, but, in this case, the characteristics overlap with information of the
node contemplated in the previous dimension.

Therefore, we extracted relevant information that would apply to these dimensions
and correlate with the cache replacement schemes. Based on the extracted data,
we characterized context dimensions according to four main categories: network, node,
content, and human. Figure 3 illustrates the hierarchy of our classification. A context view
is represented by current information of cached content in a particular node, which
belongs to a network, and is accessed or produced by a user. Each of these dimensions
contains properties related to the cache eviction process in one or more of the surveyed
articles. We detail the list of properties in the next subsection.

Additionally, we also consider ICN architecture decisions as part of the context.
The other cache-related protocols, such as placement policies or naming schemes, are
relevant aspects and should be included as part of the context. This article surveyed the
impacts of different architecture decisions on the replacement schemes; however, the
discussion of specific caching protocols properties is out of the scope of this work.

RQ2: context characteristics
Our second research question aims at identifying the context characteristics directly
related to the policies. To this end, we collected the types of information used as input data
for the replacement schemes and classified correspondent properties for the main context
dimensions of Fig. 3. We further discuss the context characteristics as follows:

� The content dimension is subcategorized into four types of properties: feature,
popularity, time-related, and type-specific. The feature properties are global ones, that is,
are inherent to the content and usually do not vary according to the other context
dimensions. Conversely, popularity and time-related properties are related to the node
caching the content, and consequently, their values differ from node to node. The type-
specific subcategory is reserved for specifying singular aspects of data or application
types. Figure 4 contains a list of properties extracted from the surveyed articles for the
content dimension. In this case, the type-specific properties are mainly about video
content, for illustrative purposes.

� The node dimension is subcategorized in resource, connectivity, location, content-
related, and traffic. Accordingly, the resource properties are inherent to the node;
connectivity and location features are mostly related to neighbor nodes and the position
of the node into the topology. The content-related represents the intersection with
the content’s dimension and gathers content’s information in a broader granularity.
The traffic properties are related to the flows of data traffic passing through the node.
Figure 5 shows the list of properties extracted from the surveyed articles for the node
dimension.

� The network dimension represents properties common to general network types.
The properties are categorized into four classes: resource, topology, traffic, and
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time-related. The resource class groups the overall network capabilities, such as
bandwidth, link capacity, and fetching content costs. The topology properties are more
specific about network’s size, represented mainly with the distances between nodes.
The traffic class has the same connotation as in the node dimension but differs in
granularity, and the time-related class defines temporal properties. The presented
properties in the time-related class are similar to some of the topology properties.
They are related to the distance between nodes measured in time units to reflect the
delay to retrieve content. Figure 6 presents the list of properties extracted from the
surveyed articles for the network dimension.

The previous list of properties is a broad definition of context characteristics to assist in
the analysis of cache replacement schemes. It helps to visualize what dimensions are
directly related to the policies and could significantly impact the applied network context.
However, it is not a static list and can be increased as new information becomes available
and relevant to a specific ICN instance. Furthermore, some of those properties are
closely related to more than one context dimension. It is possible to change their
perspective in terms of classification to represent a given ICN context. Moreover, the
unified view of properties can substantiate the design of novel cache solutions by helping to
identify potential gaps for new situations.

The human dimension is an emergent and new approach to be explored as part of the
context. Recent research fields like people-centric networking (Conti et al., 2015) and
human-centric multimedia networking (Rosário et al., 2016) are gathering attention to the
basic fact that users play an essential role in demanding contents or network services,
and different human characteristics can lead to different impacts on the network. In this
way, human attributes are potential drivers in the design of network solutions. The many
examples of human data, such as behaviors, interests, personality, character, social
interactions, humor, daily routines, gender, age, etc., opens up a range of possibilities to be
explored. Pires et al. (2018) performed experiments with real user data and associated
distinct user habits with different cache replacement policies. The work reinforces the
relevance of the human dimension for network configuration. However, it is an
incipient research field, and there is still a lack of studies intersecting human features with
caching policies. Thus, it was unsuitable for proposing a proper classification of properties
for the human dimension in the current research. Moreover, although some policies
intended to incorporate features related to the user in the caching process (Al-Turjman,
Al-Fagih & Hassanein, 2013; Xing et al., 2017; Zhang, Tan & Li, 2018), the human
characteristics are not directly used by the policies. For instance,Wei et al. (2014) proposed
a mobility-aware caching strategy for mobile networks in which they model the transition
of users among WiFi access points as a stationary Markov model. In a broad sense, the
user’s mobility has the same connotation as the node’s mobility. In the surveyed works
that deal with mobility, the concept of a node’s mobility suits the objectives since the
human dimension is not directly associated with mobility patterns. Different user’s profiles
can be associated with different mobility patterns, for example, different ages or
professions (Liang et al., 2012) or even different personalities (Chorley et al., 2013).
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RQ3: cache replacement schemes for ICNs
The literature shows various proposed replacement schemes for ICNs exploring beyond
the context of the content and adding properties of node and network’s dimensions. In this
direction, we cataloged the replacement schemes applied to the surveyed articles to

Figure 3 The hierarchy of context dimensions identified from the surveyed articles and the proposed
classification for the correspondent characteristics associated with the cache replacement schemes.

Full-size DOI: 10.7717/peerj-cs.418/fig-3

CONTENT

PopularityFeature Time-related Type-specific

- chunk/content size

- chunk sequence number

- content prefix name

- chunk/content type

- chunk/content priority

- chunk/content category

- chunk/content provider identification

- chunk/content monetary cost

 - content's additional features
    (e.g., the type of multimedia, the style,
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released, the aiming group, the cost, the
place of origin, etc.)

- chunk/content hit count

- chunk/content request count

- chunk/content category request count
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  (given and calculated by a content 
  provider)

- chunk/content initial popularity value 
  (defined by content provider)

- number of requests for neighboring 
  chunks in a same content

- chunk/content last access time

- chunk/content penultimate access time

- chunk/content requests arrival time

- chunk/content average request arrival time

- time when request for a chunk/content is satisfied (node
response)

- time when a chunk/content was written in the memory

- time when a chunk/content request count is calculated

- chunk/content creation time on producer

- chunk/content expiration time

- chunk/content maximum expiration time

- counter which shows the recency of a chunk/content in
the cache

- video segment resolution level (video quality)

- request count by video segment resolution level

- weight value for each layer of encoded SVC
video packet (layers = video bitrate = quality)

- for MPEG Video: number of frames between
two consecutive I-frames (called Group of Picture
- GoP)

- for MPEG Video: number of GoPs needed in a
receiver to start playing.

- for video with coding standards following
Network Abstraction Layer (NAL): NAL unit data
type

Figure 4 Properties from content dimension extracted from the cache replacement schemes for ICNs.
Full-size DOI: 10.7717/peerj-cs.418/fig-4
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collect context features and understand their correlations. To better readability, we
classified the schemes according to the classes of context information they used. They are
classified in: content-based; content and network-based; content and node-based; content,
network and node-based; and network and/or node-based schemes. Tables 2–6 contain
the lists of the cache replacement schemes in each class, respectively. The tables also detail
the correspondent context property categories used by the policies, which reveal the
diversity of context combinations explored in the literature. We grouped the policies
accordingly. This classification provides a comprehensive view of what context

NODE

ConnectivityResource Location Content-related

- CS cache capacity

- number of interfaces

- general cost of locally  
  serving a chunk

- storage energy consumed
to store a chunk

 - memory slot number
 - PIT Interest-packet timeout 

- one-hop neighbor nodes

- status of cache capacity of its
one-hop neighbor nodes

- number of occurrences of a
content within the one-hop
neighborhood

- information of the content with
the lowest popularity from one-
hop neighbors nodes

 - number of neighbor nodes which
requested a content

- mobility pattern

- location of the node into the topology

- node betweenness centrality (the number of
times a specific node lies on the content delivery
paths between all pairs of nodes in a network
topology)

- reachability of a node (as a function of the
number of nodes between any two nodes)

- node´s general rank according to topology
position (either assigned arbitrarily or based on
some metric such as betweenness centrality,
closeness centrality, or node degree)

- number of contents

- number of content video titles

- number of chunks by content

- number of chunks by content video titles

- number of chunks by producer

- number of chunks by category

- number of contents by prefix name portion

- maximum chunk resquest rate (know at the
node at any instant of time)

- minimum chunk request rate (predefined
minimum popularity threshold value to be
cached)

- interface of incoming request for a chunk

- number of interfaces saved in the PIT
entry for a chunk

Traffic

- number of flows (active
downloads) currently passing
over each of the node interfaces

- total request rate

- number of broadcasted video
frames per second;

Figure 5 Properties from node dimension extracted from the cache replacement schemes for ICNs.Full-size DOI: 10.7717/peerj-cs.418/fig-5

NETWORK

ResourceTopology Traffic Time-related

- distance / hop count from the node to the content producer

- distance / hop count from the node to the next node caching
the content; or the content producer

- distance / hop count from the node to the consumer

- maximun hop count possible from the node to a content
producer

- Euclidean distance from the node to the content producer

 - number of nodes

- link capacity

- ling general cost

- bandwidth consumed in downloading a chunk

- energy cost of fetching a chunk from other caches or the
source

- energy cost for wireless transmission a chunk from an
access point to the requester user equipment

- general cost of fetching a chunk from the nearest neigbor

- general cost of fetching a chunk from the content producer

- general cost of transferring a chunk across two nodes

- the max cache capacity within a sub-network

- total request rate for all chunks being
requested by all nodes

- total request rate for a chunk being
requested by all nodes

- number of users

- network delay for
retrieving a content

- maximum delay for
retrieving a content

Figure 6 Properties from network dimension extracted from the cache replacement schemes for ICNs.
Full-size DOI: 10.7717/peerj-cs.418/fig-6
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Table 2 Content-based cache replacement schemes.

Content property categories Replacement schemes

Popularity Rossi & Rossini (2011), Chao et al. (2013), Ran et al. (2013), Yeh et al. (2015), Nakayama, Ata & Oka (2015), Liu,
Zhu & Ma (2016), Zhao et al. (2017), Kalghoum & Gammar (2017), Sinky et al. (2018), Li, Yu & Li (2018),
Kalghoum & Saidane (2019)

Time-related Ravi, Ramanathan & Sivalingam (2014), Li, Ma & Hu (2015a), Rezazad & Tay (2015), Rhaiem, Fourati & Ajib
(2016), Shukla & Abouzeid (2017), Dhiab et al. (2017), Vural et al. (2017), Hou et al. (2019), Meddeb et al.
(2019), Din et al. (2019)

Popularity and time-related Wang et al. (2012a), Neves dos Santos et al. (2013), Qian et al. (2014), Chen et al. (2014), Abidi & Gammar
(2015), Xin et al. (2016), Yao et al. (2018), Chootong & Thaenthong (2017), Zhang, Tan & Li (2018), Huang
et al. (2018), Tang et al. (2019)

Popularity, time-related and feature Kang, Lee & Ko (2012), Bilal & Kang (2014), Han et al. (2014), Bilal & Kang (2017), Sri Prakash & Moharir
(2018), Sertbaş et al. (2018)

Time-related and feature Thomas & Xylomenos (2014), Rao, Schelen & Lindgren (2016), Wu et al. (2014), Tarnoi et al. (2019)

Popularity and feature Chandrasekaran, Wang & Tafazolli (2015), Chandrasekaran et al. (2018), Lee & Hong (2017)

Popularity and type-specific Jia et al. (2016), Ge et al. (2016)

Time-related and type-specific Zhang et al. (2017c)

Time-related, type-specific and
feature

Ghahfarokhi, Moghim & Eftekhari (2017)

Type-specific and feature Lee, Lim & Yoo (2013)

Popularity, time-related, type-
specific and feature

Lee, Lim & Yoo (2013)

Table 3 Content and Node-based cache replacement schemes.

Content property categories Node property
categories

Replacement schemes

Popularity Location Wei et al. (2014), Chen et al. (2016), Mick, Tourani & Misra (2016), Lal & Kumar (2019)

Content-related Lal & Kumar (2016), Zhang, Tan & Li (2017b), Baugh & Guo (2018)

Traffic Saltarin et al. (2018)

Traffic and
connectivity

Yang & Choi (2018)

Traffic and location Liu et al. (2019b)

Popularity and
time-related

Traffic Karami & Guerrero-Zapata (2015), Rocha et al. (2016), Zhou & Ye (2017), Khan & Khan
(2017), Qu et al. (2018)

Connectivity An & Luo (2018)

Content-related and
traffic

Yao et al. (2019)

Time-related and feature Content-related Hahm et al. (2016)

Connectivity and
location

Aoki & Shigeyasu (2017)

Popularity, time-related and
feature

Connectivity Wood et al. (2013)

Content-related and
traffic

Ong et al. (2014)

Popularity and feature Content-related Li et al. (2015b), Dron et al. (2013)
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Table 4 Content and Network-based cache replacement schemes.

Content property
categories

Network property
categories

Replacement schemes

Popularity Topology Wang et al. (2011),Wang, Bi &Wu (2012b),Ming, Xu &Wang
(2012), Ren et al. (2014), Hu et al. (2015), Huang et al. (2017),
Khan et al. (2018)

Resource Caarls, Hargreaves & Menasché (2015)

Traffic and time-
related

Sinky et al. (2018)

Popularity and time-
related

Topology Chen, Fan & Yin (2013), Ostrovskaya et al. (2018)

Time-related Yokota et al. (2016)

Resource Pal & Kant (2017)

Popularity and
feature

Resource Wang, Bayhan & Kangasharju (2015)

Time-related Sun & Wang (2015)

Resource and
time-related

Ndikumana et al. (2018)

Popularity, time-
related and feature

Topology Duan et al. (2013)

Time-related Time-related Dai et al. (2017)

Feature Resource Xing et al. (2017)

Table 5 Content, node, and Network-based cache replacement schemes.

Content property categories Node property categories Network property categories Replacement schemes

Popularity and feature Content-related and location Topology Panigrahi et al. (2014)

Content-related and traffic Traffic Liu et al. (2018)

Traffic Resource Badov et al. (2014)

Resource Time-related and resource Gür (2015)

Popularity and time-related Content-related Topology Rath, Panigrahi & Simha (2016)

Traffic and location Topology and time-related Al-Turjman, Al-Fagih & Hassanein (2013)

Popularity Traffic Topology Chen et al. (2017)

Connectivity Topology and resource Zhang et al. (2016)

Time-related Resource Topology and resource Llorca et al. (2015)

Location Topology Naz, Rais & Qayyum (2016)

Popularity, time-related and feature Traffic Topology and time-related Al-Turjman (2017)

Table 6 Node and/or network-based cache replacement schemes.

Node property categories Network property categories Replacement schemes

Content-related and location Topology Wang & Bensaou (2012a, 2012b), Yanuar & Manaf (2017)

Content-related and resource Time-related Sureshjani & Moghim (2018)

Resource Resource Wang et al. (2014a)

– Resource Ioannidis & Yeh (2016, 2018)
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information the techniques required. Therefore, it is the first guide to map which context
variances could directly influence the performance of the technique.

The content-based replacement policies explore only the characteristics of the content to
make the eviction decision. They use one or more of the content features listed in Fig. 4.
Following this reasoning, the policies that explore beyond the content and start to
look to characteristics of the node or the network that could lead the eviction process
to make a better decision are classified accordingly. They also use one or more features
listed in Fig. 5 or Fig. 6. Naturally, almost all the schemes further explore the content
dimension; however, we also found methods dealing only with network and node features
to assist the eviction process. Figure 7 illustrates the usage distribution of context
properties by their categories. We ranked the context categories according to the number
of policies that used one or more of the corresponding category properties. After content
popularity, time-related and feature properties, the network topology and node traffic
properties are the most used ones. It is important to remark that for the classification of
policies, we did not account for the general use of node CS cache capacity and the number
of interface information, since it can usually be part of the caching process.

RQ4: effects of context variation
Our objective in this section is to carry out an evidence-based analysis and identify
what context dimensions can affect the policies’ performance. An evidence-based analysis
can increment and drive approximate solutions to the problem of finding the optimal
policy. The choice of a best-fitting replacement policy exponentially grows in complexity
when there is a diversity of context variables. Many efforts have been employed to
comparatively evaluate different policies in different network scenarios. Usually, the
evaluations comprises variations of context like cache size, topology, or content popularity.
The results gives us approximations and insights about which policy performs better in
the evaluated scenarios or which variations in context can impact the policy’s decisions.
Such information is essential to help the process of network design when deciding which

0 45 90

Content - Popularity

Content - Time-related

Content - Feature

Network - Topology

Node - Traffic

Node - Content-related

Node - Location

Network - Resource

Network - Time-related

Content - Type-specific

Node - Connectivity

Node - Resource

Network - Traffic

Figure 7 Distribution of context properties categories according to the number of policies that used
the correspondent properties in their eviction logic. Full-size DOI: 10.7717/peerj-cs.418/fig-7
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replacement policy should be instantiated in a given network scenario. In this way, we
collected reported evidence from the surveyed articles about the effects of context variations
on replacement schemes’ performance.

We have found policy comparisons in different scenarios with variations of many
aspects like request rates, forwarding strategies, number of consumers, number of
contents, and overall topology. Nevertheless, in summary, we found that variations in the
node location, cache size, cache placement policy and content popularity had some relevant
effect on the policies’ performance. The first three presented variations resulting in
different choices of replacement policies. Also, beyond the impact on the choosing point
of which cache replacement schemes to apply, variations in cache size and content
popularity presented other relevant effects related to the policies’ performance. We discuss
the context variations separately in the following. To support the reading, Table 7 presents
a description of the policies reported in this section.

Node: location
The works from Wang & Bensaou (2012a), Tarnoi et al. (2014), Gallo et al. (2014),
Li, Simon & Gravey (2012) andNewberry & Zhang (2019) presented evidence of the impact
of node’s location on cache replacement scheme choice. Table 8 summarizes the
characteristics of the scenarios that supported the analyses. In the following, we discuss the
reported impacts:

� Wang & Bensaou (2012a) proposed two complementary replacement algorithms to
handle different workload characteristics observed by both edge and intermediate router
nodes. The eviction logic uses the hop count factor to prioritize the maintenance of
more distant contents and, consequently, reduce network resource consumption.
Besides the hop count, the replacement algorithm for intermediate nodes considers
the number of node’s interfaces saved in the PIT entry for a content to estimate the
diversity of the content requests. The proposed solution outperforms homogeneous
configuration with LCE + LRU, and the results emphasize the benefits of using
heterogeneous replacement policies according to the location of the node into the
topology. However, the eviction solutions were evaluated only in conjunction with a
proposed placement policy named PPC, limiting the analysis of the heterogeneous
eviction solution separately. The proposed replacement schemes logic would be able to
work together with other location policies, like LCE.

� Li, Simon & Gravey (2012) used the LRFU policy with a weighting parameter y to
represent a multi-policy caching where every content router implements its caching
policy according to its location in the network. The LRFU behavior can switch to be
more closely similar to LRU or LFU according to the value of y. The router location
is relative to his position between users and servers. The routers (CRs) are classified
according to a defined “entering degree”, which represents the number of the shortest
path connecting front-end CRs with servers via a CR. The reasoning to configure
different values of LRFU parameter y comes from an experiment under an emulated
European Backbone Ebone topology with 40 nodes, in which they performed
experiments with homogeneous configurations of y in all routers. They observed that the
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routers with lower hit rate achieved their best performance with higher values of y, and
on the contrary, routers with higher hit rates achieved their best performance with lower
values of y. Allied to that, they also observed that the position of the router in the
hit rate rank is directly proportional to his position in the topology, in the sense that the
closer to the edge, the higher is the hit ratio performance.

� The experiments of Tarnoi et al. (2014) reveal the difference of performances between
LRU and Random according to the node position. For the experiment with a cascade
network scenario and one content requester, LRU and Random, in combination
with LCE placement policy, interchange positions on the rank of the cache hit
performance: for the level 1, LRU outperforms Random, but from level 2 onward, LRU
performance decreases drastically and Random also slightly decreases but now with
better performance than LRU. The difference in the rank of cache hit rate is similar
for the scenario variation with multiple content requests, but LRU and Random
interchange position after the third level node. For the Internet topology, the result
groups edge and core nodes, and again, LRU presented the best results for edge nodes
while Random for core nodes.

� Continuing the discussion about LRU and Random replacement policies, Gallo et al.
(2014) came to a similar conclusion in terms of the difference in performance when
varying node locations. For that, the authors presented an analysis of cache miss
probability depending on the content popularity distribution. The analysis suggest
that LRU and Random have significantly different performances only for popularity
distributions highly concentrated on a relatively small number of objects. That
difference is also relative to the position of the node in the topology. The more popular
objects are more likely to be found at the edge node when using LRU, but those more
popular objects can be more evenly distributed when using Random across the path.
Also, the evaluation presents heterogeneous configuration for the leaves and root levels
of a tree topology: LRU-Random and Random-LRU, also LRU-LRU and Random-
Random. The heterogeneous LRU-Random configuration achieved better performance
than the other configuration options, that is, LRU and Random configured respectively
in the edge and intermediate levels.

� While evaluating the advantages of integrating big data applications in an ICN-like
architecture, Newberry & Zhang (2019) argue the benefits of using different cache
replacement policies at each layer of a data center fat-tree topology. They compared the
performance of homogeneous and heterogeneous policy configurations, placing the
cache in each node of a fat-tree topology with three layers, composed of 16 core,
32 aggregation, and 32 edge switches. They performed combinations of the policies
LRU, 2Q, ARC, LIRS, and MQ, on the levels of the tree topology, totaling 125
combinations for each variation of cache size. The results could reveal the different
behaviors at different layers of the topology and the suitability of different policies at
each level. However, the gain of the reported best heterogeneous configurations
concerning the best homogeneous configuration is not explicit in the article.
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Table 7 Set of content placement and replacement policies.

Abbrev. Policy name Type Description References

LRU Least recently used Replacement Removes the last accessed content in the cache –

LFU Least frequently used Replacement Removes the last frequently used content in the cache –

FIFO First-in-first-out Replacement Removes the oldest content placed in the cache –

– Random Replacement Removes one content randomly –

– Size Replacement Removes the content with largest size in the cache Abrams et al.
(1996)

LRFU Least recently/frequently used Replacement Considers the recency and frequency of contents to compute a
Combined Recency and Frequency (CRF) metric. CRF values
are higher for more recent and frequent contents. The policy
evicts contents with lower CRFs

Lee et al. (2001)

FCDC Fast convergence caching
replacement algorithm based on
dynamic classification method

Replacement Considers categories of contents by content’s popularity and a
popularity rank by categories. Contents in lower ranked
categories can be evicted for ones in higher ranked categories

Chao et al. (2013)

RUF Recent usage frequency Replacement Considers categories of contents by similarity and a popularity
rank by categories. Contents in lower ranked categories can
be evicted for ones in higher ranked categories

Kang, Lee & Ko
(2012)

EV Energy efficiency cache scheme based
on virtual round trip time

Placement/
replacement

Considers the energy consumption to store and to transport the
content. Places the contents with storage energy smaller than
their transport energy, and compares the energy saving of the
cached contents with the energy saving of the passing content
to evict the contents

Wang et al.
(2014a)

PBRS Content-popularity and betweenness
based replacement scheme

Replacement Removes the content with the lower popularity. Computes the
content popularity based on the content’s requests and node’s
betweenness centrality

Liu et al. (2019b)

ABC Age-based cooperation Replacement Removes the content based on content’s Time-to-Live (TTL).
Computes TTL based on the node’s location in the topology
and the content popularity. The closer to the edge and/or the
more popular a content, the longer its TTL value. Also called
TTL

Ming, Xu &Wang
(2012)

2Q Two queues Replacement Designed for buffer management, it considers two lists of pages.
The first list applies FIFO in the incoming page requests. The
second list receives the pages in the first list requested again
and their subsequent requests and applies LRU

Johnson & Shasha
(1994)

ARC Adaptive replacement cache Replacement Designed for buffer management, it considers two LRU lists.
The first list contains pages requested once in a recent time,
and the second list pages requested at least twice. The policy
adaptively decides the number of pages to maintain in each
list according to the workload characteristic

Megiddo &
Modha (2003)

LIRS Low inter-reference recency set Replacement Designed for buffer management, it considers the number of
other pages accessed between the last and penultimate access
for a page as Inter-Reference Recency (IRR) metric. The
policy removes the page with the largest IRR

Jiang & Zhang
(2002)

MQ Multi-queue Replacement Designed for buffer management, it considers multiple lists
with different access frequencies for different periods

Zhou, Philbin &
Li (2001)

PPC Popularity prediction caching Replacement Designed for video content. Predicts and caches the future most
popular videos’ chunks based on the number of requests for
neighboring chunks in the same video content. Evicts chunks
with the least future popularity

Zhang, Tan & Li
(2018)

(Continued)
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All the scenarios discussed in this subsection concluded that heterogeneous policy
configurations achieved the highest performances than the homogeneous configurations.
Whether for small topologies (Tarnoi et al., 2014; Gallo et al., 2014) or larger topologies
(Wang & Bensaou, 2012a; Li, Simon & Gravey, 2012; Tarnoi et al., 2014; Newberry &
Zhang, 2019), the works observed different traffic characteristics in the different nodes.
They attributed this difference to the node position and associated different policies to
different traffic profiles.

Multiple levels of caches naturally present that difference in traffic characteristics by
cache-level due to the knowing filtering-effect. The filtering-effect happens any time a
lower-level cache hits a content request. The cache does not propagate that request to the
rest of the network and propagates only the miss requests to upper-level caches.
This behavior modifies the original characteristics of the traffic. Many studies have been
addressing the progressive filtering effect in hierarchical web caches (Williamson, 2002;
Zhou et al., 2013; Melazzi et al., 2014). That filtering has a direct impact on the temporal
locality of the requests (Jin & Bestavros, 1999). Temporal locality refers to the property
that recently accessed objects are likely to be reaccessed in the near future. As cache levels

Table 7 (continued)

Abbrev. Policy name Type Description References

CCP Cache policy based on content
popularity

Replacement Considers previous content popularity and the number of hits
in a current interval of time to compute the current content
popularity. The policy evicts less popular content

Ran et al. (2013)

Betw Betweenness centrality Placement Considers the node’s position at the topology in terms of node’s
centrality measures to place the content. Only selected nodes
with higher measures cache the content. Also called Leave-
Copy-Betw (LCB), or Centrality

Chai et al. (2012)

LCD Leave copy down Placement Places the content only in the immediate downstream node of a
cache-hit point

Laoutaris, Syntila
& Stavrakakis
(2004)

LCE Leave copy everywhere Placement Places the contents in all caches along the reverse path of the
content request

Laoutaris, Syntila
& Stavrakakis
(2004)

Prob Probabilistic caching Placement Each cache in the reverse path of the content request stores the
content with a constant probability p. Also called Leave-
Copy-Probabilistically (LCP)

Laoutaris, Syntila
& Stavrakakis
(2004)

– ProbCache Placement Considers the shared storage capacity of the request path and
the node’s distance to the content producer to calculate the
node’s probability of caching the content; Also called PProb

Psaras, Chai &
Pavlou (2012)

– CRCache Placement Considers the content popularity and the node’s centrality
measures to calculate the probability of caching the content.
The most popular contents are cached in the nodes with the
highest centrality. Also called Cross

Wang et al.
(2014b)

PCP Progressive caching policy Placement Considers the immediate downstream node of a cache-hit point
to store the content, the number of interfaces saved in PIT
entry for the intermediate nodes, and the number of requests
for edge nodes

Wang & Bensaou
(2012a)

Rand Single node random caching Placement Places the contents in one random intermediate node along the
delivery path

Eum et al. (2012)
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filter requests, the temporal locality intensity becomes gradually weakening, and the traffic
profile at upper-level caches becomes more random (Jin & Bestavros, 1999). That explains
why Random policy achieved better performances for intermediate nodes in some of
the discussed scenarios. As expected, workloads with temporal locality property have a
strong correlation with caching policies (Garetto, Leonardi & Martina, 2016), and
variations in the temporal locality patterns directly impact the variations of caching
policies performances.

Regarding the context attributes explored by the replacement schemes, only two of the
works presented evaluations including context features in the eviction logic that helped
differentiate the node’s position: like the node’s number of interfaces (Wang & Bensaou,
2012a) and the node degree as a general rank according to the topology (Li, Simon &
Gravey, 2012). However, other works are exploring those, and other context attributes that
could be helpful. The context attributes with their respective classification and reference
works are:

� Node-Location: node betweenness centrality (Chen et al., 2016; Liu et al., 2019b);

� Node-Location: reachability of a node (Panigrahi et al., 2014);

� Node-Location: node’s general rank according to topology position (Mick, Tourani &
Misra, 2016; Aoki & Shigeyasu, 2017; Naz, Rais & Qayyum, 2016);

� Node-Content-related: number of interfaces saved in PIT entry for a chunk (Wang &
Bensaou, 2012a);

� Node-Connectivity: one-hop neighbor nodes (Zhang et al., 2016);

� Node-Resource: number of interfaces (Wang & Bensaou, 2012a; Baugh & Guo, 2018).

Although the node’s location is a context that should be considered when selecting a
replacement policy, it is not easy to foresee a straight map between policies and node
positions. First, because there are many policies and diversity of topologies with different
requirements, but mostly because there are other contextual factors that can also
impact the performance of the policies. As we continue to show in the next sections, this
SLR was able to pinpoint some of these factors.

Node: cache size
The works from Chao et al. (2013), Wang et al. (2014a), Sun et al. (2014), Newberry &
Zhang (2019) and Liu et al. (2019b) contains evidence of cache size variations on the
performance ranking variations of cache replacement policies. Table 8 summarizes the
characteristics of the corresponding scenarios. In the following, we discuss the reported
impacts:

� According to Sun et al. (2014), the replacement scheme’s optimal choice depends on the
cache size and the placement policy. The authors combined seven placement policies
with five replacement policies: LRU, LFU, FIFO, TTL, Size - and cache size variations of
0.0007%, 0.007%, 0.07%, and 0.7% of the unique contents. The content routers have
homogeneous cache sizes for all experiments. We observe that the most significant
impact on the replacement scheme choice happens when passing from 0.0007% to
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0.007% of cache sizes. That is, for all combinations of placement policies, the best choice
of replacement scheme changed when the cache size moved from 0.0007% to 0.007%.
Meanwhile, for most combinations of placement policies, the experiments running
with 0.007%, 0.07%, and 0.7% of cache sizes presented their highest performance values
with the same replacement policy. For example, combined with LCE, LRU and TTL
achieved the highest performances for 0.007% of cache size, while LFU stands out for the
other sizes.

� Chao et al. (2013) also show evidence that variations on cache size can lead to variations
on the policy with the best performance. This work presents a content-based
replacement policy named FCDC that manages the content popularity property—
request count—to classify and replace contents according to popularity categories.
The evaluation shows comparisons of the proposed scheme against LRU and RUF
policies. According to the results, FCDC presents a better cache hit rate than LRU and
RUF when the cache memory is less than 5%. Yet, the performance rank changed for
cache sizes larger than 10%, and LRU performed slightly better than FCDC. The authors
attribute this behavior to each policy’s property, in which FCDC can keep track of
content popularity and maintain the most popular content better than LRU for small
cache sizes. At the same time, LRU prioritizes most recently accessed over the most
accessed and popular content. However, this does not directly correlate to the
performance differences according to the cache sizes. FCDC deals with dynamic changes
of content popularity and does not directly rely on node information.

� Furthermore, the experiments performed by Wang et al. (2014a) also reveal differences
in policy performance rank while varying the cache size. The work proposes the EV
policy, a node-based replacement scheme coupled with a placement scheme. EV was
evaluated and compared against LCE + LRU and LCE + Popu—a referenced popularity-
based policy. The configuration of the content popularity follows a Zipf distribution,
and besides the impact of different cache sizes, the results also reveal a correlation with
the popularity skewness factor. For α skewness factor equals 0.8, EV and Popu had
similar performances for all cache size variations. Meanwhile, for α = 1.5 or 2.0, the
policies interchanged positions in the rank of average total energy consumption for
different cache sizes: Popu achieved better performance than EV for cache sizes between
10% and 20% of total contents; for larger cache sizes, EV turns to be the better choice.
The work does not provide an analysis of this effect. The results show the impact of
cache size on placement and replacement schemes together, which limits the evidence of
the eviction scheme solely.

� Similarly, Liu et al. (2019b) presented evidences of variations in the rank of hit ratio
of the policies for different cache sizes. The work shows evaluations of a proposed
replacement policy named PBRS against LRU, LFU, and FIFO. PBRS and LFU
interchange positions for different cache sizes in a tree topology. This effect is most
evident for intermediate nodes, in which LFU presented better results for cache sizes
between 10 MB to approximately 50 MB, and PBRS presented better cache hit values for
larger cache sizes. Both policies rely on content popularity, but LFU computes the
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popularity directly to count the number of requests, while PBRS increments the
computation by adding different weights associated with the nodes.

� Finally, besides the effect of heterogeneous policies for different node locations in a fat-
tree topology observed by Newberry & Zhang (2019), we also observed variations in
policy performances’ rank while varying cache sizes. The work evaluated LRU and other
replacement policies named 2Q, ARQ, LIRS, and MQ policies. For a homogeneous
policy configuration in all levels of the topology, the rank of policy performances did
not change when using cache sizes from 64 to 512 MB. However, when cache sizes
varied from 512 MB to 1 GB, a couple of changes happened in the rank: first, LRU and
2Q interchanged positions, in witch 2Q achieved best results than LRU up to 512 MB,
but LRU presented better results for 1 GB; second, ARQ and MQ changed positions,
with MQ presenting better results up to 512 MB and ARQ with 1 GB; and finally,
LIRS and ARQ also changed positions in the rank, with LIRS presenting better results
than all other policies up to 512 MB, but ARQ achieved better performance with 1 GB
of cache size. For a heterogeneous policy configuration, the results presented similar
effects on the rank. Without going into specific characteristics of policies, this work has
evidence of the influence of cache size and the lack of explicit patterns that associate the
performance of cache policies with the size of the cache.

Regarding the impact on the replacement policy choice, in none of the presented works
it is evident why variations in cache size led to different policy choices. Also, the analysis of
the works together does not reveal potential patterns due to the heterogeneity of the
scenarios factors. The scenarios range from country-wide router-level topology with
around 80K routers to a small and straightforward linear topology, with variations of
placement and replacement policies, and different ranges of cache size evaluations.
Although the evidence clearly shows the relevance of cache size in particular scenarios, it is
not sufficiently conclusive the why.

Yet, we cataloged other effects concerning variations on the cache cache and the
performance of the policies. It is natural to expect an increase in the cache size should
increase the performance gain for any caching policy since there is more space to store
contents. In practice, the constraints of memory access speed or node devices’ power will
limit cache size. However, evidence shows that caching policies’ performance gain is not
linear to the cache size increase (Han et al., 2014; Chen et al., 2014; Ong et al., 2014; Sun
et al., 2014; Pires et al., 2018; Mangili, Martignon & Capone, 2013). In this way, adding
cache resources on the network could not be the most suitable solution to improve the
performance. The observed effect is because size allocation is a function of the content’s
popularity distribution. For example, in scenarios with large amounts of non-popular
content, the cache size may be small because the gain in caching is restrictive. On the
contrary, for scenarios with a large amount of popular content, the benefits will be best
achieved for larger cache sizes. In this way, balancing optimal cache size in terms of cost
and effectiveness of policies shall be done considering the fluctuations in content
popularity.
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Another observed effect of the relationship between cache size and replacement policy
gain is that as the relative cache size increases, the performance difference among the
techniques decreases (Charpinel et al., 2016; Han et al., 2014; Nakayama, Ata & Oka, 2015;
Bilal & Kang, 2017; Xing et al., 2017; Panigrahi et al., 2014; Li, Simon & Gravey, 2012;
Fricker et al., 2012b; Newberry & Zhang, 2019). That means that the performances tend to
converge eventually, and this is in line with Che’s approximation (Che, Tung & Wang,
2002), which we briefly discuss here. The longest possible time between two sequential hits
for a content c present in the cache, that is, before removing c from the cache, is expected to
be random and related to c. That is the cache eviction time for content c. However,
Che’s approximation stands that, for reasonably large cache sizes, this cache eviction time
tends do be deterministic to the point of being a constant irrespective of the content.
Therefore, as cache size increases, the dependance on c decreases and becomes negligible.
Following this direction, if the dependance on the content decreases, the eviction policy’s
dependance decreases because all contents converge to the same relevance in terms of
eviction time. Although Che’s approximation has been proposed for a scenario with LRU
under Independent Reference Model (IRM), other extensions and generalizations also
show the approximation’s validity to more scenarios (Garetto, Leonardi & Martina, 2016;
Fricker, Robert & Roberts, 2012a; Araldo, Rossi & Martignon, 2015).

Cache placement policy
ICN in-path cache works as an opportunistic cache to distribute the content along with the
network, and that opportunistic characteristic makes more flexible the distribution of
caches on network nodes and the content location choices. Once there is a cache, though,
the replacement scheme is mandatory for all cache nodes. Nevertheless, both content
placement and replacement decisions are closely correlated and influence each other
behaviors. The decisions can be implemented separately and combined according to the
network requirements. Each combination of placement and replacement policies can lead
to different behaviors.

On the other hand, both placement and replacement strategies may complement each
other. Some of the replacement schemes reported in ICN literature are already coupled
with a placement strategy (Neves dos Santos et al., 2013; Sinky et al., 2018; Ren et al.,
2014; Hu et al., 2015; Pal & Kant, 2017; Xing et al., 2017; Mick, Tourani & Misra, 2016;
Zhang, Tan & Li, 2017b; Wang et al., 2014a; Chen et al., 2017; Khan & Khan, 2017) and
deployed in conjunction.

In this work, we chose to look at the placement policy as a context factor that influences
the replacement policy choice. This subsection presents the works (Chen et al., 2016;
Tarnoi et al., 2014; Sun et al., 2014) in which variations in the placement policies led to
different choices of replacement schemes:

� Chen et al. (2016) develop an ICN WSN system in which they tested 16 combinations
between four placement strategies: LCE, Prob (i.e., LCP), LCD, and Betw (i.e., LCB)—
and four replacement policies: Random, FIFO, LFU, and LRU—in a WSN with 15
nodes. The results reveal a significant variation in the rank of policies for different
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combinations of placement policies and comparison metrics. Considering the metric
cache hit rate, LCE and Prob achieved their best results combined with LFU, while LCD
and Betw with Random; Yet, when considering the metric energy consumption, LCE
and Prob achieved their best results with FIFO, while LCD with LRU, and LCB with
Random.

� In addition to analyzing the effect of heterogeneous policies configuration by node
locations, Tarnoi et al. (2014) also analyzed variations on the replacement scheme choice
according to the different placement policies. The work shows how the probabilistic
caching placement behavior varies as a function of the replacement scheme. The authors
evaluated combinations of LRU, LFU, and Random policies with LCE and Prob. In
general, for both cascade and Internet-like topologies, and considering both server load
and round trip-hop distance evaluation metrics, the results show that Prob can improve
the performance of the network and achieve its best performance only when combined
with LRU, while LCE achieves its best performance when in conjunction with LFU.

� Finally, as we mentioned earlier, the results reported by Sun et al. (2014) show that the
optimal choice of the replacement scheme depends on the cache size and the placement
policy. Regarding the variations of placement policies, the work combined seven
placement policies: LCE, LCD, Rand, Prob, ProbCache, Betw (i.e., Cent), and CRCache
(i.e., Cross)—with five replacement policies: LRU, LFU, FIFO, TTL, and Size—and
the results presented evidence of the difference in performance ranks for each
combination. For example, considering the metric server load reduction and 1G of
cache size, LCE, Rand, Prob, and ProbCache achieved its highest values when combined
with TTL; while LCD with FIFO; Betw with LRU; and CRCache with TTL or LRU.
However, for cache sizes of 100G and 1T, all placement policies presented their best
results with LFU, except for LCD, which achieved the best results combined with LRU or
TTL. The work also stands for a dominant strategy among the compared ones in
terms of caching metrics. Partially in line with Chen et al. (2016), and contrary to the
analysis presented by Tarnoi et al. (2014), the authors place Prob + LFU as the
closest to the best strategy for their scenario. However, the analysis between the different
results is limited because the two works (Chen et al., 2016; Sun et al., 2014) did not
mention the probability value used for caching contents. The Prob performance may
vary according to the configured probability value.

Reinforcing the intrinsic correlation property between content placement and
replacement decisions, all the works presented in this section show evidence of the
different and unique effects of each policy’s combinations for distinct scenarios. Different
placement policies can have a different impact when changing a replacement scheme
(Rezazad & Tay, 2015; Tarnoi et al., 2015; Zhang et al., 2017a; Meddeb et al., 2017).
This way, each placement strategy requires evaluation of what replacement scheme
performs the better. Each placement policy has a different requirement in terms of
evictions, and the more is the number of evictions, the more the placement policy relies on
the replacement scheme and, therefore, is affected accordingly.
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Content: popularity
One of the behaviors we were expecting to find evidence for was the impact of content
popularity variation on the replacement policy choice, especially on the choice between
frequency-based policies, for example, LFU, and others, like recency-based policies.
That reasoning relies on the argument of many works that frequency-based policies suit
better content populations with high popularity skewness, while with low popularity
skewness would suit other policies (Beck et al., 2017).

However, while analyzing the variations of popularity skewness during the comparative
evaluation of the replacement schemes, we found works in which popularity skewness
variations did not influence policies’ rank (Wang et al., 2011; Gür, 2015; Huang et al., 2017;
Zhang, Tan & Li, 2018; An & Luo, 2018; Jeon, Lee & Song, 2013; Shailendra et al., 2016; Liu
et al., 2017; Tarnoi et al., 2014; Gallo et al., 2014; Yokota et al., 2016; Zhang, Tan & Li,
2017b; Sinky et al., 2018; Yao et al., 2016). Those comprehend works under Zipf popularity
distribution, with different variations of the skew factor from, for example, 0–2,
with conventional policies like LRU and LFU as well new proposed policies, but the
performance rank among the policies remained unchanged. Variations in the skew factor
represent variations in the distribution of contents’ popularity. The increase in the factor
leads to an increase in the number of popular content. It is also associated with the
diversity among contents. The increase in the number of popular contents reduces the
diversity of the contents stored in the caches since popular contents are more conducive to
occupy cache spaces for relatively long times.

Also, we observed a similar effect as the one about the increasing of cache size discussed
earlier: under variations of the skew factor solely, as the skew factor increases, the difference
of performance among the techniques decreases (Badov et al., 2014; Yokota et al., 2016;
Zhang, Tan & Li, 2017b; Zhang, Tan & Li, 2018; Sinky et al., 2018; Yao et al., 2016).
For instance, during the evaluation of a proposed PPC policy, Zhang, Tan & Li (2018)
carried out experiments varying the Zipf skew factor from 0.7 to 1.2. They compared the
policy performance against LRU, LFU, FIFO, and CCP. The results reveals that as the
factor increases, the difference of cache hit ratio among the replacement schemes is
reduced and tends to converge.

Remaining remarks

This section presented many scenarios with evaluations of cache replacement policies
that presented different behaviors according to variations in contexts. Contextual factors
are triggering this difference in performance, and this SLR was able to identify some
common factors in a set of works, as we exposed in the previous subsections.

The influence of some contextual factors was already evident when looking at individual
works. However, one of our intentions with this SLR was to analyze the works that
had similar effects, to look for patterns that could relate the contextual factors to the
policy’s properties. That cames in contrast with the diversity of scenario characteristics
and evaluated policies, which limited the analysis. Besides, there was no more in-depth
analysis of why and how the effects happened, most of the works came to evidence by
testing the context variations, and small changes in the characteristics of the scenarios
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could have lead to different results. In general, there was no explicit pattern in the
surveyed works that associated the context factor to the policies or their properties.
That also limited a more in-depth analysis from the perspective of the proportion of
impacts for different contexts and scenarios, since the extent to which context
characteristics affected cache replacement strategies varied for different scenarios.

We must also highlight that most of the works did not indicate the confidence interval
in their experiments. A few of the differences between policies’ performance measurements
were relatively small, and a confidence interval would help investigate the significance
of the difference values.

Due to the reasons mentioned above, the policy choosing process can not be reduced to
rule-based schemes or related solutions. Instead, the choosing process is suitable for
solutions that dynamically analyze context factors and perform large-scale correlations
between the factors and policies, for example, with reinforcement learning techniques.
At this point, we can indicate, though, potential context characteristics to enhance the
eviction performance in emergent ICN scenarios. We present this analysis in the next
section (Applications).

Lastly, we also highlight the overlook of content-Negative Acknowledgments
(content-NACKs) packets. In ICNs, content-NACKs are special packets generated by
content producers in response to requests for non-existent content. They can be encoded
as data packets with a specific content-type feature. In that case, content-NACKs are
processed as regular data packets and cached in the network routers. Although caching
content-NACKs is useful to respond to possible subsequent requests for the same
non-existent content efficiently, it may insert vulnerability points in ICN architectures
(Compagno et al., 2015). Current eviction policies are not aware of content-NACK packets,
and there is a need to investigate if this lack of awareness impacts cache management
and security. Nonetheless, a different approach is questioning if those packets should be
cached on the network and how it could impact performance. In deciding not to cache,
the processing of content-NACKs can be delegated to the cache placement policies to
bypass these packets. This way, the content-NACKs could follow the forward processing of
data packets without caching.

APPLICATIONS
The informational RFC 7476 (Pentikousis et al., 2015) presented by the IRTF-ICNRG
describes a set of application areas in which ICN architectures can potentially perform
better than the current host-centric Internet approach. This technical document discusses
diverse network contexts in emergent areas such as social networking, real-time
communication, mobile networking, vehicular networking, delay- and Disruption-
Tolerant Networking (DTN), IoT, and Smart Cities.

Thus, we extend the discussion to correlate characteristics of emergent networks with
the context characteristics relevant to the choice of suitable cache replacement schemes.
We highlight the most suitable context characteristics for generic network contexts on
information-centric IoT (Arshad et al., 2018; Dong & Wang, 2016), vehicular named-data
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networking (Khelifi et al., 2020), and ICN-enable edge and core networks (Zhou et al.,
2017; Zhang et al., 2018) in the following subsections. Table 9 summarizes this discussion.

Information-centric internet of things
The adoption of IoT networks in many segments of society like healthcare, transportation,
security, industry, agriculture, communications, and infotainment, is gradually changing
the way people interact with the physical world by connecting new things to the
Internet. Things can be any device enhanced with sensor and technology capabilities to
generate and transmit data, and when aggregated with intelligent services of IoT
applications, they can improve processes, business, and life quality.

The imminent revolution of IoT applications must be followed by a revolution in how
the network structure deals with the content. The current Internet architecture is
fundamentally not prepared to deal with the massive amount of data from an expected
number of billions of heterogeneous devices. The majority of IoT applications will be
content-oriented, and TCP/IP will be struggling to meet their bandwidth requirements.
Cache-enabled solutions like information-centric architectures are strong candidates to
assist in the deployment of IoT applications (Arshad et al., 2018; Quevedo, Corujo &
Aguiar, 2014; Dong & Wang, 2016; Araújo, De Sousa & Sampaio, 2019). The ubiquitous
content caching of ICN contributes to reducing the delay to retrieve content and enhances
the contents’ availability, especially when dealing with power restricted devices that
periodically switch on and off in duty cycling to save resources.

In cache-enabled network solutions, IoT traffic usually is offloaded at the Internet
content routers through a connected gateway (Rao, Schelen & Lindgren, 2016; Meddeb
et al., 2017) to aggregate the services of specialized IoT cloud platforms, such as Cisco IoT
Cloud Connect, Microsoft Azure IoT Suite, and Google Could IoT. Also, the IoT devices

Table 9 Suggestion of cache replacement policy category for different ICN-enable scenarios.

Cache-enable network Characteristics and/or requirements Policy category Correlation of requirements with context
dimensions

IoT (Smart home, home care…) High heterogeneity among IoT devices with
different priorities; High ephemerality of
contents; Limited resources

Content and
node-based

Content features, like content provider
identification, priority, and time-related
properties

VANETs High intermittency of connections; Multi-
path propagation; Different strategies for
delay-sensitive data from safety applications
and delay-tolerant data from infotainment
applications

Content and
node-based

Node location properties like mobility
pattern plus direction, node’s rank
according to topology position; Content
features, like type, priority, and popularity
and time-related properties

Edge computing (Small-cells radio
access; 5G; Device-to-device (D2D)
communication; Unmanned Aerial
Vehicles (UAVs))

High temporal and spatial correlation of
content requests; Enables clusters by user
similarities

Content and
future human-
based

Content popularity properties; User
preferences, habits, and social interaction

Internet-scale networks Globally content preferences; Heterogeneous
link/node capacities; Long geographical
distances

Content, node
and network-
based

Content feature and popularity properties;
Network topology, resource, and time-
related properties; Node resource and
traffic properties
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can cache the traffic in a dynamically distributed IoT network (Hahm et al., 2016).
Whether one case or another, two significant characteristics are a large number of
heterogeneous devices and the ephemerality of the content produced by them. Therefore,
the suitable kind of cache replacement schemes for information-centric IoTs should
deal with both characteristics. In the former, the different types of devices usually have
different resources restrictions in terms of processing capabilities, memory, energy
constraints, and they produce contents with different requirements regarding the context.
For example, Smart Cities will need to integrate intelligent urban sensing services for many
proposes, such as management of smart garbage collection, street lighting, parking, the
monitoring of road conditions, urban noise, security cameras, and environmental
conditions, among other possibilities. In this case, the infrastructure comprises a diversity of
sensors with different content production rates and characteristics. The replacement
scheme may apply different treatment to the contents according to the type of device by
exploring both content and node context dimensions, with features like content provider
identification, content priority, and node resource features. The latter characteristic points out
the typical time-restricted data generated by some IoT devices that periodically inform
sensor measurements monitoring the environment. For example, the content periodically
generated by temperature sensors and collected by distributed applications to monitor the
ambient in urban areas can be usefully cached to serve user applications’ requests. However,
the most recent measure will usually be of interest to most applications, and there is no need
to maintain the previous measures in the cache. The replacement scheme should also
combine time-related features of the content context dimension in the eviction process logic.
The combinations of the features mentioned above can help detect redundant contents from
the same producer while increasing the techniques for stale content detection.

Vehicular named-data networking
Vehicular networking exhibit singular characteristics in traffic generation patterns,
delivery requirements, and spatial and temporal scope (Pentikousis et al., 2015), mostly due
to high node mobility, very intermittent connections, and the support for typical road-
traffic-related applications (Li et al., 2020a), infotainment applications, and code
dissemination (Li, Zhao & Wong, 2020b).

In vehicular networking, the vehicles can exchange information with any other
communication device available next to the vehicle in a concept of Vehicle-to-everything
(V2X) communication. This includes communication between vehicle and other vehicles
(Vehicle-to-Vehicle—V2V), or road infrastructure (Vehicle-to-Infrastructure—V2I),
communication network structure (Vehicle-to-Network—V2N), pedestrians (Vehicle-to-
Pedestrian—V2P), or any other communication device. In all those variations, the
content requests usually present highly temporal/spatial dependencies, and the in-network
caching capabilities of ICNs can potentially improve the content delivery process.

Regarding the caching strategy, the replacement scheme should consider the
characteristics mentioned above because they can affect the local relevance of contents.
For example, accident information’s relevance is highly dependent on the vehicle location
and the direction towards it was moving (De Sousa, Araújo & Sampaio, 2018). If the
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vehicle has passed the accident, that information may no longer be useful. The replacement
schemes can handle this decision with node location properties like mobility pattern,
plus vehicle direction, and node’s rank according to the current topology position.

Different strategies should be applied to deal with the different types of applications
combined with node location properties. For that, the strategy can explore content features,
like content type and content priority. The road-traffic-related applications, such as road
congestion notification, traffic monitoring, and accident warning, usually are delay-
sensitive applications and are better handled by content time-related properties or even
newly type-specific properties. Similarly, applications for code dissemination designed to
support smart city infrastructures’ upgrades can benefit from those properties. Meanwhile,
the infotainment applications are mostly delay-tolerant and more suitable to be handled by
content popularity features.

In-network cache-based data offloading through edge computing
Caching at the edge in Mobile Edge Computing (MEC) (Safavat, Naveen & Rawat, 2019) will
play an essential role in the next-generation wireless network. The Radio Access Network
(RAN) is enhanced with cache capacity on base station structures to better attend the content
demand due to its proximity. This way, Small-cell Base Stations (SBS), Macro-cell Base
Stations (MBS), Wi-fi Access Points (AP), mobile devices, and even recent cache-enabled
UAVs (Zhang et al., 2020; Ji et al., 2020;Huang et al., 2020) can store contents and respond to
the content requests faster. UAVs can act as flying base stations to support the ground cellular
network. They can also work as relay nodes to assist content delivery and data collection
in areas without available transmission links. The integration with ICN concepts leverages the
mobile-edge caching by supporting in-network caching (Zhou et al., 2017; Psaras et al., 2018;
Shariat, Tizghadam & Leon-Garcia, 2016). The imminent fifth-Generation (5G) mobile
networks also reinforces that merge as several initiatives discuss the benefit of the integration
with ICN (Zhang et al., 2018; Liang, Yu & Zhang, 2015).

A fundamental characteristic created by the user’s closeness is a high temporal and
spatial correlation of content requests. In this way, one of the widely explored approaches
at the network edge is user-centric clustering techniques (Ribeiro, Sampaio & Ziviani,
2018; He, Wang & Wang, 2019; ElBamby et al., 2014). User characteristics are the input
and motivation for virtual groupings, whether regarding the network structure or the
users’ connection to the network. As a consequence, user and their content requests can be
grouped according to user behavior patterns.

Due to the characteristics above, the replacement schemes for in-network caching at
the edge can benefit from content-based properties, especially content popularity features,
and the exploration of a variety of human properties related to preferences, habits, and
social interaction. Therefore, user behavior analysis is a relevant area in the future of edge-
caching, fostering future human-based replacement policies.

ICN-enabled core network
ICN’s benefits encompass large-scale networks with backbone core nodes and high-speed
links with different capacities, interconnecting heterogeneous Autonomous Systems
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(AS) with multiple access networks. In this way, core networks aggregate content requests
from different access networks, and unlike the edge, the temporal/spatial correlation of
requests is gradually reduced and becomes weaker as the content requests approach the
core nodes. Many solutions enhance ICN’s applicability at core network structures for
inter-domain network services such as routing (Liu et al., 2019a), traffic engineering
(Li et al., 2019), and globally accessible name schemes (Van Adrichem & Kuipers, 2013).

Because of the considerable physical distances naturally presented in large-scale
networks to connect content consumers and producers, requests typically have to traverse
several nodes within the network. Therefore, the network topology context must be
taken into account to optimize cache replacement policies in content-based core nodes.
Context properties, in this case, are related to the distance connecting two end-nodes, like
hop count, properties related to the network resources, like packet transmission cost, link
capacity, and time-related features with network delay for retrieving content.

The cache replacement schemes should also explore content and node contexts to reflect
globally content preferences and the different capacities of core nodes, respectively.
The content feature and popularity properties and node resource and traffic properties may
further increment the replacement policies’ decision. On the other hand, there is a trade-
off relating the performance while processing many context information, since core
routers process requests at line speed.

RESEARCH DIRECTIONS
In this section, we discuss different research directions for context-aware cache
replacement schemes in ICNs.

Context information management
Dealing with contextual information requires well-defined procedures on acquiring,
representing, reason, and distributing the information. Context information management
is widely studied and applied in many sciences that rely on context-awareness (Perera
et al., 2013). Still, it is a challenge for complex systems such as dynamically distributed
networks to efficiently perform online context management, especially when there is a
need to represent a high number of dimensions and elements relevant to represent
the domain. The integration between ICN and SDNs (Kim, Chung & Moon, 2015;
Charpinel et al., 2016; Yao et al., 2016; Kalghoum, Gammar & Saidane, 2018; Liu et al.,
2018; Saadeh et al., 2019) can further benefit context management solutions because of the
SDN paradigm’s centralized control view. It is necessary to investigate what context
information could be efficiently handled by central controlling.

The sets of context features identified within our proposed classification are enablers
to a semantic representation of the context domain and can be extended or adapted
according to different application requirements. However, towards an efficient real-world
deployment, there is also the need to argue about the quality of context information.
Quality can associate many aspects like reliability, precision, timeless, access right,
significance, granularity, and completeness. Those aspects are translated into metrics
defined by the science of Quality of Context (QoC) (Buchholz, Küpper & Schiffers,
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2003). The relevance of QoC metrics varies following the type of information. Hence,
different QoC metrics should follow the different context subcategories in each context
dimension.

Scalability of context suitability
Exploring context information is essential to address a mismatch between caching
policies and emerging networks. This exploration contributes to achieving more
potentially precise and customized techniques. However, the more the use of contextual
information, the more computationally expensive the caching scheme might become.
The need to compute more context information may increase the complexity of the
caching policy itself. Therefore, it is essential to investigate the performance cost of
individual context information and the solution as a whole. The performance cost depends
not only on managing the information but also on how the policy treats the information.

Machine learning techniques
In addition to being used for context information inference (Zhao et al., 2017;
Nakayama, Ata & Oka, 2015; Liu et al., 2018), machine learning techniques can
investigate how to exploit better context information to optimize the eviction process.

In one perspective, machine learning techniques could select which contextual
information is most relevant and should shape the eviction process. The relevance of
contextual information may vary depending on the network and objectives. This way,
given a network with a set of available contextual information, it would help investigate
how to choose what should be used by the eviction scheme to increase network
performance.

In another perspective, the techniques can direct the learning of the best kind of
policy based on what context information is available. Reinforcement learning techniques
have been successfully applied for caching schemes (Sung et al., 2016; Sadeghi,
Sheikholeslami & Giannakis, 2017). However, in those works, the context state is
represented solely by the cached contents in an instant of time. It would be relevant to
extend the concept of context to represent the state with more available information that
would impact the learning policy process. Depending on the number of context
information used, there may be a large space of possible states, which will require
considerable computational effort to represent the possible variations. When most of the
states are rarely revisited, the chosen technique must deal with some sort of generalization.
Furthermore, model-free techniques are best indicated when there is no previous
knowledge dataset to help the decision process.

Dynamic and adaptive instantiation of cache policies
Along with SDN and ICN, Network Function Virtualization (NFV) techniques are
strong candidates for realizing and fostering next-generation networks (Zhang et al., 2018;
Saadeh et al., 2019). Through the network function virtualization concept, in-network
caching strategies can quickly execute as Virtual Network Function (VNF) along with
some management structure. This combination paves the way for efficient deployment of
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adaptive caching policies according to the context’s dynamic changes. To realize a plug-
and-play vision of virtual function would be interesting to have a rich repository of
heterogeneous caching functions and multi-attribute functions exploring different
combinations of context information.

Human aspects
In recent years, the community has witnessed a growing number of researches focused on
solutions that exploit the human-user context to solve problems in different areas (Shafigh
et al., 2019; Zaidi et al., 2019; Zeng et al., 2019). Due to mobile computing expansion,
networking-related studies also tend to consider human aspects such as interactions,
social ties, and personality to propose human-awareness solutions. This movement
from device-to-device to people-to-people communication paradigm aims to look at
network configurations taking into account the user’s perspective, integrating human
perception approaches with QoS metrics, and further, with the mapping of user behavioral
profiles. Network contexts are more likely to cope with group-based rather than individual
user profiles. Different user profiles, such as personality profiles, may reflect distinct
patterns of how users in each profile interact with the network, and consequently, each
profile may produce different impacts on the network resource consumption. Therefore,
the network can adapt according to the predominant user profiles to improve the
distribution/consumption of resources and user QoE at the same time.

In ICN research, human factors present great potentials to improve the communication
service delivery, in particular through adaptive caching solutions (Ribeiro, Sampaio &
Ziviani, 2018). One approach is to explore potential correlations between user
characteristics and cache policies and adopt mechanisms for dynamically adapt the
most suitable caching strategies to the predominant user behavior. A key challenging
consists of finding out the human aspects that most positively impact the network
efficiency and how they could be operatively explored in ICN architectures. That requires a
multidisciplinary view with the integration of psychology research to support lower
granularity levels of user information.

Privacy
In-network cache aggregates benefits to ICN architectures by reducing bandwidth
consumption and the latency to deliver contents over the network, but it also introduces
architectural vulnerabilities regarding cache privacy (Acs et al., 2013). For example, in
side-channel timing attacks, a malicious user can deduce what content was accessed
recently by another user on the same network by merely measuring content delivery times
with standard content requests. Acs et al. (2013) discussed techniques for mitigating
privacy caching attacks in which contents marked as private could have different
treatments by the cache management mechanism. One countermeasure presented to
inhibit the timing attack consists of the insertion of artificial delay times in the content
delivery process, so the malicious user cannot differentiate which content was retrieved
from the cache or directly from the producer.
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Recent efforts from the NDN research community have tried to address many of the
current privacy concerns (Compagno et al., 2020; Dogruluk et al., 2020), but more work lies
ahead concerning the context information processed by caching strategies. The use of
context information to allow the dynamic adoption of the most appropriate cache policy
may require the processing of sensitive data of related users stored in communication
devices. One major concern resides in guaranteeing the anonymity of data processed,
particularly involving users for privacy-preserving cache management.

Similarly, there is a concern about the privacy of cache management strategies adopted
on the network routers. Fan et al. (2020) recently presented a method capable of detecting
the placement policy configured in the routers. As described in the malicious attempt to
discover the previously accessed content in the network, the method does not require any
privileged access and can infer a placement policy through ordinary content requests.
Knowing the strategies used for content management can enhance the inference
mechanisms of accessed content.

CONCLUSIONS
This article presented a comprehensive and systematic review of studies regarding cache
replacement policies in ICNs. The literature presents a vast set of eviction strategies
exploiting combinations of multi-dimension aspects of context information in different
ways, aiming at making more customized and effective decisions about the relevance of
contents. Thus, among its findings, the SLR showed the relevance of considering context’s
properties in choosing suitable replacement policies. The study revealed that efficient
utilization of cache resources in ICNs relies on deploying cache replacement policies
according to the network contexts. The SLR contributes to characterize the context factors
correlated with the caching policies and the reported effect of context variations on cache
replacement policies’ performance. The compilation of evidence shows no single context
factor determining the choice of policies; there is no explicit pattern regarding context
properties variations to support the choosing process of policies for different network
contexts. The results reaffirm the absence of a single optimal strategy to meet the
requirements of all network since the caching policies’ performances vary according to
different context characteristics. Additionally, the dynamic nature of most networks leads
to on-demand changes in the context characteristics, for instance, changes in traffic
patterns or user preferences, and the ICN strategies must adapt to these changes in an
attempt to ensure the best network performance. Therefore, there is the need to assist the
choosing process of suitable schemes according to the current context, and further, to cope
with the natural dynamism of context variations in networks.
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