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ABSTRACT
In this paper, a method that uses a ground-penetrating radar (GPR) and the adaptive
particle swarm support vector machine (SVM) method is proposed for detecting and
recognizing hidden layer defects in highways. Three common road features, namely
cracks, voids, and subsidence, were collected using ground-penetrating imaging. Image
segmentation was performed on acquired images. Original features were extracted
from thresholded binary images and were compressed using the kl algorithm. The
SVM classification algorithm was used for condition classification. For parameter
optimization of the SVM algorithm, the grid search method and particle swarm
optimization algorithm were used. The recognition rate using the grid search method
was 88.333%; the PSO approach often yielded local maxima, and the recognition
rate was 86.667%; the improved adaptive PSO algorithm avoided local maxima and
increased the recognition rate to 91.667%.

Subjects Adaptive and Self-Organizing Systems, Artificial Intelligence, Computer Vision,
Scientific Computing and Simulation
Keywords 5 Ground penetrating radar (GPR), Image segmentation, Feature extraction, Support
vector machine (SVM), Grid search method, Particle swarm optimization (PSO)

INTRODUCTION
Many forms of road deterioration can develop after prolonged utilization of expressways;
examples include crack formation, development of voids, and subsidence (Marecos et al.,
2017). The main cause of these conditions is the appearance of cracks under the roadbed,
which gradually affects the road surface and causes surface cracks. Continued use of
expressways causes incremental damage and can significantly increase the amount and
type of maintenance work. With increasing traffic volumes in China, it is necessary to
develop more efficient and automated road condition-detection methods.

Much research has been conducted on using ground-penetrating radars (GPRs) for
landform surveys. With the continuous development of the GPR technology and with the
improvement of detection accuracy, the use of the GPR technology for non-destructive
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detection of structural road conditions has been garnering increasing attention. Yuanlei
et al. used the GPR technology to detect different physical anomalies, based on physical
simulations and field tests, and the response characteristics across the two scenarios
were consistent (Si & Wang, 2018). Shili et al. used the GPR technology to detect hidden
defects, such as road breaks, voids, and subsidence, and acquired defect images (Guo,
Xu & Li, 2018). Literature (Liang & Su, 2001) uses amplitude attenuation method in
ultrasonic testing to evaluate the corrosion damage of reinforced structures in concrete
roads. Document (Mandal, Tinjum & Edil, 2016) detects the defects in concrete road
base by ultrasonic detection technology and establishes the mathematical model of
sound wave propagation in different media. Literature (Wen et al., 2011) establishes
the mathematical model of ultrasonic wave propagation in asphalt pavement and concrete
pavement to identify highway surface defects, analyzes its feasibility and realizes ultrasonic
nondestructive testing of road defects based on this.

Using methods from the image recognition field, this study focuses on the design of
shallow hidden defect classifiers based on the support vector machine (SVM) algorithm.
The SVMmethod has been widely studied and applied in different contexts. Hou improved
the SVM algorithm’s low precision around the hyperplane and reduced its computational
complexity for processing large amounts of data; they also improved the algorithm’s
training efficiency, and managed to reduce the number of false calls (Hou et al., 2018).
El-Saadawi & Hatata (2017) used the SVM algorithm for the stator winding protection of
synchronous generators, and achieved good results. The SVM algorithm has been widely
used in a variety of context, such as big data, medical, agricultural, and transportation
applications (Wang, Du &Wang, 2019; Wang et al., 2019; Zhang, Hu & Mao, 2008). Using
the SVM algorithm, this study optimizes and improves its parameter selection process.
By comparing the optimization performance of the grid search (GS) (Liu & Zhang, 2019)
method and the particle swarm optimization (PSO) (Yang et al., 2018) algorithm, the
superiority of the PSO algorithm is demonstrated, and the SVM classification algorithm
for PSO-based parameter optimization is studied (Ma et al., 2018). By collecting radar
images of three diseases on the 107 national highway section from Zhengzhou to Xinxiang
in Henan Province, it is shown that the obtained method performs well in detecting hidden
pavement defects.

Image preprocessing and feature extraction
Detection principle of the ground penetrating radar
In the GPR approach, the ground is irradiated by high-frequency electromagnetic waves
using a transmitting antenna, while the waves reflected from the ground are detected
using a receiving antenna. Electromagnetic waves are reflected differently from different
underground media; thus, different waveforms registered by the receiving computer for
analysis (Benedetto et al., 2017). Figure 1 shows the GPR detection process.

The reflection coefficient of an electromagnetic wave mainly depends on the dielectric
constants of the medium in which the wave travels originally and the medium from which
the wave is reflected, as given by Eqs. (1) and (2):
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Figure 1 GPR detection process.
Full-size DOI: 10.7717/peerjcs.417/fig-1

Figure 2 Image segmentation using the Canny operator. (A) Original image. (B) Gauss filter image. (C)
Canny operator processing.

Full-size DOI: 10.7717/peerjcs.417/fig-2

v =
√
ε1−
√
ε2

√
ε1+
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ε2

(1)

v =
c
√
ε1

(2)

where, r is the reflection coefficient; ε1 ε2 are the relative dielectric constant of the incident
medium and the medium from which the wave is reflected, v is the echo speed, and c is
the speed of light in vacuum.

Selection of the ground penetrating radar
The ground penetrating radar used in this study is LTD-2100 ground penetrating radar
system developed by China Electronics Technology Group Corporation. The main
components of the system are 900 MHz shielded antenna, data acquisition host, computer,
data cable, etc.
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Figure 3 Morphological processing of digital images. (A) Results obtained using the Canny operator.
(B) Results obtained using morphological processing.

Full-size DOI: 10.7717/peerjcs.417/fig-3

Image preprocessing
The original images of roads detected by a GPR include the reflection characteristics of
road conditions and various types of clutter caused by environmental factors. The clutter
distribution is typically non-uniform, affecting the correct recognition and classification
of road conditions. To improve the accuracy of the road condition determination, it is
necessary to remove the effect of this clutter (Bu, 2017). To extract the features associated
with various road conditions, the acquired images should be segmented.

Image filtering. The objective of image filtering is to minimize the effects of noise and
interference in raw images. The noise and interference are mainly attributed to the
processes –image acquisition and image transmission. Gaussian filtering is typically used
for image denoising, which can remove unnecessary interference and protect the edge of
the image.

Image segmentation. The objectives of image segmentation are to classify foreground and
background pixels, and to determine the organization of foreground pixels (i.e., detect
foreground objects) (Fengjun et al., 2018).

The Canny operator has been widely used for image segmentation of radar images,
and its segmentation performance after Gaussian filtering is demonstrated in Fig. 2.
Figure 2A is the original radar acquisition diagram. Figure 2B is the result after Gaussian
transformation. It can be seen that the clutter in the original image is removed. Figure 2C is
the disease characteristic waveform diagram extracted after Canny operator. To retain only
the necessary information, the image was subjected to the morphological operations of
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Figure 4 Projection segmentation results.
Full-size DOI: 10.7717/peerjcs.417/fig-4

expansion and corrosion; the results are shown in Fig. 3. Figure 3A is the image after Canny
operator segmented the disease waveform. Figure 3B is an enhanced disease waveform
diagram after the segmented waveform is processed by digital morphology, so as to
facilitate the extraction of disease features in the following text. The processed image was
segmented and objects were extracted using the vertical projection method, as shown in
Fig. 4.

Feature extraction. Feature extraction should satisfy the following requirements: (1)
features should have strong anti-interference ability; (2) features should be insensitive to
translation, rotation, and scale transformation of images; (3) features should be insensitive
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Table 1 Gray level co-occurrence matrix characteristics of cracks, voids, and subsidence.

Defect type crack

GLCM 0◦ 45◦ 60◦ 90◦

contrast 1.333 2.149 1.436 2.194
correlation 0.895 0.826 0.893 0.826
energy 0.724 0.708 0.728 0.702
homogeneity 0.988 0.962 0.972 0.967
Defect type void
GLCM 0◦ 45◦ 60◦ 90◦

contrast 0.998 1.501 1.273 1.806
correlation 0.473 0.235 0.335 0.075
energy 0.644 0.594 0.626 0.579
homogeneity 0.891 0.865 0.886 0.849
Defect type subsidence
GLCM 0◦ 45◦ 60◦ 90◦

contra 3.813 6.486 5.447 5.924
correlation 0.414 0.019 0.164 0.104
energy 0.795 0.750 0.768 0.758
homogeneity 0.931 0.884 0.902 0.838

Table 2 Differential statistical matrix characteristics of cracks, voids, and subsidence.

GLDS mean contrast asm ent

crack 0.048 289.831 0.916 0.261
void 0.141 660.909 0.589 2.186
subsidence 0.121 765.796 0.794 0.5202

to geometric distortions; (4) distance between similar images should be as small as possible;
and (5) distance between different images should be as large as possible. The algorithm for
extracting feature vectors should be simple, and the dimensionality of the feature space
should not be too high for ensuring the classification performance of the system (Xiao &
Liu, 2017). To satisfy the above requirements, the following features were used: area, image
complexity, image texture, and seven rectangular features.

In this study, three types of road hazards are studied, namely, road cracking, hollowing,
and subsidence. Through simulation and actual images, combined with the classification
of expert experience, three types of samples are collected to describe these conditions.
Twentynine feature vectors were extracted for each sample, and the obtained set of features
is shown in Tables 1, 2 and 3.

The dimensions of the different features are very different. Direct use of feature data
not only reduces the system performance, but also affects the classification accuracy. To
avoid this shortcoming, it is necessary to perform data normalization (Chowdhury et al.,
2019). Let the eigenvector of a pattern vector be X = (x1,x2,...,xm). Then the normalized
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Table 3 Seventh order invariant moment feature.

seven-order Humoment crack void subsidence

81 5.076 4.059 4.463
82 10.591 8.547 9.925
83 22.646 15.286 19.998
84 22.974 15.286 22.229
85 45.786 30.563 19.562
86 28.343 19.562 28.508
87 43.134 35.275 38.163

eigenvector x ′i is

x ′ij = 0.1+
0.8(xij−xi,min)
xi,max−xi,min

(i= 1,2,...,m) (3)

where, xi,max,xi,min are the maximum and minimum of {xi(k)|k−1,...,P}, and P is the
overall number of samples in the training set.

Feature selection. In this study, K −L transformation was used as the feature selection
algorithm (Jun, 2016). K −L transformation can take into account different classification
information and realize supervised feature extraction. Under the criterion of minimum
mean square error, it can obtain an orthogonal transformation matrix A that can map the
original feature X ′ from high-dimensional space D to low-dimensional space vector y ′.
K−L transformation can retain the data component with the largest variance in the original
data and highlight the data difference. Empirical knowledge was used for removing several
highly correlated features, and K−L changes were used for reducing the dimensionality of
the original feature space. A relatively simple class-center classifier was used for identifying
the samples after the K −L dimensionality reduction transformation. The recognition rate
is shown in Fig. 5 for the test set.

According to Fig. 5, when the dimensionality of the feature space reaches 12, the
recognition rate saturates; thus, the optimal dimensionality of the feature space is 12. K−L
transformation can take into account different classification information, realize supervised
extraction of featureswith too high correlation, and then useK−L transformation to extract
data information from them, thus achieving the purpose of compressing dimensions and
improving recognition rate.

The SVM classifier design

Basic principle of the SVM
SVM is a binary classification algorithm that is trained using the supervised learning
paradigm. The algorithm attempts to determine an optimal classification hyperplane,
whereby the edge distance between two sample classes and the dividing hyperplane
(decision boundary) is maximized. The larger the edge distance is, the more separated
the two sample classes are, the stronger the classification robustness, and the better the
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Figure 5 Dependence of the recognition rate on the number of features.
Full-size DOI: 10.7717/peerjcs.417/fig-5

method’s generalizability (Liu et al., 2018). The hyperplane equation is

ωTx+b= 0 (4)

whereω is the normal to the hyperplane, and x determines the angle with the hyperplane;
b is the distance between the hyperplane and the origin. The hyperplane is denoted as (ω,b);
then, the distance from a certain point (sample) to the hyperplane (ω,b) is denoted by r :

r =

∣∣ωTx+b
∣∣

‖ω‖
(5)

Let the support vector be 1 and point away from the hyperplane, so that
∣∣ωTx+b

∣∣= 1,
and let the vectors in the two different classes be γ and point away from the hyperplane:

γ =
2
||ω||

(6)

For optimal segmentation, we need to find the hyperplane with the largest interval; that
is, we need to find the parameters ω and b that maximize γ . According to Eq. (6), only
‖ω‖−1 should be maximized.

Optimization of the SVM classifier parameters
We used MATLAB (Mathworks, Inc.) to validate the diagnostic accuracy of the SVM-
based classifier with respect to the road conditions. We obtained a dataset comprising 100
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Figure 6 Parameter optimization results of the grid search method.
Full-size DOI: 10.7717/peerjcs.417/fig-6

examples of road cracking, hollowing, and subsidence conditions; 80% of these images
were used for training the method, while the remaining 20% were used for testing the
classifier.

The performance of any SVMclassifier depends on the penalty factor and kernel function
parameters. The optimal parameter values are typically determined using the grid search
approach, which exhausts the set of possible parameter combinations to determine the
optimal combination.

The penalty term c and the kernal function parameters g were considered to grow
exponentially in the [2−14,214] range; at the same time, the step between each cell on the
grid was set to 0.5, that is, the growth time-points were 2−14,2−13.5,...,214. As shown
in Fig. 6, the best classification performance was obtained for log2(c)=7.60, best log2(g )
=−6.60.

As shown in the retrieval results above, the accuracy of log2(c) between [2
5,210] and

log2(g ) between [2
−10,2−4] was relatively good; thus, the step was set to 0.2 in this range,

and the parameters were further optimized. The results are shown in Fig. 7.
According to Fig. 7, the best classificationwas obtained for best= 7 and best=−5.2. These

optimal values were used as the SVM classifier parameters for validating its classification
performance; then, the accuracy of the classifier with these parameters was characterized.
The validation results are shown in Fig. 8, and the final validation accuracy rate was
88.333%, the image recognition time is t = 0.630 s.

Adaptive mutation particle swarm
The results obtained using the grid search approach can meet the desired detection
requirements, but because the grid search approach only considers discrete combinations
of parameters, the optimal solution can be easily missed. At the same time, the grid search
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Figure 7 Results obtained after refining the step size.
Full-size DOI: 10.7717/peerjcs.417/fig-7

Figure 8 Test-set classification results after the grid search optimization of the SVM classifier parame-
ters.

Full-size DOI: 10.7717/peerjcs.417/fig-8
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method is exhaustive, and needs to consider all the possible cases; thus, this optimization
approach is time-consuming. To improve the accuracy and reduce the computation time,
the PSO algorithm is proposed in this section.

The PSO approach. PSO simulates a flock of birds, which are modeled as massless
particles (Hsieh et al., 2018). Each particle has only two attributes: velocity v and position
x . Velocity represents the speed of movement, and position represents the direction of
movement. Each particle searches for the optimal solution separately in the search space,
and records it as the current individual extreme value P ; the individual extreme values are
shared among all the particles in the entire swarm, and the optimal individual extreme
value is determined as the current global optimal solutionG of the entire swarm of particles.
All of the particles in the particle swarm adjust their speeds and positions according to
the current individual extremum P found by themselves and the current global optimal
solution G shared by the entire particle swarm. The underlying PSO process is relatively
simple, and can be divided into the following steps: (1) initializing the particle swarm; (2)
evaluating the particles, that is, calculating the fitness values; (3) searching for individual
extrema P ; (4) searching for the global optimal solution G; (5) modifying the particles’
speeds and positions (Yang, Wang et al., 2019). The update equations are:

vk+1id =ωv
k
id+ c1 · rand(0,1) · (p

k
id−x

k
id)

+c2 · rand(0,1) · (pkgd−x
k
id)

xk+1id = xkid+v
k+1
id

(7)

Where ω is the inertia factor, c1 and c2 are the acceleration constants, and rand (0,1)
are random numbers in the interval (0,1). pid denotes d the dimension of the individual
extreme value of variable i.pgd represents the dimensionality d of the global optimal
solution. k represents the current number of iterations.
The PSO approach. The following parameter values were used: c1= 2,c2= 2, population
size = 20, maximal number of iterations = 200, and cross-validation fold K = 5. The
fitness curve for the optimized SVM classifier parameters is shown in Fig. 9.

After iteration 15, the fitness reached its optimal value. At this point, the classifier
accuracy was 89.197%, the best c was 0.7596, and the best g was 0.7674. Although the basic
PSO algorithm exhibits a good convergence speed and good optimization performance, it
can prematurely converge onto a locally optimal solution; as a result, the population will
easily stagnate without external pressure.

Variation improvement. To deal with the premature convergence problem, we utilized the
concept of mutations that is often used in genetic algorithms, and incorporated mutations
into the PSO framework. For that, we defined a trigger to allow particles to escape locally
optimal solutions, thus ensuring a global search (Tong et al., 2018). The population fitness
variance σ 2 was used for determining whether a localmaximumwas reached in the iteration
process. The population fitness variance σ 2 was defined as follows:

σ 2
=

N∑
i=1

(
fi− favg

f
)2 (8)
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Figure 9 Fitness curve obtained after the PSO.
Full-size DOI: 10.7717/peerjcs.417/fig-9

In the above equation, N is the number of particles, f is the normalized calibration
factor, fi is the fitness of the first particle, and favg is the average fitness. It can be seen that
the larger the value of σ 2, the more divergent the particle swarm; conversely, the smaller the
population fitness variance, the more convergent the particle swarm is. Values of σ 2 close
to zero indicate that the particle swarm is approaching the globally optimal solution or is
converging onto a locally optimal solution. To avoid premature trapping of the particle
swarm in local optima, the swarm is subjected to mutations:

xi(k+1)=C · rand(0,1) ·xi(k) (9)

In the above equation, C is a normally distributed random number in the [0,1] interval
and is the variation factor; rand(0,1) is a random number in the [0,1] range; k is the
number of iterations. Mutations alter the particles’ positions and thus allow to escape local
optima (Deng et al., 2019).

The fitness curve of the improved adaptive mutation PSO algorithm for SVM-based
parameter optimization is shown in Fig. 10. Evidently, the best fitness converges to a local
maximum after 17 generations. Mutations allow the particle swarm to escape this local
maximum after 97 generations; after that, optimization parameters are determined with
higher accuracy. The finally estimated parameter values are: c = 7.751, g = 5.754. The
fitness at this global optimum is 91.698%.
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Figure 10 Fitness curve obtained after the variant PSO.
Full-size DOI: 10.7717/peerjcs.417/fig-10

Simulation results. Based on the results in the previous section, the SVM model was
constructed using the following parameter values: c = 0.7596 and g = 0.7674, which were
determined using the PSO method. The results are shown in Fig. 11.

For these parameter values, the accuracy of the model was 86.667%, the image
recognition time is t = 0.590s; however, the recognition accuracy had not improved.
The main explanation was the trapping of the particle swarm in a local optimum during
the process of parameter optimization. An SVM classifier was then constructed and
validated using c = 7.751 and g = 5.754; these parameter values were determined using the
adaptive mutation PSO algorithm. The validation results are shown in Fig. 12.

From Fig. 12, the classification accuracy of the SVM classification model with the
parameter values determined by the adaptive mutation PSO was 91.667%, the image
recognition time is t = 0.615s. This classification accuracy is significantly higher compared
with that achieved by the SVM method that uses parameters optimized by the grid search
approach.

CONCLUSIONS
According to the requirements of automatic recognition of highway hidden layer
conditions, this paper proposes an automatic detection and recognition method that

Liu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.417 13/18

https://peerj.com
https://doi.org/10.7717/peerjcs.417/fig-10
http://dx.doi.org/10.7717/peerj-cs.417


Figure 11 Validation results of the SVMmodel, for conventional PSO.
Full-size DOI: 10.7717/peerjcs.417/fig-11

uses an SVM with parameters optimized using the adaptive mutation PSO approach. In
this method, PSO with mutations is used for parameter optimization. In this study, three
different methods were used for parameter optimization: (1) the grid search method,
(2) the PSO approach, and (3) the adaptive mutation PSO. MATLAB and Python were
used for implementing these optimization methods, and the optimization processes and
their results were validated. Compared with the grid search method and the simple PSO
approach, the accuracy of the SVM with parameters optimized using mutation PSO
was higher, translating into better performance on automatic identification of highway
conditions. Our simulation results showed that the classification accuracy of the SVM
classifier with the grid search method was 88.333%, the classification accuracy of the SVM
classifier with PSO was 86.667%, and the classification accuracy of the SVM classifier
with mutation PSO was 91.667%. Thus, the effect of SVM classifier with mutation PSO
is obviously better than that of the other two. Compared with the grid search method,
the classification accuracy was improved. However, owing to the pre-processing of images
and processing of feature-related data, some defect-related information is likely to become
distorted, which can affect the accuracy of recognition. If a zero-distortion image processing
method can be found, the recognition accuracy will be greatly improved. At present, only
cracks, voids and subsidence can be analyzed and studied, while asphalt pavement diseases
and defects can be divided into 11 categories and 21 items. In order to better improve
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Figure 12 Validation results of the SVMmodel, for variant PSO.
Full-size DOI: 10.7717/peerjcs.417/fig-12

the scope of the identification system, further research should be done on other types of
defects.
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