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ABSTRACT
A microarray is a revolutionary tool that generates vast volumes of data that
describe the expression profiles of genes under investigation that can be qualified as
Big Data. Hadoop and Spark are efficient frameworks, developed to store and analyze
Big Data. Analyzing microarray data helps researchers to identify correlated genes.
Clustering has been successfully applied to analyze microarray data by grouping
genes with similar expression profiles into clusters. The complex nature of
microarray data obligated clustering methods to employ multiple evaluation
functions to ensure obtaining solutions with high quality. This transformed the
clustering problem into a Multi-Objective Problem (MOP). A new and efficient
hybrid Multi-Objective Whale Optimization Algorithm with Tabu Search
(MOWOATS) was proposed to solve MOPs. In this article, MOWOATS is
proposed to analyze massive microarray datasets. Three evaluation functions have
been developed to ensure an effective assessment of solutions. MOWOATS has
been adapted to run in parallel using Spark over Hadoop computing clusters.
The quality of the generated solutions was evaluated based on different indices, such
as Silhouette and Davies–Bouldin indices. The obtained clusters were very similar to
the original classes. Regarding the scalability, the running time was inversely
proportional to the number of computing nodes.

Subjects Computational Biology, Algorithms and Analysis of Algorithms, Data Mining and
Machine Learning, Data Science, Distributed and Parallel Computing
Keywords Datamining, Swarm intelligence, Distributed and parallel computation,Microarray data

INTRODUCTION
A microarray is a high throughput laboratory tool used to expose samples (genes, contigs,
non-coding sequences) to different experimental conditions simultaneously (Bolon-
Canedo et al., 2014). It generates data that describe the expression profiles of samples
during experiments. Analyzing microarray data can help researchers to discover valuable
information about samples, such as identifying correlated genes (Liu, Cheng & Tseng,
2013; Chou et al., 2007), predicting patient response to specific treatments (Ban et al.,
2011), and identifying different classes of cancer (Saber & Elloumi, 2015). Clustering
has been an important data analysis tool (Jain, Murty & Flynn, 1999). Multiple
clustering methods were proposed to analyze microarray data (McDowell et al., 2018;
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Chandra & Tripathi, 2019). These methods group samples with similar expression profiles
into clusters as a way to reveal hidden patterns of samples (Jothi, Mohanty & Ojha, 2016).

Clustering methods used a single objective function to evaluate the quality of
generated clusters (McDowell et al., 2018; Chandra & Tripathi, 2019). To improve the
quality of the obtained clusters, clustering methods used multiple objective functions to
evaluate the generated clusters (Mukhopadhyay, Maulik & Bandyopadhyay, 2015;
Acharya & Saha, 2018; Parraga-Alava, Dorn & Inostroza-Ponta, 2018). This converted the
clustering problem into a Multi-Objective Problem (MOP).

Pareto Optimization (PO) is one of the main techniques used to solve Multi-Objective
Problems (MOPs) (Freitas, 2004). It aims to optimize the whole objectives simultaneously.
It generates a set of best solutions called “non-dominated” solutions (Freitas, 2004).
PO can be used to identify the best solutions regarding multiple objective functions.
To provide efficient coverage of the solution space, researchers paid attention to combine
PO with Swarm Intelligence (SI) methods. The latter mimics the intelligent behavior of
organisms that live into groups to provide an efficient coverage of the solution space
(Talbi, 2009). Many SI methods have been proposed to cluster microarray data based on
PO (Paul, Shill & Kundu, 2016; Mandal & Mukhopadhyay, 2017; Zareizadeh et al., 2018).

A new hybrid SI method based on hybridizing Whale Optimization Algorithm
(WOA) with Tabu Search (TS) (WOATS) was proposed for data clustering (Ghany et al.,
2020). WOATS was tested over multiple real-life datasets and it was able to obtain high
quality clusters regarding both homogeneity among cluster members and separation
among clusters. The new hybrid method was extended to be applied for MOPs
(MOWOATS), which was proposed by AbdelAziz et al. (2019). MOWOATS used the
memory elements of TS to enhance both the intensification and diversification techniques
of the basic WOA. Also, MOWOATS used PO to ensure that all objectives are optimized
simultaneously. MOWOATS stored non-dominated solutions in an Elite List (EL)
inspired by TS. MOWOATS incorporated the crossover operator to improve the diversity
of solutions and to ensure faster convergence rates. Due to these enhancements,
MOWOATS was able to find high-quality solutions for multiple benchmark multi-
objective test functions, such as CEC2009, ZDT, and DTLZ (AbdelAziz et al., 2019).

Recent advances in microarray technology allowed researchers to run thousands of
experiments on multiple genes simultaneously, generating an enormous amount of data.
These amounts of data comply to Big Data characteristics (Demchenko et al., 2012),
thus raising the need to store, manage, and process genomic data with huge volumes
(Wong, 2016). Hadoop (2020) and Spark Guller (2015) are Big Data technologies that
provide both management and analysis for massive datasets. Spark is a programing
framework that allows algorithms to run in parallel over distributed computing nodes
(Guller, 2015). It uses the Resilient Distributed Dataset stored in memory to analyze
distributed data, which ensures faster processing and avoids disk I/O burden encountered
by Hadoop MapReduce (Guller, 2015). As a result, Spark can execute tasks that fit in
memory 100 times faster than MapReduce. Even if data are larger than the cluster
computing memory, Spark can run algorithms 10 times faster than MapReduce (Guller,
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2015). These enhancements can enable Spark to minimize the running time of parallel
algorithms to near real-time.

MOWOATS presented a good performance in solving multi-objective test functions
(AbdelAziz et al., 2019), such as Zitzler-Deb Thiele (ZDT) (Deb et al., 2002), [−15]Deb-
Thiele-Laumanns Zitzler (DTLZ) (Deb et al., 2002), and CEC2009 test functions (Zhang
et al., 2009). The method performance was evaluated according to the inverted
generational distance metric (Li & Yao, 2019) and showed its ability to obtain solutions
near Pareto front and evenly distributed over solution space. But a research question has
appeared here, do we need to adapt to Big Data frameworks? Do we need to apply
parallelization? We found that in order to run MOWOATS over massive datasets,
it requires adaptation to Big Data frameworks. As Hadoop stores data in distributed nodes
and Spark executes tasks in parallel, it is necessary to parallelize the components of
MOWOATS to reap the benefits of these technologies. Parallelization ensures that
MOWOATS can run faster than when it runs sequentially, which allows faster analysis for
Big Data. In this article, MOWOATS is proposed to be applied in clustering microarray
datasets based on three objective functions. These objective functions are developed to
ensure finding the best set of clusters. Both intensification and diversification techniques
are applied to ensure efficient coverage of the solution space of aMOP, while PO is used to
identify non-dominated solutions. The main contributions of this paper can be
summarized into:

� RedesignMOWOATS to parallelize its components and objective function to work over
Hadoop and Spark frameworks.

� Test and analyze MOWOATS performance over small and medium-sized datasets
according to both statistical methods (Silhouette index, Dunn index, Davies–Bouldin
index) and a visual method (Eisen plot).

� Apply the parallelized version of MOWOATS over three real-life massive biological
datasets to assess the performance of MOWOATS regarding two criteria: quality of
obtained clusters and the scalability of the algorithm.

To assess the effectiveness of MOWOATS in analyzing microarray datasets, it has been
applied over multiple real-life public small and medium-sized microarray datasets
(Maulik, Mukhopadhyay & Bandyopadhyay, 2021). Quality of generated clusters has been
measured using multiple validation methods, such as the Silhouette index (Rousseeuw,
1987), the Davies–Bouldin Index (DBI) (Davies & Bouldin, 1979), the Dunn Index (DI)
(Dunn, 1974), and the Eisen plot (Eisen et al., 1998). These methods represent both
statistical and graphical assessment metrics for generated clusters. Then, MOWOATS has
been applied over massive microarray datasets to assess its performance according to
the quality of generated clusters and the scalability of the algorithm. The microarray
datasets used in the evaluations are all publicly available in the National Center for
Biotechnology Information (NCBI) (NCB, 2020). The scalability of MOWOATS has been
evaluated by running it on computing clusters with different number of nodes. Results
showed that the running time was inversely proportional to the number of computing

AbdelAziz et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.416 3/26

http://dx.doi.org/10.7717/peerj-cs.416
https://peerj.com/computer-science/


nodes. Also, the quality of generated clusters has not been affected with the size of the
datasets, which reveals the efficiency of the modified MOWOATS algorithm, objective
functions, and the programing code in reaping the benefits of Spark framework.

The article is organized as follows: the “Related Work” section gives a brief description
of microarray technology and presents the recent work related to the proposed method.
“Crossover Operator” describes the components of the algorithm, a pseudo-code of
MOWOATS, a mathematical representation of the objective functions, and the selection
criterion of the best solution. It also describes the modifications made to parallelize
MOWOATS components and the objective functions. “Crossover Operator” reports the
performance analysis of MOWOATS over small and mid-sized datasets according to the
Silhouette index, DBI, DI, and the Eisen plot. Also, it reports the performance analysis of
MOWOATS over real-life massive microarray datasets according to the quality of
generated clusters and the algorithm scalability. “Crossover Operator” summarizes the
main points of our work and the future work that we aim for.

RELATED WORK
Microarray generates data that describe the expression profiles of samples being
investigated during the experiment time (Bolon-Canedo et al., 2014). These data can be
represented in the form of a matrix considering each sample as an instance and the sample
status over different times as the features of each instance. Table 1 presents an example
of the first set of rows of the Human Fibroblasts Serum microarray dataset (Maulik,
Mukhopadhyay & Bandyopadhyay, 2021). Analyzing microarray data enables researchers
to obtain valuable information, such as identifying correlated genes (Chou et al., 2007),
evaluating the response of cells to a specific type of treatment (Ban et al., 2011), and
identifying different types of cancer (Saber & Elloumi, 2015).

Clustering microarray data is not a trivial task. It operates over datasets with no
prior information about labels of data objects (Berry & Browne, 2006). To improve
the quality of clustering solutions, clustering methods developed different objective
functions to improve the assessment of the homogeneity of data objects in each cluster
and the separation among clusters (Maulik, Mukhopadhyay & Bandyopadhyay, 2009;
Bandyopadhyay, Mukhopadhyay & Maulik, 2007; Maulik, Bandyopadhyay &
Mukhopadhyay, 2011; Acharya & Saha, 2018; Parraga-Alava, Dorn & Inostroza-Ponta,

Table 1 An example of the first set of rows of the human fibroblasts serum microarray dataset
(Maulik, Mukhopadhyay & Bandyopadhyay).

Genes t = 0 h t = 15 min t = 30 min t = 1 h t = 2 h … t = 24 h

W95908 1.5962 0.534 −1.8179 −0.035017 1.8996 … −0.22469

AA045003 0.095122 2.0874 0.26687 0.61037 0.85082 … −0.76362

AA044434 0.84243 1.359 0.68745 0.84243 0.32584 … −1.9471

W88572 1.1363 0.98137 1.1363 0.36156 0.30991 … −0.67147

AA059077 0.23452 1.6489 1.6175 0.61169 0.54883 … −1.777

AA035657 0.64514 1.2043 1.0179 0.64514 0.94334 … −1.6286

AA180272 0.28406 1.3116 1.408 0.70151 0.28406 … −1.5463
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2018). This converted the clustering problem from a single objective problem to a
multi-objective one (Parraga-Alava, Dorn & Inostroza-Ponta, 2018). An example of
applying multiple objective functions to analyze microarray data was proposed byMaulik,
Mukhopadhyay & Bandyopadhyay (2009). The method proposed an improved clustering
algorithm, based on two validity indices to assess the quality of the generated clusters.
The best solutions were stored into a non-dominated set and a majority vote method
was used to combine clustering information from all solutions stored in the non-
dominated set. Genes were assigned to clusters with the highest membership degree.
This reveals the importance of applying multi-objective validity indices to find best
clusters.

To provide a faster coverage of the multi-objective solution space, researchers paid
attention to the combination of SI methods with PO. Since (Schaffer, 1984) proposed
combining SI methods with PO to solve MOPs, many SI methods have been developed
for analyzing microarray data using this strategy (Maulik, Bandyopadhyay &
Mukhopadhyay, 2011; Mukhopadhyay, Maulik & Bandyopadhyay, 2015; Paul, Shill &
Kundu, 2016; Mandal & Mukhopadhyay, 2017; Zareizadeh et al., 2018). An example of
these methods was a Multi-Objective Clustering algorithm Guided by a-Priori Biological
Knowledge (MOC-GaPBK) for microarray data analysis, proposed by Parraga-Alava,
Dorn & Inostroza-Ponta (2018). The method focused on developing efficient
intensification and diversification techniques to cover the solution space efficiently, and
used PO to ensure an optimization of the whole objectives. MOC-GaPBK revealed the
importance of employing intelligent methods to cover the solution space. MOC-GaPBK
developed a gene ontology method to enhance the identification of similarity among
genes. The method was tested over small and medium-sized datasets and presented its
ability to obtain clustering solutions with good quality (Parraga-Alava, Dorn & Inostroza-
Ponta, 2018). The method was not extended to be applied over large datasets.

Previous methods were tested over small and medium-sized microarray datasets
(Paul, Shill & Kundu, 2016; Mandal & Mukhopadhyay, 2017; Parraga-Alava, Dorn &
Inostroza-Ponta, 2018). Recent advances in microarray technology led to constructing
microarray datasets for different illnesses and for different species (NCB, 2020). The
volume of these microarray datasets is qualified as Big Data (Demchenko et al., 2012).
This led researchers to pay attention to adapt SI methods to Big Data technologies,
such as Hadoop MapReduce and Spark (Guller, 2015). These conceptual and computing
frameworks can enable analytical algorithms to run in parallel over distributed computing
nodes.

An attempt to apply clustering methods in analyzing large microarray datasets was
proposed by Hosseini & Kiani (2018). They proposed a Fuzzy Weighted Clustering
algorithm based on Hadoop MapReduce (FWCMR). The FWCMR method was tested
over multiple large microarray datasets, stored over distributed nodes and it was validated
by applying multiple clustering validity indices to verify its effectiveness.

Due to the enhancements made in Spark, it has been a perfect replica of Hadoop
MapReduce (Guller, 2015). This encouraged researchers to develop algorithms based on
Spark instead of Hadoop MapReduce (Guller, 2015). Hosseini & Kiani (2019) proposed a

AbdelAziz et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.416 5/26

http://dx.doi.org/10.7717/peerj-cs.416
https://peerj.com/computer-science/


Distributed Density based Clustering approach that used Hesitant Fuzzy weighted
correlation coefficient as a similarity measure (DDHFC). The method was adapted to
run over Spark framework to avoid the delay of Hadoop MapReduce. The method
running time was significantly less than the running time of the recently proposed
MapReduce one. Hosseini & Kiani (2019) used a single objective to analyze microarray
datasets. This approach can be improved by employing multiple objective functions to
ensure obtaining high quality solutions in a smaller time.

Background
This section presents a description of main components ofMOWOATS algorithm, such as
tabu search, WOA, intensification by crossover, and diversification by crossover
procedures.

Tabu search
TS is a single-point meta-heuristic method that has been first proposed by Glover (1986) as
a global optimizer. TS employs memory elements to improve the coverage of solution
space. TS stores best solutions in an Elite List EL to identify promising regions to be
searched thoroughly. The main problem of solvingMOPs using TS is the usage of a single
solution to cover solution space, which is not applicable for real-life problems.

Whale optimization algorithm
WOA is a SI method that mimics the behavior of the humpback whale to cover solution
space, which has been proposed by Mirjalili & Lewis (2016). WOA simulates the bubble-
net technique to provide an effective exploitation of promising regions. For the
exploration, WOA applies the communication mechanism employed by whales to cover
vast areas in ocean. WOA incorporates the communication technique among swarm
members to provide a better coverage of solution space (Mirjalili & Lewis, 2016). WOA
has been applied over multiple optimization and engineering problems and showed itself
as an efficient global optimizer. The complete pseudocode of WOA is presented in
Algorithm 1.

Crossover operator
Crossover is operator has been inspired by genetic algorithm (Goldberg, 1989) to improve
the quality of obtained solutions and enhance the diversity of the population. Crossover is
applied by combining the two solutions in a random way to generate a new solution.
This operator has been incorporated in MOWOATS to improve both the intensification
and diversification techniques. In intensification, MOWOATS applies crossover among
swarm members and non-dominated solution in EL to ensure covering the promising
regions in solution space. In the diversification, MOWOATS applies crossover among
swarmmembers to generate new solutions that preventsMOWOATS from getting trapped
in local optima (AbdelAziz et al., 2019).
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THE PROPOSED METHOD
In this section, the main components of the proposed method are described. A pseudo-
code of MOWOATS and a mathematical representation of the objective functions are
given. MOWOATS generates multiple solutions for the problem, so the Silhouette index
(Rousseeuw, 1987) is used to determine the best solution with the highest value.

Objective functions
MOWOATS applies three clustering validity indices to assess the quality of the obtained
centroids: SSI (Wang et al., 2004), Xie-Beni index (Xie & Beni, 1991), and overall
cluster deviation (Handl & Knowles, 2007). These objective functions evaluate the
homogeneity among data objects in each cluster and the separation among clusters.
The SSI (Wang et al., 2004) is applied instead of the Silhouette index (Rousseeuw, 1987)
because it can be computed in parallel in contrast with the Silhouette index. SSI (3)

Algorithm 1 WOA algorithm.

Initialize the whales population Xi (i = 1,2,…,n)

Calculate the fitness of each search agent

X* = the best search agent

while t < maximum number of iterations do

for each search agent do

Update a, A, C, l, and p.

if (p < 0.5) then

if (|A| < 1) then

Update the position of the current whale with a random position in the neighborhood of the best
solution in the current swarm.

else if (|A| ≥ 1) then

Select a random agent (Xrand) from current swarm.

Update the position of the current whale with a random location in the neighborhood of the
random agent Xrand.

end if

else if (p ≥ 0.5) then

Update the position of the current whale according to the bubble-net technique.

end if

end for

Check if any search agent goes beyond the search space and amend it

Calculate the fitness of each search agent

Update X* if there is a better solution

t = t + 1

end while

Return X*
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computes the distance to the centroids of the clusters instead of the points of each cluster.
SS(i) (3) represents the distance of each data point i to its cluster centroid where a(i)′ and
b(i)′ (Wang et al., 2004) stands for the distance from the data i to its point to its nearest
cluster centroid. The Xie-Beni index (1) evaluates the coherence among data objects in
each cluster and separation among cluster centroids. Overall cluster deviation (2) measures
the total distance among data objects and their centroids. Table 2 presents the objective
functions and the mathematical definition of each function.

Multi-objective whale optimization algorithm combined with tabu
search
Due to the drawbacks of WOA, such as selecting the swarm leader (Zhu et al., 2017),
getting trapped in local optima (Wei et al., 2018), and obtaining solutions that are not
evenly distributed over solution space (Wei et al., 2018).MOWOATS has been proposed to
combine the WOA with TS to obtain almost optimal solutions of MOPs (AbdelAziz et al.,
2019). MOWOATS employed the memory elements of TS to store best solution in EL,
which provided a better guidance to swarm members while covering the solution space.
Also, MOWOATS applied crossover operator among swarm members to improve the
diversity in population and with non-dominated solutions in EL to enhance the quality of
swarm members.

MOWOATS (AbdelAziz et al., 2019) starts with setting the main parameters of the
algorithm. First, a set of solutions are generated randomly from the expression profile
dataset to represent the initial population. Objective values of swarm members are
computed based on Eqs. (1)–(3) according to Algorithm 3. Then, the algorithm updates
the EL with the best solutions from the initial population according to the dominance
criterion of PO. The non-dominated solutions in EL are then used to guide the swarm
members of WOA. This improves the ability of MOWOATS to avoid getting trapped in
local optima as the leading whale is selected randomly from EL. Depending on the p
parameter, MOWOATS determines whether to apply intensification or diversification
techniques. MOWOATS increases the chances of diversification to ensure obtaining

Table 2 Objective functions used to evaluate the quality of cluster centers.

Parameter Definition Value

Xie-Beni index (XB) Xie & Beni (1991)measures
the quotient between the total variance and the
minimum separation of the elements in the
clusters.

XB ¼
PK
k¼1

Pn
i¼1

D2ðCk;XiÞ
n�mink6¼lD2ðCk;ClÞ (1)

Minimization

Overall cluster deviation (Dev)Handl & Knowles
(2007) is defined as the overall summed
distances between genes and their
corresponding cluster centroid.

Dev ¼
XK
k¼1

X
xi2Ck

DðCk;XiÞ (2) Minimization

Simple Silhouette Index (SSI) Wang et al. (2004)
is used to evaluate the accuracy of assigning
points to clusters.

SSI ¼ 1
n

Xn
i¼1

ssðiÞ; ssðiÞ ¼ 1� aðiÞ0
bðiÞ0 (3) Maximization
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solutions are uniformly distributed over the solution space. The solutions stored in EL
are used to guide swarm members during both intensification and diversification phases,
so that the algorithm can ultimately escape from local optima. In case that the number of
iterations without improvement exceeds the parameter (Max_nonImprove),
MOWOATS applies randomly either intensification using crossover or diversification
using crossover procedures over the swarm members (AbdelAziz et al., 2019).
The crossover is conducted by selecting a random number of centers from a solution
to be replaced by the same centers in another solution. The number of swarm members
involved in this operation is randomly selected on the condition that this number does not
exceed the half number of the swarm members. These procedures work to improve the
diversity within solutions. At the end of the algorithm, the non-dominated solutions stored
in EL are returned. The complete pseudocode of the MOWOATS algorithm is presented in
Algorithm 2.

Selecting the best solution
As explained above, the solutions in EL represent the best solutions that cannot be further
enhanced, in the sense that improving a single objective in non-dominated solutions leads
to minimizing the quality of other objectives. To select the best solution from EL, the
Silhouette index (S) is used (Rousseeuw, 1987). The silhouette index can be computed for a
point i as:

SilðiÞ ¼ bi � ai
maxðai; biÞ (4)

where ai is the average distance among point i and points in the same cluster, bi represents
the average distance among point i and points in other clusters. The total silhouette index
is computed as the average for all the clusters’ points, which is given by the following
equation:

SðCÞ ¼ 1
n

Xn
i¼1

si (5)

The solution with the highest S(C) value is selected.

Adapting MOWOATS with spark framework
Figure 1 presents a block diagram of the main components ofMOWOATS algorithm after
its adaptation to Hadoop and Spark frameworks. The original microarray data has been
stored in the Hadoop computing cluster. Hadoop partitions the data randomly, each set
of data instances are stored in a computing node. MOWOATS main components have
redesigned to run in parallel instead of sequential execution. The main time consuming
part in MOWOATS is the evaluation of centroids of each solution. This part has been
programed to run in parallel over Spark framework (Guller, 2015). The centroids are
taken by Spark to broadcast them to all computing nodes that store data instances.
Then, computing nodes compute the distances among centroids and data instances in each
node in parallel. The distances are then sent to the master to compute the Xie-Beni (1),
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overall deviation (2), and SSI (3) to assess the quality of each solution. This technique
decreases the processing time as each node computes the distance for data instances stored
in it. Also, it minimizes the traffic overhead over network as slave nodes return only
the distances not the data instances themselves. In our implementation, the Spark
dataframe has been used to hold the microarray dataset (Guller, 2015). This improved the
scalability of the algorithm and ensured a better utilization of the data processing
resources.

A pseudo code of the parallel objective function is given in 3. The function takes a
solution S as an argument. The function resides in the master node. The function starts by
broadcasting the centroids of the solutions to all computing nodes that stores data
instances in. Each computing nodes traverses the whole data instances stored in it to
compute the distance between each data instance and the centroids. For each data instance,
the distance value and the index of centroid with minimum distance value are stored.
The computing nodes combines the distances and indices to send them back to the master
node in (Key, Value) structure. The master node combines the whole distances and indices
to compute the objective values according to Algorithm 3.

NUMERICAL EXPERIMENTS
The proposed method was implemented in a virtual machine environment with host
operating system Linux (UBUNTU 16.04 distribution), and programed in scala (Odersky
et al., 2004) to be adaptable to the Spark framework (Guller, 2015). Datasets were stored
based on Hadoop (2020). The experiments were conducted over a computing cluster
that consisted of 6 virtual machines: a single master and 5 slave nodes. Virtual machines

Figure 1 A flow diagram of analyzing Microarray data using MOWOATS executed in parallel over
the Spark computing cluster. Full-size DOI: 10.7717/peerj-cs.416/fig-1
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Algorithm 2 MOWOATS algorithm.

Initialization.

Set Np to the number of whales, K number of clusters, empty EL holding non-dominated solutions, set

Max_nonImprove to be maximum number of iterations without improvement, set nob j = 3 representing

number of objectives, and initialize the parameters of the whale algorithm.

for i = 1,…,Np do

Generate an initial solution randomly from the dataset.

Compute the objective values of current solution in parallel applying Algorithm 3.

Update EL according to PO dominance principle.

end for

Main Loop.

for t = 1,…,MaxIt do

for i = 1,…,Np do

Update MOWOATS parameters a, A, C, l, p.

if (p > 0.2) then

if (|A| < 1) then

Update the position of the current whale XiðtÞ
��!

with respect to a random solution selected
from EL.

else if (|A| ≥ 1) then

Update the position of current whale XiðtÞ
��!

with respect to a random whale ~XrandðtÞ from
current swarm.

end if

else if (p ≤ 0.2) then

Update the position of current whale XiðtÞ
��!

with respect to a random solution selected from EL.

end if

Compute objective values of current whale ~XiðtÞ in parallel applying Equations (Xie-Beni (1), overall
deviation (2), SSI (3)).

Update EL according to PO dominance principle.

end for

if (number of iterations without improvement ≥ Max_NonImprove) then

Set θ to a random value.

if (θ < 0.5) then

Apply crossover operator among swarm members and solutions in EL.

else

Apply crossover operator among swarm members.

end if

end if

end for

Return non-dominated solutions in EL
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were connected using a local network and the hardware configurations of the cluster were
as follows:

� Master node (Name Node): 2 processors, RAM 8 GB, and Hard disk 30 GB.

� Slave node (Data Node): 1 processor, RAM 4 GB, and Hard disk 20 GB.

A single node was used to compare the running time between a single node and the
computing cluster. The single node configurations were:

� Single node configurations: 8 processors, RAM 32 GB, and Hard disk 40 GB.

These virtual machines were hosted on the server of the faculty of telecommunication
engineering, Vigo university (https://www.uvigo.gal/uvigo_en/Centros/vigo/lagoas_
marcosende/enxeneiro_telecomunicacion.html), Spain.

Parameters setting
Table 3 presents the values of the important parameters ofMOWOATS. These parameters
are used to adjust the performance of the algorithm. The MaxIt parameter represents the
number of whales in each swarm, while Max_NonImprove parameter stands for the

Algorithm 3 Compute objective function (S).

Let solution S be the input of the function, C = {C1,C2,…,CK} is the set of centroids of S, K number of
centroids, Xi

f is a data instance i with f features.

Master: Broadcast centroids of solution to all computing nodes

for each computing node j do

for each data instance Xi
f in computing node j do

Compute the distance D among Xi
f and all centroids.

Set Imin, Dmin to be the index and distance value of centroid C with least distance value to data
instance Xi

f.

end for

Combine all Imin and Dmin for each data instance.

Return all Imin and Dmin in (key, value) structure.

end for

Master: combine the Imin and Dmin from all computing nodes and compute the objective values according
to Equations (Xie-Beni (1), overall deviation (2), and SSI (3)).

Master: Return the objective values of solution S.

Table 3 Main parameter values of MOWOATS.

Parameter Definition Value

MaxIt Maximum number of iterations 50

Np Population size 15

max_EL Maximum number of solutions stored in elite list 50

Max_NonImprove Maximum number of iterations without improvement 2
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maximum number of iterations without improvement, and max_EL parameter represents
the maximum number of non-dominated solutions that can be stored in EL.

Description of datasets
MOWOATS was applied on small and medium microarray datasets to evaluate its
effectiveness in clustering gene expression profile datasets. Table 4 presents a description
of the datasets: dataset name, genes, and features of each dataset (Parraga-Alava,
Dorn & Inostroza-Ponta, 2018). These datasets are publicly available in Maulik,
Mukhopadhyay & Bandyopadhyay, 2021. The selected elements are picked after
preprocessing the datasets to select features with the highest variance to be investigated
and ignoring the remaining features (Parraga-Alava, Dorn & Inostroza-Ponta, 2018;
Maulik, Mukhopadhyay & Bandyopadhyay, 2021). Also, values in the datasets are
normalized by applying different mathematical functions, such as log2 transformation
ratios and root mean square functions (Maulik, Mukhopadhyay & Bandyopadhyay, 2021).

Preprocessing the biological datasets
To avoid the exhausting pre-processing operations, the Spearman correlation coefficient rs
was applied to assess the similarity among gene expression profiles (Hauke & Kossowski,
2011). The Spearman coefficient uses the rank of the expression values instead of the
data values themselves, since relations among ranks are linear, which fulfills the condition
to use correlation. The Spearman coefficient was programmed to be computed in parallel
over the distributed computing nodes. For any two gene expression profiles Gx and Gy,
the Spearman coefficient can be computed as:

di ¼ RankðGxiÞ � RankðGyiÞ (6)

rs ¼ 1�
6
P
i
d2i

nðn2 � 1Þ (7)

where di represents the difference in the ranks and n is the number of values.
Datasets were first pre-processed to get the rank matrices of the original datasets.

MOWOATS was then executed over both the original and the rank matrices. Original
matrices were used to obtain centers while rank matrices were used to measure the
similarity among centroids and points. The rank was based on the minimum order,
which assigned the same minimum rank to data with the same values. This operation

Table 4 Description of datasets.

Dataset Genes Features

Yeast sporulation 474 7

Yeast cell cycle 384 17

Arabidopsis thaliana 138 8

Human fibroblasts serum 517 13

Rat CNS 112 9
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enhanced the similarity evaluation among gene expression profiles, specially for datasets
generated from different species as it will be seen in the next subsections.

Massive biological datasets
To assess the performance of MOWOAST in analyzing huge microarray datasets, it was
applied over publicly available datasets located in the National Center of Biotechnology
Information (NCBI) (NCB, 2020). These datasets represent the expression profiles of a
set of genes when exposed to different experiments in microarray. So, three large biological
datasets were used to evaluate the performance ofMOWOATS. The first dataset accession
number is GSE15568. The dataset gave a study of gene expression profiles of rectal
epithelia of cystic fibrosis for 29 patients, each sample had 22283 features. The dataset
had 2 classes (patients carrying the Cystic Fibrosis-specific D508 mutated CFTR-allele
(CFTR-D508) compared with gene expression profiles of normal ones). For simplicity, the
dataset will be named EPI in the rest of the paper.

To provide a better assessment of MOWOATS, it was applied over datasets with
cross-species. Two datasets were used for this evaluation. The first dataset was composed
of three different species that were discussed by Kristiansson et al. (2013). The first cross-
species dataset consisted of 3 species: (1) Homo sapiens dataset with accession number
GSE7458, (2) Mus musculus dataset with accession number GSE14869, (3) Drosophila
melanogaster dataset with accession number GSE5147 (Kristiansson et al., 2013). For
simplicity, the dataset will be named SPC3 in the rest of the article. The second cross-
species dataset consisted of the previous three datasets added to them Oryza sativa dataset
with accession number GSE14275. For simplicity, the dataset will be named SPC4 in
the rest of the article. A complete description of the three datasets is given in Table 5.
It shows a description of each dataset: number of samples, number of experimental
conditions that samples were exposed to, number of classes in each dataset, and accession
numbers of datasets in NCBI.

Evaluation criteria
To provide a solid assessment of the obtained clusters, several cluster evaluation metrics
have been applied over the generated ones. These metrics include: Silhouette index
(Rousseeuw, 1987), DBI (Davies & Bouldin, 1979), DI (Dunn, 1974), and F-measure (Dalli,
2003). These metrics aim to evaluate the homogeneity of samples/genes in the same cluster
and the separation of samples/genes in different clusters. The Silhouette index is an
important index for measuring the quality of a clustering partition. It measures the
cohesion and separation among clusters over both point and cluster level. It assesses the
similarity of each point for both points in the same cluster and points in other clusters.

Table 5 Characteristics of biological datasets obtained from NCBI.

Dataset Samples Features Classes GEO

EPI 29 22283 2 (16, 13) (GSE15568)

SPC3 73 14010 3 (13, 24, 36) (GSE7458, GSE14869, GSE5147)

SPC4 79 57381 4 (13, 24, 36, 6) (GSE7458, GSE14869, GSE5147, GSE14275)
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The silhouette index can be computed according to Eqs. (4) and (5). Silhouette is a
maximization index, the bigger the silhouette value, the better the clustering solution
(Bouyera & Hatamlou, 2018).

Moreover, the DBI has been used to measure the compactness of generated clusters and
how well these clusters are separated. DBI can be computed by obtaining the ratio of
within-cluster distance and between-cluster separation according to:

DBI ¼ 1
m

Xm
i¼1

max
i 6¼j

Si þ Sj
Mi;j

� �
1 � i; j � m; i 6¼ j (8)

Here, Sk represents within-cluster distance in cluster k, and Mi,j stands for between-
cluster separation.

DBI is a minimization function, the smaller the value of DBI the better the quality of
obtained solution (Davies & Bouldin, 1979).

Additionally, the DI has been used to evaluate the compactness of each cluster and
separation among clusters. DI can be computed as:

DI ¼ min dðCi;CjÞ
maxDk

; 1 � i; j; k � m; i 6¼ j (9)

where m represents the number of clusters, δ(Ci,Cj) stands for inter-cluster distance
between clusters Ci and Cj , and k is the maximum distance between two points in the same
cluster. Note that DI is a maximization function, the bigger the value of DI the better
quality of obtained solution.

Finally, the F-measure (Dalli, 2003) criterion has been used to provide an outlier
assessment of generated clusters compared to original classes. The higher the value of
F-measure, the better the quality of the generated clusters. F-measure depends on
combining both precision and recall used in information retrieval. F-measure represents
generated clusters as Cj for j = 1,…,K. Each cluster j consists of nj instances. The number
of instances that belong to class i are represented by ni. The number of instances in class i
and belongs to the cluster j are represented by nij. Precision p(i, j) and recall r(i, j) are
defined respectively by

rði; jÞ ¼ nij
ni

and pði; jÞ ¼ nij
nj

; 8i; j (10)

The F-measure value F(i, j) is

Fði; jÞ ¼ 2pði; jÞrði; jÞ
rði; jÞ þ pði; jÞ (11)

At the end, the F-measure value of the whole dataset that consists of n data instances
divided into K clusters is computed as:

F ¼
XK
i¼1

ni
n
max

j
Fði; jÞ (12)
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RESULTS AND DISCUSSION
MOWOATS was compared with MOC-GaPBK algorithm that used new modified
intensification and diversification strategies to provide a good coverage for the solution
space (Parraga-Alava, Dorn & Inostroza-Ponta, 2018).MOC-GaPBK used two functions to
measure the similarity among gene expression profiles: Pearson correlation coefficient
(Hauke & Kossowski, 2011) and biological knowledge (Wang et al., 2007). The Wang
functional similarity was applied to measure the biological similarity between two
genes based on ontology terms (Wang et al., 2007). To evaluate the quality of generated
clusters, three objective functions were used: Xie-Beni index, overall cluster deviation, and
cluster separation (Parraga-Alava, Dorn & Inostroza-Ponta, 2018).

A comparison among MOWOATS, MOC-GaPBK, Semi-FeaClustMOO, MO-fuzzy,
MOGA, SOM, and average linkage clustering techniques (Parraga-Alava, Dorn &
Inostroza-Ponta, 2018) is presented in Table 6. These results present the mean Silhouette
index values for each method averaged for 20 different runs. Results were obtained
from running the algorithms over real-life gene expression datasets: Arabidopsis thaliana,
Yeast Cell Cycle, Yeast Sporulation, and Human Fibroblasts Serum. The class labels of data
objects in the datasets were not known in prior, so the algorithms were executed for
different number of clusters K 2 f4; 5; 6g.

Results in Table 6 show that MOWOATS achieved the best Silhouette index values
over all other methods for all datasets. MOC-GaPBK reached a Silhouette index value
that is close to the one found by MOWOATS for the sporulation dataset and in general,
it was the second best algorithm over the whole datasets. This emphasizes the importance
of the modified search methods to cover effectively the solution space. The good results
achieved by MOWOATS returns to its improved search capabilities that drove it to
cover the solution space effectively. Also, the objective functions enabled MOWOATS
to evaluate precisely the quality of the solutions during the search process. Although
MOWOATS did not use the biological knowledge as a similarity measure, it was able find
solutions better than those found by MOC-GaPBK, highlighting the efficiency of the
implemented search techniques.

Expression profiles represent the reaction of genes to different experiments. Microarray
collects the reactions of samples to the predefined experiments in pre-determined time
intervals. Similar samples react in the same way, so different/malignant samples tend to

Table 6 Mean values of Silhouette index over 20 runs of different algorithms. The best results are
presented in bold.

Algorithm Arabidopsis Cell cycle Sporulation Serum

MOWOATS 0.6 (k = 6) 0.64 (k = 6) 0.81 (k = 6) 0.69 (k = 6)

MOC-GaPBK 0.49 0.63 0.80 0.58

Semi-FeaClustMOO 0.46 0.50 0.70 0.44

MO fuzzy 0.41 0.43 0.59 0.40

MOGA 0.40 0.42 0.58 0.38

SOM 0.23 0.38 0.58 0.34

Avg. link. 0.32 0.44 0.50 0.36
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react in a different manner than normal ones. Eisen et al. (1998) plot based on a heat
map has been applied to depict the homogeneity expression profiles that have been
generated of MOWOATS. Figure 2 presents a graphical representation of the best two
clustering solutions with the highest Silhouette index values. Each row depicts the
reaction of a specified gene to the same experiment over different time intervals. The more
similar colors grouped, the better the quality of the generated clusters. As shown in the
figure, the rows in each cluster are similar to each other over the different time intervals.

Figure 2 shows the homogeneity of samples in each cluster, which clarifies the
effectiveness of MOWOATS in analyzing microarray datasets. Also, this ensures the
correctness of using multiple objective functions to analyze complicated datasets like
microarray data.

FWCMR was a recent attempt to analyze microarray datasets by developing a new
similarity measure, which was based on using the Spearman correlation coefficient
(Hauke & Kossowski, 2011). The method applied the density-based clustering to analyze
the microarray data (Hosseini & Kiani, 2018). FWCMR was evaluated over different
microarray datasets and it was able to obtain good clustering solutions. Hosseini & Kiani
(2018) employed different clustering validity indices to assess the quality of the generated
clusters. They used the DI, DBI, and Silhouette index as clustering validity indices to
provide a more trustful evaluation of the obtained clustering solutions.

Tables 7–9 present comparisons among MOWOATS, FWCMR, Rough-Fuzzy
Clustering (RFC) (Maji & Paul, 2013), Modelling Based Clustering (MBC) (Blomstedt
et al., 2016), Multi-objective Symmetry Based Clustering (MSBC) (Saha et al., 2013),
and Hessian Regularization Based on Symmetric Clustering (HRSC) (Ma et al., 2016)
according to three clustering validity indices DI, DBI, and S (Hosseini & Kiani, 2018),
averaged for 16 different runs. The values presented in the table have been obtained from
the original articles.

Results in Tables 7–9 presented the superiority of MOWOATS over other methods for
all datasets. MOWOATS was able to obtain clusters with the highest DI and SI values and
with the least values of DBI. This proves the homogeneity of the obtained clusters and
corroborates the effectiveness of applying multiple objective functions to analyze
microarray datasets.

Additionally, Table 10 presents the validity indices: F-measure and Silhouette index
values for the three biological datasets. The table shows the average and standard deviation
values for the evaluation criteria, averaged for 20 different runs. For the cross-species
datasets,MOWOATS achieves very good results and generates clusters that are equal to or
very similar to the original classes. This clearly shows the effectiveness of MOWOATS in
analyzing microarray datasets with huge volumes. For the EPI dataset, MOWOATS also
achieved reasonable results. This returns to the success of the objective functions in
evaluating clustering solutions and the effectiveness of the Spearman coefficient in
assessing the similarity among samples.

To further verify the effectiveness ofMOWOATS in analyzing huge microarray datasets,
it was compared to clustering methods that were based on MapReduce and Spark
frameworks, such as a MapReduce based K-means method (MRK) proposed by
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Shahrivari & Jalili (2016) and MapReduce based Bee colony clustering method (MRB)
proposed by Banharnsakun (2017). Articles that represent clustering methods based on
Spark were: K-M algorithm presented in Spark Machine learning Library (MLK) proposed
by Gopalani & Arora (2015), Spark DBscan algorithm proposed (SDB) by Luo et al. (2016),
and DDHFC proposed by Hosseini & Kiani (2019). All these methods combined SI
methods with Big Data frameworks. Table 11 presents the comparison amongMOWOATS
and the methods enumerated before according to S, DI, and DBI evaluation criteria
when applied over the SPC4 dataset as reported by Hosseini & Kiani (2019).

As seen in Table 11, MOWOATS dominates the other methods according to the three
evaluation indices. DDHFC achieves the second-best results for all validity indices.

Figure 2 (A–H) Depiction of the best two solutions obtained by MOWOATS for four real-life
datasets according to the Eisen plot. Full-size DOI: 10.7717/peerj-cs.416/fig-2
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Table 7 Comparison among MOWOATS and different clustering methods according to clustering
validity indices (DI, DBI, S) achieved from Arabidopsis thaliana dataset. The best results are pre-
sented in bold.

Method DI DBI S

RFC 0.579 0.945 0.359

MBC 0.586 0.937 0.368

MSBC 0.610 0.918 0.399

HRSC 0.592 0.926 0.395

FWCMR 0.604 0.904 0.412

MOWOATS 0.678 0.767 0.6

Table 8 Comparison among MOWOATS and different clustering methods according to clustering
validity indices (DI, DBI, S) achieved from human fibroblasts serum dataset. The best results are
presented in bold.

Method DI DBI S

RFC 0.450 0.903 0.364

MBC 0.432 0.911 0.359

MSBC 0.464 0.885 0.397

HRSC 0.458 0.897 0.381

FWCMR 0.483 0.869 0.452

MOWOATS 0.635 0.833 0.699

Table 9 Comparison among MOWOATS and different clustering methods according to clustering
validity indices (DI, DBI, S) achieved from Rat CNS dataset. The best results are presented in bold.

Method DI DBI S

RFC 0.291 0.814 0.439

MBC 0.288 0.822 0.425

MSBC 0.302 0.803 0.477

HRSC 0.313 0.794 0.482

FWCMR 0.320 0.782 0.496

MOWOATS 0.694 0.658 0.711

Table 10 F-measure and Silhouette Index values for best 2 clustering solutions generated from
MOWOATS.

Dataset F-measure Std. Dev. S Std. Dev.

EPi (2 classes) 0.7241 0.00102 0.5944 0.00367

0.6904 0.00453 0.5574 0.00138

SPC3 (3 species) 1.0 0.00517 0.9507 0.00233

0.972 0.00237 0.9455 0.0095

SPC4 (4 species) 0.9627 0.00637 0.9416 0.00836

0.8909 0.00233 0.9393 0.00639
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The performance gain with MOWOATS confirms the correctness of using multiple
objective functions in analyzing microarray datasets. This also presents the importance of
the memory elements used inMOWOATS. Also, results in Tables 10 and 11 show that the
quality of clusters obtained by MOWOATS is very high even for large datasets. This
ensures the stability of MOWOATS in obtaining high quality solutions regardless of the
size of the dataset.

Moreover, to assess the scalability of MOWOATS when applied over computing
clusters, it was tested over a computing cluster that consisted of one master node and
5 slave nodes. The number of nodes was varied to assess the scalability of the method over
(1, 2, 4, 6) nodes. Table 12 presents the execution times of the algorithm over the three
massive datasets according to different number of computing nodes, averaged for 20
different runs. Figures 3 and 4 present the normalized running time of MOWOATS over
different number of computing nodes for the three datasets. The figure shows the
near-linear decrease in running time as the number of nodes increases. This proves the
capability of MOWOATS to minimize the running time needed to analyze huge datasets.
The figure also presents the high-quality of the programing code that could minimize
the number of sequential loops to take the advantages of the Spark framework.

From previous discussion, MOWOATS presented itself as an effective tool to analyze
huge microarray datasets. It was able to obtain clusters that were very similar to the classes
of the original datasets. This shows the effectiveness of the objective functions used to
evaluate clustering solutions. Also, MOWOATS running time was inversely proportional
to the number of computing nodes, which shows its high scalability.

Table 11 A comparison among MOWOATS, DDHFC, and recently proposed methods regarding
quality of generated clusters over SPC4 dataset. The best results are presented in bold.

Method S DI DBI

MLK 0.56 0.49 0.55

SDB 0.63 0.54 0.43

MRK 0.57 0.50 0.56

MRB 0.61 0.52 0.48

DDHFC 0.82 0.67 0.32

MOWOATS 0.94 0.78 0.25

Table 12 The execution times of the MOWOATS algorithm in minutes over different number of
computing nodes for the three massive datasets (SPC3, EPI, SPC4).

No. of Nodes SPC3 EPI SPC4

6 19.607 28.75 457

4 25.909 33.65 551

2 34.28 37.82 623

1 42 44.15 680
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CONCLUSION AND FUTURE WORK
Microarray has been a revolutionary tool that generates vast volumes of data that describe
the expression profiles of genes being investigated. It exposes thousands of genes to
different conditions in a single experiment. The sheer volume of generated data can be
qualified as Big Data. Analyzing genomic datasets with huge volumes can allow researchers
to obtain valuable information, such as identifying correlated genes and predicting the
response of patients to certain medications on the genomic level. In this paper, a hybrid
Multi-Objective (MO) algorithm that combined Whale Optimization Algorithm with
Tabu Search (MOWOATS) was proposed for analyzing huge microarray datasets.
MOWOATS used three objective functions to measure the quality of obtained solutions:
Simple Silhouette index, Xie-Beni index, and overall distribution of data objects. These
objective functions ensured that the obtained clusters have the highest coherence among
data objects in each cluster and maximum separation among clusters. MOWOATS
components were modified to run in parallel over Big Data frameworks. To assess the
efficiency of MOWOATS, it was applied over public real-life small and medium-sized
microarray datasets. The obtained clusters were evaluated both statistically and

Figure 4 A depiction of the speedup gain of MOWOATS when the number of computing nodes is
increased for the SPC3, EPI, and SPC4 datasets. Full-size DOI: 10.7717/peerj-cs.416/fig-4

Figure 3 A depiction of normalized running time of MOWOATS for SPC3, EPI, and SPC4 datasets
over a different number of computing nodes. Full-size DOI: 10.7717/peerj-cs.416/fig-3
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graphically. It achieved good results for statistical evaluations, which expose the coherence
of generated clusters. Also, the graphical evaluation presented the unification of data
objects in each cluster. To assess its performance in analyzing huge microarray
datasets, MOWOATS was applied over three large public real-life microarray datasets.
The performance of MOWOATS was assessed according to the quality of the generated
clusters and its scalability. Generated clusters presented a great coherence and were very
similar to classes of original datasets. Also, the running time was inversely proportional
to the number of computing nodes, which ensured high scalability. This presents
MOWOATS as an effective microarray data analysis tool that can be used in real-life
applications. Despite the size of the datasets, the algorithm could minimize radically the
running time by increasing the number of computing nodes. For future work, apply
MOWOATS over more computing nodes using cloud computing to minimize the
execution time and to prepare MOWOATS for bigger datasets. Also, we aim to add gene
ontology methods to provide a better evaluation of generated solutions, which prepares
MOWOATS to be applied in advanced analysis of real-life microarray datasets.
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Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.416#supplemental-information.
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