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ABSTRACT
This study aims to develop a software framework for predicting aridity using vegetation
indices (VI ) from LANDSAT 8 OLI images. VI data are predicted using machine
learning (ml): Random Forest (RF) and Correlation and Regression Trees (CART).
Comparison of prediction using Artificial Neural Network (ANN), Support Vector
Machine (SVM), k-nearest neighbors (k-nn) and Multivariate Adaptive Regression
Spline (MARS). Prediction results are interpolated using Inverse Distance Weight
(IDW). This study was conducted in stages: (1) Image preprocessing; (2) calculating
numerical data extracted from the LANDSAT band imagery using vegetation indices;
(3) analyzing correlation coefficients between VI ; (4) prediction using RF and CART;
(5) comparing performances between RF and CART using ANN, SVM, k-nn, and
MARS; (6) testing the accuracy of prediction usingMean Square Error (MSE) andMean
Absolute Percentage Error (MAPE); (7) interpolatingwith IDW.Correlation coefficient
of VI data shows a positive correlation, the lowest r (0.07) and the highest r (0.98). The
experiments show that the RF and CART algorithms have efficiency and effectivity in
determining the aridity areas better than the ANN, SVM, k-nn, and MARS algorithm.
RF has a difference between the predicted results and 1.04% survey data MAPE and the
smallest value close to zero is 0.05 MSE. CART has a difference between the predicted
results and 1.05% survey data MAPE and the smallest value approaching to zero which
is 0.05 MSE. The prediction results of VI show that in 2020 most of the study areas
were low vegetation areas with the Normalized Difference Vegetation Index (NDVI)<
0.21, had an indication of drought with the Vegetation Health Index (VHI) < 31.10,
had a Vegetation Condition Index (VCI) in some areas between 35%–50% (moderate
drought) and < 35% (high drought). The Burn Area Index (dBAI) values are between
−3, 971 and−2,376 that show the areas have a low fire risk, and index values are between
−0, 208 and−0,412 that show the areas are starting vegetation growth. The result of this
study shows that the machine learning algorithms is an accurate and stable algorithm
in predicting the risks of drought and land fire based on the VI data extracted from the
LANDSAT 8 OLL imagery. The VI data contain the record of vegetation condition and
its environment, including humidity, temperatures, and the environmental vegetation
health.
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INTRODUCTION
Based on the study of disaster risk in Central Java Province, Indonesia, the number of people
potentially exposed to drought disasters was estimated at 33.7 million people. Economic
losses as a result of exposure to the drought were estimated at 65.2 billion rupiahs,
and damage to the land area of 61 thousand hectares (Deputi Bidang Pencegahan dan
Kesiapsiagaan, 2016). Drought is a disaster that occurs with a slow onset and can spread in
wide areas, so that it has an impact on food security, the economy and social security (Çelik
& Gülersoy, 2018). In most countries in the world, including Indonesia, drought is
determined based on the rainfall data collected from meteorological stations (Nam et
al., 2018). The method commonly used to calculate the amount of drought index is
the Standardized Precipitation Index (SPI) method. The drought index is calculated by
comparing the magnitude of deviations in the amount of rainfall from normal conditions
or the long-term average in a particular region (Bayissa et al., 2017). Drought assessment
using the SPI method and meteorological data has high accuracy and precision, especially
in areas with uniform density and distribution of meteorological stations. However, in
developing countries, the density and distribution of meteorological stations and limited
operational costs make it difficult to obtain rainfall measurement data. The limitation
of rainfall data becomes an obstacle in identifying the intensity, frequency and spatial
distribution of drought (Dutta et al., 2015a). The SPI method is one of the 150 methods
developed as drought indices. Apart from the SPI, the other common methods used in
drought studies are the Standardized Precipitation Evapotranspiration Index (SPEI), the
Palmer Drought Severity Index (PDSI), and the Precipitation Anomaly Percentage (Wang
et al., 2020). The SPEI is the index used to take into account the drought damage based on
the climate balance between precipitation and evapotranspiration. The timescale of SPEI
ranges from 1-24 months and is interpolated using high resolutions in order to obtain
vegetation responses toward potential water deficit over different timescales (Gouveia et
al., 2017). The Palmer Drought Severity Index (PDSI) is an estimate of relative dryness
in an area using temperature, precipitation, and soil characteristics. In general, the PDSI
used to take into account of long-term drought which has affected an area for more several
months (Mika et al., 2005). The PDSI works based on the water supply and water demand
system while considering: (1) potential evapotranspiration calculated using Thornwaite
method, (2) the amount of measured soil moisture, (3) the reduced amount of soil
moisture due to evapotranspiration, (4) runoff. The Precipitation Anomaly Percentage
(PAP) is precipitation anomaly percentage index which reflects hydrology factors deviating
from the same average periods over years. The PAP index shows drought degrees on the
same periods (Zhengmin et al., 2014).

In the late 20th or early 21st century, satellite imagery was widely used to monitor the
risk of drought, both spatially and temporally. Satellite imagery data was chosen because it
was available with high spatial and temporal resolution and can be obtained free of charge.
The satellite imagery data will be extracted to get numerical data of vegetation indices,
which are the main data to classify environmental conditions such as drought, moisture
stress and temperature on the earth’s surface. Vegetation indices are numerical values of
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the results of spectral transformation of image-forming bands that are formulated to assess
the photosynthetic activity of the vegetation canopy layer which correlates to plant types,
water content in tissues, and photosynthetic activities. Vegetation Indices are mathematical
combination of different spectral bands, and are designed to visualize various features
of different images (Karakacan Kuzucu & Bektas Balcik, 2017). The vegetation index is
dimensionless radiometric measurements acquired from linear combination of the red
spectrum and NIR, which is calculated based on the light reflectance from satellites, or light
reflectance from various objects on the earth surface (Gherghina, Maftei & Filip, 2011).
Various aridity indices have been formulated by experts for classifying drought, including:
(1) index formonitoring vegetation conditions as a result of drought (VegetationCondition
Index or VCI), (2) index for monitoring the surface temperature of the earth (Temperature
Condition Index or TCI), (3) index for monitoring soil moisture (Microwave Integrated
Drought Index or MIDI), (4) index for monitoring the combination of temperature
and humidity on the earth’s surface and their impact on vegetation health (Vegetation
Health Index or VHI) and (5) index for monitoring the level of vegetation greenness
(Normalized Difference Vegetation Index or NDVI) (Elhag & Zhang, 2018). The most
suitable method used for the purpose of representation, categorization and classification
of vegetation indices is machine learning (Maxwell, Warner & Fang, 2018). In essence, the
machine learning algorithm shows how a machine compiles and learns to create valid
information from observational and historical data. Machine learning is composed of a
group of algorithms including neural networks (NN), support vector machines (SVM),
self-organizing maps (SOM), decision trees (Dtree), random forests (RF), case-based
reasoning (CBR), k-nearest neighbours (k-nn) and genetic programming (GA) (Lary et al.,
2015).

In this study, we develop a software framework for predicting drought and land fires
risk areas based on spatial prediction of vegetation indices. The developed framework is
a combination of machine learning algorithms that include ANN, SVM, RF, k-nn, CART
andMARS with an algorithm compiled from the interpolation of Inverse Distance Weight.
The use of machine learning in this framework aims to classify and predict drought indices
from vegetation indices data that have spatial and temporal resolutions. The use spatial
interpolation is an approach to determine numerical values in non-sampling areas. The
software framework names are Satellite Imagery based Machine learning for the Index of
Aridity (SIMIA). ‘Background’ in this paper discusses the proposed theoretical background
in the framework, ‘Materials &Methods’ discusses the researchmethods, ‘Results’ discusses
the results and discussions, ‘Conclusions’ discusses the conclusions, and the last section is
the references.

BACKGROUND
ML (Machine Learning) is a subfield of artificial intelligence in which computers learn
the relationship of a data set through a training process. The ML explores new relations
of the location, date and other qualities data in a large data set based on the experiences
from the historical data acquired (Huntingford et al., 2019; Fang et al, 2020). The ML can
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classify high dimensional data effectively and efficiently, map class of data which have
very complex characteristics as in remote sensing (Zaraza Aguilera, 2020). In the field of
remote sensing, the machine learning technique has been used to calculate identification
and pattern recognition from a set of historical climate data and topography to produce
information on land coverage changes. CART is an algorithm in machine learning that
works based on the Decision Tree (DT). The core principle of this algorithm classifies a
number of object data by divide them into both discrete binary data and continuous binary
data as the predictable variables. The feature-selection of the classified objects used Gini
Index (1), in which TS is the training data, f (Ki,TS) is the probability of data corresponds
to the K class (Fang et al, 2020).

G=
∑∑

j6=i

(
f(Ki,TS)
|TS|

)(
f
(
Kj, TS

)
|TS|

)
(1)

E =
c∑

i=1

−pi ∗ log2(pi) (2)

E is an entropy calculated using the Gini Index using the Gini Index logarithmic. The
concept of Entropy in the CART algorithm classifies a set of data using the characteristics
that are in the data class (training data) (Kamal et al., 2000). The characteristic of this
algorithm is when the Gini Index increases, the objects heterogeneity in the class is going
to rise. Otherwise, when the Gini Index is decreasing, the object homogeneity in the class
is increasing. CART is one of machine learning algorithms used for prediction using
multidimensional Cartesian space with a function: X = f (Y )+ ε where Y ε<d , Xε<d .
CART prediction is calculated by the function X̂ = f̂

(
Ŷ
)
. The notation ε represents various

intrinsic data condition or diversity of data variables that are unpredictable or not observed.
The disturbance in the prediction results is determined by a factor (Y ) (Wang et al., 2004).

RF is a non-parametric ensemble classification and machine learning regression that
uses DT as the basis for classification of data sets. It means that the mean prediction of
multiple decision trees is trained using data obtained from different subsets but from the
same data (Li et al., 2017). RF is an object classification method consisted of a group of
tree-structured classifier, or it is denoted as

{
h
(
y,2s

)
k= 1,2,...

}
in which {2s} is the

random vector distributed in each classifier node that is denoted as the y-class (Kullarni &
Sinha, 2013). The RF equation is described as follow (3):

Ts=Tr
(
s|p1,p2,...,pn

)
=
5T

i Tr
(
p1|s

)
Tr (s)

Tr (p1,p2,...,pn)
(3)

notation of Tr
(
pi|s
)
is the probability of input data on the s class. ANN is composed of a

group of interconnected nodes and is called a neuron or neuronode. Interconnection
between neuronodes can be described as the interconnection of a large number of
simple processors arranged in layers (Raczko & Zagajewski, 2017; Akhand, Nizamuddin
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& Roytman, 2018). The equation used is (4):

γ k (ts)= f0

 m∑
j=1

wkj .fn

( n∑
i=1

wjixi(ts)+
(
wj0
))
+wk0

 (4)

Where n is the number of data input variables, m is the number of neurons, xi(t ) is
the ith of input variable at time ts, wji is the weight of the ith of variable neuron which
is interconnected with the j th neuron, wj0 is biased for neuron at j, fn is a function of
neuron activation, wkj is the variable weight of neuron at j and neuron at k, wk0 is biased
for external neuron k, f 0 is an activation function for external neuron, and γ k (ts) is the
external neuron k which is predicted at time ts (Belayneh & Adamowski, 2013).

SVM is a method that has been implemented to classify tree types of hyperspectral data.
SVM works by using training data to find the most optimal hyperplane of attribute classes.
It can be simply described that the optimal hyperplane is determined from the margin
value between the two training data classes. If a hyperplane cannot be determined, a kernel
function is used to convert the original data into a higher dimension.

The k-nn algorithm is a non-parametric method that is widely used for classification
in pattern recognition. The main principle of k-nn is that the category of data point is
determined according to the classification of neighbour k closest to that point. As an
illustration, an arbitrary point which is a subset in the training set S = {(p1, q1), (p2, q2),
. . . (pN , qN )} with the number of attributes or entities N . The value of pi εRd is a vector
feature and qiεy = a1,a2 ...aM as the classification label, i= 1,2,...,N . If there is input
data p then the value of k-nn or Nk(p) is the distance of the training set entities (Guo et al.,
2018). To calculate k-nn, Euclidean Distance should be determined first using (5):

d
(
p,q
)
=

√√√√ n∑
i=1

(p1−q1)2 (5)

The notation d is used for the Euclidean distance, the notation p is used for the training
data set, and the notation for the testing data set is q. The distance between the training
data was compared in order to determine the closest distance.

MARS is a non-parametric multivariate regression analysis that uses a linear regression
approach one by one for each variable, whereas if the variable is non-linear then it is
approximated by using the slope interval of the variable. MARS analyses sequentially and
looks for interactions between variables (Yang et al., 2016). The MARS equation is (6):

f (x)=
k∑

i=1

cibi(x) (6)

Which bi is the basis of the linear function, and ci is the constant coefficient.
VI is a quantitative value of the measurement of vegetation canopy in receiving

and reflecting the spectrum of light and interpreted as a spectral characteristic of
vegetation (Paseleng, Joko Prasetyo & Hartomo, 2018). Formulation VI that is used for
drought monitoring is classified into four groups name (Du et al., 2018;Wang et al., 2018):
(1) Greenness Related Vegetation Indices that includes NDVI and VCI ; (2) Temperature
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Table 1 The VI in the proposed framework.

VI Equation Description Ref.

NDVI ρNIR−ρred
ρNIR+ρred

NDVI is a vegetation index that uses a combination of
NIR and RED spectrum reflectance to measure vegetation
greenness. Chlorophyll and carotenoid elements of a plant
absorb more red spectrum with λ of 0.66 µm, and ρNIR
with λ of 0.86 µm. NDVI represents photosynthesis,
biomass, dominant species and biogeochemical processes.

Hashim, Abd Latif & Adnan (2019)

VCI NDVIa−NDVImin
NDVImax+NDVImin

×100 VCI is used as an indicator to identify changes in vegetation
from bad condition to good condition. NDVImin and
NDVImax are the mean values of seasonal NDVI. NDVI
represents the dynamics of seasonal vegetation, while VCI
reflects relative changes in humidity conditions from very
bad to optimal condition.

Garnero & Godone (2013)

TCI LSTmax−LSTa
LSTmax+LSTmin

×100 TCI is an indicator of drought that gives an indication
of stress on vegetation caused by high temperature and
excessive humidity. LSTmax or Land Surface Temperature
maximum is the highest average temperature of the current
month and LSTmin is the lowest average temperature of the
current month.

Angka (2019)

VHI αVCI+(1−α)TCI VHI is a vegetation index which is a combination of VCI
and TCI. VCI represents humidity in the vegetation canopy
which absorbs visible light and NIR spectra. TCI represents
the air temperature in the vegetation canopy which absorbs
the IR spectrum. VHI is a vegetation index that represents
the level of air temperature (TCI) and soil moisture (VCI).
A lower VHI value indicates a high drought while a higher
VHI value indicates a wet or no drought condition.

Shi et al. (2020)

NBR ρNIR−ρSWIR
ρNIR+ρSWIR

Normalized Burn Ratio (NBR) is the ratio between NIR
and SWIR with both λ at 2.08–2.35 µm. This index is used
to identify a burnt area after a fire incident and provide a
quantitative measure of the severity of the burned area.

Verdin et al. (1999)

BAI 1
(ρcr−ρr )

2(ρcnir−ρnir )
2 BAI is a special index to distinguish areas affected by fire.

This index is calculated from the spectral distance from
each pixel to the reference spectral point, where the newly
burned area tends to coalesce.

Tripathi et al. (2013)

Related Vegetation Indices such as the TCI ; (3) Combined Vegetation Indices, such as
the VHI ; (4) Burn Severity Indices, such as NBR, and BAI, CSI. The VI in the proposed
framework are as presented in Table 1.

The class of vegetation status of NDVI in LANDSAT 8 OLI are as presented in Table 2A
(Hashim, Abd Latif & Adnan, 2019).

The IDW method is used to determine the non-observation point value, which is
calculated based on the weight and distance of the closest observation point. Determination
of IDW is done using (7) (Garnero & Godone, 2013).

Z =

∑n
i=1

zi
(hij+δ)

β∑n
i=1

1
(hij+δ)

β

(7)

The notation Z is the value of observation point that will be calculated or sought, the
notation Zi is the value of observation point that is known based on the calculation, and
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Table 2 The class vegetation status of NDVI (A) and class of indicator VHI, TCI, VCI (B) (Hashim,
Abd Latif & Adnan, 2019).

(A)

Vegetation Class Description NDVI Value

Non Vegetation Barren areas, build up area, road network −1 to 0.199
Low Vegetation Shrub and grassland 0.2 to 0.5
High Vegetation Temperate and Tropical urban forest 0.501 to 1.0

(B)

Vegetation Status VHI

Extreme Drought <10
Severe Drought 10–20
Moderate Drought 20–30
Mild Drought 30–40
No Drought >40

Table 3 Band name, bandwidth and resolution of LANDSAT 8 OLI.

Band Bandwidth Resolution

Band 1 Coastal 0.43–0.45 30
Band 2 Blue 0.45–0.51 30
Band 3 Green 0.53–0.59 30
Band 4 Red 0.64–0.67 30
Band 5 NIR 0.85–0.88 30
Band 6 SWIR 1 1.57–1. 65 30
Band 7 SWIR 2 2.11–2.29 30
Band 8 Pan 0.50–0.68 15
Band 9 Cirus 1.36–1.68 30
Band 10 TIRS 1 10.6–10. 19 100
Band 11 TIRS 2 11.5–12.51 100

the notation β is the weight factor and δ is the smoothing factor. The value of hij is the
distance between the known and unknown sample points and is determined using the
Euclidean equation as shown below (8).

hij =
√
(1x)2− (1y)2 (8)

where 1x and 1y are the distance between unknown point at j and sample one at i.

MATERIALS & METHODS
This study uses monthly LANDSAT 8 OLI (Operational Land Imager) imagery data
from 2018 to 2019. The data source is the United States Geological Survey (USGS)
https://earthexplorer.usgs.gov/ on path/row 120/65. LANDSAT 8OLI imagery data consists
of 11 bands with different bandwidth and resolution (Table 3).
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Figure 1 The land cover study area of Central Java Province of Indonesia.
Full-size DOI: 10.7717/peerjcs.415/fig-1

This study was conducted in Central Java Province, Indonesia covering 346 sub-districts.
Geographically the study area is in the coordinates of 5◦40′ and 8◦30′South Latitude and
108◦30′ and 111◦30′. The air temperature at the study area was between 23.5 ◦C to 27.8 ◦C,
the humidity was between 66% and 83% and the highest rainfall was 3,143 mm (Badan
Pusat Statistik, 2019). The proposed framework runs in stages as shown in Fig. 1 below.
Land cover in the study area varies but is dominated by residential areas, public and
industrial facilities, Agriculture includes rice fields, fields and plantations, Forest, River
and Road.

The proposed framework runs in stages as shown in Fig. 2 below. (1) The
LANDSAT 8 OLI image is composed of 11 bands in which each band has different
wavelength and function (Table 3). The LANDSAT 8 OLI images obtained from
https://earthexplorer.usgs.gov/. (2) The process of geometric correction, radiometer
correction and atmospheric correction. (3) Combining bands and calculating use
mathematical formulations as in (4)–(10) to form vegetation indices. The generated
vegetation indices data with numeric data types. (4) Correlation analysis and temporal
regression of vegetation index data were performed to see the correlation and trend of
vegetation indices at the same location from time to time (monthly). Each vegetation data
indices are divided into two categories i.e., testing data at 70% and learning data at 30%
of the total data. (5) Classifying and predicting vegetation indices data using ANN, SVM,
RF, k-nn, CART and MARS algorithms. Choose the most optimal algorithm for analysing
vegetation index data. (6) Modelling of drought risk areas, forest fire risk areas and spatial
connectivity between areas with high risk of drought and land fires using the Getis Ord
method. Spatial prediction is done to determine the risk value of drought and land fires in
non-sampled areas. (7) Testing of the interpretation of machine learning prediction results
imagery with real conditions in the field using the Confusion Matrix method.

The eminences of this framework are: implementing ML to predict a period of the
vegetation index value as a data base to determine the drought risk area, and generating
information about the drought risk area in the smallest area using the IDW spatial
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Figure 2 The proposed framework in the study.
Full-size DOI: 10.7717/peerjcs.415/fig-2

interpolation method. This interpolation method provides a function to spatially predict
areas which are not the observation points.

RESULTS
The correlation analysis of VI data aims to see the distribution, correlation and direction of
the VI data trend in a certain temporal value. Correlation analysis of the observed VI was
done using BAI, NBR, NDVI, TCI, VCI and VHI in 2018 and 2019 which was visualized in
the form of scatterplot matrices.

The analysis using Pearson Correlation Coefficient method shows that the association
between vegetation indices is very strong as indicated by the magnitude of the coefficient
r , which is <0.5 or <−0.5, and which some with values >0.3 or >−0.3 are considered
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Figure 3 Analysis of the Vegetation Indices Association in 2018 (A) and 2019 (B).
Full-size DOI: 10.7717/peerjcs.415/fig-3

as intermediate association and some with values <0.3 or <−0.3 are considered as weak
association (Figs. 3A and 3B).

On all VI (Figs. 3A and 3B), line curves represent data distributions (black dots), data
centers (red dots) and data trends (red lines) that describe correlation directions i.e., linear
and linear curve. Bar chart for each index shows that data is normally distributed in each
sample space. VI that correlates with the Greenness Related Vegetation Indices class shows
a linear correlation–an increase in the value of an index will be followed by other indices,
while VI that correlates with Burn Severity Indices shows a linear curve correlation, which
means an increase in the value of an index will be followed by other indices. However, up
to certain point, it will tend to decrease. Meanwhile, VHI is formed by VCI and TCI data,
so that it has a moderate to strong correlation. The trend of VHI and VCI and TCI shows
a linear pattern. Linear curve pattern is observed between VI in the Burn Severity Indices
class and other vi. The difference in correlation analysis results on the analyzed VI indicates
that each VI has a different sensitivity towards noise (background canopy and atmospheric
effect) at the same location.

TheVI, which is the drought indicator, is a combination ofNDVI (vegetation stress), VCI
(time, duration, and drought intensity), TCI (vegetation stress triggered by temperature),
and VHI (vegetation stress caused by wetness) (Jayawardhana & Chathurange, 2020).
The VI is used as a drought-risk indicator as it has strong correlation with precipitation,
vegetation canopy greenness, canopy and soil water content, also land covers (Shi et al.,
2020). The VI prediction is done by using machine learning, especially on RF and CART
algorithms and comparison is made with ANN, k-nn, SVM, and MARS. Results of VI
prediction are useful for identifying the risk of drought and land fires in an area. The VI
prediction is done by using machine learning, especially on RF and CART algorithms and
comparison is made with ANN, k-nn, SVM, and MARS.

The results of the RF accuracy analysis and test are shown in Table 4A. The validation
testing of prediction results using MAPE shows a low average difference between the
predicted results from survey data at 1.04% in all indices. The test using MSE aims to see
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Table 4 Prediction of vegetation index using the RF algorithm and the CART algorithm in 2019–2020.

VIPred VISurvey MAPE MSE

VI Min Max Min Max

(A)
NDVI 0.389 0.597 0.049 0.405 0.500 0.071
TCI 22.359 78.912 22.359 78.912 0.000 0.000
VCI 13.678 43.638 10.023 57.037 23.492 23.736
VHI 21.375 52.375 17.740 59.987 14.121 3.954
BAI 21.261 30.193 21.215 30.210 0.056 0.000
NBR 0.564 0.716 0.552 0.749 4.406 0.000

(B)
NDVI 0.426 0.583 0.246 0.583 0.000 0.000
TCI 30.387 71.577 84.639 71.557 0.028 0.000
VCI 14.010 37.593 14.010 38.000 0.003 0.166
VHI 22.503 51.655 22.503 52.000 0.019 0.119
BAI 21.938 28.755 21.938 29.000 0.003 0.060
NBR 0.557 0.706 0.577 0.658 7.295 0.002

the level of similarity between the prediction results with survey data, which the smaller
and near zero shows the higher similarity. The average RMSE in this study is 0.05.

The prediction results of vegetation index using the CART algorithm shown in Table
4B. Testing the validation of prediction results using MAPE shows the average difference
between the predicted results with survey data is very low at 1.05% in all indices. The
average RMSE in this study is 0.05. The result of this experiment indicates that CART
algorithm is able to accurately predict vegetation index data.

Validation testing of prediction results using MAPE shows that the average difference
between the prediction results and survey data is very low at 5.78% for all indices. The
average RMSE in this study is 2.19. The results of this experiment indicate that the ANN
algorithm can accurately predict vegetation index data.

The results of vegetation index prediction using k-nn are shown in Table 5B. The
validation testing of prediction results using MAPE shows that the average difference
between the prediction results and survey data is very low at 6.07% in all indices. The average
RMSE in this study is 2.37. The results of this experiment indicate that the k-nn algorithm
can accurately predict vegetation index data. The SVM algorithmworks by classifying input
data to form a multidimensional hyperplane. Hyperplane multidimensional distinguishes
vegetation index variable classes namely NDVI, TCI, VCI, VHI, BAI and NBR.

The SVM kernel uses the difference between values to differentiate classes in
multidimensional data. For example, if there is a TCI data class, two dimensional spaces
will be formed, separated by a hyperplane as a straight line. In vegetation index classes,
linear hyperplanes are not easy to form because there are some values that are difficult to
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Table 5 (A) Prediction of vegetation index 2019–2020 using the ANN algorithm and the (B) knn algo-
rithm.

VIPred VISurvey MAPE MSE

VI Min Max Min Max

(A)
NDVI 0.331 0.602 0.348 0.615 2.114 0.000
TCI 27.465 76.772 22.359 79.531 3.469 7.612
VCI 13.210 55.443 13.032 57.037 2.795 2.541
VHI 19.801 40.861 17.740 41.711 11.893 0.723
BAI 20.979 30.492 21.214 30.210 0.933 0.080
NBR 0.555 0.695 0.552 0.749 7.210 0.003

(B)
NDVI 0.396 0.613 0.348 0.615 0.325 0.002
TCI 26.217 77.847 22.359 79.351 1.895 14.884
VCI 13.098 41.098 13.023 57.036 27.944 0.006
VHI 18.591 53.441 17.740 59.591 10.320 0.724
BAI 21.289 30.012 21.220 30.012 0.000 0.005
NBR 0.555 0.734 0.552 0.749 2.003 0.002

Table 6 Prediction of vegetation index using SVMAlgorithm (A) andMARS Algorithm (B) in 2019–
2020.

VIPred VISurvey MAPE MSE

VI Min Max Min Max

(A)
NDVI 0.351 0.617 0.040 0.504 22.421 0.045
TCI 23.569 78.495 22.358 79.351 1.079 0.732
VCI 13.276 56.479 13.023 57.036 0.977 0.310
VHI 18.701 59.289 17.740 55.711 16.915 12.802
BAI 21.390 29.835 21.213 30.210 1.241 0.140
NBR 0.552 0.741 0.552 0.749 1.068 0.003

(B)
NDVI 0.359 0.615 0.049 0.405 21.782 0.044
TCI 30.387 71.557 22.359 75.912 9.321 18.966
VCI 13.023 57.037 13.023 57.037 0.000 0.000
VHI 17.740 59.987 17.740 59.987 0.000 0.000
BAI 21.261 30.193 21.215 30.210 0.056 0.000
NBR 0.551 0.726 0.552 0.749 3.071 0.001

include in these classes. The solution is to add a dimension using polynomial, sigmoid, and
radial basis kernel functions (Table 6A).

Validation testing of prediction results using MAPE shows that the average difference
between the prediction results and survey data is very low at 6.28% in all indices. Tests
using MSE aims to see the level of similarity between the results of predictions and survey
data, the smaller and near zero, the higher similarity. The average RMSE in this study is
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Table 7 Average MAPE andMSE on theMachine Learning Algorithm Test.

Algorithms MAPE (%) MSE

ANN 5.70 2.19
k-nn 6.07 2.07
SVM 6.28 2.01
RF 1.04 0.05
CART 1.05 0.05
MARS 5.34 4.15

2.01. The results of this experiment indicate that the SVM algorithm can accurately predict
vegetation index data.

The prediction results usingMARS algorithm can be seen in Table 6B. Validation testing
of prediction results using MAPE shows that the average difference between the predicted
results and survey data is very low at 5.34% in all indices. Tests using MSE aims to see
the level of similarity between the results of predictions and survey data, the smaller and
near zero, the higher similarity. The average RMSE in this study is 4.15. The results of this
experiment indicate that the MARS algorithm can accurately predict vegetation index data.

The experimental results show that themost efficient algorithms in predicting vegetation
index are RF and CART. RF has a difference between the predicted results and 1.04% survey
data (MAPE) and the smallest value close to zero is 0.05 (MSE). CART has a difference
between the predicted results and 1.05% survey data (MAPE) and the smallest value close
to zero is 0.05 (MSE) (Table 7).

Based on the results of the machine learning algorithm validation test, it can be seen that
the most effective and efficient methods are RF and CART (Table 7). The next discussion
presents an interpolation of the value of vegetation index and its status at a non-sample
point of special survey on RF and CART. Figure 4 shows the spatial prediction of NDVI in
2019 to 2020 with IDWmethod. The experimental results show that in 2019, most regions
in Central Java have high vegetation land coverage with NDVI >0.21. High NDVI is an
indicator of high chlorophyll capacity contained in mesophyll canopy leaves. In contrast,
in 2020, it is revealed that most regions in Central Java have low vegetation land coverage
with NDVI <0.21. The low NDVI value is an indicator of vegetative pressure which has
an impact on reducing chlorophyll content. Based on the spatially prediction, the NDVI
dynamics between 2018 and 2019, can be inferred that the green vegetation biomass, LAE,
photosynthesis activities, chlorophylls density in the vegetation canopy, and the amount of
annual and monthly rainfall in 2020 are very low (Verdin et al., 1999). On Fig. 4A, it can be
seen that the area which has low level of greenness is very wide, with NDVI <0.21, which
means that there is stress pressure in the vegetation canopy as the result of low precipitation
level, reduced water content in the canopy, and low water level in the soil. The prediction
results show that the drought risk consistently happened in the most of Central Java area,

Prasetyo et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.415 13/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.415


Figure 4 Spatial prediction using IDW in 2019–2020 of NDVI vegetation index (A) and spatial predic-
tion of VHI vegetation index (B).

Full-size DOI: 10.7717/peerjcs.415/fig-4

and, in the contrary, the areas that did not experience drought are also consistent since
2018.

VHI consists of VCI, TCI, and α components which are the parameters to quantify VCI
and TCI contributions. VCI is composed from NDVI value, while the TCI is composed of
LST value, which all of them are calculated using monthly data time series period between
2018 and 2019.Vegetation land coverage can be seen from the dominance of regions that
do not indicate drought with a VHI value >33.67 in 2019. In 2020 shows a decrease in
the areas that have land coverage with thick vegetation and an increase in the areas which
indicate drought shown by a VHI value <31.10 (Figs. 4B). Figure 4B shows that the VHI
prediction from 2019-2020 is very low, which means that the vegetation in the most of
study areas contain chlorophyll, the low leaf equivalent water thickness and LEA, mainly
caused by low precipitation, and this condition indicates drought biophysically (Tripathi
et al., 2013). VHI is composed of two components, namely, TCI index which is a thermal
indicator and VCI index which is an indicator of soil surface moisture. TCI value describes
the thermal surface of a ground caused by solar radiation reflectance. The TCI value is
calculated based on the land surface temperature (LST) analyzed from the time series
imagery pixel (Karamzadeh et al., 2017). The low TCI value is an indicator of an increased
stress and vegetative growth pressure associated with drought phenomena (Gidey et al.,
2018). Figure 5A shows that TCI can be accurately predicted using RF andCART algorithms
and visualized spatially with IDW.

VCI is an indicator of drought level based on soil surface humidity. The VCI >50%
represents normal conditions; between 35%–50% represents moderate drought and <35%
represents high drought (Fig. 5B (Dutta et al., 2015)).

VCI that is measured in seasonal or annual terms in time series showing a value <20%
indicates the occurrence of long drought. RF andCART algorithms can be used to accurately
predict TCI using IDW function as shown in Fig. 5B. Figure 5B shows the potential for
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Figure 5 Spatial prediction in 2019–2020 using the IDW of TCI vegetation index (A) and the VCI vege-
tation index (B)

Full-size DOI: 10.7717/peerjcs.415/fig-5

high to extreme drought i.e., <20.04. In this study, three indicators are used to see the areas
before and after land fires as a result of long drought using BAI and NBR. Fire detection
can be done through pixel extraction by identifying R, NIR and SWIR signals. Signal R can
show contrasting color patterns and separate pixels that represent healthy vegetation and
non-vegetation lands based on chlorophyll concentrations in plants. The newly burnt area
reflects very low NIR and R signals and reflects a very high SWIR signal.

BAI is a vegetation index that has a threshold value which is calculated based on pixel
comparison on time series that represents burnt and unburned areas (Fig. 6A) (Dalposso
et al., 2013; Chuvieco et al., 2013). BAI is the latest method which has a high sensitivity
towards the influence of soil types and the existing land use on the surface of the earth
(Table 8A).

The computational experiment shows that the study area has a 1BAI value of between
−3.971 to −2.376, which is interpreted as a region where there are no land fires. This
region shows the growth of new vegetation. Prediction using machine learning shows the
algorithm that produces the closest value to 1NBR1819 survey data which is 1SVM and
1CART algorithms (Table 8B). NBR is a vegetation index that is used to detect fires based
on spectral changes which are interpreted as changes in the amount of chlorophyll content
in plants, moisture, and charcoal or ash in the soil (Parks, Dillon & Miller, 2014).

The 1NBR is VI which shows energy differences between healthy vegetation areas and
stressed vegetation areas caused by water stress as a result of fire and is used to determine
the potential of regrowth. The severity degree of the burned areas is calculated based on
the differences between before the fire and post-fire vegetation in the same area. 1NBR
aims to normalize spatial variation in vegetation cover before the fire as this method is
very accurate in other studies (Wulder et al., 2009). The severity degree is notated with
differenced (d) or 1 or delta. The result of 1 calculation shows that the severity level,
vegetation survival, and delayed vegetation mortality. The NBR value is between +1 and
−1, and the higher the value shows the burned areas. The experimental results show that
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Figure 6 Spatial prediction of the BAI vegetation index (A) and the NBR vegetation index in 2019–
2020 using IDW (B).

Full-size DOI: 10.7717/peerjcs.415/fig-6

Table 8 (A) Prediction of BAI values withMachine Learning algorithm and (B)1NBR values withMa-
chine Learning algorithm.

(A)

Algorithms Min Average Max

1ANN −11.787 0.074 3.845
1k-nn −6.037 −0.016 6.742
1SVM −3.617 −0.242 2.506
1RF −2.647 −0.272 5.208
1CART −3.067 −0.283 2.376
1MARS −6.923 −0.283 5.028
1BAI1819 −3.971 −0.216 2.376

(B)
1ANN −0.426 −0.362 −0.204
1k-nn −0.402 −0.302 −0.212
1SVM −0.410 −0.301 −0.210
1RF −0.381 -0302 −0.237
1CART −0.410 −0.303 −0.244
1MARS −0.397 −0.302 −0.236
1NBR1819 −0.412 −0.303 −0.208

the study area has a 1NBR value of between −0.020 to −0.412 which is interpreted as a
region that has just begun to grow. Prediction using machine learning shows two 1SVM
and1CART algorithms that produce the closest value to1NBR1819 survey data (Fig. 6B),
(Table 8B). The1NBR which is calculated from 2018 to 2019 shows a typical pattern of no
fire and pattern of lands that start to be vegetating which can reflect signal and is depicted
on image pixel.
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CONCLUSIONS
The correlation coefficient analysis concerning the results of vegetation index observation
namely, BAI, NBR, NDVI, TCI, VCI and VHI in 2018 and 2019 shows that the association
between vegetation indices is very strong, with coefficient r is <0.5 or <−0.5, some of which
have values >0.3 or >−0.3 as medium association and some have values <0.3 or <−0.3
as weak association. The experimental results show that the most efficient algorithms in
predicting vegetation index are RF and CART. RF has a difference between the predicted
results and 1.04% survey data (MAPE) and the smallest value close to zero is 0.05 (MSE).
CART has a difference between the predicted results and 1.05% survey data (MAPE) and
the smallest value close to zero is 0.05 (MSE). Spatial prediction shows that the vegetation
index of machine learning prediction result data is almost the same size as the data from
field observations. NDVI indicates high vegetation land coveragewithNDVI>0.21, whereas
in 2020 data show that most areas indicate low vegetation land coverage with NDVI <0.21.
Data in 2019 show that VHI >33.67 which indicates that there is no drought, whereas in
2020 there is a decrease of areas with thick vegetated land coverage and an increase in areas
indicating drought indicated by a VHI value <31.10. VCI values in the study area varied
which VCI >50% shows a normal condition, VCI between 35%–50% shows a moderate
level of drought and VCI <35% shows a high level of drought. Experiments using machine
learning show that dBAI values in the study area are between −3.971 up to −2.376 which
indicate that there is no land fire and there is new vegetation growth. DNBR values are
between −0, 208 to −0.412 which indicate that vegetation starts to grow in the area.
Prediction using machine learning shows that the1SVM and1CART algorithms produce
the closest values to the 1NBR observation data in 2018 and 2019. In future research, we
will compare the performance of the framework between LANDSAT 8 OLI image data
and Sentinel 2 image data. We will also compare the drought risk areas from vegetation
indices analysis with meteorological methods such as SPI, SPEI and PDSI. The results of
this comparison can be selected methodology that has high validation and accuracy in the
software framework.
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