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ABSTRACT
The high volatility of an asset in financial markets is commonly seen as a negative
factor. However short-term trades may entail high profits if traders open and close
the correct positions. The high volatility of cryptocurrencies, and in particular of
Bitcoin, is what made cryptocurrency trading so profitable in these last years.
The main goal of this work is to compare several frameworks each other to predict
the daily closing Bitcoin price, investigating those that provide the best performance,
after a rigorous model selection by the so-called k-fold cross validation method.
We evaluated the performance of one stage frameworks, based only on one machine
learning technique, such as the Bayesian Neural Network, the Feed Forward and the
Long Short Term Memory Neural Networks, and that of two stages frameworks
formed by the neural networks just mentioned in cascade to Support Vector
Regression. Results highlight higher performance of the two stages frameworks with
respect to the correspondent one stage frameworks, but for the Bayesian Neural
Network. The one stage framework based on Bayesian Neural Network has the
highest performance and the order of magnitude of the mean absolute percentage
error computed on the predicted price by this framework is in agreement with those
reported in recent literature works.

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Machine learning, Cryptocurrencies, Technical indicators, Bayesian neural network

INTRODUCTION
Unlike the volatility of traditional market assets, the volatility of cryptocurrency markets is
very high, and albeit they share the characteristics of traditional stock markets, they are
highly unstable. Indeed these markets are decentralized and unregulated, and also subject
to manipulation.

Nowadays many are the entrepreneurs who invest in block-chain, the well known
technology underlying the most popular cryptocurrencies including Bitcoin, and we can
expect that this number will grow as the Bitcoin utility increases; and many are the people
who speculate on the bitcoin price.

Speculating on the Bitcoin market may offer the opportunity to obtain substantial
returns, but it may also entail a very high risk. So to judge the best time to enter the
market is extremely important in order to get profits and not to lose too much money.

The price of Bitcoin changes every day, just like the price of fiat currencies. However the
Bitcoin price changes are on a greater scale than that of the fiat currency changes. As a
result to get an idea of the future price trend can be extremely important. To date, several
on-line platforms make available several technical analysis tools that allow the bitcoin
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speculators to identify trends and market sentiment; the number of the research papers
that investigate the future bitcoin price trend is increasing.

Figures 1 and 2 show the USD/EUR and BTC/USD currency pairs and their volatility.
As a measure of volatility we used the moving standard deviation calculated applying
the Pandas rolling standard deviation to the logarithmic returns of each just quoted
currency pair using a window of 6 days. We computed also the maximum and minimum
value of the USD/EUR and BTC/USD currency pairs’ volatility. The maximum value of the
BTC/USD volatility is equal to 0.505, whereas the minimum value is equal to 0.005.
For USD/EUR the maximum value is one order of magnitude lower. It is equal to 0.031
whereas the minimum value is equal to 0.001.

In this article we propose and study some machine learning based frameworks to
forecast Bitcoin prices. These frameworks could be used to decide when and how much
to invest, and also to build bitcoin trading strategies. The main goal of this work is to
analyze the performance of Bayesian Neural Networks (BNN) in predicting the Bitcoin
prices, and to compare them with those obtained using other kinds of NNs, such as the
Feed Forward Neural Network (FFNN) and the Long Short Term Memory Neural
Network (LSTMNN). In addition, following the approach proposed in the work by Patel
et al. (2015), we analyzed whether the performance of the FFNN and LSTMNN increases
putting each of them in cascade to another ML technique, the so called Support Vector
Regression (SVR).

Figure 1 (A) Time trend of USD/EUR currency pair and (B) its volatility.
Full-size DOI: 10.7717/peerj-cs.413/fig-1
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Let us define, as in the work by Patel et al. (2015), the first models just described,
BNN, FFNN and LSTMNN, as single stage frameworks, and the others, SVR+FFNN and
SVR+LSTMNN, as two stages framework. The former predicts the bitcoin price by a single
ML technique, the latter instead predicts the bitcoin price by two ML techniques in
cascade. All frameworks attempt to predict the Bitcoin prices starting from five technical
indicators: the Simple Moving Average (SMA), the Exponential Moving Average
(EMA), the Momentum (MOM), the Moving Average Convergence Divergence (MACD)
and the Relative Strength Index (RSI).

Hence, starting from the value of these five technical indicators at tth day, the one-stage
framework aims to predict the daily closing Bitcoin price at (t + n)th day, with n = 1, n = 10
and n = 20 (see Fig. 3). Instead, in the two stages frameworks the first stage, that is
formed by an SVR, receives in input the five technical indicators at tth day and predicts
the value of the five technical indicators at (t + n)th day; the second stage, that is formed
by one of two NNs, receives in input the five technical indicators at (t + n)th day and
predicts the daily closing price of Bitcoin at (t + n)th day1, as in the work by Patel et al.
(2015) (see Fig. 4).

To evaluate the performance of our proposed frameworks, at first we divided the
whole data set into train and test set, being the test set equal to 30% of the whole data
set. Then, in order to select the best neural network architectures, we calibrated these
frameworks applying the k-fold cross-validation method to the train set just mentioned.

Figure 2 (A) Time trend of BTC/USD currency pair and (B) its volatility.
Full-size DOI: 10.7717/peerj-cs.413/fig-2

1 As in all supervised learning problems, in
our problem there are also input patterns
(X) and output patterns (y), and given
the input patterns an algorithm learns
how to predict the output patterns. We
transformed our time series data into a
supervised learning problem using the
shift() function of the well known Python
data analysis library, Pandas. Starting
from our time series in input, we created
copies of columns of lag observations as
well as columns of forecast observations,
using as inputs those from tth days to t +
(n − 1)th day and so transforming a time
series dataset in a supervised learning
format (see Brownlee (2017a, 2017b) for a
detailed description and implementation
in Python).

Cocco et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.413 3/23

http://dx.doi.org/10.7717/peerj-cs.413/fig-2
http://dx.doi.org/10.7717/peerj-cs.413
https://peerj.com/computer-science/


We selected the best architecture for ANNs and the best architecture for BNNs. Once
selected the best architectures, analyzing the average across k-folds of the mean absolute
percentage error (MAPE) for each architecture, we trained the best selected architectures
on all data set. Final results provide a robust estimation of the performance of these
architectures, since they are the MAPE’s average (std) across the several Monte Carlo runs
performed.

Let us underline that peculiarity of our work is tuning architectures’ hyper parameters
by the k-fold cross-validation method, and predicting prices in a young, unstable and
immature market such as the cryptocurrency market providing robust results thanks to the
Monte Carlo method applied. Note that, we predicted the Bitcoin prices and also the
Ethereum prices applying in both cases the same methodologies. In this first work, due to
the computational complexity of some proposed frameworks an exhaustive optimization
was not performed. Nevertheless, Bitcoin price predictions are comparable with those
found in literature and proposed frameworks perform well also when applied to the
Ethereum price prediction. The article is organized as follows. Related Work describes

Figure 3 Architecture of the one stage framework. Full-size DOI: 10.7717/peerj-cs.413/fig-3
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related work; the Proposed Framework section presents the frameworks proposed in our
work for the prediction of bitcoin price, describing the ML techniques used and their
inputs, that are the technical indicators mentioned above and that are built starting from
the daily closing bitcoin price series; The Framework’s Calibration and Performance
Metric section illustrates the calibration of the proposed frameworks, the training
and testing data sets, and the performance metrics with which the proposed frameworks
are evaluated; Results presents the results, and finally, Conclusions concludes and discusses
future works.

RELATED WORK
In this work, as already mentioned, the proposed frameworks, and in particular the idea of
the approach of one and two stages, stem from the work by Patel et al. (2015). In that work,
the authors predict the future values of two Indian stock market indices, CNX Nifty
and S&P Bombay Stock Exchange (BSE) Sensex, by the SVR combined with Artificial
Neural Network (ANN) and Random Forest (RF) algorithms. They compare the
obtained results in these two stages frameworks with those obtained in the single stage
frameworks formed each by a single ML technique, ANN, RF and SVR. Contrary to
the work by Patel et al. (2015), in our work we investigated also the performance of the
BNN.

The BNNs are taken into account in the work by Jang & Lee (2018) that use Blockchain
information in order to predict the log price and the log volatility of Bitcoin price.
In this work, the authors select the relevant inputs studying the multicollinearity problem,
and specifically studying for each input the variance inflation factor (VIF) value. Also in a

Figure 4 Architecture of the two stages framework. Full-size DOI: 10.7717/peerj-cs.413/fig-4
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work by Mallqui & Fernandes (2019) the authors select the relevant inputs for their
prediction problem, but the selection of the relevant inputs is done using the correlation
analysis, the relief technique, the information gain method, the principal component
analysis, and the correlation based feature subset selection. In the work by Mallqui &
Fernandes (2019) the authors predict both the Bitcoin price and its movements, hence
solve both a classification problem and a regression problem by different ML algorithms,
Recurrent Neural Network, Tree classifier and the SVM algorithm. Owing to the low
number of inputs taken into account in our work, we did not apply any selection method.
We simply evaluated the performance of the proposed frameworks at varying the number
of inputs taken into account, finding that the best performance of the BNN is obtained
taking into account all five technical indicators. Our future work is to investigate the
performance of the proposed frameworks under the assumption of a higher number of
inputs, which includes also blockchain information, tweet volumes and sentiment analysis.

Twitter data and Google trends data are used by Abraham et al. (2018) in order to
predict changes in the prices of both Bitcoin and Ethereum. In this work, the authors
predict the direction of price changes by a linear model. In the work by Huang, Huang &
Ni (2018) the authors investigated cryptocurrency return predictability, specifically the
bitcoin return predictability. They forecast the bitcoin daily return using a tree-based
predictive model and 128 technical indicators as input. Results showed that their predictive
model has strong predictive power and performance higher than those obtained by a
buy-and-hold strategy. As a result, work byHuang, Huang & Ni (2018) suggests that in the
bitcoin market technical analysis can result useful.

A similar result is obtained in the work by Cocco, Tonelli & Marchesi (2019), who
simulate the trading of the currency pair BTC/USD. They simulate a BTC/USD artificial
market in which Chartists (speculators) trade through the application of trading rules
based on technical indicators, and Random traders trade without applying any specific
trading strategy. Results show that Chartists, who adopt the trading rules selected by a
genetic algorithms that optimizes their parameters, are able to achieve higher profits.

Let us quote other relevant works. Shintate & Pichl (2019), Ji, Kim & Im (2019),
Livieris et al. (2020), Lamothe-Fernández et al. (2020), and Chen, Li & Sun (2020) predicted
Bitcoin price at different frequencies using several machine learning techniques and
investigating the importance of the sample dimension. Greaves & Au (2015) investigated
the predictive power of blockchain network-based features on the bitcoin price.
They found a low predictive power embedded in these network features probably because
Bitcoin price is technically dictated by exchanges’ behaviors. Akcora et al. (2018)
introduced the concept of k-chainlets expanding the concepts of motifs and graphlets to
Blockchain graphs. They found that certain types of chainlets have a high predictive power
for Bitcoin prices. Lahmiri & Bekiros (2019) implemented deep learning techniques to
forecast the price of the three cryptocurrencies, Bitcoin, Digital Cash and Ripple, finding
that these three digital currencies exhibit fractal dynamics, long memory and self-
similarity. Indera et al. (2018) presented a Multi-Layer Perceptron-based Non-Linear
Autoregressive with Exogeneous Inputs (NARX) model to predict Bitcoin price starting
from the opening, closing, minimum, maximum past prices and a technical indicator, the
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well-known Moving Average. Munim, Shakil & Alon (2019) forecasted Bitcoin price
using the autoregressive integrated moving average (ARIMA) and neural network
autoregression (NNAR) models. Uras et al. (2020) segmented each analyzed financial time
series into short partially overlapping sequences in such a way that these sequences do not
resemble a random walk. The authors identified a train and a test set within each time
regime/sequence. Then, in each identified sequence they applied different forecasting
procedures—Simple Linear Regression, Multiple Linear Regression, Multilayer Perceptron
and the Long short-term memory. Mudassir et al. (2020) presented high-performance
machine learning-based classification and regression models for predicting Bitcoin price
movements and prices in short and medium terms. Among the machine learning
techniques used by the authors there is the stacked ANN (SANN), constituted of 5 ANN
models that are used to train a larger ANN. The SANN was trained using the training
dataset and the 5-fold cross-validation, by training each of 5 ANN models on a
separate fold. The final larger ANN learns from these five models, that is, it trains on the
outputs of the five individual smaller ANNs. All the cited works focus on end-of-day
closing price forecast and/or price movements forecasting for the next day prices, but the
work by Patel et al. (2015) and the last work quoted, that by Mudassir et al. (2020).
The former focuses on forecasts for 1–10, 15 and 30 days in advance, instead the latter
focuses on end-of day, short-term (7 days) and mid-term (30 and 90 days) forecasts. In this
work we focus on end-of day, short-term (10 days) and mid-term (20 days) forecasts.

Finally, we quote the works by Jang et al. (2018), Chih-Hung, Yu-Feng & Chih-Hung
(2018), Pant et al. (2018), McNally, Roche & Caton (2016), Phaladisailoed & Numnonda
(2018), Roy, Nanjiba & Chakrabarty (2018), and by Velankar, Valecha & Maji (2018) that
are published in the proceedings of recent international conferences and deal with the
prediction of the bitcoin price using machine learning techniques.

To the best of our knowledge, our work is the first attempt of predicting the bitcoin
price investigating the best architecture by the so called k-fold cross-validation method,
applying it only to a part of the whole dataset, as described in details in Section
Framework’s Calibration and Performance Metric. In modern applied machine learning in
order to tune model hyper parameters the definition of the k-fold cross-validation method
often replaces the definitions of training, validation and test data set for preventing
overfitting.

In their book Kuhn & Johnson (2013) wrote:
…we must use the existing data to identify settings for the model’s parameters that

yield the best and most realistic predictive performance (known as model tuning).
Traditionally, this has been achieved by splitting the existing data into training and test sets.
The training set is used to build and tune the model and the test set is used to estimate
the model’s predictive performance. Modern approaches to model building split the data
into multiple training and testing sets, which have been shown to often find more optimal
tuning parameters and give a more accurate representation of the model’s predictive
performance.
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This is because using a sole test set or a validation set has many limitations, as discussed
by Kuhn & Johnson (2013), Brownlee (2017c), Anguita et al. (2012), and Rodriguez, Perez &
Lozano (2010).

It is worth underlining that every machine learning model always has some error
because it is a model. Kuhn & Johnson (2013) wrote:

Many modern classification and regression models are highly adaptable; they are
capable of modeling complex relationships. However, they can very easily overemphasize
patterns that are not reproducible. Without a methodological approach to evaluating
models, the modeler will not know about the problem until the next set of samples are
predicted.

In statistics a common aphorism, that is generally attributed to the statistician George
Box, goes All models are wrong and is often expanded as All models are wrong but some
are useful. This aphorism applies also to the choice and preparation of data, choice of
hyperparameters, and the interpretation of model predictions.

In this work we attempted of predicting the bitcoin price investigating the best
architecture by the k-fold cross-validation method, and using the Monte Carlo method
to handle the stochastic nature of the neural networks, hence providing statistics to
summarize the performance of the best selected models. This approach is not always
applicable due to the long training times of some models. The Monte Carlo method as well
as all methods and tools from probability provide a way to handle the random nature of the
predictive modeling problems.

Note that, as we are going to describe in next sections, our results are comparable
with those in literature despite the proposed frameworks are relatively simple in
comparison to those proposed previously in literature. There are works that propose
a framework using a high number of inputs, deep neural networks (DNN), convolutional
neural networks (CNN) and complex stacking ensemble models (see for example the
ensemble model proposed by Ji, Kim & Im (2019), in which the first level consists DNN,
LSTM, and CNN, and the second level consists of a single DNN model).

PROPOSED FRAMEWORKS
In this work we compare the performance of the single stage frameworks, formed by an
NN (BNN, FFNN, or LSTMNN), with the performance of the two stages frameworks,
formed by an NN in cascade to an SVR. All frameworks aim to predict the daily closing
Bitcoin and Ethereum price at (t + n)th day, with n = 1, n = 10, and n = 20, starting from
the value of five technical indicators, SMA, EMA, MOM, RSI and MACD, at tth day.

In the following we briefly describe the technical indicators and the ML techniques
adopted in this work.

Technical indicators
The five indicators above mentioned are indicators well known in the technical analysis2

(Kirkpatrick & Dahlquist, 2006). They are mathematical constructions used to process

2 Technical analysis forecasts the move-
ments of the financial assets’ prices
through the study of past market data,
such as price and volume.
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data, for example on the price trend and on the volumes traded of a financial security in
order to predict its future price performance and get buy and sell signals3.

Moving averages
Moving averages, SMA and EMA, are basic indicators for determining price trends.
They are defined as follows:

SMAt ¼ 1
n

Xn
1

Pt (1)

and

EMAt ¼ EMAt�1 þ 2
nþ 1

ðPt � EMAt�1Þ (2)

where P is the price and n is the used period. Both are calculated by averaging a certain
number of past data. The main difference is that in the EMA the data are weighted,
and old data have less weight than recent data4. Owing to the high volatility of the bitcoin
price, we dealt with short term moving averages, which usually take into account periods
between 5 and 20 days. In this work we considered moving average on periods equal to
5 days.

Oscillators

Contrary to the moving averages, MACD, RSI and MOM are called oscillators because
their value oscillates in a sinusoidal manner between a minimum and a maximum.
They can be useful for identifying points of excessive price increase or excessive price
decrease, and points of possible change in the direction of prices.

MACD considers the difference between the values of two moving averages (MACD
line), one is a short period EMA and the other is a long period EMA, together with an
exponential moving average of this difference (signal line) and a histogram given by the
distance between the MACD line and the signal line. It is defined as follows:

shortEma ¼ 0:15Pt þ 0:85shortEmat�1 (3)

longEma ¼ 0:075Pt þ 0:925longEmat�1 (4)

and

MACD ¼ shortEma� longEma (5)

12 and 26-day averages usually determine the MACD line, while the 9-day average
determines the signal line. In this work we considered these values to compute the MACD.

RSI is a technical indicator of momentum useful for identifying the phases of oversold
and overbought asset. It is defined as follows:

RSI ¼ 100
upavg

upavg þ dnavg
(6)

3 For more details see http://mrjbq7.
github.io/ta-lib/funcs.html, a link in
which the functions of the library TA-
Lib, used to compute these technical
indicators, are explained.

4 EMA value at t is based on the previous
EMA value at t :amp:minus; 1. The initial
value for EMA at t :amp:minus; 1 will be
an SMA value calculated using a period
equal to that used in EMA.
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where

upavg ¼ upavgt�1 � ðn� 1Þ þ up
n

dnavg ¼ dnavgt�1 � ðn� 1Þ þ dn
n

and n is the used period to compute this indicator, up = Pt − Pt−1 and dn = 0 if Pt > Pt−1,
otherwise up = 0 and dn = Pt−1 − Pt. Areas of overbought indicate a time when prices
go too far above their average period, and given that the price is now too high we can
expect an imminent return of prices downwards (sell signal). Areas of oversold indicate a
time when prices have pushed too low compared to their average and therefore we
expect an imminent bullish return movement towards their average (buy signal). RSI
values range from 0 to 100. Over 70 points there is an overbought signal, and under 30 an
oversold signal.

MOMmeasures the rate of change of any instrument. It compares the current price with
the price of some previous periods:

MOM ¼ Pt � Pt�n (7)

In this work we set the period used by this oscillator equal to 9 days.

Machine learning techniques
All ML techniques adopted in this work operate in a supervised context. The training
takes place by presenting to the network inputs (training dataset) whose output is known,
hence by presenting to the network the data set (xn, yn), where each data point in input

xn 2 RD, whereas the output yn 2 R.

Bayesian neural network
Contrary to other types of neural networks, such as the FF and the LSTM, which find a
weighted array that maximizes the fitting of the NN outputs with respect to training
outputs, following the principle of Maximum Likelihood, the BNNs follow the Bayesian
approach.

In the Maximum Likelihood, the learning aims at finding a single network—“the
best”—the one that makes the smallest error on training data. As a result, at the end of
the training, we get a single weight array. On the contrary the Bayesian Approach
considers a probability distribution for the weights. At the end of the training we have
more than one network and the output is computed as the expected value of the outputs
generated by all these networks.

In deeper detail, in an BNN the weights and the outputs are assumed to be sampled
from a distribution. Let us define the BNN taken into account in this work. It has an input
with D dimensions and two hidden layers, whose dimensions are HL1 and HL2,
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respectively. For such a network the parameters u ¼ v0;v1;v2; b0; b1; b2f g are defined as
follows:

v0 2 RD�HL1 ;v1 2 RHL1�HL2 ;v2 2 RHL2�1; b0 2 RHL1 ; b1 2 RHL2 ; and b2 2 R

The activation functions that allow to pass from a layer to another are defined by
rectified linear unit activations, hence our NN network is defined as follows5:

NN : RD ) RHL1 ) RHL2 ) R

and a data point in input x pass through the following layers:

x ) h1 ¼ maxð0;v0
Tx þ b0Þ ) h2 ¼ maxð0;v1

Tx þ b1Þ ) v2
Th2 þ b2

The prior distribution on the weights is defined as a standard normal distribution, as
follows:

pðuÞ ¼ Normalðuj0; IÞ
(where 0 is a zero matrix and I is a identity matrix), and the likelihood for each data point
(x, y) is given by:

pðyjx; uÞ ¼ pðDjuÞ ¼ NormalðyjNNðx; uiÞ;s2Þ
where D denotes the training dataset, hence it represents all data points to be presented to
the network during the training, and s2

y is a fixed variance set equal to 1.
Given the prior and the likelihood, the posterior distribution p(θ, x) is approximated by

a parametrized family q(θ, λ) through a variational inference method6 minimizing the
Kullback–Leibler divergence between the two distributions q and p. Note that the data are
scaled to be centered and have unit variance.

Once estimated the posterior distribution, that is the distribution of the weights θ of the
BNN, we can compute the posterior predictive distribution for testing data points in input
xtest. This distribution is given by:

pðyjxtest; uÞ ¼
Z

NormalðyjNNðx; uÞ;s2ÞpðujDÞdu

it can be computed using the Monte Carlo approximation:

pðyjxtest; uÞ� 1
nsamples

Xnsamples�1

i¼0

NðyjNNðxtest; uiÞ;s2Þ

we sampled it from the posterior, that is from the distribution q(θ, λ *). This implies
sampling the weights θ, which gives NN(xtest, θi) with i ¼ 0 . . .M where M is the number
of extracted samples.

M values of NN(xtest,θi), that is M values of y, are associated to each data point xtest
belonging to the testing dataset. Since to each xtest in input must correspond in output only

5 See http://edwardlib.org/tutorials/
bayesian-neural-network and https://
github.com/mikkokemppainen/Jupyter_
notebooks/blob/master/Edward_
notebook_public.ipynb.

6 See http://edwardlib.org/tutorials/klqp.
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one value of y, we have to compute the posterior predictive distribution for each xtest in
the testing dataset.

Due to the computational complexity, we grouped all the sample predictions into
histograms forming the posterior predictive distribution as a mixture distribution
according to these histograms7. We computed the prices’ prediction sampling from this
mixture, computing the mean.

Feed forward and long short term memory neural network
As regards the other two neural networks taken into account in this work, the FFNN and
the LSTMNN, the main difference between them is that the former is composed of a series
of layers of neurons connected without cycles, whereas the latter is characterized by the
presence of cycles and is able to consider long-term dependencies among data.

Specifically, we implemented an FFNN, composed of 3 layers, an input layer, a hidden
layer and an output layer as in work by Patel et al. (2015). The input layer takes in input the
five technical indicators, and the output layer predicts the price at (t + n)th day.
We initialized the network’s weights to a random number generated from a uniform
distribution, used a tangent sigmoid as activation function in the first two layers, and a
linear activation function in the output layer, as in the work Patel et al. (2015). The output
layer of the neural network has only one neuron and the value, it returns, is compared
with the true value. We implemented an LSTMNN having a visible layer with in input
the five technical indicators, a hidden layer with nn neurons, also called LSTM blocks, and
an output layer that predicts the price at (t + n)th day. The default sigmoid activation
function is used for the LSTM blocks.

We trained both the networks for ne epochs and used a batch size of nb and
Adam as optimization algorithm to update network weights (Kingma & Adam, 2015).
This algorithm is based on the gradient descent that minimizes an objective function, in
our case the mean absolute error (MAE) of the output produced by the NNs with respect to
the desired output.

Support vector regression

Let us conclude this brief overview with the ML technique used in the two stages
frameworks, SVR. It belongs to a set of supervised learning methods that can be used both
for classification and for regression computation. In a problem of classification, this
technique is called Support vector machines (SVM). For instance, it can be used to divide
the set of training data in two classes; an SVM is able to identify the hyperplane having
the maximum margin of separation between the two classes. To this purpose, the training
data set is mapped in a space called feature space using non-linear functions, ψ, called
feature functions, which are a combination of the so called kernel functions. They map a
lower dimensional data into a higher dimensional data.

In a regression problem, SVR tries to keep the fitting error within a certain threshold.
Indeed, the goal of this ML technique is to find a function ψ that deviates from the
observed value by a value no greater than ε for each training point.

7 A mixture distribution is the probability
distribution of a random variable that is
derived from a collection of other ran-
dom variables as follows: first, a random
variable is selected by chance from the
collection according to given prob-
abilities of selection, and then the value
of the desired random variable is
obtained (http://edwardlib.org/api/ed/
models/Mixture).
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The kernel functions more used, and adopted also in this work are the following.

� Linear: Kðxi; yjÞ ¼ xTi yj.

� Polynomial: Kðxi; yjÞ ¼ ðcxTi yj þ rÞd , being d the degree of the polynomial function.

� Radial basis function: K(xi,yj) = exp(−γ||xi − xj||
2), with γ > 0.

FRAMEWORKS’ CALIBRATION AND PERFORMANCE
METRIC
We analyzed the time series of Bitcoin and Ethereum daily closing prices. Specifically, the
dataset taken into account includes daily closing price’s values from January 1st, 2017 to
April 30th, 2020, for a total of 1,216 values.

Starting from these series we computed the time series of the five technical
indicators, that are the inputs of our frameworks, and the features xn of the dataset (xn, yn),
including the training and testing datasets. The bitcoin daily price time series defines the
output yn of such dataset. Summary statistics for the five inputs and the output are
described in Table 1 for Bitcoin and Ethereum price time series.

To evaluate the performance of the proposed single stage and of the two stages
frameworks, we computed the Mean Absolute Percentage Error (MAPE), defined as
follows:

� 1
n

Xn

t¼1

jAt � Ftj
jAtj � 100

where At and Ft are the actual and forecast prices, respectively, at time t.
As regards the calibration of the used ML techniques, we tuned the model hyper

parameters, that is the parameters whose values are set before starting the learning
process, using the k-fold cross-validation method (see works by Kuhn & Johnson (2013),

Table 1 Summary statistics for the five inputs and the output for Bitcoin and Ethereum prices.

Max Min Mean Standard deviation

BTC

SMA 18,380.97 970.58 6,584.88 3,278.79

EMA 18,166.92 977.8 6,585.17 3,270.38

MOM 5,725.74 −4,786.35 52 1,102.21

MACD 2,546.46 −1,447.3 36.69 432.44

RSI 97.84 5.91 53.72 18.66

CLOSE 19,237.15 924.1 6,597.43 3,285.75

ETH

SMA 1,296.65 10.79 292.26 233.62

EMA 1,302.17 10.84 292.27 233.08

MOM 543.01 −452.89 1.41 76.07

MACD 173.3 −94.25 0.95 29.81

RSI 94.54 10.77 52.08 17.61

CLOSE 1,396.42 11.03 292.59 234.34
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Brownlee (2017c), and Rodriguez, Perez & Lozano (2010)). The k-fold cross-validation
method implies the creation of several neural network architectures and the training of
every architecture at each k-fold. For each architecture and for each k-fold the MAPE
value is computed. The average of the MAPE’s k values across the k-folds for a given
architecture represents the performance of that architecture. The architecture with the
lowest average is the best. It represents the model that has to be trained on all data.
The k-fold cross-validation method works as described by the following pseudo-code:

START:
#split data into training and testing dataset
trainData, testData = split(allData)
#tune parameters of the model
parameters = …

k = …

archSkills = list()
for p in parameters do
k-fold_skills = list()
for i in do

k-fold _train, k-fold_val = split(i, k, trainData)
model = fit (k-fold-train, p)
skill_estimate = evaluate(model, k-fold_val)

end for
# for each k-fold calculate MAPE and store the average
skill = summarize(k-fold_skills)
archSkills.append(skill)

end for
#evaluate the model with the best tuning with all data
model = fit(trainData)
skill = evaluate(model, testData)
END.
We applied the k-fold cross-validation method with k = 3–70% of the whole dataset.

We used the k-fold method with an expanding window, hence we divided the data set in
three folds/splits as illustrated in Fig. 58. As underlined by Kuhn & Johnson (2013) a formal
rule to choose the value of k does not exist. Since our data set size is not large enough three
should be an acceptable value for k. We repeated the k-fold cross-validation method several
times, choosing at the end the tuning that provides the architecture having the best
performance.

As regards the hyper parameters of the BNN, one, two, and three hidden layers, nhl,
were tested, with combinations of 50, 100, 200, 300, 400 and 500 neurons, nn. As regards
the hyper parameters of the other ML techniques adopted (FFNN, LSTMNN and SVR),
they were selected running sixty Monte Carlo runs, and taking in each run a different
constellation. The hyper parameters that must be selected, are the number of epochs,
ne, the number of neurons, nn, the number of batches, nb, the degree of the polynomial
kernel, d, the value of γ (that is a parameter of the radial basis kernel). For each of them

8 We tested the k-fold method with both
an expanding window and a sliding
window, and at the end we chose an
expanding window given that with it we
obtained the best results.
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we defined the range in which they vary, as follows9: ne ∈ [50, 500], nn ∈ [20, 100], nb ∈ [5,
100], d ∈ [1, 10], γ ∈ [0.1, 100].

Once the best architecture is selected, we train it with all data, considering the testing
set equal to 30% of the whole data set, that is the part of the data set not used in the
k-fold method. To evaluate the robustness of the selected architecture’s performance we
repeated this procedure forty times, applying the so called Monte Carlo method.
The performance of each proposed framework are measured by the average and the
standard deviation of the MAPE’s values across the Monte Carlo runs10,11.

RESULTS
As just described, to tune our frameworks we applied the k-fold cross-validation method to
70% of the whole data set, using k = 3, an expanding window, and respecting the temporal
order of the series. For each defined architecture, we applied this method computing
the prediction at (t + n)th day ahead of time, with n = 1 and the MAPE’s values for each
fold.

The k-fold cross-validation method was run once for each different constellation of the
main parameters of each framework, since our goal is to select the best model/architecture
for ANN and the best model for BNN, in order to compare the performance of these
two kind of NNs.

Table 2 reports the measure of the best performance for each proposed framework,
and their hyper parameters, ne, nn, nb, γ, d, and nhl. Precisely for all frameworks under
study, the average and the standard deviation (values in brackets) of the MAPE’s values
across the k-folds are described.

The analysis performed highlighted the following patterns (see Table 2). Firstly, the two
stages frameworks perform better than the correspondent one stage frameworks, but
for the BNN and SVR(r)+LSTMNN. Secondly, the ANN’s performance is higher than
those of BNN. Thirdly, the two stages frameworks composed of SVR, using a linear kernel
function performs better than other two kinds of kernels.

For ANN the best architecture selected corresponds to a two stages framework,
composed of SVR + LSTMNN, in which the SVR uses a linear kernel function and the
LSTMNN uses for training ne = 319, nn = 99 , and nb = 87. For this framework we obtained
the lowest average of the MAPE’s values across the k-folds. This average value is equal to
2.66 (std. 0.08).

Figure 5 The figure shows as 70% of the whole data set is divided into 3-folds/splits, and as the
expanding window approach, used to cross validation, works.

Full-size DOI: 10.7717/peerj-cs.413/fig-5

9 Note that all the parameters not men-
tioned here are defined as described in
Section Proposed Frameworks or, given
that we used the well known python
libraries, sklearn and keras, are set equal
to the default values.

10 It is worth to underline that a classifi-
cation model could also be considered,
since low MAPE values do not neces-
sarily mean that the model predicts the
price rise and fall correctly. Classifica-
tion models will be taken into account in
our future work, but they are out of
scope of this first paper.

11 In this work we trained all our
frameworks for some days on a laptop
with an Intel(R) Core(TM) i5-7200U
CPU @ 2.50 GHz 2.71 GHz, 16 GB
RAM and Graphic card Intel HD 620.
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Contrary to ANN, for BNN the k-fold cross-validation method identifies, as the best
architecture, the one stage framework, in which the BNN follows the configuration
described in section Bayesian Neural Network, with two hidden layers and 300 neurons.
For this framework the average of the MAPE’s values across the k-folds, is equal to 7.7
(std. 0.39).

Once selected the best models we trained the model using the whole data set and
compared the results. In order to evaluate the robustness of the selected models we run
forty Monte Carlo runs, computing for each run the MAPE value at (t + n)th day ahead of
time, with n = 1, n = 10, and n = 20.

For ANN, and specifically, for the SVR+LSTMNN the average and standard deviation
of the MAPE’ values across Monte Carlo simulation are equal to 1.95 and 0.18, to 5.94
and 0.04, and to 6.33 and 0.13, respectively for n = 1, n = 10, and n = 20 day ahead of time.

For BNN the average and standard deviation of the MAPE’ values across Monte
Carlo simulation are equal to 1.74 and 0.09, to 3.85 and 0.24, and to 10.2 and 0.4,
respectively for n = 1, n = 10, and n = 20 day ahead of time. Of course all these values of
MAPE increase while n goes from 1 to 10 and to 20, since the performance decreases while
the day ahead of time increases (see Table 3)12.

Table 2 Parameters and statistics of the best selected architecture for each proposed framework, in
order to predict the Bitcoin price, are described. Statistics represent the average and standard deviation
(in brackets), across the k-folds with k = 3, of the MAPE values. Note that (r) stands for SVR with a radial
kernel function, (l) stands for SVR with a linear kernel function, and (p) stands for SVR with a poly-
nomial kernel function. The bold entries highlight the framework with the lowest average of the MAPE’s
values across the k-folds.

LSTMNN SVR (r) + LSTMNN SVR (l) + LSTMNN SVR (p) + LSTMNN

# epochs 83 330 319 136

# neurons 50 22 99 93

# batchs 40 96 87 98

γ 11.53

d 1

avg (std) 5.79 (1.00) 6.76 (1.56) 2.66 (0.08) 2.7 (0.31)

FFNN SVR (r) + FFNN SVR (l) + FFNN SVR (p) + FFNN

# epochs 224 440 421 490

# neurons 30 68 98 85

# batchs 43 17 98 47

γ 0.17

d 1

avg (std) 5.72 (1.39) 3.25 (0.06) 2.96 (0.51) 3.44 (0.65)

BNN SVR (r) + BNN SVR (l) + BNN SVR (p) + BNN

nhl 2 2 2 2

# neurons 300 300 300 300

γ 55.45

d 3

avg (std) 7.7 (0.39) 9.46 (4.34) 8.49 (3.34) 207 (171.83)

12 Note that the procedure for tuning the
model hyperparameters using the k-fold
cross-validation method was applied
considering the BTC price prediction at
(t + n)th day ahead of time, with n = 1.
It has to apply for each n ! = 1 to select
for each n the best architecture.
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These results show that predicted bitcoin prices by the BNN with n = 1 have a
MAPE very similar to that found by Mallqui & Fernandes (2019), albeit the periods
analyzed are different. In fact, our work considers time series that range from January 1st,
2017 to April 31st, 2020; Mallqui & Fernandes (2019) considered two different periods.
They found a MAPE value equal to 1.91 for the first interval, ranging from August 19th,
2013 to July 19th, 2016, and equal to 1.81 for the second interval ranging from April 1st,
2013 to April 1st, 2017, very close to our MAPE value of 1.74 and 1.95 respectively
obtained applying BNN and SVR+LSTM. Our predicted BTC prices are also very close to
that finding in the work by Mudassir et al. (2020) by applying the so called SVM and
considering the interval from April 1, 2013 to December 31, 2019, hence considering
also the BTC prices after April 2017, as we did. The highest volatility of the BTC prices
was after April 2017, as underlined in the work just quoted. Mudassir et al. (2020)
considered three data intervals: from April 1, 2013 to July 19, 2016; from April 1, 2013 to
April 1, 2017; and the interval from April 1, 2013 to December 31, 2019. For the last
of the three intervals the authors found a MAPE value of 3.78 for ANN, of 3.61 for
LSTMNN, 1.44 for SVM, and of 2.73 for SANN. Lower MAPE values were found for the
first two intervals. This is because the BTC prices volatility is not much high, and BTC
prices are relatively stable, even if in the second interval BTC prices are noticeably higher
toward the end.

Similar analysis was performed also for another cryptocurrency, specifically for
Ethereum. Obtained results are shown in Tables 4 and 5.

Results described in Table 4 highlight that the two stages frameworks for ANN,
composed of SVR, using linear and polynomial kernel functions, perform better than the
correspondent one stage frameworks and two stages framework composed of SVR, using a
radial kernel function; and the BNN’s performance is higher than all the others.

Table 5 describes the average and standard deviation of the MAPE’s values across
Monte Carlo simulations for the best selected architecture, SVR+FFNN and BNN. Best
results are obtained for BNN as in the case of Bitcoin even if the MAPE value is slightly
higher for Etherem, 2.77 (0.61) vs. 1.74 (0.09) for Bitcoin. Note that also in this case MAPE
values increase while n goes from 1 to 20.

We conclude this section presenting the predicted Bitcoin prices at (t + 1)th day ahead
of time by the BNN in one of the Monte Carlo simulations performed. Table 6 describes
the mean, the standard deviation, and the 0.01 and 0.99 quantiles of just ten predicted
values, and gives an idea of how much the predicted values differ from the true values for

Table 3 Average and standard deviation (in brackets) for MAPE values across the performed MC
runs obtained by training the selected best architectures using the whole data set to predict
Bitcoin price.

SVR (l) + LSTMNN BNN

n = 1 1.95 (0.18) 1.74 (0.09)

n = 10 5.94 (0.04) 3.85 (0.24)

n = 20 6.33 (0.13) 10.2 (0.4)
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n = 1. The first column in the table describes the actual value of the Bitcoin price.
Specifically these prices refer to the bitcoin price from May 12th, 2019 to May 21st, 2019.
They are the first ten values of the Bitcoin price into the testing dataset. The second
column describes the average values predicted by the BNN for each actual value reported
in the first column. Remember that the output of the BNN are assumed to be sampled from
a distribution, consequently to give an idea of the results’s goodness in the Table we
illustrate for each predicted price also the standard deviation, and the 0.01 and 0.99
quantiles. For this Monte Carlo simulation the MAPE value is equal to 1.71.

Table 4 Parameters and statistics of the best selected architecture for each proposed framework, in
order to predict the Ethereum price, are described. Statistics represent the average and standard
deviation (in brackets), across the k-folds with k = 3, of the MAPE values. Note that (r) stands for SVR
with a radial kernel function, (l) stands for SVR with a linear kernel function, and (p) stands for SVR with
a polynomial kernel function. The bold entries highlight the framework with the lowest average of the
MAPE’s values across the k-folds.

LSTMNN SVR (r) + LSTMNN SVR (l) + LSTMNN SVR (p) + LSTMNN

# epochs 212 172 445 199

# neurons 100 83 44 35

# batchs 21 20 54 21

γ 66.78

d 1

avg (std) 6.04 (1.6) 6.44 (2.18) 3.44 (0.61) 3.6 (0.58)

FFNN SVR (r) + FFNN SVR (l) + FFNN SVR (p) + FFNN

# epochs 85 295 284 284

# neurons 95 31 99 99

# batchs 19 59 56 56

γ 76.56

d 1

avg (std) 5.73 (1.12) 7.53 (2.89) 3.31 (0.54) 3.26 (0.53)

BNN SVR (r) + BNN SVR (l) + BNN SVR (p) + BNN

nhl 2 2 2 2

# neurons 300 300 300 300

γ 49.31

d 3

avg (std) 4.91 (2.7) 13.2 (8.21) 8.1 (3.43) 54.1 (46.6)

Table 5 Average and standard deviation (in brackets) for MAPE values across the performed MC
runs obtained by training the selected best architectures using the whole data set to predict
Ethereum price.

SVR (p) + LSTMNN BNN

n = 1 2.84 (0.76) 2.77 (0.61)

n = 10 8.45 (1.00) 4.03 (0.15)

n = 20 8.45 (1.78) 8.87 (0.68)

Cocco et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.413 18/23

http://dx.doi.org/10.7717/peerj-cs.413
https://peerj.com/computer-science/


CONCLUSIONS
In this article, several ML frameworks to forecast Bitcoin and Ethereum prices are
comparatively tested. They are divided into one stage frameworks and two stages
frameworks. The formers are frameworks based on just one ML technique. The latters
are based on two ML techniques working in cascade. We used three one stage
frameworks, and three two stages ones. The first three use different NN models.
Specifically, we considered BNN, FFNN and LSTMNN. The second ones use an FFNN, an
LSTMNN, and an BNN, each of them in cascade to an SVR.

The goal of this work was to analyze the performance of BNN in the forecasting the
Bitcoin and Ethereum daily closing prices, and to compare it with those obtained using
FFNN and LSTMNN, considering both the typologies of frameworks. All frameworks
attempt to predict the prices starting from five technical indicators, SMA, EMA, MOM,
MACD, and RSI.

Specifically, in the one stage frameworks starting from the value of these five technical
indicators at tth day, we predicted the daily closing price at (t + n)th day, with n = 1, n = 10,
and n = 20. In the two stages frameworks the first stage, formed by an SVR, receives in
input the five technical indicators at tth day and predicts the value of the five technical
indicators at (t + n)th day; the second stage receives in input the estimate of five technical
indicators at (t + n)th day and predicts the daily closing price at (t + n)th day.

We tuned all the proposed framework applying the k-fold cross-validation method to
70% of the whole data set. We created several models training them at each k-fold,
hence computing for each fold a MAPE’s value. Then, for each model we computed
the average of the MAPE’s values across the k-folds. The model with the lowest average
results to be the best. It represents the model that has to be trained on all data. We selected
the best model for the ANN and the best model for BNN. The former corresponds to a
two stages framework, and the latter corresponds to a one stage framework, both for
Bitcoin and Ethereum price prediction.

Table 6 Statistics on ten samples of predicted bitcoin price expressed in US$ at (t +n)th day ahead of
time, with n = 1, using BNN. Note that these values refer to the first ten samples of the testing dataset.
The corresponding actual values are shown in the first column.

Actual value Mean Std 0.01 Quantile 0.99 Quantile

7,169.8 7,162 50.5 7,038.9 7,275.1

7,646.2 7,586.8 56.5 7,473.7 7,716.9

7,990.4 7,860.1 58.4 7,715.1 7,992.8

8,062.6 7,913 56.6 7,787.6 8,045.3

7,983.7 7,688.4 46.6 7,600.1 7,801.6

7,196.2 7,600.1 44.9 7,500.3 7,713.1

7,328.6 7,723.7 48.4 7,610.6 7,843.6

7,943.2 7,835.7 46.5 7,733.1 7,936.3

7,902.4 7,916.7 46.4 7,814.6 8,047.5

7,950.6 7,876.6 47.6 7,772.9 8,001.2
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Results show that the predicted bitcoin prices by the BNN have a MAPE in accord with
those reported in the works present in the literature. Furthermore, the performance of
some proposed two stages frameworks, SVR+FFNN and SVR+LSTMNN, show a clear
improvement with respect to those of the correspondent one stage frameworks, and the
goodness of some two stages frameworks’ predictions is close to that obtained by the BNN.

The goal of this work is to give useful insights to build efficient frameworks for trading.
The proposed frameworks could be used to decide when and how much to invest, and
also to build efficient bitcoin trading strategies in a market highly volatile, in which short
term trading may give several opportunities to make profit when correct trading strategies
are applied.

The novelty of this work consists in the model selection, by applying the k-fold cross-
validation method to 70% of the whole dataset, and in applying the Monte Carlo method
during the training phase of the best selected architectures that takes the whole dataset into
account, to predict cryptocurrency markets, specifically the Bitcoin and the Ethereum
market.

Future work aims to perform a more exhaustive optimization of all the proposed
frameworks in this work, and to analyze their response in the case in which more
inputs are taken into account. In fact, it is reasonable thinking that a more exhaustive
optimization of the proposed frameworks and more inputs to train the networks will allow
to obtain even higher performance.
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