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ABSTRACT
Document representation with outlier tokens exacerbates the classification
performance due to the uncertain orientation of such tokens. Most existing
document representation methods in different languages including Nepali mostly
ignore the strategies to filter them out from documents before learning their
representations. In this article, we propose a novel document representation method
based on a supervised codebook to represent the Nepali documents, where our
codebook contains only semantic tokens without outliers. Our codebook is domain-
specific as it is based on tokens in a given corpus that have higher similarities
with the class labels in the corpus. Our method adopts a simple yet prominent
representation method for each word, called probability-based word embedding.
To show the efficacy of our method, we evaluate its performance in the document
classification task using Support Vector Machine and validate against widely
used document representation methods such as Bag of Words, Latent Dirichlet
allocation, Long Short-Term Memory, Word2Vec, Bidirectional Encoder
Representations from Transformers and so on, using four Nepali text datasets
(we denote them shortly as A1, A2, A3 and A4). The experimental results show that
our method produces state-of-the-art classification performance (77.46% accuracy
on A1, 67.53% accuracy on A2, 80.54% accuracy on A3 and 89.58% accuracy on A4)
compared to the widely used existing document representation methods. It yields the
best classification accuracy on three datasets (A1, A2 and A3) and a comparable
accuracy on the fourth dataset (A4). Furthermore, we introduce the largest Nepali
document dataset (A4), called NepaliLinguistic dataset, to the linguistic community.

Subjects Artificial Intelligence, Computational Linguistics, Data Mining and Machine Learning,
Data Science, Natural Language and Speech
Keywords Text classification, Machine learning, Codebook, Nepali documents, Classification,
Feature extraction

INTRODUCTION
We need to represent documents mathematically to perform machine learning tasks such
as classification, clustering and so on. Text documents are represented by using words
(tokens) present in them. Because of the rise of social media and scattered news online,
an automated document classification has been an important research domain to
predict the trending news online automatically. Recently, there have been several works
(Mourão et al., 2018; Kim et al., 2019; Elnagar, Al-Debsi & Einea, 2020; Shan et al., 2020;
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Silva et al., 2020) in document representation and classification, especially in non-Nepali
language domains such as English, Portuguese, Arabic, and so on. However, very few
works (Subba, Paudel & Shahi, 2019; Singh, 2018; Dangol, Shrestha & Timalsina, 2018;
Basnet & Timalsina, 2018; Kafle et al., 2016; Thakur & Singh, 2014; Shahi & Pant, 2018)
have been carried out in the Nepali document representation and classification, where
Nepali documents are based on Devanagari alphabets, which has 36 consonants,
13 vowels and 10 numerals of Nepali language (see details in Table 1). Devanagari
alphabets and their variants, letters and special characters are provided in Section 4 of
the Supplemental File. Devanagari alphabets do not have capital letters and are written left-
to-right order horizontally. With the prolific growth of Nepali documents online in
Nepal and abroad, it has opened up numerous avenues for the automatic processing
(e.g., classification) of such documents.

While reviewing existing works in literature for both Nepali and non-Nepali document
representation and classification, we notice that traditional machine learning-based and
deep learning-based methods have been frequently adopted. Traditional machine learning
algorithms adopt different techniques such as Vector Space Models, N-gram models,
Latent Dirichlet Allocation (LDA), etc. Similarly, deep learning algorithms employ several
methods, such as Convolution Neural Networks (CNNs), Long Short-Term Memory
(LSTM), Capsule Networks (CapsNet), etc. CNNs have also been widely used in different
areas apart from text classification, such as scene image analysis (Sitaula, 2013),
COVID-19 chest x-ray image analysis (Das, Santosh & Pal, 2020; Sitaula & Hossain, 2020;
Mukherjee et al., 2020), breast image analysis (Sitaula & Aryal, 2020), Devanagari script
analysis (Guha et al., 2020), Computational offloading (Khayyat et al., 2020), Input
validation (Wang et al., 2020a), Kubernetes cluster (Mao et al., 2020), etc. Nevertheless,
popular deep learning-based algorithms (e.g., CNN (Elnagar, Al-Debsi & Einea, 2020),
LSTM (Wang et al., 2020b), CapsNet (Kim et al., 2020), etc.) that have been used in
the representation and classification of documents do not utilize any outlier tokens
elimination strategies. Outliers or contaminated tokens could compromise the
classification accuracy despite the proven efficacy of different state-of-the-art methods in
several other domains.

Outlier tokens are attributed to the performance loss during classification, which is a
common problem in document classification including Nepali documents. Existing
document representation methods are mostly based on syntactical approaches such as
Term Frequency-Inverse Document Frequency (TF-IDF) (Shahi & Pant, 2018), Bag of
Words (BoW) (Salton & McGill, 1986), which consider the Term Frequency (TF) and

Table 1 Nepali numerals, consonants and vowels.

Numerals

Consonants

Vowels
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Inverse Document Frequency (IDF) to weight each token present in the document.
Nevertheless, such methods still lack the strategy to eliminate the outliers, which
exacerbate the classification performance in the end (Aryal et al., 2015, 2019). To mitigate
such problems, we propose to use the supervised codebook, which is also called a
domain-specific filter bank and has been used in some of the existing methods (Sitaula
et al., 2019a, 2020) to filter out unimportant tokens. Since such a codebook only captures
the domain-specific tokens and ignores the irrelevant tokens, we will be able to achieve
more robust features. However, such existing codebook methods still have three main
limitations: (i) they only rely on cosine similarity of tokens with the pre-defined labels or
categories merely, which ignore the semantic relationship of tokens that could be very
important within the documents; (ii) they ignore the semantic relationship of
categories under the domain of study, which could be an interesting clue to achieve
the resultant codebook; and (iii) they use a hard threshold, which could miss the
important discriminating tokens having lower threshold during supervised codebook
design. Besides, we do not have a state-of-the-art pre-trained word embedding
model for Nepali words, as in English (Mikolov et al., 2013; Pennington, Socher &
Manning, 2014; Bojanowski et al., 2017), that can be used to capture the semantic
association of tokens.

To address the above mentioned gaps in the existing supervised codebook, we adopt
the following strategies. First, to show the semantic association of tokens in a document,
we track the occurrences of neighboring tokens of the category labels in the document.
It plays a crucial role to extract semantically related tokens only and discards irrelevant
tokens. Second, to show the semantic relationship of categories, we calculate the cosine
similarity of the token with all the categories, thereby finding the best candidate
category for the input token. Last, use of both steps (i) and (ii) to eliminate the hard
threshold criteria and the resulting features improve the discriminability (see the visual
comparison of the t-distributed Stochastic Neighbor Embedding (t-SNE) (Maaten &
Hinton, 2008) scatter plots using our supervised codebook-based method against TF-IDF
method in Fig. 1). Furthermore, for each token to be used in the experiment, we propose
to use the probability-based embedding to capture the semantic relationships of tokens
with category labels.

To design our proposed codebook, we perform the following steps. First, we propose to
use the probability-based word embedding of each token based on the training dataset.
Next, we design a supervised codebook using category labels and tokens of documents
under all categories in the training dataset. For this, we consider the semantic
relatedness of neighboring tokens using cosine similarity. Note that semantic relatedness
of tokens is captured based on both the corresponding category and other remaining
categories. To obtain the representation for a given document based on such codebook,
we calculate the cosine similarity of each token of the document with all tokens of the
codebook, which results in a matrix. Last, we take the column-wise average of the matrix to
obtain the feature vector representing the input document, whose size is equal to the
codebook length.
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The main contributions of this article are as follows:

a) We develop a novel approach to represent the Nepali new documents for the
classification purpose.

b) We release a new large Nepali news collection with 35,651 documents divided into 17
categories.

c) We evaluate our method on four Nepali news classification datasets using the
Support Vector Machine (SVM) classifier and compare with state-of-the-art methods,
including traditional methods (for example, TF-IDF, LDA, etc.) and Deep Learning
(DL)-based methods (for example, Word2vec, LSTM and Bidirectional Encoder
Representations from Transformers (BERT)). The evaluation results show that our
method provides a stable and consistent performance compared to state-of-the-art
methods.

The rest of the article is organized as follows. We review key related works in the Nepali
and non-Nepali news classification task in the next section (“Related Works”) and then
present our new Nepal news collection dataset (“NepaliLinguistic Dataset”) and our
proposed new Nepali document representation method (“Proposed Method”) in the
next two sections. We discuss our experimental results in the second last section
(“Experiments and Analysis”) before concluding the article with potential future work in
the last section (“Conclusion and Future Works”).

RELATED WORKS
In this section, we review some recent state-of-the-art methods used to represent and
classify news or text documents in different languages. Therefore, we divide the whole
section into two subsections: Nepali and non-Nepali news document representation
methods.

Figure 1 The t-SNE (t-distributed Stochastic Neighbor Embedding) scatter plots (Maaten & Hinton,
2008) of: (A) our proposed method; and (B) TF-IDF method, on the training set of Combined Nepali
News dataset (Set 5), where the different colours represent different categories.

Full-size DOI: 10.7717/peerj-cs.412/fig-1
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Nepali news document representation methods
There have been a very few works (Subba, Paudel & Shahi, 2019; Singh, 2018; Dangol,
Shrestha & Timalsina, 2018; Basnet & Timalsina, 2018; Kafle et al., 2016; Thakur & Singh,
2014; Shahi & Pant, 2018) performed in Nepali news document representation for the
classification purpose. Thakur & Singh (2014) used BoW for the representation of the
Nepali news documents and classified them using the Lexicon pooling approach based
on Naive Bayes algorithm. Kafle et al. (2016) performed a comparative study of two
different document representation methods, including TF-IDF and word2vec embedding-
based method (Mikolov et al., 2013) on Nepali news classification. Singh (2018) used
TF-IDF as the representation of Nepali texts that are achieved from books, newspapers,
journals, etc. and classified separately using different algorithms such as Logistic Regression,
SVM, Multinomial Naive Bayes, Bernoulli Naive Bayes, Nearest Neighbor and so on.
Shahi & Pant (2018) used TF-IDF method to achieve features of Nepali news documents
and classified using Naive Bayes (Lewis, 1998), SVM (Cristianini & Shawe-Taylor, 2000) and
Neural Networks. Dangol, Shrestha & Timalsina (2018) used the n-gram model (Brown
et al., 1992) of texts in the news documents and designed term-document matrix based on it
for the classification purpose. Basnet & Timalsina (2018) extracted features based on the
word2vec model (Mikolov et al., 2013) and performed classification using the LSTM
Neural Network model. Subba, Paudel & Shahi (2019) used BoW features (Salton &McGill,
1986) of the Nepali news articles to train the deep learning network.

In summary, most of the works in Nepali news representation methods are based on
BoW and TF-IDF methods, which calculate the weights of tokens based on the syntactic
approach. However, such methods are unable to work accurately for documents
containing out-of-vocabulary tokens in the document. Similarly, the relationship
between words present in a document could further provide the semantic meanings,
which has also been ignored in literature. To fulfill such gaps in Nepali news document
representation, we propose a novel method that captures the semantics of tokens present
in the document to yield better differentiation.

Non-Nepali news document representation methods
We review some of the recent methods (Mourão et al., 2018; Kim et al., 2019; Elnagar,
Al-Debsi & Einea, 2020; Shan et al., 2020; Silva et al., 2020) to represent and classify
news documents in other languages such as English, Portuguese and so on. Mourão et al.
(2018) proposed a novel method, called Net-Class, to represent and classify the news
documents in English language. The relationship of words in documents are extracted
using graph theory. Kim et al. (2019) proposed a newmodel, called multi co-training, using
three representation methods: TF-IDF, LDA and Document to Vector on English news
documents. Their method outperforms each method in the classification task. Elnagar,
Al-Debsi & Einea (2020) used a deep learning model to categorize the Arabic news
documents. They used Recurrent Neural Networks and CNNs for features extraction and
classification purposes. Shan et al. (2020) proposed an incremental learning strategy
based on a deep learning approach to represent and classify English news documents.
Silva et al. (2020) performed Portuguese news documents classification to capture fake
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news. They used BoW to represent the documents in their work. Faustini & Covões (2020)
adopted BoW and Word2Vec models (Mikolov et al., 2013) to represent and classify
documents for fake news detection in various languages such as German, Latin, Slavic, etc.
Kim et al. (2020) represented and classified news documents using capsule networks
(Sabour, Frosst & Hinton, 2017).Wang et al. (2020b) used Convolutional Neural Network
and Bidirectional Long Short-Term Memory (CNN–BiLSTM) for the representation and
classification of Chinese news classification tasks.

While analyzing previous works in the literature for both Nepali and non-Nepali
document classification, we notice that two kinds of techniques, deep learning (DL)-based
and traditional BoW-based methods, have been extensively adopted. Nonetheless, both
kinds of techniques may not be appropriate to Nepali documents representation because of
two reasons. First, such methods lack the strategies to eliminate outlier tokens in the
documents and need a massive amount of data for training. Second, traditional
methods, which mostly focus on syntactical approaches, may not be suitable for our
datasets due to the presence of numerous outlier tokens in the documents. The advantages
and disadvantages of existing methods discussed in literature are presented Section 2 of
the Supplemental File.

NEPALILINGUISTIC DATASET
In this section, we present our new Nepali news dataset. To design the dataset, we crawl
news documents for each category from three popular online news portals including
Kantipur online (https://ekantipur.com/), Ratopati (http://ratopati.com/) and Nagarik
News (https://nagariknews.nagariknetwork.com/) from 20 February 2020 to 18 March
2020. We choose these three websites because they are the leading online news media in
Nepal, among which ekantipur is the most popular.

There are 17 news categories, which includes Art, Bank, Blog, Business, Diaspora,
Entertainment, Filmy, Health, Hollywood-bollywood, Koseli, Literature, Music, National,
Opinion, Society, Sports and World. There are 35,651 documents in the dataset with
the Sports category containing the highest number of documents and tokens and the
Health category containing the least number of documents and tokens. The dataset is
available publicly at (https://ieee-dataport.org/documents/nepaliliinguistic) for researchers
to use in their research. The detailed information of the dataset is available in Section 3 of
the Supplemental File.

PROPOSED METHOD
Our proposed method has four main steps: pre-processing of documents, extraction of
probability-based word embedding vector for each pre-processed token of the documents,
design of a supervised codebook and feature extraction. The overall pipeline of our method
is shown in Fig. 2.

Pre-processing of documents
We pre-process each news document using different techniques including tokenization,
alphanumeric characters removal, stop words removal, stemming operations and unique
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Figure 2 The overall pipeline of the proposed method. Note that the steps A, B, C, D and E are
performed using training documents to achieve the supervised codebook, whereas the steps 1, 2, 3 and 4
are used to achieve our proposed features of each input document based on the codebook learned from
the training documents. Full-size DOI: 10.7717/peerj-cs.412/fig-2
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words extraction. First, we perform tokenization and alphanumeric character removal.
For tokenization and alphanumeric character removal, we use Natural Language Toolkit
(NLTK) (https://www.nltk.org/), which uses white space characters to tokenize words or
tokens from the sentence and has a pre-defined alphanumeric character list for the
elimination of alphanumeric characters for the input text documents. Next, we perform
stemming of Nepali words, which is complex (Sitaula, 2013; Bal & Shrestha, 2004; Bal,
2009; Paul, Dey & Purkayastha, 2014; Prabha et al., 2018) in most cases due to variable
structures. For this, we use a simple Nepali stemmer (https://github.com/sanjaalcorps/
NepaliStemmer), which is publicly available. Next, we remove stop words present in the
documents (refer to Section 4 of the Supplemental File). Since there is no such well-
established stop words list available in the Nepali linguistic community due to the
variability in Nepali writing, we prepare a pre-defined list of stop words, which are the
list of unimportant tokens in the documents, and apply them by the rule-based method
in the documents to remove such words. We use string matching technique in the
rule-based method to filter out stop words from documents. We consider only those
words that do not belong to a pre-defined list of stop words and discard those words
belonging to the list. Last, people write the same Nepali words or tokens differently.
This is because of the presence of similar letters or alphabets that can be used
interchangeably. Given this information, we prepare a pre-defined list of special alphabets
to achieve the unique tokens. Please refer to Section 4 of the Supplemental File for the
examples of stop words, pre-defined list of special alphabets and pre-processed text after all
aforementioned operations.

Extract word embedding of each pre-processed token in the
documents
Natural Language Processing (NLP) research in Nepali language lacks the state-of-the-art
word embedding techniques such as Word2vec (Mikolov et al., 2013), GloVe (Pennington,
Socher & Manning, 2014) and fastText (Bojanowski et al., 2017) available in other
languages. So, we propose our probability-based word embedding technique. Our idea
is motivated by the fact that the importance of a token, which can be shown by
probability-based technique, in different categories of training set provides its semantic
meanings (Sitaula et al., 2019b). For each category i, we create a single document file
Di by appending all documents in the training collection belonging to the category.
Then, the probability of each token in each category is computed from category-based
aggregated single files resulting in an embedding vector for the token of the length equal to
the number of categories (refer to Eq. (1))

ftðiÞgpi¼0 ¼
�ðtjDiÞ
�ðDiÞ (1)

In Eq. (1), let us assume that t is the input token and ftðiÞgpi¼0 ¼ ftð0Þ; tð1Þ; � � � ; tðpÞg
represents its embedding vector in Eq. (1). Here, λ(t|Di) represents the count of token
t in Di, whereas λ(Di) is sum of the counts all tokens in Di. As a result, if we have
p categories in the dataset, the resultant embedding vector size will be p-D for each token.
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Examples of sample embedding vectors of three tokens are presented in Section 4 of the
Supplemental File.

Design of the supervised codebook
After the extraction of the embedding vector of each token, our next step is to design a
supervised codebook using the training set only. It is the most important step in our
method. We follow the following five steps. First, we search all the neighboring tokens
using the left and right index positions of each input token of the corresponding category
label within its category documents. With the help of such neighboring tokens of the
corresponding category, we capture its semantically related tokens only and discard other
unimportant tokens. The selection of neighbors only might not always be sufficient to
capture the most important tokens. For example, some unimportant tokens may be
extracted because of the neighboring relations with the corresponding category label.
So, we adopt another idea of token occurrence in the documents. We calculate the
occurrence (frequency) of such neighboring tokens in the corresponding categories.
The higher the occurrence of neighboring tokens, the more important tokens are for the
corresponding category. We repeat such operation for all categories. However, our goal is
to select the most appropriate tokens having higher frequencies. For this, we utilize
occurrences of both the corresponding category label itself and the neighboring tokens.
In each category, we compare the occurrences (frequencies) of neighboring tokens and
the corresponding category label itself. If the occurrence of the token is higher than
that of the category label, the token is selected, otherwise, it is discarded. Using this idea,
for each category, we capture only those tokens that have higher frequencies than the
category label itself because we believe that if a token is occurring higher than the
corresponding category label, it shows the higher semantic association between them.
We repeat such a process for all the categories and prepare the unique list of tokens for
each category. However, from the previous step, the tokens in one category having the
highest occurrences might still be more semantically related to another category. Next,
we calculate the cosine similarity of the token with both the corresponding category and
other remaining categories. If the cosine similarity of the token with the corresponding
category label is higher than other category labels, it is accepted, otherwise, it is discarded.
Note that the embedding vectors of tokens and category labels using our proposed
embedding discussed above are used to compute the similarity. We repeat such a process
for all categories. Last, we combine all the list of tokens from all categories to form a
single list, which acts as our proposed supervised codebook to be used in our method.
The example of our proposed supervised codebook and size of codebook on four datasets
can be seen in Sections 4 and 5 of the Supplemental File, respectively.

The detailed step-wise procedure to achieve our codebook is presented in Section 6 of
the Supplemental File. In the algorithm, D represents the collection of pre-processed
corpus set ({D1, D2, ⋯, Dp}) for the corresponding categories ({C1, C2, ⋯, Cp}); p
represents the total number of categories for the corresponding dataset and Di represents
the corpus, which is the concatenation of all the documents under the corresponding
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category (Ci). In the meantime, we utilize cosine similarity (Eq. (2)) based on embedding
vectors to show the semantic similarity between tokens.

cosðk1; k2Þ ¼ k1 � k2
jjk1jj � jjk2jj ; (2)

where k1 and k2 represent two tokens to be used for calculating their cosine similarity
(cos(.)).

Likewise, the size of the codebook in each dataset depends on the number of tokens and
categories.

Feature extraction
This is the final step in our method, also called the feature extraction step, which is based
on the supervised codebook. For this, we are motivated by Liu et al. (2017), who uses
Resnik measure (Resnik, 1995) between concepts and words to construct a document
matrix and then, perform sum aggregation across it to represent each document.
Nevertheless, we use the cosine similarity measure with the average aggregation method,
which is appropriate to our domain. For this, we calculate the cosine similarity of each
input token of the document with all the codebook tokens to construct the document
matrix for each document. At last, we average all the instances (or rows) of the matrix
to achieve our final proposed features of the document. Note that the size of the proposed
features is equal to the size of the codebook (i.e., |F|).

Specifically, if there are n words in the document and m (i.e., |F| = m) tokens in the
codebook, we achieve the matrix of size n × m for each document. Then, we aggregate all
the instances of the matrix using the average aggregation method to achieve our proposed
feature vector of size m-D (Eq. (3)).

fPðSjÞgmj¼0 ¼
Pn

i¼0
Ti
j

n
; (3)

where fPðSiÞgmi¼0 ¼ fPðS0Þ;PðS1Þ; � � � ;PðSmÞg represents the aggregated feature vector
of the input document P. Similarly,

Pn
j¼0 T

i
j provides the sum of all row elements (n) for

ith column in the matrix T. Meanwhile, the detailed steps of our feature extraction method
are also shown in Section 6 of the Supplemental File.

EXPERIMENTS AND ANALYSIS
Datasets
Since we are focusing on Nepali document classification, we utilize two publicly available
datasets (16NepaliNews1 and NepaliNewsLarge (Shahi & Pant, 2018)), the combination of
such two datasets, and our new Nepali news dataset, called NepaliLinguistic, which we
collected and presented in the article. In total, four datasets are taken for the evaluation of
our method. For the train/test split of each category on each dataset, we randomly divide
documents per category into 90%/10% ratio for the experiment. We perform such

1 Information and Language Processing
Research Lab, Kathmandu University,
Nepal.
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experiments in five-round and report the average performance. Further detailed
descriptions of the four datasets are also provided in Section 7 of the Supplemental File

16NepaliNews contains 14,364 documents under 16 categories, where each category
contains at least 16 documents.

NepaliNewsLarge contains 7,023 documents under 20 news categories, where each
category contains 111 to 700 documents.

CombinedNepaliNews contains 21,387 documents under 21 categories, where each
category contains 111 to 7,452 documents.

NepaliLinguistic, which is a new dataset we prepared and will be made publicly
available, contains 17 news categories.

Implementation
To implement our work, we use Python (Rossum, 1995) programming language, which is
open source and has extensive support libraries, including Scikit-learn (Pedregosa et al.,
2011). Similarly, to perform the classification, we use the SVM classifier (Cristianini &
Shawe-Taylor, 2000), which is one of the popular classification algorithms in machine
learning research (Fernández-Delgado et al., 2014). In SVM, we need to choose optimal
parameters such as gamma, kernel, C, etc. depending on the nature of datasets. We set the
gamma = 1e − 04 and kernel = rbf as default in the SVM classifier. We empirically set
such default parameters before tuning C parameter, which tells SVM optimization how
much we want to discard misclassifying each training example. To tune the C parameter
automatically, we perform grid searching of C value in the range {1, 11 ,21, ⋯, 91} with
10 uniform steps during the classification. In the meantime, we perform our experiment on
a machine with Intel core i5-6200U 2.30 GHZ CPU and 12 GB RAM.

Comparison with state-of-the-art methods
We compare our method with both traditional methods and recent deep learning-based
(DL-based) methods for the classification. For traditional methods, we implement some
popular text feature extraction methods such as BoW (Salton & McGill, 1986), TF-IDF
(Robertson, 2004) that has employed by Shahi et al. (Shahi & Pant, 2018) and LDA
(Blei, Ng & Jordan, 2003). For LDA, we use 12 topics on all datasets, which we find
empirically the best among different topics. From empirical study, we notice that the
number of topics less than 12 deteriorates the classification performance because it may
not be able to cover all the contexts of such documents. Also, the number of topics greater
than 12 could further disintegrate the discriminating topics, thereby resulting in lower
classification performance. Thus, we conjecture that each dataset used in our work has
normally 12 topics, which helps to better differentiate them.

Furthermore, for the fair comparison of our method with the BoW and TF-IDF
methods, we extract the features size equal to our codebook (F) size. For DL-based
methods, we use recent deep learning-based methods for document representations such
as Word2Vec (Kafle et al., 2016), LSTM (Basnet & Timalsina, 2018), and BERT
(Devlin et al., 2018). For Word2Vec, we achieve a 300-D feature vector for each token.
For LSTM, we use the optimal architecture as suggested by Basnet & Timalsina (2018),

Sitaula et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.412 11/18

http://dx.doi.org/10.7717/peerj-cs.412#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.412
https://peerj.com/computer-science/


which is 300-150-Softmax architecture (first layer with 300 units, second layer with
150 units, which is followed by the Softmax layer). For the BERT, we leverage the
pre-trained weights that has been prepared for multi-lingual domain (https://github.com/
google-research/bert/blob/master/multilingual.md) and set all the parameters as default.
The comparative results using classification accuracy of our method with state-of-the-art
methods on four datasets (16NepaliNews, NepaliNewsLarge, CombinedNepaliNews,
and NepaliLinguistics) are shown in Table 2. The table has five columns, where the first
column lists the methods to be compared, second column lists the classification accuracies
for 16NepaliNews, third column lists the classification accuracies for NepaliNewsLarge,
forth column lists the classification accuracies for CombinedNepaliNews, and fifth column
lists the classification accuracies for NepaliLinguistics datasets.

In the second column of Table 2 for 16NepaliNews, we notice that our method
outperforms all eight methods (five traditional and three recent DL-based methods) used
in the experiments with the classification accuracy of 77.46%. Specifically, our method
imparts at least 1.94% higher than the second-best method (LSTM (Basnet & Timalsina,
2018)). Interestingly, our method also outperforms BERT (Devlin et al., 2018) with a
margin of over 3.00% on such dataset. Furthermore, while looking in the third column of
Table 2 for NepaliNewsLarge, we observe that our method outperforms all contender
methods (five traditional and three recent DL-based methods) with a significant margin of
classification accuracy (9.37%) against the second-best method (BERT (Devlin et al.,
2018)). Our method is prominent on this dataset as well. Similarly, the fourth column
of Table 2 for CombinedNepaliNews shows that our method again outperforms all
existing eight methods with a significant margin of at least 10.91% with the second-best
method, BERT (Devlin et al., 2018). This excellent classification result (80.54%) on
this dataset also reveals the efficacy of our method. In the fifth column of Table 2,
we observe that our method produces competitive results with the accuracy of 89.58%
against the best accuracy of 92.52%) on our new proposed dataset (NepaliLinguistic).
It outperforms one of the recent DL-based method, BERT (Devlin et al., 2018).
Nevertheless, since the probability-based embedding vectors rely on the total number of

Table 2 Comparative analysis using classification accuracy (%) of our method with state-of-the-art
methods on four datasets. Note that A1, A2, A3 and A4 denote 16NepaliNews, NepaliNewsLarge,
CombinedNepaliNews and NepaliLinguistic, respectively. Best result is shown in bold face.

Methods A1 (%) A2 (%) A3 (%) A4 (%)

BoW (Salton & McGill, 1986) 73.48 51.08 67.73 92.43

LDA (Blei, Ng & Jordan, 2003) 66.77 39.34 54.52 78.29

BoW+boolean 74.00 54.44 68.64 92.52

TF-ICF (Wang & Zhang, 2010) 73.48 51.08 67.73 92.43

Word2Vec (Kafle et al., 2016) 74.57 51.11 64.98 89.63

LSTM (Basnet & Timalsina, 2018) 75.52 47.30 71.24 90.32

Shahi & Pant (2018) 73.48 51.08 67.73 92.23

BERT (Devlin et al., 2018) 75.08 58.16 69.63 88.88

Ours 77.46 67.53 80.54 89.58
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tokens per category and occurrence of the input token in them, our method has been
unable to achieve useful semantics from categories having a similar number of whole
tokens and input token frequency per category. We notice that our dataset has several
categories with a similar number of tokens and input token frequency per category
compared to the other three datasets. Wherefore, we speculate that probability-based
embedding vectors have diminished the performance slightly in the end.

In summary, our method outperforms all eight methods (five traditional methods
and three DL-based methods) significantly on three datasets and comparable performance
on the fourth dataset. Importantly, our method outperforms the BERT (Devlin et al., 2018),
one of the recent DL-based methods, on all four datasets. Through this experiment,
we speculate that pre-trained weights of the BERT model comprise broad categories,
not just limited to the news document domain. Since it exploits the knowledge from
multiple domains, it may be less effective to leverage the semantic knowledge for a
specific domain such as a news document compared to our method. Also, such
encouraging results further show that the domain-specific semantic relationship of
tokens is very important to discriminate news documents, especially for Nepali news
documents. To this end, we believe that the use of a simple probabilistic-based method can
have a big role to capture the semantic information of the input token for news documents.

Class-wise analysis
We analyze the class-wise performances of our proposed method from the classified
confusion matrix. While looking at the confusion matrix for 16NepaliNews and
CombinedNepaliNews, we observe that the National news category from both datasets
contains intersecting information from most of the remaining categories, which
exacerbates the classification performance. Similarly, while observing the confusion
matrix for the NepaliNewsLarge, we notice that business and interview categories contain
some intersecting information, which worsens the performance in the end. Also, while
observing the confusion matrix for the NepaliLinguistic, we observe that different category
pairs such as Art and Music, Filmy and Entertainment, Society and National have
common information, as a result of which it diminishes the classification performance
for those categories. The confusion matrices are provided in Section 8 of the
Supplemental File.

Analysis of our methods using other metrics
From the confusion matrices, we analyze the performance of our proposed method on all
four datasets against other measures like Precision, Recall and F-score in addition to
accuracy, which is calculated using confusion matrix. While observing the metrics for
16NepaliNews, we notice that our method imparts the least performance (Precision, Recall
and F-score) among other datasets. This may be because of higher data imbalance
problem in it compared to other counterpart datasets because data imbalance issue not
only creates bias during training and testing but also affects during probability-based word
embedding vector extraction. This is because the probability-based word embedding
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vector is related to the total number of tokens and their occurrence. Furthermore, few data
imbalance problem, which is in both several documents and number of total tokens, has
also been observed in two other datasets—NepaliNewsLarge and CombinedNepaliNews.
This results in lower performance in these two datasets as well. NepaliLinguistics
yields the best performance compared to other counterpart datasets because it has a
comparatively balanced class distribution. However, it also has some other problems
such as overlapping of tokens in several categories, imbalanced number of tokens, etc.
Thus, this also attributes to lower performance against other methods in result. Refer to
Section 9 of the Supplemental File for Precision, Recall, F-score and Accuracy of our
method on four datasets. Despite such problems on all four datasets, the results show that
our method has a higher Precision value.

To summarise, we speculate that our method is prominent for most of the categories on
four Nepali news datasets, although it still has some problems dealing with some categories
having common tokens.

Complexity analysis
For the feature extraction of a text document using our method, we have devised five
different algorithms (refer to Section 6 in the Supplemental File), where each algorithm has
its computational complexity. First, Alg. 1, which is used to extract unique tokens in each
document in the pre-processing step, imparts O(|T| × |T| × |Z|), where |T| indicates the
total number of words in the document and |Z| is the length of the individual word of
the document. The total time complexity of unique tokens calculation for all documents is
the multiplication of several documents with the above time complexity. Next, Alg. 2,
which is used to design the supervised codebook, relies on two main algorithms (Alg. 3 and
Alg. 4) in addition to similarity calculation. Importantly, Alg. 3 imparts O(|X| × |X|)
complexity, where |X| represents the total length of the corpus under the corresponding
category. And, Alg. 4, which calculates the frequency of the word, imparts O(|X|)
complexity. For similarity calculation, it consumes O(|L| × |C|), where |L| and |C|
denote the total number of neighboring tokens and a total number of categories on
the dataset, respectively. Overall, Alg. 2 yields O(|D| × (|Di| × |Di| × |ni| × |ni| × |f i| × |f i|) +
(|L| × |C|)) complexity, where |D|, |ni| and |f i| denote length of corpus, length of
neighboring tokens,and length of frequencies, respectively. Last, Alg. 5, which is the
final step to extract the proposed features representing the document, imparts O(n × m)
complexity, where n and m denote the length of the pre-processed document with unique
tokens (|P|) and length of the supervised codebook (|F|), respectively. Note that our
time complexities do not include complexities related to the SVM classifier.

CONCLUSION AND FUTURE WORKS
In this article, we have proposed a novel method using the supervised codebook approach
to represent the Nepali documents for the classification purpose, which can be used in
several domains such as online news analysis, forecasting, etc. Extensive experimental
result on four Nepali news datasets shows that our method outperforms all state-of-the-art
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methods on three datasets and provides competitive result on the fourth dataset. It is
interesting to note that our method has outperformed the BERT-based method on all
datasets. This infers the efficacy of our method against the recent DL-based method for the
Nepali document representation and classification.

Our method does not require heavy computations (during both training and testing)
compared to different state-of-the-art algorithms such as BERT or GloVe or Word2Vec,
etc. Similarly, our method does not need heavy computational resources such as a
Graphical Processing Unit (GPU). Furthermore, the embedding vector adopted in our
method is very easy to compute. In contrast, since our method relies on a supervised
codebook, which may be impractical sometimes as we may not be aware of the actual
class labels, the performance is dependent on it. Also, the extraction of the word
embedding vector based on one domain may not work on other domains such as business,
health, etc.

To fulfill the gaps of our method, it would be interesting to use an unsupervised
learning approach like the k-means algorithm for both codebook design and word
embedding extraction using the training dataset. This helps to learn the features without
requiring the class labels on the training dataset and may work for all domains of text
documents. We also believe the dataset we have released to the public will be useful for the
Nepali NLP research community.
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