
Evaluation of Rust code verbosity, understandability and
complexity
Luca Ardito Corresp., 1 , Luca Barbato 2 , Riccardo Coppola 1 , Michele Valsesia 1

1 Department of Control and Computer Engineering, Polytechnic Institute of Turin, Torino, Piemonte, Italia
2 Luminem, Torino, Piemonte, Italia

Corresponding Author: Luca Ardito
Email address: luca.ardito@polito.it

Rust is an innovative programming language initially implemented by Mozilla, developed to ensure high
performance, reliability, and productivity.

The final purpose of this study consists of applying a set of common static software metrics to programs
written in Rust to assess the verbosity, understandability, organization, complexity, and maintainability of
the language.

To that extent, nine different implementations of algorithms available in different languages were
selected. We computed a set of metrics for Rust, comparing them with the ones obtained from C and a
set of object-oriented languages: C++, Python, JavaScript, TypeScript. To parse the software artifacts and
compute the metrics, it was leveraged a tool called rust-code-analysis that was extended with a software
module, written in Python, with the aim of uniforming and comparing the results.

The Rust code had an average verbosity in terms of the raw size of the code. It exposed the most
structured source organization in terms of the number of methods. Rust code had a better Cyclomatic
Complexity, Halstead Metrics, and Maintainability Indexes than C and C++ but performed worse than the
other considered object-oriented languages. Lastly, the Rust code exhibited the lowest COGNITIVE
complexity of all languages.

The collected measures prove that the Rust language has average complexity and maintainability
compared to a set of popular languages. It is more easily maintainable and less complex than the C and
C++ languages, which can be considered syntactically similar. These results, paired with the memory
safety and safe concurrency characteristics of the language, can encourage wider adoption of the
language of Rust in substitution of the C language in both the open-source and industrial environments.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Evaluation of Rust code verbosity,1

understandability and complexity2

Luca Ardito1, Luca Barbato2, Riccardo Coppola1, and Michele Valsesia1
3

1Politecnico di Torino4

2Luminem5

Corresponding author:6

Luca Ardito1
7

Email address: luca.ardito@polito.it8

ABSTRACT9

Rust is an innovative programming language initially implemented by Mozilla, developed to ensure high

performance, reliability, and productivity.

10

11

The final purpose of this study consists of applying a set of common static software metrics to pro-

grams written in Rust to assess the verbosity, understandability, organization, complexity, and maintain-

ability of the language.

12

13

14

To that extent, nine different implementations of algorithms available in different languages were se-

lected. We computed a set of metrics for Rust, comparing them with the ones obtained from C and a

set of object-oriented languages: C++, Python, JavaScript, TypeScript. To parse the software artifacts

and compute the metrics, it was leveraged a tool called rust-code-analysis that was extended with a

software module, written in Python, with the aim of uniforming and comparing the results.

15

16

17

18

19

The Rust code had an average verbosity in terms of the raw size of the code. It exposed the most

structured source organization in terms of the number of methods. Rust code had a better Cyclomatic

Complexity, Halstead Metrics, and Maintainability Indexes than C and C++ but performed worse than

the other considered object-oriented languages. Lastly, the Rust code exhibited the lowest COGNI-

TIVE complexity of all languages.

20

21

22

23

24

The collected measures prove that the Rust language has average complexity and maintainability com-

pared to a set of popular languages. It is more easily maintainable and less complex than the C and

C++ languages, which can be considered syntactically similar. These results, paired with the memory

safety and safe concurrency characteristics of the language, can encourage wider adoption of the lan-

guage of Rust in substitution of the C language in both the open-source and industrial environments.

25

26

27

28

29

1 INTRODUCTION30

Software maintainability is defined as the ease of maintaining software during the delivery of its re-31

leases. Maintainability is defined by the ISO 9126 standard as ”The ability to identify and fix a fault32

within a software component” [1], and by the ISO/IEC 25010:2011 standard as ”degree of effective-33

ness and efficiency with which a product or system can be modified by the intended maintainers” [2].34

Maintainability is an integrated software measure that encompasses some code characteristics, such as35

readability, documentation quality, simplicity, and understandability of source code [3].36

Maintainability is a crucial factor in the economic success of software products. It is commonly ac-37

cepted in the literature that the most considerable cost associated with any software product over its38

lifetime is the maintenance cost [4]. The maintenance cost is influenced by many different factors, e.g.,39

the necessity for code fixing, code enhancements, the addition of new features, poor code quality, and40

subsequent need for refactoring operations [5].41

Hence, many methodologies have consolidated in software engineering research and practice to en-42

hance this property. Many metrics have been defined to provide a quantifiable and comparable mea-43

surement for it [6]. Many metrics measure lower-level properties of code (e.g., related to the number of44

lines of code and code organization) as proxies for maintainability. Several comprehensive categoriza-45

tions and classifications of the maintainability metrics presented in the literature during the last decades46

PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



have been provided, e.g., the one by Frantz et al. provides a categorization of 25 different software47

metrics under the categories of Size, Coupling, Complexity and Inheritance [7].48

The academic and industrial practice has also provided multiple examples of tools that can automat-49

ically compute software metrics on source code artifacts developed in many different languages [8].50

Several frameworks have also been described in the literature that leverage combinations of software51

code metrics to predict or infer the maintainability of a project [9], [10], [11]. The most recent work52

in the field of metric computation is aiming at applying machine learning-based approaches to the53

prediction of maintainability by leveraging the measurements provided by static analysis tools [12].54

However, the benefit of the massive availability of metrics and tooling for their computation is con-55

trasted by the constant emergence of novel programming languages in the software development com-56

munity. In most cases, the metrics have to be readapted to take into account newly defined syntaxes,57

and existing metric-computing tools cannot work on new languages due to the unavailability of parsers58

and metric extraction modules. For recently developed languages, the unavailability of appropriate59

tooling represents an obstacle for empirical evaluations on the maintainability of the code developed60

using them.61

This work provides a first evaluation of verbosity, code organization, understandability, and complexity62

of Rust, a newly emerged programming language similar in characteristics to C++, developed with the63

premises of providing better maintainability, memory safety, and performance [13]. To this purpose, we64

(i) adopted and extended a tool to compute maintainability metrics that support this language; (ii) de-65

veloped a set of scripts to arrange the computed metrics into a comparable JSON format; (iii) executed66

a small-scale experiment by computing static metrics for a set of programming languages, including67

Rust, analyzing and comparing the final results. To the best of our knowledge, no existing study in the68

literature has provided computations of such metrics for the Rust language and the relative comparisons69

with other languages.70

The remainder of the manuscript is structured as follows: Section 2 provides background information71

about the Rust language and presents a brief review of state-of-the-art tools available in the literature72

for the computation of metrics related to maintainability; Section 3 describes the methodology used to73

conduct our experiment, along with a description of the developed tools and scripts, the experimental74

subjects used for the evaluation, and the threats to the validity of the study; Section 4 presents and75

discusses the collected metrics; Section 5 concludes the paper by listing its main findings and providing76

possible future directions of this study.77

2 BACKGROUND AND RELATED WORK78

This section provides background information about the Rust language characteristics, studies in the79

literature that analyzes its advantages, and the list of available tools present in the literature to measure80

metrics used as a proxy to quantify software projects’ maintainability.81

2.1 The Rust programming language82

Rust is an innovative programming language initially developed by Mozilla and is currently maintained83

and improved by the Rust Foundation1.84

The main goals of the Rust programming language are: memory-efficiency, with the abolition of85

garbage collection, with the final aim of empowering performance-critical services running on em-86

bedded devices, and easy integration with other languages; reliability, with a rich type system and87

ownership model to guarantee memory-safety and thread-safety; productivity, with integrated package88

managers and build tools.89

Rust is compatible with multiple architectures and is quite pervasive in the industrial world. Many90

companies are currently using Rust in production today for fast, low-resource, cross-platform solutions:91

for example, software like Firefox, Dropbox, and Cloudflare use Rust [14].92

The Rust language has been analyzed and adopted in many recent studies from academic literature.93

Uzlu et al. pointed out the appropriateness of using Rust in the Internet of Things domain, mentioning94

its memory safety and compile-time abstraction as crucial peculiarities for the usage in such domain95

[15]. Balasubramanian et al. show that Rust enables system programmers to implement robust security96

and reliability mechanisms more efficiently than other conventional languages [16]. Astrauskas et97

1https://www.rust-lang.org/

2/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Table 1. Languages supported by the metrics tools

Language C
B

R
In

si
g

h
t

C
C

F
in

d
er

X

C
K

JM

C
o

d
eA

n
al

y
ze

rs

H
al

st
ea

d
M

et
ri

cs
T

o
o

l

M
et

ri
cs

R
el

o
ad

ed

S
q

u
al

e

C x x x x x

C++ x x x x x

C# x x x

Cobol x x x x

Java x x x x x x

Rust

Others x x

Table 2. Case study definition template [28]

Objective Evaluation of code verbosity, understandability and complexity

The case Development with the Rust programming language

Theory Static measures for software artifacts

Research questions What is the verbosity, organization, complexity and maintainability of Rust?

Methods Comparison of Rust static measurements with other programming languages

Selection strategy Open-source multi-language repositories

al. leveraged Rust’s type system to create a tool to specify and validate system software written in98

Rust [17]. Koster mentioned the speed and high-level syntax as the principal reasons for writing in the99

Rust language the Rust-Bio library, a set of safe bioinformatic algorithms [18]. Levy et al. reported100

the process of developing an entire kernel in Rust, with a focus on resource efficiency [19]. These101

common usages of Rust in such low-level applications encourage thorough analyses of the quality and102

complexity of a code with Rust.103

2.2 Tools for measuring static code quality metrics104

Several tools have been presented in academic works or are commonly used by practitioners to measure105

quality metrics related to maintainability for software written in different languages.106

In our previous works, we conducted a systematic literature review that led us to identify fourteen dif-107

ferent open-source tools that can be used to compute a large set of different static metrics [20]. In the108

review, it is found that the following set of open-source tools is able to cover most of quality metrics de-109

fined in the literature, for the most common programming languages: CBR Insight, a tool based on the110

closed-source metrics computation Understand framework, that aims at computing reliability and main-111

tainability metrics [21]; CCFinderX, a tool tailored for finding duplicate code fragments [22]; CKJM, a112

tool to compute the C&K metrics suite and method-related metrics for Java code [23]; CodeAnalyzers,113

a tool supporting more than 25 software maintainability metrics, that covers the highest number of114

programming languages along with CBR Insight [24]; Halstead Metrics Tool, a tool specifically devel-115

oped for the computation of the Halstead Suite [25]; Metrics Reloaded, able to compute many software116

metrics for C and Java code either in a plug-in for IntelliJ IDEA or through command line [26]; Squale,117

a tool to measure high-level quality factors for software and measuring a set of code-level metrics to118

predict economic aspects of software quality [27].119

Table 1 reports the principal programming languages supported by the described tools. For the sake of120

conciseness, only the languages that were supported by at least two of the tools are reported. With this121

comparison, it can be found that none of the considered tools is capable of providing metric computa-122

tion facilities for the Rust language.123

3/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Table 3. List of metrics used in this study

RQ Acronym Name Description

RQ1 SLOC Source Lines of Code It returns the total number of lines in a file

PLOC Physical Lines of Code It returns the total number of instructions

and comment lines in a file

LLOC Logical Lines of Code It returns the number of logical lines

(statements) in a file

CLOC Comment Lines of Code It returns the number of comment lines in

a file

BLANK Blank Lines of Code Number of blank statements in a file

RQ2 NOM Number of Methods It returns the number of methods in a

source file

NARGS Number of Arguments It counts the number of arguments for

each method in a file

NEXITS Number of Exit Points It counts the number of exit points of each

method in a file

RQ3 CC McCabe’s Cyclomatic Complexity It calculates the code complexity exam-

ining the control flow of a program; the

original McCabe’s definition of cyclo-

matic complexity is the the maximum

number of linearly independent circuits in

a program control graph [29]

COGNITIVE Cognitive Complexity It is a measure of how difficult a unit of

code is to intuitively understand, by ex-

amining the cognitive weights of basic

software control structures [30]

Halstead Halstead suite A suite of quantitative intermediate mea-

sures that are translated to estimations

of software tangible properties, e.g. vol-

ume, difficulty and effort (see Table 4 for

details)

RQ4 MI Maintainability Index A composite metric that incorporates a

number of traditional source code metrics

into a single number that indicates relative

maintainability (see Table 5 for details

about the considered variants) [31]

4/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



As additional limitations of the identified set of tools, it can be seen that the tools do not provide com-124

plete coverage of the most common metrics for all the tools (e.g., the Halstead Metric suite is computed125

only by the Halstead Metrics tool), and in some cases, (e.g., CodeAnalyzer), the number of metrics is126

limited by the type of acquired license. Also, some of the tools (e.g., MetricsReloaded) appear to have127

been discontinued by the time of the writing of this article.128

3 STUDY DESIGN129

This section reports the goal, research questions, metrics, and procedures adopted for the conducted130

study.131

To report the plan for the experiment, the template defined by Robson was adopted [28]. The purpose132

of the research, according to Robson’s classification, is Exploratory, i.e., to find out whats is happening,133

seeking new insights, and generating ideas and hypotheses for future research. The main concepts of134

the definition of the study are reported in table 2.135

In the following subsections, the best practices for case study research provided by Runeson and Host136

are adopted to organize the presentation of the study [32]. More specifically, the following elements are137

reported: goals, research questions, and variables; objects; instrumentation; data collection and analysis138

procedure; evaluation of validity.139

3.1 Goals, Research Questions and Variables140

The high-level goal of the study can be expressed as:141

Analyze and evaluate the characteristics of the Rust programming language, focusing on verbosity,142

understandability and complexity measurements, measured in the context of open-source code, and143

interpreting the results from developers and researchers standpoint.144

Based on the goal, the research questions that guided the definition of the experiment are obtained.145

Four different aspects that deserve to be analyzed for code written in Rust programming language146

were identified, and a distinct Research Question was formulated for each of them. In the following,147

the research questions are listed, along with a brief description of the metrics adopted to answer them.148

Table 3 reports a summary of all the metrics.149

• RQ1: What is the verbosity of Rust code with respect to code written in other programming150

languages?151

• RQ2: How is Rust code organized with respect to code written in other programming languages?152

• RQ3: What is the complexity of Rust code with respect to code written in other programming153

languages?154

• RQ4: What are the composite maintainability indexes for Rust code with respect to code written155

in other programming languages?156

The comparisons between different programming languages were made through the use of static met-157

rics. A static metric (opposed to dynamic or runtime metrics) is obtained by parsing and extracting158

information from a source file without depending on any information deduced at runtime.159

To answer RQ1, the size of code artifacts written in Rust were measured in terms of the number of code160

lines in a source file. Four different metrics have been defined to differentiate between the nature of the161

inspected lines of code:162

• SLOC, i.e., Source lines of code;163

• CLOC, Comment Lines of Code;164

• PLOC, Physical Lines of Code, including both the previous ones;165

• LLOC, Logical Lines of Code, returning the count of the statements in a file;166

• BLANK, Blank Lines of Code, returning the number of blank lines in a code.167

5/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Table 4. The Halstead Metrics Suite

Measure Symbol Formula

Base measures η1 Number of distinct operators

η2 Number of distinct operands

N1 Total number of occurrences of operators

N2 Total number of occurrences of operands

Program length N N = N1+N2

Program vocabulary η η = η1+η2

Volume V V = N ∗ log2(η)
Difficulty D D = η1/2∗N2/η2

Program Level L L = 1/D

Effort E E = D∗V

Estimated Program Length H H = η1∗ log2(η1)+η2∗ log2(η2)
Time required to program (in seconds) T T = E/18

Number of delivered bugs B B = E2/3/3000

Purity Ratio PR PR = H/N

The rationale behind using multiple measurements for the lines of code can be motivated by the need168

for measuring different facets of the size of code artifacts and of the relevance and content of the lines169

of code. The measurement of physical lines of code (PLOC) does not take into consideration blank170

lines or comments; the count, however, depends on the physical format of the statements and on pro-171

gramming style since multiple PLOC can concur to form a single logical statement of the source code.172

PLOC are sensitive to logically irrelevant formatting and style conventions, while LLOC are less sen-173

sitive to these aspects [33]. In addition to that, the CLOC and BLANK measurements allow a finer174

analysis of the amount of documentation (in terms of used APIs and explanation of complex parts of175

algorithms) and formatting of a source file.176

To answer RQ2, the source code structure was analyzed in terms of the properties and functions of177

source files. To that end, three metrics were adopted: NOM, Number of Methods; NARGS, Number178

of Arguments; NEXITS, Number of exits. NARGS and NEXITS are two software metrics defined by179

Mozilla and have no equivalent in the literature about source code organization and quality metrics.180

The two metrics are intuitively linked with the easiness in reading and interpreting source code: a181

function with a high number of arguments can be more complex to analyze because of a higher number182

of possible paths; a function with many exits may include higher complexity in reading the code for183

performing maintenance efforts.184

To answer RQ3, three metrics were adopted: CC, McCabe’s Cyclomatic Complexity; COGNITIVE,185

Cognitive Complexity; and the Halstead suite. The Halstead Suite, a set of quantitative complexity186

measures originally defined by Maurice Halstead, is one of the most popular static code metrics avail-187

able in the literature [25]. Table 4 reports the details about the computation of all operands and oper-188

ators. The metrics in this category are more high-level than the previous ones and are based on the189

computation of previously defined metrics as operands.190

To answer RQ4, the Maintainability Index was adopted, i.e., a composite metric originally defined by191

Oman et al. to provide a single index of maintainability for software [34]. Three different versions192

of the Maintainability Index are considered. First, the original version by Oman et al.. Secondly, the193

version defined by the Software Engineering Institute (SEI), originally promoted in the C4 Software194

Technology Reference Guide [35]; the SEI adds to the original formula a specific treatment for the195

comments in the source code (i.e., the CLOC metric), and it is deemed by research as more appropriate196

given that the comments in the source code can be considered correct and appropriate [31]. Finally, the197

version of the MI metric implemented in the Visual Studio IDE [36]; this formula resettles the MI value198

in the 0-100 range, without taking into account the distinction between CLOC and SLOC operated by199

the SEI formula [37].200

The respective formulas are reported in Table 5. The interpretation of the measured MI varies accord-201

ing to the adopted formula to compute it: the ranges for each of them are reported in Table 6. For the202

6/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Table 5. Considered variants of the MI metric

Acronym Meaning Formula

MIO Original Maintainability Index 171.0− 5.2 ∗ ln(V )− 0.23 ∗CC− 16.2 ∗
ln(SLOC)

MISEI MI by Software Engineering Institute 171.0 − 5.2 ∗ log2(V ) − 0.23 ∗

CC − 16.2 ∗ log2(SLOC) + 50.0 ∗

sin(
√

2.4∗ (CLOC/SLOC))
MIV S MI implemented in Visual Studio max(0,(171− 5.2 ∗ ln(V )− 0.23 ∗CC−

16.2∗ ln(SLOC))∗100/171)

Table 6. Maintainability ranges of source code according to different formulas for the MI metric

Variant Low maintanability Medium maintainability High maintainability

Original MI < 65 65 < MI < 85 MI > 85

SEI MI < 65 65 < MI < 85 MI > 85

VS MI < 10 10 < MI < 20 MI > 20

traditional and the SEI formulas of the MI, a value over 85 indicates easily maintainable code; a value203

between 65 and 85 indicates average maintainability for the analyzed code; a value under 65 indicates204

hardly maintainable code. With the original and SEI formulas, the MI value can also be negative. With205

the Visual Studio formula, the thresholds for medium and high maintainability are moved respectively206

to 10 and 20.207

The Maintainability Index is the highest-level metric considered in this study, as it includes an interme-208

diate computation of one of the Halstead suite metrics.209

3.2 Objects210

For the study, it was necessary to gather a set of simple code artifacts to analyze the Rust source code211

properties and compare them with other programming languages.212

To that end, a set of nine simple algorithms was collected. In the set, each algorithm was implemented213

in 5 different languages: C, C++, JavaSript, Python, Rust, and TypeScript. All implementations of214

the code artifacts have been taken from the Energy-Languages repository2. The rationale behind the215

repository selection is its continuous and active maintenance and the fact that these code artifacts are216

adopted by various other projects for tests and benchmarking purposes, especially for evaluations of the217

speed of programming languages.218

The number of different programming languages for the comparison was restricted to 5 because those219

languages (additional details are provided in the next section) were the common ones for the Energy-220

Languages repository and the set of languages that are correctly parsed by the tooling employed in the221

experiment conduction.222

Table 7 lists the code artifacts used (sorted out alphabetically) and provides a brief description for each223

of them.224

3.3 Instruments225

This section provides details about the framework that was developed to compare the selected metrics226

and the existing tools that were employed for code parsing and metric computation.227

A graphic overview of the framework is provided in Figure 1. The diagram only represents the logical228

flow of the data in the framework since the actual flow of operations is reversed, being the compare.py229

script the entry point of the whole computation.230

The rust-code-analysis tool is used to compute static metrics and save them in the JSON format. The231

analyzer.py script receives as input the results in JSON format provided by the rust-code-analysis tool232

and format them in a common notation that is more focused on academic facets of the computed met-233

rics rather than the production ones used by the rust-code-analysis default formatting. The compare.py234

2https://github.com/greensoftwarelab/Energy-Languages

7/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Table 7. Selected source code artifacts for the study

Name Description

binarytrees Allocate and deallocate binary trees

fannkuchredux Indexed-access to tiny integer-sequence

fasta Generate and write random DNA sequences

knucleotide Hashtable update and k-nucleotide strings

mandelbrot Generate Mandelbrot set portable bitmap file

nbody Double-precision N-body simulation

regexredux Match DNA 8-mers and substitute magic patterns

revcomp Read DNA sequences - write their reverse-complement

spectralnorm Eigenvalue using the power method

.c .cpp .rs
.js .ts .py

rust-code-analysis analyzer.py compare.py

.json

.json .json

Figure 1. Representation of the data flow of the framework

has been developed to call the analyzer.py script and to use its results to perform pair-by-pair compar-235

isons between the JSON files obtained for source files written in different programming languages.236

These comparison files allow us to immediately assess the differences in the metrics computed by the237

different programming languages on the same software artifacts. The stack of commands that are called238

in the described evaluation framework is shown in figure 2.239

The evaluation framework has been made available as an open-source repository on GitHub3.240

3.3.1 The Rust Code Analysis tool241

All considered metrics have been computed by adopting and extending a tool developed in the Rust242

language, and able to compute metrics for many different ones, called rust-code-analysis. We have243

forked version 0.0.18 of the tool to fix a few minor defects in metric computation and to uniform the244

presentation of the results, and we have made it available on a GitHub repository4.245

We have decided to adopt and personally extend a project written in Rust because of the advantages246

guaranteed by this language, such as memory and thread safety, memory efficiency, good performance,247

and easy integration with other programming languages.248

rust-code-analysis builds, through the use of an open-source library called tree-sitter5, builds an Ab-249

stract Syntax Tree (AST) to represent the syntactic structure of a source file. An AST differs from a250

Concrete Syntax Tree because it does not include information about the source code less important251

details, like punctuation and parentheses. On top of the generated AST, rust-code-analysis performs252

a division of the source code in spaces, i.e., any structure that can incorporate a function. It contains253

a series of fields such as the name of the structure, the relative line start, line end, kind, and a metric254

object, which is composed of the values of the available metrics computed by rust-code-analysis on255

the functions contained in that space. All metrics computed at the function level are then merged at256

the parent space level, and this procedure continues until the space representing the entire source file is257

3https://github.com/SoftengPoliTo/SoftwareMetrics
4https://github.com/SoftengPoliTo/rust-code-analysis
5https://tree-sitter.github.io/

8/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



rust-code-analysis

analyzer.py

compare.py

Figure 2. Representation of the process stack of the framework

reached.258

The tool is provided with parser modules that are able to construct the AST (and then to compute the259

metrics) for a set of languages: C, C++, C#, Go, JavaScript, Python, Rust, Typescript. The program-260

ming languages currently implemented in rust-code-analysis have been chosen because they are the261

ones that compose the Mozilla-central repository, which contains the code of the Firefox browser. The262

metrics can be computed for each language of this repository with the exception of Java, which does263

not have an implementation yet, and HTML and CSS, which are excluded because they are formatting264

languages.265

rust-code-analysis can receive either single files or entire directories, detect whether they contain266

any code written in one of its supported languages, and output the resultant static metrics in various267

formats: textual, JSON, YAML, toml, cbor. [38].268

Concerning the original implementation of the rust-code-analysis tool, the project was forked and269

modified by adding metrics computations (e.g., the COGNITIVE metric). Also, the possible output270

format provided by the tool was changed.271

Listing 1 reports an excerpt of the JSON file produced as output by rust-code-analysis.272

3.3.2 Analyzer273

A Python script named analyzer.py was developed to analyze the metrics computed from rust-code-274

analysis. This script can launch different software libraries to compute metrics and adapt their results to275

a common format.276

In this experiment, the analyzer.py script was used only with the Rust-code-analysis tool, but in a future277

extension of this study – or other empirical assessments – the script can be used to launch different278

tools simultaneously on the same source code.279

The analyzer.py script performs the following operations:280

• The arguments are parsed to verify their correctness. For instance, analyzer.py receives as argu-281

ments the list of tools to be executed, the path of the source code to analyze, and the path to the282

directory where to save the results;283

• The selected metric computation tool(s) is (are) launched, to start the computation of the soft-284

ware metrics on the source files passed as arguments to the analyzer script;285

• The output of the execution of the tool(s) is converted in JSON and formatted in order to have a286

common standard to compare the measured software metrics;287

• The newly formatted JSON files are saved in the directory previously passed as an argument to288

analyzer.py.289

The output produced by rust-code-analysis through analyzer.py was modified for the following reasons:290

• The names of the metrics computed by the tool are not coherent with the ones selected from the291

scientific literature about software static quality metrics;292

9/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



• The types of data representing the metrics are floating-point values instead of integers since293

rust-code-analysis aims at being as versatile as possible;294

• The missing aggregation of each source file metrics contained in a directory within a single295

JSON-object, which is composed of global metrics and the respective metrics for each file. This296

additional aggregate data allows obtaining a more general prospect on the quality of a project297

written in a determined programming language.298

Listing 2 reports an excerpt of the JSON file produced as output by the Analyzer script. As further299

documentation of the procedure, the full JSON files generated in the evaluation can be found in the300

Results folder of the project6.301

3.3.3 Comparison302

A second Python script, Compare.py, was finally developed to perform the comparisons over the JSON303

result files generated by the Analyzer.py script. The Compare.py script executes the comparisons be-304

tween different language configurations, given an analyzed source code artifact and a metric.305

The script receives a Configuration as a parameter, a pair of versions of the same code, written in two306

different programming languages.307

The script performs the following operations for each received Configuration:308

• Computes the metrics for the two files of a configuration by calling the analyzer.py script;309

• Loads the two JSON files from the Results directory and compares them, producing a JSON file310

of differences;311

• Deletes all local metrics (the ones computed by rust-code-analysis for each subspace) from the312

JSON file of differences;313

• Saves the JSON file of differences, now containing only global file metrics, in a defined destina-314

tion directory.315

The JSON differences file is produced using a JavaScript program called JSON-diff7.316

Listing 3 reports an excerpt of the JSON file produced as output by the Comparison script. As further317

documentation of the procedure, the full JSON files generated in the evaluation can be found in the318

Compare folder of the project8.319

3.4 Data collection and Analysis procedure320

To collect the data to analyze, the described instruments were applied on each of the selected software321

objects for all the languages studied (i.e., for a total of 45 software artifacts).322

The collected data was formatted in a single .csv file containing all the measurements.323

To analyze the results, comparative analyses of the average and median of each of the measured metrics324

were performed to provide a preliminary discussion.325

A non-parametric Kruskal-Wallis test was later applied to identify statistically significant differences326

among the different sets of metrics for each language.327

For significantly different distributions, post-hoc comparisons with Wilcoxon signed rank-sum test328

were applied to analyze the difference between the metrics measured for Rust and the other five lan-329

guages in the set.330

Descriptive and statistical analyses and graph generation were performed in R. The data and scripts331

have been made available in an online repository9.332

6https://github.com/SoftengPoliTo/SoftwareMetrics/tree/master/Results
7https://www.npmjs.com/package/json-diff
8https://github.com/SoftengPoliTo/SoftwareMetrics/tree/master/Compare
9https://github.com/SoftengPoliTo/rust-analysis

10/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



3.5 Threats to Validity333

Threats to Internal Validity. The study results may be influenced by the specific selection of the tool334

with which the software metrics were computed, namely the rust-code-analysis tool. The values mea-335

sured for the individual metrics (and, by consequence, the reasoning based upon them) can be heavily336

influenced by the exact formula used for the metric computation.337

In the Halstead suite, the formulas depend on two coefficients defined explicitly in the literature for338

every software language, namely the denominators for the T and B metrics. Since no previous result339

in the literature has provided Halstead coefficients specific to Rust, the C coefficients were used for340

the computation of Rust Halstead metrics. More specifically, 18 was used as the denominator of the341

T metric. This value, called Stoud number (S), is measured in moments, i.e., the time required by the342

human brain to carry out the most elementary decision. In general, S is comprised between 5 and 20. In343

the original Halstead metrics suite for the C language, a value of 18 is used. This value was empirically344

defined after psychological studies of the mental effort required by coding. 3000 was selected as the345

denominator of the Number of delivered Bugs metric; this value, again, is the original value defined for346

the Halstead suite and represents the number of mental discriminations required to produce an error in347

any language. The 3000 value was originally computed for the English language and then mutuated348

for programming languages [39]. The choice of the Halstead parameters may significantly influence349

the values obtained for the T and B metrics. The definition of the specific parameters for a new pro-350

gramming language, however, implies the need for a thorough empirical evaluation of such parameters.351

Future extensions of this work may include studies to infer the optimal Halstead parameters for Rust352

source code.353

Finally, two metrics, NARGS and NEXITS, were adopted for the evaluation of readability and organi-354

zation of code. Albeit extensively used in production (they are used in the Mozilla-central open-source355

codebase), these metrics still miss empirical validation on large repositories, and hence their capacity of356

predicting code readability and complexity cannot be ensured.357

Threats to External Validity. The results presented in this research have been measured on a limited358

number of source artifacts (namely, nine different code artifacts per programming language). Therefore,359

we acknowledge that the results cannot be generalized to all software written with one of the analyzed360

programming languages. Another bias can be introduced in the results by the characteristics of the361

considered code artifacts. All considered source files were small programs collected from a single362

software repository. The said software repository itself was implemented for a specific purpose, namely363

the evaluation of the performance of different programming languages at runtime. Therefore, it is364

still unsure whether our measurements can scale up to bigger software repositories and real-world365

applications written in the evaluated languages. As well, the results of the present manuscript may366

inherit possible biases that the authors of the code had in writing the source artifacts employed for367

our evaluation. Future extensions of the current work should include the computation of the selected368

metrics on more extensive and more diverse sets of software artifacts to increase the generalizability of369

the present results.370

Threats to Conclusion Validity. The conclusions detailed in this work are only based on the analysis of371

quantitative metrics and do not consider other possible characteristics of the analyzed source artifacts372

(e.g., the developers’ coding style who produced the code). Like the generalizability of the results, this373

bias can be reduced in future extensions of the study using a broader and more heterogeneous set of374

source artifacts [40].375

In this work, we make assumptions on verbosity, complexity, understandability, and maintainability of376

source code based on quantitative static metrics. It is not ensured that our assumptions are reflected by377

maintenance and code understanding effort in real-world development scenarios. It is worth mentioning378

that there is no unanimous opinion about the ability of more complex metrics (like MI) to capture the379

maintainability of software programs more than simpler metrics like lines of code and Cyclomatic380

Complexity.381

Researcher bias is a final theoretical threat to the validity of this study since it involved a comparison in382

terms of different metrics of different programming languages. However, the authors have no reason to383

favor any particular approach, neither inclined to demonstrate any specific result.384

11/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



0

100

200

300

SLOC PLOC LLOC CLOC BLANK

Metric

M
e

a
s
u

re
Language

C

C++

Rust

Python

JavaScript

TypeScript

Figure 3. Distribution of the metrics about lines of code for all the considered programming

languages

Table 8. Mean (Median) values of the metrics about lines of code for all the considered programming

languages

Language SLOC PLOC LLOC CLOC BLANK

C 209 (201) 129 (128) 48 (41) 43 (49) 37 (36)

C++ 186 (177) 137 (120) 51 (50) 20 (15) 28 (26)

Rust 144 (145) 105 (95) 52 (62) 21 (19) 18 (17)

Python 99 (76) 73 (61) 59 (53) 8 (6) 18 (16)

JavaScript 107 (92) 83 (76) 58 (60) 9 (7) 16 (9)

TypeScript 95 (64) 74 (46) 51 (42) 8 (7) 13 (10)

4 RESULTS AND DISCUSSION385

This section reports the results gathered by applying the methodology described in the previous section,386

subdivided according to the research question they answer.387

4.1 RQ1 - Code verbosity388

The boxplots in Figure 3 and Table 8 report the measures for the metrics adopted to answer RQ1.389

The mean and median values of the Source Lines of Code (SLOC) metric (i.e., total lines of code in the390

source files) are largely higher for the C, C++, and Rust language: the highest mean SLOC was for C391

(209 average LOCs per source file), followed by C++ (186) and Rust (144). The mean values are way392

smaller for Python, TypeScript, and JavaScript (respectively, 98, 107, and 95).393

A similar trend is assumed by the Physical Lines of Code (PLOC) metric, i.e., the total number of in-394

structions and comment lines in the source files. In the examined set, 74 average PLOCs per file were395

measured for the Rust language. The highest and smallest values were again measured respectively for396

C and TypeScript, with 129 and 74 average PLOCs per file. The values measured for the CLOC and397

BLANK metrics showed that a higher number of empty lines of code and comments were measured398

for C than for all other languages. In the CLOC metric, the Rust language exhibited the second-highest399

mean of all languages, suggesting a higher predisposition of Rust developers at providing documenta-400

tion in the developed source code.401

12/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Table 9. p-values for RQ1 metrics obtained by applying Kruskal-Wallis chi-squared test10

Metric p-value Significance

SLOC 0.001706 **

PLOC 0.03617 *

LLOC 0.9495 -

CLOC 7.07e-05 ***

BLANK 0.0001281 ***

Table 10. p-values for post-hoc Wilcoxon Signed Rank test for RQ1 metrics between Rust and the

other languages

Metric C C++ JavaScript Python TypeScript

SLOC 0.0519 0.3309 0.2505 0.0420 0.0519

PLOC 0.3770 0.3081 0.3607 0.2790 0.2790

CLOC 0.0399 0.8242 0.0620 0.0620 0.097

BLANK 0.0053 0.0618 0.1944 0.7234 0.0467

A slightly different trend is assumed by the Logical Lines of Code (LLOC) metric (i.e., the number of402

instructions or statements in a file). In this case, the mean number of statements for Rust code is higher403

than the ones measured for C, C++ and TypeScript, while the SLOC and PLOC metrics are lower. The404

Rust scripts also had the highest median LLOC. This result may be influenced with the different num-405

ber of types of statements that are offered by the language. For instance, the Rust language provides406

19 types of statements while C offers just 14 types (e.g., the Rust statements If let and While let are not407

present in C). The higher amount of logical statements may indeed hint at a higher decomposition of408

the instructions of the source code into more statements, i.e., more specialized statements covering less409

operations.410

Albeit many higher-level measures and metrics have been derived in latest years by related literature411

to evaluate the understandability and maintainability of software, the analysis of code verbosity can412

be considered a primary proxy for these evaluations. Several studies, in fact, have linked the intrinsic413

verbosity of a language to a lower readability of the software code, which translates to higher effort414

when the code hast to be maintained. For instance, Flauzino et al., state that verbosity can cause higher415

mental energy in coders working on the implementation of an algorithm, and can be correlated to416

many smells in software code [41]. Toomim et al. highlight that redundancy and verbosity can obscure417

meaningful information in the code, thereby making it difficult to understand [42].418

The metrics for RQ1 where mostly evenly distribuited among different source code artifacts. Two419

outliers were identified for the PLOC metric in C and C++ (namely, fasta.c and fasta.cpp), mostly due420

to the fact that they have the highest SLOC value, so the results are coherent. More marked outliers421

were found for the BLANK metric, but such measure is strongly influenced by the coding style of the422

developer and by the used code formatters, thereby no valuable insight can be found by analyzing the423

individual code artifacts.424

Table 9 reports the results of the application of the Kruskal-Wallis non-parametric test on the set of425

measures for RQ1. The difference for SLOC, PLOC, CLOC and BLANK were statistically significant426

(with strong significance for the last two metrics). Post-hoc statistical tests focused on the comparison427

between Rust and the other languages (table 10) led to the evidence that Rust had a significantly lower428

CLOC than C, and a significantly lower BLANK than C and TypeScript.429

Answer to RQ1: The examined source files written in Rust exhibited an average verbosity (144

mean SLOCs per file and 74 mean PLOCs per file). Such values are lower than C and C++ and

higher than the other considered object-oriented languages. Rust exhibited the third-highest aver-

age (and highest median) LLOC among all considered languages. Significantly lower values were

measured for CLOC against C, and for BLANK against C and TypeScript.

430

431

10Signific. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’-’ 1

13/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



0

10

20

30

40

NOM NARGS (Sum) NARGS (Avg) NEXITS (Sum) NEXITS(Avg)

Metric

M
e

a
s
u

re
Language

C

C++

Rust

Python

JavaScript

TypeScript

Figure 4. Distribution of the metrics about organization of code for all the considered programming

languages

Table 11. Mean (Median) values of the metrics about code organization for all the considered

programming languages

Language NOM NARGS (Sum) NARGS (Avg) NEXITS (Sum) NEXITS (Avg)

C 4.4 (4) 8.6 (9) 2.0 (2) 3.1 (4) 0.75 (0.67)

C++ 10.6 (8) 13.4 (11) 1.4 (1) 6.0 (5) 0.48 (0.5)

Rust 10.3 (10) 25.1 (30) 2.0 (2) 5.7 (4) 0.44 (0.43)

Python 5.7 (5) 10.6 (9) 1.8 (2) 2.8 (1) 0.45 (0.33)

JavaScript 5.9 (3) 7.4 (4) 1.1 (1) 4.6 (4) 0.63 (0.5)

TypeScript 4.7 (4) 5.7 (4) 1.1 (1) 2.1 (2) 0.58 (0.4)

4.2 RQ2 - Code organization432

The boxplots in Figure 4 and Table 11 report the measures for the metrics adopted to answer RQ2.433

For each source file, two different measures were collected for the Number of Arguments (NARGS)434

metric: the sum at file level of all the methods arguments and the average at file level of the number of435

arguments per method (i.e., NARGS/NOM).436

The Rust language had the highest median value for the Number of Methods (NOM) metric, with a437

median of 10 methods per source file. The average NOM value was only lower than the one measured438

for C++ sources. However, this value was strongly influenced by the presence of one outlier in the set439

of analyzed sources (namely, the C++ implementation of fasta having a NOM equal to 20). While the440

NOM values were similar for C++ and Rust, all other languages exhibited much lower distributions,441

with the lowest median value for JavaScript (3). This high number of Rust methods can be seen as442

evidence of higher modularity than the other languages considered.443

Regarding the number of arguments, it can be noticed that the Rust language exhibited the highest av-444

erage and median cumulative number of arguments (Sum of Arguments) of all languages. The already445

discussed high NOM value influences this result. The highest NOM (and, by consequence, of the total446

cumulative number of arguments) can be caused by the missing possibility of having default values in447

the Rust language. This characteristic may lead to multiple variations of the same method to take into448

account changes in the parameter, thereby leading to a higher NARGS.449

14/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Table 12. p-values for RQ2 metrics obtained by applying Kruskal-Wallis chi-squared test

Metric p-value Significance

NOM 0.04372 *

NARGSSUM 0.02357 *

NARGSAV G 0.008224 **

NEXIT SSUM 0.142 -

NEXIT SAV G 0.2485 -

Table 13. p-values for post-hoc Wilcoxon Signed Rank test for RQ2 metrics between Rust and the

other languages

Metric C C++ JavaScript Python TypeScript

NOM 0.0534 0.7560 0.1037 0.0546 0.0533

NARGSSUM 0.0239 0.0633 0.0199 0.0318 0.0177

NARGSAV G 0.5658 0.1862 0.0451 0.4392 0.0662

The lowest average measures for NOM and NARGS Sum metrics were obtained for the C language.450

This result can be justified by the lower modularity of the C language. By examining the C source451

files, it could be verified that the code presented fewer functions and more frequent usage of nested452

loops, while the Rust sources were using more often data structures and ad-hoc methods. In general,453

the results gathered for these metrics suggest a more structured Rust code organization with respect to454

the C language.455

The NOM metric has an influence on the verbosity of the code, and therefore it can be considered as a456

proxy of the readability and maintainability for the code.457

Regarding the Number of Exits (NEXITS) metric, the values were close for most of the languages,458

except Python and TypeScript, which respectively contain more methods without exit points and fewer459

functions. The obtained NEXITS value for Rust shows many exit points distributed among many func-460

tions, as demonstrated by the NOM value, making the code much more comfortable to follow.461

An analysis of the outliers of the distributions of the measurements for RQ2 was performed. For C++,462

the highest value of NOM was exhibited by the revcomp.cpp source artifact. This high value was463

caused by the extensive use of classes methods to handle chunks of DNA sequences. knucleotide.py464

and spectralnorm.py had a higher number of functions than the other considered source artifacts.465

fasta.cpp uses lots of mall functions with many arguments, resulting in an outlier value for the NARGSSUM466

metric. pidigits.py had 0 values for NOM and NARGS, since it used zero functions. Regarding NEX-467

ITS, very high values were measured for fasta.cpp and revcomp.cpp, which had many functions with468

return statements. Lower values were measured for regexredup.cpp, which has a single main function469

without any return, and pidigits.cpp, which has a single return. A final outlier was the NEXITS value470

for fasta.js, which features a very high number of function with return statements.471

Table 12 reports the results of the application of the Kruskal-Wallis non-parametric test on the set of472

measures for RQ2. The difference for NOM, NARGSSUM and NARGSAV G was statistically significant,473

while no significance was measured fo the metrics related to the NEXITS. Post-hoc statistical tests474

focused on the comparison between Rust and the other languages (table 13) highlighted that Rust had a475

significantly higher NARGSSUM than C, JavaScript, Python, and TypeScript, and a significantly higher476

NARGSAV G than JavaScript.477

Answer to RQ2: The examined source files written in Rust exhibited the most structured organi-

zation of the considered set of languages (with a mean 10.3 NOM per file, with a mean of 2 argu-

ments for each method). The Rust language had a significantly higher number of arguments than C,

JavaScript, Python and TypeScript.

478

479

4.3 RQ3 - Code complexity480

The boxplots in Figure 5 and Table 14 report the measures for the metrics adopted to answer RQ3. For481

the Computational Complexity, two metrics were computed: the sum of the Cyclomatic Complexity482

15/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



0

20

40

60

CC (Sum) CC (Avg) COGNITIVE (Sum) COGNITIVE (Avg)

Metric

M
e

a
s
u

re
Language

C

C++

Rust

Python

JavaScript

TypeScript

Figure 5. Distribution of complexity metrics for all the considered programming languages

Table 14. Mean (Median) values of the complexity metrics for all the considered programming

languages

Language CCSum CCAvg COGNIT IV ESum COGNIT IV EAvg

C 27.3 (28) 4.3 (3.5) 24.3 (21.0) 11.2 (5.5)

C++ 31.1 (29) 2.7 (2.4) 22.4 (23.0) 3.2 (1.5)

Rust 25.3 (22) 2.0 (2.0) 13.1 (10.0) 1.5 (0.7)

Python 23.0 (16) 3.6 (3.0) 25.4 (13.0) 4.4 (3.0)

JavaScript 17.6 (17) 3.4 (2.2) 19.9 (15.0) 8.5 (2.3)

TypeScript 15.2 (14) 3.4 (2.2) 17.0 (12.0) 7.2 (2.3)

(CC) of all spaces in a source file (CCSum), and the averaged value of CC over the number of spaces in483

a file (CCAvg). A space is defined in rust-code-analysis as any structure that incorporates a function. For484

what concerns the COGNITIVE complexity, two metrics were computed: the sum of the COGNITIVE485

complexity associated to each function and closure present in a source file, (COGNIT IV ESum), and the486

average value of COGNITIVE complexity, (COGNIT IV EAvg), always computed over the number of487

functions and closures. Table 14 reports the mean and median values over the set of different source488

files selected for each language, of the sum and average metrics computed at the file level.489

As commonly accepted in the literature and practice, a low cyclomatic complexity generally indicates490

a method that is easy to understand, test, and maintain. The reported measures showed that the Rust491

language had a lower median CCSum (22) than C and C++ and the second-highest average value (25.3).492

Whe lowest average and median CCSum was measured for the TypeScript language. By considering493

the average of the Cyclomatic Complexity, CCAvg, at the function level, the highest average and mean494

values are instead obtained for the Rust language. It is worth mentioning that the average CC values for495

all the languages were rather low, hinting at an inherent simplicity of the software functionality under496

examination. So an analysis based on different codebases may result in more pronounced differences497

between the programming languages.498

COGNITIVE complexity is a software metric that assesses the complexity of code starting from human499

judgment and is a measure for source code comprehension by the developers and maintainers [43].500

Moreover, empirical results have also proved the correlation between COGNITIVE complexity and501

16/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



B
u

g
s

D
if
fi
c
u

lt
y

E
ff
o

rt
L

e
n

g
th

T
im

e
V

o
lu

m
e

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

1

2

3

30

60

90

0e+00

2e+05

4e+05

6e+05

8e+05

500

1000

0

10000

20000

30000

40000

2500

5000

7500

10000

Language

M
e

tr
ic

(A)

(B)

(C)

(D)

(E)

(F)

Figure 6. Distribution of Halstead metrics (A: Bugs; B: Difficulty; C: Effort; D: Length; E: Time; F:

Volume) for all the considered programming languages

Table 15. Mean (Median) values of Halstead metrics for all the considered programming languages

Language Bugs Difficulty Effort Length Programming Time Volume

C 1.52 (1.6) 66.7 (55.9) 322,313 (342,335) 726.0 (867.0) 17,906 (19,018) 4,819 (5,669)

C++ 1.46 (1.3) 57.8 (56.4) 311,415 (248,153) 728.1 (634.0) 17,300 (13,786) 4,994 (4,274)

Rust 1.1 (1.3) 48.6 (45.9) 199,152 (246,959) 602.2 (550.0) 11,064 (13,719) 4,032 (3610)

Python 0.7 (0.6) 33.7 (30.0) 111,103 (72,110) 393.8 (334.0) 6,172 (4,006) 2,680 (2204)

JavaScript 0.8 (0.9) 43.1 (44.1) 139,590 (140,951) 458.6 (408.0) 7,755 (7,830) 2,963 (2615)

TypeScript 0.8 (0.6) 45.2 (41.9) 132,644 (82,369) 435.7 (302.0) 7,369 (4,576) 2,734 (1730)

defects [44]. For both the average COGNITIVE complexity and the sum of COGNITIVE complexity502

at the file level, Rust provided the lowest mean and median values. Specifically, Rust guaranteed a503

COGNITIVE complexity of 0.7 per method, which is less than half the second-lowest value for C++504

(1.5). The highest average COGNITIVE complexity per class was measured for C code (5.5). This505

very low value of the COGNITIVE complexity per method for Rust is related to the highest number506

of methods for Rust code (described in the analysis of RQ2 results). By considering the sum of the507

COGNITIVE complexity metric at the file level, Rust had a mean COGNIT IV ESum of 13.1 over the 9508

analyzed source files. The highest mean value for this metric was measured for Python (25.4), and the509

highest median for C++ (23). Such lower values for the Rust language can suggest a more accessible,510

less costly, and less prone to bug injection maintenance for source code written in Rust. This lowest511

value for the COGNITIVE metric counters some measurements (e.g., for the LLOC and NOM metrics)512

by hinting that the higher verbosity of the Rust language has not a visible influence on the readability513

and comprehensibility of the Rust code.514

The boxplots in Figure 6 and Table 15 report the distributions, mean, and median of the Halstead met-515

rics computed for the six different programming languages.516

The Halstead Difficulty (D) is an estimation of the difficulty of writing a program that is statically517

analyzed. The Difficulty is the inverse of the program level metric. Hence, as the volume of the imple-518

17/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Table 16. p-values for RQ3 metrics obtained by applying Kruskal-Wallis chi-squared test

Metric p-value Significance

CCSUM 0.113 -

CCAV G 0.1309 -

COGNIT IV ESUM 0.4554 -

COGNIT IV EAV G 0.009287 **

HALST EADVocabulary 0.07718 .

HALST EADDi f f iculty 0.01531 *

HALST EADProgrammingtime 0.005966 **

HALST EADE f f ort 0.005966 **

HALST EADVolume 0.03729 *

HALST EADBugs 0.005966 **

Table 17. p-values for post-hoc Wilcoxon Signed Rank test for RQ3 metrics between Rust and the

other languages

Metric C C JavaScript Python TypeScript

COGNIT IV EAV G 0.0062 0.0244 0.0222 0.0240 0.0222

HALST EADDi f f iculty 0.2597 0.2621 0.5328 0.2621 0.6587

HALST EADProgrammingTime 0.1698 0.3767 0.3081 0.1930 0.3134

HALST EADE f f ort 0.1698 0.3767 0.3081 0.1930 0.3134

HALST EADVolume 0.5960 0.5328 0.2621 0.2330 0.2330

HALST EADBugs 0.1698 0.3767 0.3081 0.1930 0.3134

mentation of code increases, the difficulty increases as well. The usage of redundancy hence influences519

the Difficulty. It is correlated to the number of operators and operands used in the code implementa-520

tion. The results suggest that the Rust programming language has an average Difficulty (median of521

45.9) on the set of considered languages. The most difficult code to interpret, according to Halstead522

metrics, was C (median of 55.9), while the easiest to interpret was Python (median of 30.0). A similar523

hierarchy between the different languages is obtained for the Halstead Effort (E), which estimates the524

mental activity needed to translate an algorithm into code written in a specific language. The Effort is525

linearly proportional to both Difficulty and Volume. The unit of measure of the metric is the number of526

elementary mental discriminations [45].527

The Halstead Length (L) metric is given by the total number of operator occurrences and the total528

number of operand occurrences. The Halstead Volume (V) metric is the information content of the529

program, linearly dependent on its vocabulary. Rust code had the third-highest mean and median Hal-530

stead Length (602.2 mean, 550.0 median) and Halstead Volume (4,032 mean, 3,610 median), again531

below those measured for C and C++. The results measured for all considered source files were in line532

with existing programming guidelines (Halstead Volume lower than 8000). The reported results about533

Length and Volume were, to some extent, expectable since these metrics are largely correlated to the534

number of lines of code present in a source file [46].535

The Halstead Time metric (T) is computed as the Halstead Effort divided by 18. It estimates the time536

in seconds that it should take a programmer to implement the code. A mean and median T of 11,064537

and 13,719 seconds was measured, respectively, for the Rust programming language. These values538

are significantly distant from those measured for Python and TypeScript (the lowest) and from those539

measured for C and C++ (the highest).540

Finally, the Halstead Bugs Metric estimates the number of bugs that are likely to be found in the soft-541

ware program. It is given by a division of the Volume metric by 3000. We estimated a mean value of542

1.1 (median 1.3) bugs per file with the Rust programming language on the considered set of source543

artifacts.544

An analysis of the outliers of the distributions of measurements regarding RQ3 was performed. A545

relevant outlier for the CC metric was revcomp.cpp, in which the usage of many nested loops and546

conditional statements inside class methods significantly increased the computed complexity. For the547

set of Python source files, knucleoutide.py had the highest CC due to the usage of nested code; the548

18/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



O
ri

g
in

a
l

S
E

I
V

is
u

a
l 
S

tu
d

io
C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

C C++ Rust Python JavaScript TypeScript

20

40

60

80

−25

0

25

50

75

10

20

30

40

Language

M
e

tr
ic

(A)

(B)

(C)

Figure 7. Distribution of Maintainability Indexes (A: Original; B: SEI; C: Visual Studio) for all the

considered programming languages

Table 18. Mean (Median) values of Maintainability Indexes for all the considered programming

languages

Language Original SEI Visual Studio

C 35.9 (36.7) 10.5 (5.0) 21.0 (21.5)

C++ 36.5 (36.3) 3.6 (9.9) 21.3 (21.2)

Rust 43.0 (43.3) 15.8 (22.6) 25.1 (25.3)

Python 52.5 (55.5) 23.3 (25.7) 30.7 (32.5)

JavaScript 54.2 (51.7) 27.7 (25.3) 31.7 (30.3)

TypeScript 55.9 (61.6) 29.4 (39.2) 32.7 (36.0)

same effect occurred for fannchuckredux.rs which had the highest CC and COGNITIVE complexity549

for the Rust language. The JavaScript and TypeScript versions of fannchuckredux both presented a550

high usage of nested code, but the lower level of COGNITIVE complexity for the TypeScript version551

suggest a better written source code artifact. The few outliers that were found for the Halstead metrics552

measurements were principally for C++ source artifacts, and mostly related to the higher PLOC and553

number of operands of the C++ source codes.554

Table 16 reports the results of the application of the Kruskal-Wallis non-parametric test on the set of555

measures for RQ3. No statistical significance was measured for the differences in the measurements556

of the two metrics related to CC. A statistically significant difference was measured for the averaged557

COGNITIVE complexity. Regarding the Halstead metrics, all differences were statistically significant558

with exception of those for the Difficulty metric. Post-hoc statistical tests focused on the comparison559

between Rust and the other languages (table 17) highlighted that Rust had a significantly lower average560

COGNITIVE complexity than all the other considered languages.561

Answer to RQ3: The Rust software artifacts exhibited an average Cyclomatic Complexity (mean

2.0 per function) and a significantly lower COGNITIVE complexity (mean 1.5 per function) than all

other languages. Rust was the third-highest performing language, after C and C++, for the Halstead

metric values.

562

563

4.4 RQ4 - Code maintainability564

The boxplots in Figure 7 and Table 18 report the distributions, mean, and median of the Maintainability565

Indexes computed for the six different programming languages.566

The Maintainability Index is a composite metric aiming to give an estimate of software maintainability567

19/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Table 19. p-values for RQ4 metrics obtained by applying Kruskal-Wallis chi-squared test

Metric p-value Significance

MIOriginal 0.006002 **

MISEI 0.1334 .

MIVisualStudio 0.006002 **

Table 20. p-values for post-hoc Wilcoxon Signed Rank test for RQ4 metrics between Rust and the

other languages

Metric C C JavaScript Python TypeScript

MIOriginal 0.2624 0.3308 0.2698 0.2624 0.2624

MIVisualStudio 0.2624 0.3308 0.2698 0.2624 0.2624

over time. The Metric has correlations with the Halstead Volume (V), the Cyclomatic Complexity (CC),568

and the number of lines of code of the source under examination.569

The source files written in Rust had an average MI that placed the fourth among all considered pro-570

gramming languages, regardless of the specific formula used for the calculation of the MI. Minor dif-571

ferences in the placement of other languages occurred, e.g., the median MI for C is higher than for572

C++ with the original formula for the Maintainability Index and lower with the SEI formula. Regard-573

less of the formula used to compute MI, the highest maintainability was achieved by the TypeScript574

language, followed by Python and JavaScript. These results were expectable in light of the previous575

metrics measured, given the said strong dependency of the MI on the raw size of source code.576

It is interesting to underline that, in accordance with the original guidelines for the MI computation, all577

the values measured for the software artifacts under study would suggest hard to maintain code, being578

the threshold for easily maintainable code set to 80. On the other hand, according to the documentation579

of the Visual Studio MI metric, all source artifacts under test can be considered as easy to maintain580

(MIV S20).581

Outliers in the distributions of MI values were mostly found for C++ sources, and were likely related to582

higher values of SLOC, CC and Halstead Volume, all leading to very low MI values.583

Table 19 reports the results of the application of the Kruskal-Wallis non-parametric test on the set of584

measures for RQ4. The measured differences were statistically significant for the original MI metric585

and for the version employed by Visual Studio. Post-hoc statistical tests focused on the comparison586

between Rust and the other languages (table 20) highlighted that difference was statistically significant.587

Answer to RQ4: Rust exhibited an average Maintainability Index, regardless of the specific formula

used (median values of 43.3 for MIO, 22.6 for MISEI , 25.3 for MIV S). Highest Maintainability index

were obtained for Python, JavaScript and TypeScript.

588

589

It is worth however mentioning that several works in the literature from latest years have highlighted590

the intrinsic limitations of the MI metric. A study by T. Kuipers underlines how the MI metric ex-591

poses limitations, particularly for systems built using object-oriented languages, since it is based on592

the CC metric that will be largely influenced by small methods with small complexity, hence both593

will inevitably be low [47]. Counsell et al. as well warn against the usage of MI for Object Oriented594

software, highlighting the class size as a primary confounding factor for the interpretation of the MI595

metric [48]. Several works have tackled the issue of adapting the MI to object-oriented code: Kaur et596

al., for instance, propose the utilization of package-level metrics [49]. Kaur et al. have evaluated the597

correlation between the traditional MI metrics and the more recent maintainability metrics provided598

by the literature, like the CHANGE metric. They found that a very scarce correlation can be measured599

between MI and CHANGE [23]. Lastly, many white and grey literature sources underline how different600

metrics for the MI can provide different estimations of the maintainability for the same code. This issue601

is reflected by our results. While the comparisons between different languages are mostly maintained602

by all three MI variations, it can be seen that all average values for original and SEI MI suggest very603

low code maintainability, while the average values for the Visual Studio MI would suggest high code604

20/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



maintainability for the same code artifacts.605

5 CONCLUSION AND FUTURE WORK606

In this paper, we have evaluated the complexity and maintainability of Rust code by using static metrics607

and compared the results on equivalent software artifacts written in C, C++, JavaScript, Python and608

TypeScript. The main findings of our evaluation study are the following:609

• The Rust language exhibited average verbosity between all considered languages, with lower610

verbosity than C and C++;611

• The Rust language exhibited the most structured code organization of all considered languages.612

More specifically, the examined source code artifacts in Rust had a significantly higher number613

of arguments than most of the other languages;614

• The Rust language exhibited average CC and values for Halstead metrics. Rust had a signifi-615

cantly lower COGNITIVE complexity with respect to all other considered languages;616

• The Rust language exhibited average compound maintainability indexes. Comparative analyses617

showed that the maintainability indexes were slightly higher (hinting at better maintainability)618

than C and C++.619

All the evidence collected in this paper suggests that the Rust language can produce less verbose, more620

organized and readable code than C and C++, the languages to which it is more similar in terms of code621

structure and syntax. The difference in maintainability with these two languages was not significant.622

On the other hand, the Rust language provided lower maintainability than that measured for more623

sophisticated and high-level object-oriented languages.624

It is worth underlining that the source artifacts written in the Rust language exhibited the lowest COG-625

NITIVE complexity, meaning that the language can guarantee the highest understandability of source626

code compared to all others. Understandability is a fundamental feature of code during its evolution627

since it may significantly impact the required effort for maintaining and fixing it.628

This work contributes to the existing literature of the field as a first, preliminary evaluation of static629

qualities related to maintainability for the Rust language, and a first comparison with a set of other pop-630

ular programming languages. As a prosecution of this work, we plan to perform further developments631

on the rust-code-analysis tool such that it can provide more metric computation features. At the present632

time, for instance, the tool is not capable of computing class-level metrics but it can only be employed633

to compute metrics only on function and class methods.634

As well, we plan to implement parsers for more programming languages (e.g., Java) to enable addi-635

tional comparisons. We also plan to extend our analysis to real projects composed of a significantly636

higher amount of code lines that embed different programming paradigms, such as the functional and637

concurrent ones. To this extent, we plan to mine software projects from open source libraries, e.g.,638

GitHub.639

REFERENCES640

[1] ISO. Iso 9126 software quality characteristics. http://www.sqa.net/iso9126.html, 1991.641

Online; accessed 08/12/2020.642

[2] ISO/IEC. Iso/iec 25010:2011 systems and software engineering — systems and software quality643

requirements and evaluation (square) — system and software quality models. https://www.644

iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en, 2011. Online; accessed645

08/12/2020.646

[3] Krishan K Aggarwal, Yogesh Singh, and Jitender Kumar Chhabra. An integrated measure of647

software maintainability. In Annual Reliability and Maintainability Symposium. 2002 Proceedings648

(Cat. No. 02CH37318), pages 235–241. IEEE, 2002.649

[4] Yuming Zhou and Hareton Leung. Predicting object-oriented software maintainability using650

multivariate adaptive regression splines. Journal of systems and software, 80(8):1349–1361, 2007.651

21/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



[5] Lekshmi S Nair and J Swaminathan. Towards reduction of software maintenance cost through652

assignment of critical functionality scores. In 2020 5th International Conference on Communication653

and Electronics Systems (ICCES), pages 199–204. IEEE, 2020.654

[6] Alberto S. Nuñez-Varela, Héctor G. Pérez-Gonzalez, Francisco E. Martı́nez-Perez, and Carlos655

Soubervielle-Montalvo. Source code metrics: A systematic mapping study. Journal of Sys-656

tems and Software, 128:164 – 197, 2017. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.657

2017.03.044. URL http://www.sciencedirect.com/science/article/pii/658

S0164121217300663.659

[7] Rafael Z Frantz, Matheus H Rehbein, Rodolfo Berlezi, and Fabricia Roos-Frantz. Ranking open660

source application integration frameworks based on maintainability metrics: A review of five-year661

evolution. Software: Practice and Experience, 49(10):1531–1549, 2019.662

[8] Yusuf U Mshelia, Simon T Apeh, and Olaye Edoghogho. A comparative assessment of software663

metrics tools. In 2017 International Conference on Computing Networking and Informatics (ICCNI),664

pages 1–9. IEEE, 2017.665

[9] Arvinder Kaur, Kamaldeep Kaur, and Kaushal Pathak. Software maintainability prediction by data666

mining of software code metrics. In 2014 International Conference on Data Mining and Intelligent667

Computing (ICDMIC), pages 1–6. IEEE, 2014.668

[10] Dalila Amara and Latifa Ben Arfa Rabai. Towards a new framework of software reliability measure-669

ment based on software metrics. Procedia Computer Science, 109:725–730, 2017.670

[11] Yusuf U Mshelia and Simon T Apeh. Can software metrics be unified? In International Conference671

on Computational Science and Its Applications, pages 329–339. Springer, 2019.672

[12] Markus Schnappinger, Mohd Hafeez Osman, Alexander Pretschner, and Arnaud Fietzke. Learning673

a classifier for prediction of maintainability based on static analysis tools. In 2019 IEEE/ACM 27th674

International Conference on Program Comprehension (ICPC), pages 243–248. IEEE, 2019.675

[13] Nicholas D Matsakis and Felix S Klock. The rust language. ACM SIGAda Ada Letters, 34(3):676

103–104, 2014.677

[14] Rust. Rust in production. https://www.rust-lang.org/, 2020. Online; accessed678

07/12/2020.679

[15] Tunç Uzlu and Ediz Şaykol. On utilizing rust programming language for internet of things. In680

2017 9th International Conference on Computational Intelligence and Communication Networks681

(CICN), pages 93–96. IEEE, 2017.682

[16] Abhiram Balasubramanian, Marek S Baranowski, Anton Burtsev, Aurojit Panda, Zvonimir Raka-683

marić, and Leonid Ryzhyk. System programming in rust: Beyond safety. In Proceedings of the 16th684

Workshop on Hot Topics in Operating Systems, pages 156–161, 2017.685

[17] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J Summers. Leveraging rust types686

for modular specification and verification. Proceedings of the ACM on Programming Languages, 3687

(OOPSLA):1–30, 2019.688

[18] Johannes Köster. Rust-bio: a fast and safe bioinformatics library. Bioinformatics, 32(3):444–446,689

2016.690

[19] Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal Dutta, and Philip Levis. The691

case for writing a kernel in rust. In Proceedings of the 8th Asia-Pacific Workshop on Systems, pages692

1–7, 2017.693

[20] Luca Ardito, Riccardo Coppola, Luca Barbato, and Diego Verga. A tool-based perspective on694

software code maintainability metrics: A systematic literature review. Scientific Programming, 2020,695

2020.696

[21] Jeremy Ludwig and Devin Cline. Cbr insight: measure and visualize source code quality. In 2019697

IEEE/ACM International Conference on Technical Debt (TechDebt), pages 57–58. IEEE, 2019.698

[22] Tsubasa Matsushita and Isao Sasano. Detecting code clones with gaps by function applications. In699

Proceedings of the 2017 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipula-700

tion, pages 12–22, 2017.701

[23] Arvinder Kaur, Kamaldeep Kaur, and Kaushal Pathak. A proposed new model for maintainability702

index of open source software. In Proceedings of 3rd International Conference on Reliability,703

Infocom Technologies and Optimization, pages 1–6. IEEE, 2014.704

[24] Muhammad Imran Sarwar, Wasif Tanveer, Imran Sarwar, and Waqar Mahmood. A comparative705

study of mi tools: Defining the roadmap to mi tools standardization. In 2008 IEEE International706

22/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Multitopic Conference, pages 379–385. IEEE, 2008.707

[25] T Hariprasad, G Vidhyagaran, K Seenu, and Chandrasegar Thirumalai. Software complexity analysis708

using halstead metrics. In 2017 International Conference on Trends in Electronics and Informatics709

(ICEI), pages 1109–1113. IEEE, 2017.710

[26] Ahmad A Saifan, Hiba Alsghaier, and Khaled Alkhateeb. Evaluating the understandability of711

android applications. International Journal of Software Innovation (IJSI), 6(1):44–57, 2018.712

[27] Jeremy Ludwig, Steven Xu, and Frederick Webber. Compiling static software metrics for reliability713

and maintainability from github repositories. In 2017 IEEE International Conference on Systems,714

Man, and Cybernetics (SMC), pages 5–9. IEEE, 2017.715

[28] Colin Robson and Kieran McCartan. Real world research. John Wiley & Sons, 2016.716

[29] Geoffrey K. Gill and Chris F. Kemerer. Cyclomatic complexity density and software maintenance717

productivity. IEEE transactions on software engineering, 17(12):1284, 1991.718

[30] Jingqiu Shao and Yingxu Wang. A new measure of software complexity based on cognitive weights.719

Canadian Journal of Electrical and Computer Engineering, 28(2):69–74, 2003. doi: 10.1109/720

CJECE.2003.1532511.721

[31] Kurt D Welker. The software maintainability index revisited. CrossTalk, 14:18–21, 2001.722

[32] Andreas Jedlitschka and Dietmar Pfahl. Reporting guidelines for controlled experiments in software723

engineering. In 2005 International Symposium on Empirical Software Engineering, 2005., pages724

10–pp. IEEE, 2005.725

[33] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. A sloc counting standard. In726

Cocomo ii forum, volume 2007, pages 1–16. Citeseer, 2007.727

[34] Paul Oman and Jack Hagemeister. Metrics for assessing a software system’s maintainability. In728

Proceedings Conference on Software Maintenance 1992, pages 337–338. IEEE Computer Society,729

1992.730

[35] Michael Bray, Kimberly Brune, David A Fisher, John Foreman, and Mark Gerken. C4 software731

technology reference guide-a prototype. Technical report, Carnegie-Mellon Univ Pittsburgh Pa732

Software Engineering Inst, 1997.733

[36] Microsoft. Code Metrics – Maintainability Index. https://docs.microsoft.com/en-gb/734

archive/blogs/zainnab/code-metrics-maintainability-index, 2011. Online;735

accessed 08/12/2020.736

[37] Arthur Molnar and Simona Motogna. Discovering maintainability changes in large software737

systems. In Proceedings of the 27th International Workshop on Software Measurement and 12th738

International Conference on Software Process and Product Measurement, pages 88–93, 2017.739

[38] Luca Ardito, Luca Barbato, Marco Castelluccio, Riccardo Coppola, Calixte Denizet, Sylvestre740

Ledru, and Michele Valsesia. rust-code-analysis: A rust library to analyze and extract maintainability741

information from source codes. SoftwareX, 12:100635, 2020.742

[39] Linda M Ottenstein, Victor B Schneider, and Maurice H Halstead. Predicting the number of bugs743

expected in a program module. 1976.744

[40] Dag IK Sjøberg, Bente Anda, and Audris Mockus. Questioning software maintenance metrics:745

a comparative case study. In Proceedings of the 2012 ACM-IEEE International Symposium on746

Empirical Software Engineering and Measurement, pages 107–110. IEEE, 2012.747

[41] Matheus Flauzino, Júlio Verı́ssimo, Ricardo Terra, Elder Cirilo, Vinicius HS Durelli, and Rafael S748

Durelli. Are you still smelling it? a comparative study between java and kotlin language. In749

Proceedings of the VII Brazilian symposium on software components, architectures, and reuse,750

pages 23–32, 2018.751

[42] Michael Toomim, Andrew Begel, and Susan L Graham. Managing duplicated code with linked752

editing. In 2004 IEEE Symposium on Visual Languages-Human Centric Computing, pages 173–180.753

IEEE, 2004.754

[43] Marvin Muñoz Barón, Marvin Wyrich, and Stefan Wagner. An empirical validation of cognitive755

complexity as a measure of source code understandability. In Proceedings of the 14th ACM / IEEE756

International Symposium on Empirical Software Engineering and Measurement (ESEM), ESEM757

’20, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450375801. doi:758

10.1145/3382494.3410636. URL https://doi.org/10.1145/3382494.3410636.759

[44] Basma S Alqadi and Jonathan I Maletic. Slice-based cognitive complexity metrics for defect760

prediction. In 2020 IEEE 27th International Conference on Software Analysis, Evolution and761

23/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Reengineering (SANER), pages 411–422. IEEE, 2020.762

[45] Maurice Howard Halstead. Elements of software science, volume 7. Elsevier New York, 1977.763

[46] Yahya Tashtoush, Mohammed Al-Maolegi, and Bassam Arkok. The correlation among software764

complexity metrics with case study. arXiv preprint arXiv:1408.4523, 2014.765

[47] Tobias Kuipers and Joost Visser. Maintainability index revisited–position paper. In Special session766

on system quality and maintainability (SQM 2007) of the 11th European conference on software767

maintenance and reengineering (CSMR 2007). Citeseer, 2007.768

[48] Steve Counsell, Xiaohui Liu, Sigrid Eldh, Roberto Tonelli, Michele Marchesi, Giulio Concas, and769

Alessandro Murgia. Re-visiting the’maintainability index’metric from an object-oriented perspective.770

In 2015 41st Euromicro Conference on Software Engineering and Advanced Applications, pages771

84–87. IEEE, 2015.772

[49] Kulwant Kaur and Hardeep Singh. Determination of maintainability index for object oriented773

systems. ACM SIGSOFT Software Engineering Notes, 36(2):1–6, 2011.774

24/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Listing 1. Sample output of the rust-code-analysis tool for the Rust version of the binarytrees

algorithm.775

1 {776

2 ” name ” : ” A s s e t s / Rus t / b i n a r y t r e e s . r s ” ,777

3 ” s t a r t l i n e ” : 1 ,778

4 ” e n d l i n e ” : 75 ,779

5 ” k ind ” : ” u n i t ” ,780

6 ” m e t r i c s ” : {781

7 ” n a r g s ” : {782

8 ”sum” : 14 . 0 ,783

9 ” a v e r a g e ” : 2 . 0784

10 } ,785

11 ” n e x i t s ” : {786

12 ”sum” : 3 . 0 ,787

13 ” a v e r a g e ” : 0 . 42857142857142855788

14 } ,789

15 ” c o g n i t i v e ” : {790

16 ”sum” : 5 . 0 ,791

17 ” a v e r a g e ” : 0 . 7142857142857143792

18 } ,793

19 ” c y c l o m a t i c ” : {794

20 ”sum” : 12 . 0 ,795

21 ” a v e r a g e ” : 1 . 5796

22 } ,797

23 ” h a l s t e a d ” : {798

24 ” n1 ” : 22 . 0 ,799

25 ”N1” : 193 . 0 ,800

26 ” n2 ” : 43 . 0 ,801

27 ”N2” : 140 . 0 ,802

28 ” l e n g t h ” : 333 . 0 ,803

29 ” e s t i m a t e d p r o g r a m l e n g t h ” : 331 . 4368800622107 ,804

30 ” p u r i t y r a t i o ” : 0 . 9953059461327649 ,805

31 ” v o c a b u l a r y ” : 65 . 0 ,806

32 ” volume ” : 2005 . 4484817384753 ,807

33 ” d i f f i c u l t y ” : 35 . 81395348837209 ,808

34 ” l e v e l ” : 0 . 02792207792207792 ,809

35 ” e f f o r t ” : 71823 . 03864830818 ,810

36 ” t ime ” : 3990 . 168813794899 ,811

37 ” bugs ” : 0 . 5759541722145377812

38 } ,813

39 ” l o c ” : {814

40 ” s l o c ” : 75 . 0 ,815

41 ” p l o c ” : 56 . 0 ,816

42 ” l l o c ” : 31 . 0 ,817

43 ” c l o c ” : 7 . 0 ,818

44 ” b l a n k ” : 12 . 0819

45 } ,820

46 ”nom” : {821

47 ” f u n c t i o n s ” : 4 . 0 ,822

48 ” c l o s u r e s ” : 3 . 0 ,823

49 ” t o t a l ” : 7 . 0824

50 } ,825

51 ” mi ” : {826

52 ” m i o r i g i n a l ” : 58 . 75785297946959 ,827

53 ” m i s e i ” : 33 . 08134287773029 ,828

54 ” m i v i s u a l s t u d i o ” : 34 . 36131753185356829

55 }830

56 }831

57 }832

25/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Listing 2. Sample output of the analyzer.py script for the Rust version of the binarytrees algorithm833

1 {834

2 ”SLOC” : 75 ,835

3 ”PLOC” : 56 ,836

4 ”LLOC” : 31 ,837

5 ”CLOC” : 7 ,838

6 ”BLANK” : 12 ,839

7 ”CC SUM” : 12 ,840

8 ”CC AVG” : 1 . 5 ,841

9 ”COGNITIVE SUM” : 5 ,842

10 ”COGNITIVE AVG” : 0 . 7142857142857143 ,843

11 ”NARGS SUM” : 14 ,844

12 ”NARGS AVG” : 2 . 0 ,845

13 ”NEXITS” : 3 ,846

14 ”NEXITS AVG” : 0 . 42857142857142855 ,847

15 ”NOM” : {848

16 ” f u n c t i o n s ” : 4 ,849

17 ” c l o s u r e s ” : 3 ,850

18 ” t o t a l ” : 7851

19 } ,852

20 ”HALSTEAD” : {853

21 ” n1 ” : 22 ,854

22 ” n2 ” : 43 ,855

23 ”N1” : 193 ,856

24 ”N2” : 140 ,857

25 ” Vocabu la ry ” : 65 ,858

26 ” Length ” : 333 ,859

27 ” Volume ” : 2005 . 4484817384753 ,860

28 ” D i f f i c u l t y ” : 35 . 81395348837209 ,861

29 ” Leve l ” : 0 . 02792207792207792 ,862

30 ” E f f o r t ” : 71823 . 03864830818 ,863

31 ” Programming t ime ” : 3990 . 168813794899 ,864

32 ” Bugs ” : 0 . 5759541722145377 ,865

33 ” E s t i m a t e d program l e n g t h ” : 331 . 4368800622107 ,866

34 ” P u r i t y r a t i o ” : 0 . 9953059461327649867

35 } ,868

36 ”MI” : {869

37 ” O r i g i n a l ” : 58 . 75785297946959 ,870

38 ” S e i ” : 33 . 08134287773029 ,871

39 ” V i s u a l S t u d i o ” : 34 . 36131753185356872

40 }873

41 }874

26/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



Listing 3. Sample output of the compare.py script for the C++/Rust comparisons of the binarytrees

algorithm. The old label identifies C++ metric values, while new the Rust ones.875

1 {876

2 ”SLOC” : {877

3 ” o l d ” : 139 ,878

4 ” new ” : 75879

5 } ,880

6 ”PLOC” : {881

7 ” o l d ” : 98 ,882

8 ” new ” : 56883

9 } ,884

10 ”LLOC” : {885

11 ” o l d ” : 25 ,886

12 ” new ” : 31887

13 } ,888

14 ”CLOC” : {889

15 ” o l d ” : 15 ,890

16 ” new ” : 7891

17 } ,892

18 ”BLANK” : {893

19 ” o l d ” : 26 ,894

20 ” new ” : 12895

21 } ,896

22 ”CC SUM” : {897

23 ” o l d ” : 19 ,898

24 ” new ” : 12899

25 } ,900

26 ”CC AVG” : {901

27 ” o l d ” : 1 . 4615384615384615 ,902

28 ” new ” : 1 . 5903

29 } ,904

30 ”COGNITIVE SUM” : {905

31 ” o l d ” : 8 ,906

32 ” new ” : 5907

33 } ,908

34 ”COGNITIVE AVG” : {909

35 ” o l d ” : 0 . 8888888888888888 ,910

36 ” new ” : 0 . 7142857142857143911

37 } ,912

38 ”NARGS SUM” : {913

39 ” o l d ” : 2 ,914

40 ” new ” : 14915

41 } ,916

42 ”NARGS AVG” : {917

43 ” o l d ” : 0 . 2222222222222222 ,918

44 ” new ” : 2919

45 } ,920

46 ”NEXITS” : {921

47 ” o l d ” : 5 ,922

48 ” new ” : 3923

49 } ,924

50 ”NEXITS AVG” : {925

51 ” o l d ” : 0 . 5555555555555556 ,926

52 ” new ” : 0 . 42857142857142855927

53 } ,928

54 ”NOM” : {929

55 ” f u n c t i o n s ” : {930

56 ” o l d ” : 9 ,931

57 ” new ” : 4932

58 } ,933

59 ” c l o s u r e s ” : {934

60 ” o l d ” : 0 ,935

61 ” new ” : 3936

62 } ,937

63 ” t o t a l ” : {938

64 ” o l d ” : 9 ,939

65 ” new ” : 7940

66 }941

67 } ,942

68 ”HALSTEAD” : {943

69 ” n1 ” : {944

70 ” o l d ” : 28 ,945

71 ” new ” : 22946

27/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



72 } ,947

73 ” n2 ” : {948

74 ” o l d ” : 56 ,949

75 ” new ” : 43950

76 } ,951

77 ”N1” : {952

78 ” o l d ” : 251 ,953

79 ” new ” : 193954

80 } ,955

81 ”N2” : {956

82 ” o l d ” : 173 ,957

83 ” new ” : 140958

84 } ,959

85 ” Vocabu la ry ” : {960

86 ” o l d ” : 84 ,961

87 ” new ” : 65962

88 } ,963

89 ” Length ” : {964

90 ” o l d ” : 424 ,965

91 ” new ” : 333966

92 } ,967

93 ” Volume ” : {968

94 ” o l d ” : 2710 . 3425872581947 ,969

95 ” new ” : 2005 . 4484817384753970

96 } ,971

97 ” D i f f i c u l t y ” : {972

98 ” o l d ” : 43 . 25 ,973

99 ” new ” : 35 . 81395348837209974

100 } ,975

101 ” Leve l ” : {976

102 ” o l d ” : 0 . 023121387283236993 ,977

103 ” new ” : 0 . 02792207792207792978

104 } ,979

105 ” E f f o r t ” : {980

106 ” o l d ” : 117222 . 31689891692 ,981

107 ” new ” : 71823 . 03864830818982

108 } ,983

109 ” Programming t ime ” : {984

110 ” o l d ” : 6512 . 3509388287175 ,985

111 ” new ” : 3990 . 168813794899986

112 } ,987

113 ” Bugs ” : {988

114 ” o l d ” : 0 . 7983970910222301 ,989

115 ” new ” : 0 . 5759541722145377990

116 } ,991

117 ” E s t i m a t e d program l e n g t h ” : {992

118 ” o l d ” : 459 . 81781345283866 ,993

119 ” new ” : 331 . 4368800622107994

120 } ,995

121 ” P u r i t y r a t i o ” : {996

122 ” o l d ” : 1 . 0844759751246196 ,997

123 ” new ” : 0 . 9953059461327649998

124 }999

125 } ,1000

126 ”MI” : {1001

127 ” O r i g i n a l ” : {1002

128 ” o l d ” : 45 . 586404609681736 ,1003

129 ” new ” : 58 . 757852979469591004

130 } ,1005

131 ” S e i ” : {1006

132 ” o l d ” : 16 . 3624350913677 ,1007

133 ” new ” : 33 . 081342877730291008

134 } ,1009

135 ” V i s u a l S t u d i o ” : {1010

136 ” o l d ” : 26 . 658716146012715 ,1011

137 ” new ” : 34 . 361317531853561012

138 }1013

139 }1014

140 }1015

28/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science



29/28PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:1:1:REVIEW 2 Jan 2021)

Manuscript to be reviewedComputer Science


	Introduction
	Background and Related Work
	The Rust programming language
	Tools for measuring static code quality metrics

	Study Design
	Goals, Research Questions and Variables
	Objects
	Instruments
	The Rust Code Analysis tool
	Analyzer
	Comparison

	Data collection and Analysis procedure
	Threats to Validity

	Results and Discussion
	RQ1 - Code verbosity
	RQ2 - Code organization
	RQ3 - Code complexity
	RQ4 - Code maintainability

	Conclusion and Future Work
	References

