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Rust is an innovative programming language initially implemented by Mozilla, developed
to ensure high performance, reliability, and productivity. The final purpose of this study
consists of applying a set of common static software metrics to programs written in Rust to
assess the size, structure, complexity, and maintainability of the language. To that extent,
we selected nine different implementations of algorithms available in different languages.
We computed a set of metrics for Rust, comparing them with the ones obtained from C
and a set of object-oriented languages: C++, Python, JavaScript, TypeScript. To parse the
software artifacts and compute the metrics, we have leveraged a tool called rust-code-
analysis, that we extended with a software module, written in Python, with the aim of
uniforming and comparing the results. The Rust code had an average verbosity in terms of
the raw size of code. It exposed the most structured source organization in terms of the
number of methods. Rust code had a better Cyclomatic Complexity, Halstead Metrics, and
Maintainability Indexes than C and C++ but performed worse than the other considered
object-oriented languages. Lastly, the Rust code exhibited the lowest Cognitive Complexity
of all languages. The collected measures prove that the Rust language has average
maintainability compared to a set of popular languages. It is more easily maintainable and
less complex than the C and C++ languages, which can be considered syntactically
similar. These results, paired with the memory safety and safe concurrency characteristics
of the language, can encourage wider adoption of the language of Rust in substitution of
the C language in both the open-source and industrial environments.
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ABSTRACT9

Rust is an innovative programming language initially implemented by Mozilla, developed to ensure high

performance, reliability, and productivity.

10
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The final purpose of this study consists of applying a set of common static software metrics to programs

written in Rust to assess the size, structure, complexity, and maintainability of the language.

12
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To that extent, we selected nine different implementations of algorithms available in different languages.

We computed a set of metrics for Rust, comparing them with the ones obtained from C and a set of

object-oriented languages: C++, Python, JavaScript, TypeScript. To parse the software artifacts and

compute the metrics, we have leveraged a tool called rust-code-analysis, that we extended with a software

module, written in Python, with the aim of uniforming and comparing the results.
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The Rust code had an average verbosity in terms of the raw size of code. It exposed the most structured

source organization in terms of the number of methods. Rust code had a better Cyclomatic Complexity,

Halstead Metrics, and Maintainability Indexes than C and C++ but performed worse than the other

considered object-oriented languages. Lastly, the Rust code exhibited the lowest Cognitive Complexity of

all languages.
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The collected measures prove that the Rust language has average maintainability compared to a set

of popular languages. It is more easily maintainable and less complex than the C and C++ languages,

which can be considered syntactically similar. These results, paired with the memory safety and safe

concurrency characteristics of the language, can encourage wider adoption of the language of Rust in

substitution of the C language in both the open-source and industrial environments.
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1 INTRODUCTION29

Software maintainability is defined as the ease of maintaining software during the delivery of its releases.30

It is an integrated software measure that encompasses some code characteristics, such as readability,31

documentation quality, simplicity, and understandability of source code [Aggarwal et al. (2002)]. Also,32

maintainability is a crucial factor in software products economic success. It is commonly accepted in33

the literature that the most considerable cost associated with any software product over its lifetime is34

the maintenance cost [Zhou and Leung (2007)]. Hence, many practices have consolidated in software35

engineering research and practice to enhance this property, and many metrics have been defined to provide36

a quantifiable and comparable measurement for it [Nuñez-Varela et al. (2017)].37

The academic and industrial practice has also provided multiple examples of tools that can automat-38

ically compute software metrics on source codes developed in many different languages [Sarwar et al.39

(2008)]. Several frameworks have also been described in the literature that leverage combinations of40

software code metrics to predict or infer the maintainability of a project [Kaur et al. (2014b)].41

However, the benefit of the massive availability of metrics and tooling for their computation is42

contrasted by the constant emergence of novel programming languages in the software development43

community. In most cases, the metrics have to be readapted to take into account newly defined syntaxes,44

and existing metric-computing tools cannot work on new languages due to the unavailability of parsers45

and metric extraction modules. For recently developed languages, the unavailability of appropriate tooling46
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unavailability represents an obstacle for empirical evaluations on the maintainability of the code developed47

using them.48

This work provides a first evaluation of the maintainability of Rust, a newly emerged programming49

language similar in characteristics to C++, that has been developed with the premises of providing better50

maintainability, memory safety, and performance [Matsakis and Klock (2014)]. To this purpose, we (i)51

developed a tool to compute maintainability metrics that support this language; (ii) developed a set of52

scripts to arrange the computed metrics into a comparable JSON format; (iii) executed a small-scale53

experiment by computing maintainability metrics for a set of programming languages, including Rust,54

analyzing and comparing the final results. To the best of our knowledge, no existing study in the literature55

has provided maintainability computations for the Rust language and the relative comparisons with other56

languages.57

The remainder of the manuscript is structured as follows: Section 2 provides background information58

about the Rust language and presents a brief review of state-of-the-art tools available in the literature for59

the computation of maintainability metrics; Section 3 describes the methodology used to conduct our60

experiment, along with a description of the developed tools and scripts, in addition to the experimental61

subjects we used for our evaluation; Section 4 presents and discusses the collected metrics; Section 562

describes the threats to the validity of this study; Section 6 concludes the paper and discusses possible63

future directions of this study.64

2 BACKGROUND AND RELATED WORK65

This section provides background information about the Rust language characteristics, studies in the66

literature that analyzes its advantages, and the list of available tools present in literature to measure quality67

and maintainability metrics.68

2.1 The Rust programming language69

Rust is an innovative programming language initially developed by Mozilla and is currently maintained70

and improved by the Rust Foundation1.71

The main goals of the Rust programming language are: memory-efficiency, with the abolition of72

garbage collection, with the final aim of empowering performance-critical services running on embedded73

devices, and easy integration with other languages; reliability, with a rich type system and ownership74

model to guarantee memory-safety and thread-safety; productivity, with integrated package managers and75

build tools.76

Rust is compatible with multiple architectures, and it is quite pervasive in the industrial world. Many77

companies are currently using Rust in production today for fast, low-resource, cross-platform solutions:78

for example, software like Firefox, Dropbox, and Cloudflare use Rust.79

The Rust language has been analyzed and adopted in many recent studies from academic literature.80

Uzlu et al. pointed out the appropriateness of using Rust in the Internet of Things domain, mentioning81

its memory safety and compile-time abstraction as crucial peculiarities for the usage in such domain82

[Uzlu and Şaykol (2017)]. Balasubramanian et al. show that Rust enables system programmers to83

implement robust security and reliability mechanisms more efficiently than other conventional languages84

[Balasubramanian et al. (2017)]. Astrauskas et al. leveraged Rust’s type system to create a tool to specify85

and validate system software written in Rust [Astrauskas et al. (2019)]. Koster mentioned the speed and86

high-level syntax as the principal reasons for writing in the Rust language the Rust-Bio library, a set of87

safe bioinformatic algorithms [Köster (2016)]. Levy et al. reported the process of developing an entire88

kernel in Rust, with a focus on resource efficiency [Levy et al. (2017)]. Such common usages of Rust in89

such low-level applications encourage thorough analyses of the quality and complexity of a code with90

Rust.91

2.2 Tools for measuring code maintainability metrics92

Several tools have been presented in academic works or are commonly used by practitioners to measure93

maintainability metrics for software written in different languages.94

In our previous works, we conducted a Systematic Literature review that led us to identify fourteen95

different open-source tools that can be used to compute a large set of different maintainability metrics96

1https://www.rust-lang.org/
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Table 1. Languages supported by the metrics tools
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C x x x x x x

C++ x x x x x

C# x x x

Cobol x x x x

Java x x x x x x

Rust

Others x x

[Ardito et al. (2020)]. In the review, it is found that the following set of open-source tools is able to cover97

most of the maintainability metrics defined in the literature, for the most common programming languages:98

CBR Insight, a tool based on the closed-source metrics computation Understand framework, that aims at99

computing reliability and maintainability metrics [Ludwig and Cline (2019)]; CCFinderX, a tool tailored100

for finding duplicate code fragments Matsushita and Sasano (2017); CKJM, a tool to compute the C&K101

metrics suite and method-related metrics for Java code [Kaur et al. (2014a)]; CodeAnalyzers, a tool102

supporting more than 25 software maintainability metrics, that covers the highest number of programming103

languages along with CBR Insight [Sarwar et al. (2008)]; Halstead Metrics Tool, a tool specifically104

developed for the computation of the Halstead Suite [Hariprasad et al. (2017)]; Metrics Reloaded, able105

to compute many software metrics for C and Java code either in a plug-in for IntelliJ IDEA or through106

command line [Saifan et al. (2018)]; Squale, a tool to measure high-level quality factors for software107

and measuring a set of code-level metrics to predict economic aspects of software quality [Ludwig et al.108

(2017)].109

In Table 1, we report the principal programming languages supported by the tools. For the sake of110

conciseness, we reported as rows in the table, only the languages that were supported by at least two of111

the tools. With this comparison, we find that none of the considered tools is capable of providing metric112

computation facilities for the Rust language.113

As additional limitations of the identified set of tools, we found out that the tools do not provide114

complete coverage of the most common metrics for all the tools (e.g., the Halstead Metric suite is115

computed only by the Halstead Metrics tool), and in some cases, (e.g., CodeAnalyzer), the number of116

metrics is limited by the type of acquired license. Also, some of the tools (e.g., MetricsReloaded) appear117

to have been discontinued by the time of the writing of this article.118

3 PROCEDURE119

This section reports goal, research questions, metrics, and procedures adopted for the study we conducted.120

To report the study goal, we follow the Goal Question Metric (GQM) template, as summarized in121

Table 2. Following the template, the goal of our evaluation can be expressed as122

123

Analyze and evaluate the characteristics of the Rust programming language, focusing on maintain-124

ability measurements, measured in the context of open-source algorithms, and interpreting the results125

from developers and researchers standpoint.126

3.1 Research Questions and Metrics127

In this subsection, we describe the research questions that guided the definition of the experiment. We128

identified four different aspects that deserve to be analyzed for code written in Rust programming language.129
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Table 2. Goal Question Metric template for the study

Object of Study Rust programming language

Purpose Evaluation

Focus Maintainability

Stakeholder Developers, researchers

Context factors Open-source algorithms

Table 3. List of metrics used in this study

RQ Acronym Name Description

RQ1 SLOC Source Lines of Code It returns the total number of lines in a file

PLOC Physical Lines of Code It returns the total number of instructions

and comment lines in a file

LLOC Logical Lines of Code It returns the number of logical lines (state-

ments) in a file

CLOC Comment Lines of Code It returns the number of comment lines in a

file

BLANK Blank Lines of Code Number of blank statements in a file

RQ2 NOM Number of Methods It returns the number of methods in a source

file

NARGS Number of Arguments It counts the number of arguments for each

method in a file

NEXITS Number of Exit Points It counts the number of exit points of each

method in a file

RQ3 CC McCabe’s Cyclomatic Complexity It calculates the code complexity examin-

ing the control flow of a program; the origi-

nal McCabe’s definition of cyclomatic com-

plexity is the the maximum number of lin-

early independent circuits in a program con-

trol graph [Gill and Kemerer (1991)]

COGNITIVE Cognitive Complexity It is a measure of how difficult a unit of code

is to intuitively understand, by examining

the cognitive weights of basic software con-

trol structures [Jingqiu Shao and Yingxu

Wang (2003)]

Halstead Halstead suite A suite of quantitative intermediate mea-

sures that are translated to estimations of

software tangible properties, e.g. volume,

difficulty and effort (see Table 4 for details)

RQ4 MI Maintainability Index A composite metric that incorporates a num-

ber of traditional source code metrics into a

single number that indicates relative main-

tainability (see Table 5 for details about the

considered variants) [Welker (2001)]

4/18PeerJ Comput. Sci. reviewing PDF | (CS-2020:10:54756:0:0:CHECK 30 Oct 2020)

Manuscript to be reviewedComputer Science



Table 4. The Halstead Metrics Suite

Measure Symbol Formula

Program length N N = N1+N2

Program vocabulary η η = η1+η2

Volume V V = N ∗ log2(η)
Difficulty D D = η1/2∗N2/η2

Program Level L L = 1/D

Effort E E = D∗V

Estimated Program Length H H = η1∗ log2(η1)+η2∗ log2(η2)
Time required to program (in seconds) T T = E/18

Number of delivered bugs B B = E2/3/3000

Purity Ratio PR PR = H/N

Table 5. Considered variants of the MI metric

Acronym Meaning Formula

MIO Original Maintainability Index 171.0 − 5.2 ∗ ln(V ) − 0.23 ∗CC − 16.2 ∗

ln(SLOC)
MISEI MI by Software Engineering Institute 171.0 − 5.2 ∗ log2(V ) − 0.23 ∗

CC − 16.2 ∗ log2(SLOC) + 50.0 ∗

sin(
√

2.4∗ (CLOC/SLOC))
MIV S MI implemented in Visual Studio max(0,(171 − 5.2 ∗ ln(V ) − 0.23 ∗ CC −

16.2∗ ln(SLOC))∗100/171)

We have formulated research questions for each of them. In the following, we list the research questions130

and briefly describe the metrics adopted to answer them. Table 3 reports a summary of all the metrics.131

• RQ1: What is the verbosity of Rust code with respect to code written in other programming132

languages?133

• RQ2: How is Rust code organized with respect to code written in other programming languages?134

• RQ3: What is the complexity of Rust code with respect to code written in other programming135

languages?136

• RQ4: What are the composite maintainability indexes for Rust code with respect to code written in137

other programming languages?138

We are interested in comparing different programming languages through the use of static metrics. A139

static metric (opposed to dynamic or runtime metrics) is obtained by parsing and extracting information140

from a source file without depending on any information deduced at runtime.141

To answer RQ1, we resorted to measuring the size of code artifacts written in Rust in terms of the142

number of code lines in a source file. We define four different metrics to differentiate between the nature143

of the inspected lines of code:144

• SLOC, i.e., Source lines of code;145

• CLOC, Comment Lines of Code;146

• PLOC, Physical Lines of Code, including both the previous ones;147

• LLOC, Logical Lines of Code, returning the count of the statements in a file.148

To answer RQ2, we analyzed the source code structure in terms of source files properties and functions.149

To that end, we adopted three metrics: NOM, Number of Methods; NARGS, Number of Arguments;150
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Table 6. Selected algorithms for the study

Name Description

binarytrees Allocate and deallocate binary trees

fannkuchredux Indexed-access to tiny integer-sequence

fasta Generate and write random DNA sequences

knucleotide Hashtable update and k-nucleotide strings

mandelbrot Generate Mandelbrot set portable bitmap file

nbody Double-precision N-body simulation

regexredux Match DNA 8-mers and substitute magic patterns

revcomp Read DNA sequences - write their reverse-complement

spectralnorm Eigenvalue using the power method

NEXITS, Number of exits.NARGS and NEXITS are two software metrics defined by Mozilla and have no151

equivalent in the literature about maintainability metrics.152

To answer RQ3, we adopted three metrics: CC, McCabe’s Cyclomatic Complexity; COGNITIVE,153

Cognitive Complexity; and the Halstead suite. The Halstead suite is one of the most popular static code154

metrics available in the literature and was originally Maurice Halstead to decide a quantitative measure155

of complexity specifically from a set of operands and operators computed for each software module156

[Hariprasad et al. (2017)]. Table 4 reports the details about the computation of all operands and operators.157

The metrics in this category are more high-level than the previous ones and are based on the computation158

of previously defined metrics as operands.159

To answer RQ4, we resorted to measuring the Maintainability Index, a composite metric originally160

defined by Oman et al. to provide a single index of maintainability for software [Oman and Hagemeister161

(1992)]. Three different versions of the Maintainability Index are considered: the original version by162

Oman et al., the version defined by the Software Engineering Institute (SEI), and the one implemented in163

the Visual Studio IDE. The Maintainability Index is the highest-level metric considered in this study. It164

includes an intermediate computation of one of the Halstead suite metrics.165

3.2 Software Objects166

For our study, we needed a set of simple algorithms to analyze the Rust source code properties and167

compare them with other programming languages.168

To that end, we collected nine simple algorithms written each in 5 different languages: C, C++,169

JavaSript, Python, Rust, and TypeScript. All implementations of the algorithms have been taken from170

the Energy-Languages repository2. The rationale behind the repository selection is its continuous and171

active maintenance and the fact that these algorithms are adopted by various other projects for tests and172

benchmarking purposes, especially for evaluations of the speed of programming languages.173

We were restricted to a limited number of 5 programming languages for the comparison since the174

tooling we adopted currently parses only a few languages (additional details are provided in the next175

section).176

Table 6 lists the algorithms used (sorted out alphabetically) and provides a brief description for each177

of them.178

3.3 Instruments and Procedure179

This section provides details about the framework we developed to compare the selected metrics and the180

existing tools we employed for code parsing and metric computation.181

A graphic overview of the framework is provided in Figure 1. The framework only represents the182

logical flow of the data in our software project since the actual flow of operations is reversed, being the183

compare.py script the entry point of the whole computation as described later in this section.184

For each piece of source code passed as input, we use the rust-code-analysis tool to compute the185

static metrics and save them in the .json format. These .json files, containing the results of the metrics186

computation, are passed to a Python script, called analyzer.py, to be formatted in a common notation.187

2https://github.com/greensoftwarelab/Energy-Languages
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Figure 1. Overview of the evaluation framework

This notation is more focused on academic aspects compared to the ones used by the rust-code-analysis.188

Then a final script, called compare.py, has been developed to perform pair-by-pair comparisons between189

the .json files provided as output by analyzer.py. These comparison files allow us to immediately assess190

the differences in the metrics computed by the different programming languages on the same software191

artifacts. We made available the evaluation framework as a repository on GitHub3.192

3.3.1 The Rust Code Analysis tool193

All considered metrics have been computed by adopting and extending a Rust language tool called194

rust-code-analysis. We have used the 0.0.18 version of this tool.195

This software can receive either single files or entire directories, detect whether they contain any code196

written in one of its supported languages, and output the resultant static metrics in various formats: textual,197

JSON, YAML, toml, cbor.198

From our point of view, instead, we have decided to adopt and personally extend a project written in199

Rust because of the advantages guaranteed by this language, such as memory and thread safety, memory200

efficiency, good performance, and easy integration with other programming languages.201

Listing 1. Sample output of the rust-code-analysis tool

{202

"name": "/tmp/foo.rs",203

"start_line": 1,204

"end_line": 16,205

"kind": "unit",206

"spaces": [207

{208

"name": "Foo",209

"start_line": 5,210

"end_line": 16,211

"kind": "impl",212

"spaces": [213

{214

"name": "bar",215

"start_line": 6,216

"end_line": 15,217

"kind": "function",218

"spaces": [219

3https://github.com/SoftengPoliTo/SoftwareMetrics
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{220

"name": "<anonymous>",221

"start_line": 12,222

"end_line": 12,223

"kind": "function",224

"spaces": [],225

"metrics": {226

"nargs": 4.0,227

"nexits": 0.0,228

"cyclomatic": 1.0,229

"halstead": {...},230

"loc": {...},231

"nom": {...},232

"mi": {...},233

}234

}235

],236

"metrics": {237

"nargs": 1.0,238

"nexits": 1.0,239

"cyclomatic": 1.5,240

"halstead": {...},241

"loc": {...},242

"nom": {...},243

"mi": {...},244

}245

}246

],247

"metrics": {248

"nargs": 0.0,249

"nexits": 1.0,250

"cyclomatic": 1.3333333333333333,251

"halstead": {...},252

"loc": {...},253

"nom": {...},254

"mi": {...},255

}256

}257

],258

"metrics": {259

"nargs": 0.0,260

"nexits": 1.0,261

"cyclomatic": 1.25,262

"halstead": {...},263

"loc": {...},264

"nom": {...},265

"mi": {...},266

}267

}268

Concerning the original implementation of the rust-code-analysis tool, we have forked the project269

and performed modifications on it by adding metrics computations (e.g., the COGNITIVE metric) and270

changes to the possible output format provided by the tool. We made available on GitHub our fork of the271

rust-code-analysis tool4.272

Listing 1 reports an excerpt of the .json file produced as output by rust-code-analysis.273

3.3.2 Analysis274

We developed a Python script named analyzer.py to analyze the metrics computed from rust-code-analysis.275

This script can launch different software libraries to compute metrics and adapt their results to a common276

format.277

In this experiment, we used the analyzer.py script only with the Rust-code-analysis tool, but in a future278

extension of this study – or other empirical assessments – the script can be used to launch different tools279

simultaneously on the same source code.280

The analyzer.py script performs the following operations:281

4https://github.com/SoftengPoliTo/rust-code-analysis
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• The arguments are parsed to verify their correctness. For instance, analyzer.py receives as arguments282

the list of tools to be executed, the path of the source code to analyze, and the path to the directory283

where to save the results;284

• The selected metric computation tool(s) is (are) launched, to start the computation of the software285

metrics on the source files passed as arguments to the analyzer script;286

• The output of the execution of the tool(s) is converted in Json and formatted in order to have a287

common standard to compare the measured software metrics;288

• The new formatted .json files are saved in the directory previously passed as an argument to289

analyzer.py.290

We have modified the output produced by rust-code-analysis through analyzer.py for the following291

reasons:292

• The names of the metrics computed by the tool are not coherent with the ones selected from the293

scientific literature about software maintainability;294

• The types of data representing the metrics are floating-point values instead of integers since295

rust-code-analysis aims at being as versatile as possible;296

• The missing aggregation of each source file metrics contained in a directory within a single JSON-297

object, which is composed of global metrics and the respective metrics for each file. This additional298

aggregate data allows obtaining a more general prospect on the quality of a project written in a299

determined programming language.300

3.3.3 Comparison301

We finally developed a second Python script, Compare.py, to perform the comparisons over the .json302

result files generated by the Analyzer.py script. The Compare.py script executes the comparisons between303

different language configurations, given an analyzed source code artifact and a metric.304

The script receives a Configuration as a parameter, a pair of versions of the same algorithm, written in305

two different programming languages.306

The script performs the following operations for each received Configuration:307

• Computes the metrics for the two files of a configuration by calling the analyzer.py script;308

• Loads the two JSON files from the Results directory and compares them, producing a JSON file of309

differences;310

• Deletes all local metrics (the ones computed by rust-code-analysis for each subspace) from the311

JSON file of differences;312

• Saves the JSON file of differences, now containing only global file metrics, in a defined destination313

directory.314

The JSON differences file is produced using a JavaScript program called JSON-diff5.315

4 RESULTS AND DISCUSSION316

In this section, we report the results gathered by applying the methodology described in the previous317

section, subdivided according to the research question they answer.318

4.1 RQ1 - Code verbosity319

The boxplots in Figure 2 and Table 7 report the measures for the metrics that we adopted to answer RQ1.320

It can be seen that the mean and median values of the SLOC metric (i.e., total lines of code in the source321

files) are largely higher for the C, C++, and Rust language: the highest mean number of source locs was322

for C (209 average LOCs per source file), followed by C++ (186) and Rust (144). The mean values are323

way smaller for Python, TypeScript, and JavaScript (respectively, 98, 107, and 95 lines of code).324

5https://www.npmjs.com/package/json-diff
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Figure 2. Distributions of the metrics about lines of code for all the considered programming languages

Table 7. Mean (Median) values of the metrics about lines of code for all the considered programming

languages

Language SLOC PLOC LLOC CLOC BLANK

C 209 (201) 129 (128) 48 (41) 43 (49) 37 (36)

C++ 186 (177) 137 (120) 51 (50) 20 (15) 28 (26)

Rust 144 (145) 105 (95) 142 (133) 21 (19) 18 (17)

Python 99 (76) 73 (61) 59 (53) 8 (6) 18 (16)

JavaScript 107 (92) 83 (76) 58 (60) 9 (7) 16 (9)

TypeScript 95 (64) 74 (46) 51 (42) 8 (7) 13 (10)
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Figure 3. Distributions of the metrics about organization of code for all the considered programming

languages

A similar trend is assumed by the PLOC metric (i.e., the total number of instructions and comment325

lines in the source files). In the examined set, we measured 74 average PLOCs per file for the Rust326

language. The highest and smallest values were again measured respectively for C and TypeScript, with327

129 and 74 average PLOCs per file. The values measured for the CLOC and BLANK metrics showed that328

a higher number of empty lines of code and comments were measured for C than for all other languages.329

In the CLOC metric, the Rust language exhibited the second-highest mean of all languages, suggesting a330

higher predisposition of Rust developers at providing documentation in the developed source code.331

An exciting result (especially in contrast with the other ones) is obtained by the LLOC metric (i.e., the332

number of logical lines of code, or statements, in a file). In this case, the mean number of statements for333

Rust code is largely higher than the average for all other considered languages (142 mean LLOCs per file,334

with the second-highest, mean being 59 for the Python language). This result can be interpreted according335

to the way the LLOC metric is computed by the tools and the type of information that is measured. The336

metric counts the total number of statements provided in a parsed source file, obtained by searching for the337

ones that are available for a given language (i.e., in C, For Statements, If Statements, Return Statements338

are different types of statements, while in Rust If Let and While Let are other ones). As an examination of339

the parsing module of the rust-code-analysis tool confirmed, the Rust language offers many more types340

of statements than the other considered language (24 different types against the 14 provided by C). This341

higher availability of instruments can translate to a finer decomposition of the lines of source code in342

statements, and hence to a higher LLOC metric for the same source files.343

Answer to RQ1: The examined source files written in rust exhibited an average verbosity (144 mean

SLOCs per file and 74 mean PLOCs per file). Such values are lower than C and C++ and higher than

the other considered object-oriented languages. Rust exhibited the highest average LLOC value of all

considered languages.

344

4.2 RQ2 - Code organization345

The boxplots in Figure 3 and Table 8 report the measures for the metrics that we adopted to answer RQ2.346

For each source file, we collected two different measures for the NARGS metric: the sum at file level347

of all the methods arguments and the average at file level of the number of arguments per method (i.e.,348

NARGS/NOM).349

The Rust language had the highest median value for the NOM metric, with ten median methods per350

source file. The average NOM value was only lower than the one measured for C++ sources. However,351

this value was strongly influenced by the presence of one outlier in the set of analyzed sources (namely,352
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Table 8. Mean (Median) values of the metrics about code organization for all the considered

programming languages

Language NOM NARGS (Sum) NARGS (Avg) NEXITS

C 4.4 (4) 11.6 (9) 2.4 (2) 3.1 (4)

C++ 10.6 (8) 13.4 (11) 1.4 (1) 6.0 (5)

Rust 10.3 (10) 25.1 (30) 2.0 (2) 4.7 (3)

Python 5.7 (5) 10.6 (9) 1.8 (2) 2.8 (1)

JavaScript 5.9 (3) 7.4 (4) 1.1 (1) 4.6 (4)

TypeScript 4.7 (4) 5.7 (4) 1.1 (1) 2.1 (2)

Figure 4. Distributions of complexity metrics for all the considered programming languages

the C++ implementation of fasta having a NOM equal to 20). While the NOM values were similar for353

C++ and Rust, all other languages exhibited much lower distributions, with the lowest median value for354

JavaScript (3). This high number of Rust methods can be seen as evidence of higher modularity than the355

other languages considered.356

Regarding the number of arguments, it can be noticed that the Rust language exhibited the highest357

average and median cumulative number of arguments (Sum of Arguments) of all languages. The already358

discussed high NOM value influences this result.359

The lowest average measures for NOM and NARGS Sum metrics were obtained for the C language.360

This result can be justified by the lower modularity of the C language. By examining the C source files,361

we verified that the code presented fewer functions and more frequent usage of nested loops, while the362

Rust sources were using more often data structures and ad-hoc methods. In general, the results gathered363

to measure this facet of code maintainability suggests a more structured Rust code organization regarding364

the C language.365

Regarding the NEXITS metric, the values were close for most of the languages, except Python366

and TypeScript, which respectively contain more methods without exit points and fewer functions.367

The obtained NEXITS value for Rust shows many exit points distributed among many functions, as368

demonstrated by the NOM value, making the code much more comfortable to follow.369

Answer to RQ2: The examined source files written in Rust exhibited the most structured organization

of the considered set of languages (with a mean 10.3 NOM per file, with a mean of 2 arguments for

each method).

370
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Table 9. Mean (Median) values of the complexity metrics for all the considered programming languages

Language CCSum CCAvg COGNIT IV ESum COGNIT IV EAvg

C 24.4 (27) 4.3 (3.5) 24.3 (21.0) 10.9 (5.5)

C++ 31.1 (29) 2.7 (2.4) 22.4 (23.0) 3.2 (1.5)

Rust 25.3 (22) 2.0 (2.0) 13.1 (10.0) 1.5 (0.7)

Python 23.0 (16) 3.6 (3.0) 25.4 (13.0) 4.4 (3.0)

JavaScript 17.6 (17) 3.4 (2.2) 19.9 (15.0) 8.5 (2.3)

TypeScript 15.2 (14) 3.4 (2.2) 17.0 (12.0) 7.2 (2.3)

Table 10. Mean (Median) values of Halstead metrics for all the considered programming languages

Language Bugs Difficulty Effort Length Programming Time Volume

C 1.52 (1.6) 66.7 (55.9) 322,313 (342,335) 726.0 (867.0) 17,906 (19,018) 4,819 (5,669)

C++ 1.46 (1.3) 57.8 (56.4) 311,415 (248,153) 728.1 (634.0) 17,300 (13,786) 4,994 (4,274)

Rust 1.1 (1.3) 48.6 (45.9) 199,152 (246,959) 602.2 (550.0) 11,064 (13,719) 4,032 (3610)

Python 0.7 (0.6) 33.7 (30.0) 111,103 (72,110) 393.8 (334.0) 6,172 (4,006) 2,680 (2204)

JavaScript 0.8 (0.9) 43.1 (44.1) 139,590 (140,951) 458.6 (408.0) 7,755 (7,830) 2,963 (2615)

TypeScript 0.8 (0.6) 45.2 (41.9) 132,644 (82,369) 435.7 (302.0) 7,369 (4,576) 2,734 (1730)

4.3 RQ3 - Code complexity371

The boxplots in Figure 4 and Table 9 report the measures for the metrics that we adopted to answer RQ3.372

For the Computational Complexity, we computed the sum of the CC of all spaces in a source file (CCSum),373

and the averaged value of CC over the number of spaces in a file (CCAvg). A space is defined in rust-code-374

analysis as any structure that incorporates a function. For what concerns COGNITIVE complexity, we375

computed the sum of the COGNITIVE complexity associated to each function and closure present in376

a source file, (COGNIT IV ESum), in addition to the average value of COGNITIVE, (COGNIT IV EAvg),377

always computed over the number of functions and closures. In the table, we report the mean and median378

values over the set of different source files selected for each language, of the sum and average metrics379

computed at the file level.380

As commonly accepted in the literature and practice, a low cyclomatic complexity generally indicates381

a method that is easy to understand, test, and maintain. The reported measures showed that the Rust382

language had a lower median CCSum (22) than C and C++ and the second-highest average value (25.3).383

We measured the lowest average and median CCSum for the TypeScript language. By considering the384

average of the Cyclomatic Complexity, CCAvg, at the function level, we instead obtain the highest average385

and mean values for the Rust language. It is worth mentioning that the average CC values for all386

the languages were rather low, hinting at an inherent simplicity of the software functionality under387

examination. So an analysis based on different codebases may result in more pronounced differences388

between the programming languages.389

Cognitive complexity is a software metric that assesses the complexity of code starting from human390

judgment and is a measure for source code comprehension by the developers and maintainers [Barón391

et al. (2020)]. Moreover, empirical results have also proved the correlation between cognitive complexity392

and defects [Alqadi and Maletic (2020)]. For both the average cognitive complexity and the sum of393

cognitive complexity at the file level, we measured that Rust provided the lowest mean and median394

values. Specifically, Rust guaranteed a Cognitive complexity of 0.7 per method, which is less than half the395

second-lowest value for C++ (1.5). The highest average Cognitive Complexity per class was measured396

for C code (5.5). This very low value of the cognitive per method for Rust is related to the highest397

number of methods for Rust code (described in the analysis of RQ2 results). By considering the sum of398

the COGNITIVE metric at the file level, Rust had a mean COGNIT IV ESum of 13.1 over the 9 analyzed399

source files. The highest mean value for this metric was measured for Python (25.4), and the highest400

median for C++ (23). Such lower values for the Rust language can suggest a more accessible, less costly,401

and less prone to bug injection maintenance for source code written in Rust.402

The boxplots in Figure 4 and Table 9 report the distributions, mean, and median of the Halstead403

metrics computed for the six different programming languages.404

The Halstead Difficulty (D) is an estimation of the difficulty of writing a program that is statically405
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Figure 5. Distributions of Halstead metrics for all the considered programming languages
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Table 11. Mean (Median) values of Maintainability Indexes for all the considered programming

languages

Language Original SEI Visual Studio

C 35.9 (36.7) 10.5 (5.0) 21.0 (21.5)

C++ 36.5 (36.3) 3.6 (9.9) 21.3 (21.2)

Rust 43.0 (43.3) 15.8 (22.6) 25.1 (25.3)

Python 52.5 (55.5) 23.3 (25.7) 30.7 (32.5)

JavaScript 54.2 (51.7) 27.7 (25.3) 31.7 (30.3)

TypeScript 55.9 (61.6) 29.4 (39.2) 32.7 (36.0)

analyzed. The program difficulty is the inverse of the program level metric. Hence, as the volume of the406

implementation of an algorithm increases, the difficulty increases as well. The usage of redundancy hence407

influences the Difficulty. It is correlated to the number of operators and operands used in the algorithm408

implementation. Our results suggest that the Rust programming language has an average difficulty409

(median of 45.9) on the set of considered languages. The most difficult code to interpret, according to410

Halstead metrics, was C (median of 55.9), while the easiest to interpret was Python (median of 30.0). A411

similar hierarchy between the different languages is obtained for the Halstead Effort (E), which estimates412

the mental activity needed to translate the existing algorithm into code written in a specific language. The413

Effort is linearly proportional to both Difficulty and Volume. The unit of measure of the metric is the414

number of elementary mental discriminations [Halstead et al. (1977)].415

The Halstead Length (L) metric is given by the total number of operator occurrences and the total416

number of operand occurrences. The Halstead Volume (V) metric is the information content of the417

program, linearly dependent on its vocabulary. For Rust code, we measured the third-highest mean and418

median Halstead Length (602.2 mean, 550.0 median) and Halstead Volume (4,032 mean, 3,610 median),419

again below those measured for C and C++. The results measured for all considered source files were420

in line with existing programming guidelines (Halstead Volume lower than 8000). The reported results421

about Length and Volume were, to some extent, expectable since these metrics are largely correlated to422

the number of lines of code present in a source file [Tashtoush et al. (2014)].423

The Halstead Time metric (T) is computed as the Halstead Effort divided by 18. It estimates the time424

in seconds that it should take a programmer to implement the code. We measured a mean and median425

T of 11,064 and 13,719 seconds, respectively, for the Rust programming language. These values are426

significantly distant from those measured for Python and TypeScript (the lowest) and from those measured427

for C and C++ (the highest).428

Finally, the Halstead Bugs Metric estimates the number of bugs that are likely to be found in the429

software program. It is given by a division of the Volume metric by 3000. We estimated a mean value430

of 1.1 (median 1.3) bugs per file with the Rust programming language on the considered set of source431

artifacts.432

Answer to RQ3: The Rust software artifacts that we examinated exhibited an average Cyclomatic

Complexity (mean 2.0 per function) and the lowest Cognitive Complexity (mean 1.5 per function). Rust

was the third-highest performing language, after C and C++, for the Halstead metric values.

433

4.4 RQ4 - Code maintainability434

The boxplots in Figure 4 and Table 9 report the distributions, mean, and median of the Maintainability435

Indexes computed for the six different programming languages.436

The Maintainability Index is a composite metric aiming to give an estimate of software maintainability437

over time. The Metric has correlations with the Halstead Volume (V), the Cyclomatic Complexity (CC),438

and the number of lines of code of the source under examination.439

By using all the formulas for the Maintainability Index, we computed for the source files written440

in Rust an average MI that placed the fourth among all considered programming languages. Minor441

differences in placing other languages occurred, e.g., the median MI for C is higher than for C++ with the442

original formula for the Maintainability Index and lower with the SEI formula. With all the formulas to443

compute MI, the highest maintainability was achieved by the TypeScript language, followed by Python444
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Figure 6. Distributions of Maintainability Indexes for all the considered programming languages

and JavaScript. These results were expectable in light of the previous measures, given the said strong445

dependency of the MI on the raw size of source code.446

It is interesting to underline that, in accordance with the original guidelines for the MI computation, all447

the values measured for the software artifacts under study would suggest hard to maintain code, being the448

threshold for easily maintainable code set to 80. On the other hand, according to the documentation of the449

Visual Studio MI metric, all source artifacts under test can be considered as easy to maintain (MIV S20).450

Answer to RQ4: Rust exhibited an average Maintainability Index, regardless of the specific formula

used (median values of 43.3 for MIO, 22.6 for MISEI , 25.3 for MIV S). Highest Maintainability index

were obtained for Python, JavaScript and TypeScript.

451

5 THREATS TO VALIDITY452

Threats to Internal Validity. The study results may be influenced by the specific selection of the tool with453

which the software metrics were computed, namely the rust-code-analysis tool. The values measured for454

the individual metrics (and, by consequence, the reasoning based upon them) can be heavily influenced455

by the exact formula used for the metric computation. In Halstead metrics, the formulas depend on456

coefficients defined explicitly in the literature for every software language. Since no previous result457

in the literature has provided Halstead coefficients specific to Rust, we used the C coefficients for the458

computation of Rust Halstead metrics. This choice may significantly influence the values obtained for459

the collected metrics. Future extensions of this work may include studies to infer the optimal Halstead460

parameters for Rust source code.461

Threats to External Validity. The results that we present in this research have been measured on462

a limited number of source artifacts (namely, nine different algorithms per programming language).463

Therefore, we acknowledge that the results cannot be generalized to all software written with one of the464

analyzed programming languages. Another bias can be introduced in the results by the characteristics of465

the considered code artifacts. All considered source files were small programs collected from a single466

software repository. Future extensions of the current work should include the computation of the selected467

metrics on more extensive and more diverse sets of software artifacts to increase the presented results468

generalizability.469

Threats to Conclusion Validity. The conclusions detailed in this work are only based on the analysis470

of quantitative metrics and do not consider other possible characteristics of the analyzed source artifacts471
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(e.g., the developers’ coding style who produced the code). Like the generalizability of the results, this472

bias can be reduced in future extensions of the study using a broader and more heterogeneous set of473

source artifacts [Sjøberg et al. (2012)].474

In this work, we make assumptions on maintainability, complexity and understandability of source475

code based on quantitative static metrics. It is not ensured that our assumptions are reflected by mainte-476

nance and code understanding effort in real-world development scenarios. It is worth mentioning that there477

is no unanimous opinion about the ability of more complex metrics (like MI) to capture the maintainability478

of software programs more than simpler metrics like lines of code and Cyclomatic Complexity.479

Researcher bias is a final theoretical threat to the validity of this study since it involved a comparison480

in terms of different metrics of different programming languages. However, the authors have no reason to481

favor any particular approach, neither inclined to demonstrate any specific result.482

6 CONCLUSION AND FUTURE WORK483

In this paper, we have evaluated the complexity and maintainability of Rust code by using static metrics484

and presented a comparison of the gathered results.485

All the evidence collected in this paper suggests that the Rust language can produce more maintainable486

code than C and C++, the languages to which it is more similar in terms of code structure and syntax. On487

the other hand, the Rust language provided lower maintainability than measured for more sophisticated488

and high-level object-oriented languages. Worth underlying that the source artifacts written in the Rust489

language exhibit the lowest cognitive complexity, meaning that the language can guarantee the highest490

understandability of source code compared to all others. Understandability is a fundamental feature of491

code during its evolution since it may significantly impact the required effort for maintaining and fixing it.492

As a prosecution of this work, we plan to perform further developments on the rust-code-analysis tool493

such that it can provide more metric computation features and parsers for more programming languages494

(e.g., Java) to which comparisons can be performed. We also plan to extend our analysis to real projects495

composed of a significantly higher amount of code lines that embed different programming paradigms,496

such as the functional and concurrent ones. To this extent, we plan to mine software projects from open497

source libraries, e.g., GitHub.498
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