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In cryptosystems and cryptographic modules, insufficient entropy of the noise sources that
serve as the input into random number generator (RNG) may cause serious damage, such
as compromising private keys. Therefore, it is necessary to estimate the entropy of the
noise source as precisely as possible. The National Institute of Standards and Technology
(NIST) published a standard document known as Special Publication (SP) 800-90B, which
describes the method for estimating the entropy of the noise source that is the input into
an RNG. The NIST offers two programs for running the entropy estimation process of SP
800-90B, which are written in Python and C++. The running time for estimating the
entropy is more than one hour for each noise source. An RNG tends to use several noise
sources in each operating system supported, and the noise sources are affected by the
environment. Therefore, the NIST program should be run several times to analyze the
security of RNG. The NIST estimation runtimes are a burden for developers as well as
evaluators working for the Cryptographic Module Validation Program. In this study, we
propose a GPU-based parallel implementation of the most time-consuming part of the
entropy estimation, namely the independent and identically distributed (IID) assumption
testing process. To achieve maximal GPU performance, we propose a scalable method that
adjusts the optimal size of the global memory allocations depending on GPU capability and
balances the workload between streaming multiprocessors. Our GPU-based
implementation excluded one statistical test, which is not suitable for GPU
implementation. We propose a hybrid CPU/GPU implementation that consists of our GPU-
based program and the excluded statistical test that runs using OpenMP. The experimental
results demonstrate that our method is about 3 to 25 times faster than that of the NIST
package.
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ABSTRACT10

In cryptosystems and cryptographic modules, insufficient entropy of the noise sources that serve as the
input into random number generator (RNG) may cause serious damage, such as compromising private
keys. Therefore, it is necessary to estimate the entropy of the noise source as precisely as possible. The
National Institute of Standards and Technology (NIST) published a standard document known as Special
Publication (SP) 800-90B, which describes the method for estimating the entropy of the noise source that
is the input into an RNG. The NIST offers two programs for running the entropy estimation process of
SP 800-90B, which are written in Python and C++. The running time for estimating the entropy is more
than one hour for each noise source. An RNG tends to use several noise sources in each operating system
supported, and the noise sources are affected by the environment. Therefore, the NIST program should be
run several times to analyze the security of RNG. The NIST estimation runtimes are a burden for developers
as well as evaluators working for the Cryptographic Module Validation Program. In this study, we propose a
GPU-based parallel implementation of the most time-consuming part of the entropy estimation, namely
the independent and identically distributed (IID) assumption testing process. To achieve maximal GPU
performance, we propose a scalable method that adjusts the optimal size of the global memory allocations
depending on GPU capability and balances the workload between streaming multiprocessors. Our GPU-based
implementation excluded one statistical test, which is not suitable for GPU implementation. We propose a
hybrid CPU/GPU implementation that consists of our GPU-based program and the excluded statistical test
that runs using OpenMP. The experimental results demonstrate that our method is about 3 to 25 times
faster than that of the NIST package.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

INTRODUCTION30

A random number generator (RNG) generates random numbers required to construct the31

cryptographic keys, nonce, salt, and sensitive security parameters used in cryptosystems and32

cryptographic modules. In general, an RNG produces random numbers (output) via a deter-33

ministic algorithm, depending on the noise sources (input). If its input is affected by the low34

entropy of the noise sources, the output may be compromised. It is easy to find examples that35

show the importance of entropy in operating systems. Heninger et al. (2012) describes the36

RSA/DSA private keys for some TLS/SSH hosts may be obtained due to insufficient entropy37

of Linux pseudo-random number generator (PRNG) during the key generation process. Ding38

et al. (2014) investigated the amount of the entropy of Linux PRNG running on Android in39

boot-time. Kaplan et al. (2014) demonstrated an IPv6 denial of service attack and a stack canary40

bypass with the weaknesses of insufficient entropy in boot-time of Android. Kim et al. (2013)41

presented a technique to recover PreMasterSecret (PMS) of the first SSL session in Android by42

258 complexity since PMS is generated from insufficient entropy of OpenSSL PRNG at boot-time.43

Ristenpart and Yilek (2010), Bernstein et al. (2013), Michaelis et al. (2013), Schneier et al.44

(2015), and Yoo et al. (2017) describe the attacks caused by weakness of entropy collectors or45

incorrect estimations of the entropy that are exaggerated or too conservative.46

Insufficient entropy of the noise source that is the input into the RNG may cause serious47
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damage in cryptosystems and cryptographic modules. Thus, it is necessary to estimate the48

entropy of the noise source as precisely as possible. The United States National Institute of49

Standards and Technology (NIST) Special Publication (SP) 800-90B (Barker and Kelsey, 2012;50

Sönmez Turan et al., 2016, 2018) is a standard document for estimating the entropy of the noise51

source. The general flow of the entropy estimation process in SP 800-90B (Sönmez Turan et al.,52

2018) is to determine the track, estimate the entropy according to the track, and then apply the53

restart test, as summarized in Figure 1. In this paper, determining the track is referred to as54

an independent and identically distributed (IID) test. There are two different tracks: an IID55

track and a non-IID track. If it is determined as the IID track, it is assumed that the samples56

of the noise source are IID; otherwise, the samples are non-IID. The estimator depending on57

IID or non-IID track estimates the entropy of the noise source. The restart test evaluates the58

estimated entropy using different outputs from many restarts of the noise source to check the59

overestimate. This document is currently used in the Cryptographic Module Validation Program60

(CMVP) and has been cited as a recommendation for entropy estimation in an ISO standard61

document ISO/IEC-20543 (2019) for test and analysis methods of RNGs. The principles of62

entropy estimators in SP 800-90B have been investigated and analyzed theoretically (Kang63

et al., 2017; Zhu et al., 2017, 2019). However, it is difficult to find research on the efficient64

implementation of the entropy estimation process of SP 800-90B.65

Figure 1. Flow of the entropy estimation process of SP 800-90B.

NIST provides two programs (NIST, 2015) on GitHub for the entropy estimation process of66

SP 800-90B. The first program is for the entropy estimation process of the second draft of SP67

800-90B (Sönmez Turan et al., 2016), written in Python. The second program is for the entropy68

estimation process of the final version of SP 800-90B (Sönmez Turan et al., 2018), written in69

C++. Table 1 displays the execution times of two single-threaded NIST programs on the central70

processing unit (CPU). The noise source used as input is GetTickCount, with a sample size of71

8 bits. GetTickCount can be collected through the GetTickCount() function in the Windows72

environment. Since GetTickCount is determined as the non-IID by the IID test, the process of73

the IID-track estimation entropy does not run. The entropy estimation process of the IID track74

takes approximately one second for both NIST programs if it is forcibly operated. In Table 1,75

the IID test consumes the majority of the total execution time in both programs.76

Developers of cryptosystems or cryptographic modules should estimate the entropy of the77
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NIST program
written in Python

NIST program
written in C++

IID test 17 h 1 h 10 min

[IID track] Estimation entropy − −

[Non-IID track] Estimation entropy 15 min 20 s

Restart tests 2 s 2 min

Total execution time 17 h 16 min 1 h 13 min

Table 1. Execution time of each single-threaded NIST program for the entropy estimation
process (noise source: GetTickCount; noise sample size: 8 bits).

noise sources to analyze the security of the RNG. Since the entropy estimation process of SP78

800-90B is representative, and modules for the CMVP shall be tested for compliance with SP79

800-90B (NIST and CSE, 2020), most developers use the method of SP 800-90B. Furthermore,80

since CMVP Implementation Guidance (IG) gives the link of the NIST programs (NIST and CSE,81

2020), most developers use the NIST programs to reduce the time required for implementation.82

As recommended by the CMVP, the RNG should use at least one noise source. Since the NIST83

program estimates the entropy for one noise source, the developer should run the NIST program k84

times when the RNG uses k noise sources. Since the noise sources are different for each operating85

system, the developer should run the program k × s times if the developer’s cryptosystem or86

cryptographic module supports s operating systems. The distribution of the noise source may87

be changed due to mechanical or environmental changes or to the timing variations in human88

behavior (NIST and CSE, 2020). The physical noise source is based on a dedicated physical89

process (ISO/IEC-20543, 2019); it may be affected by the environment of the device in which90

the RNG operates. Therefore, to claim that the noise source has an identical distribution in91

any environment, the developer should perform the IID test and entropy estimation in several92

environments or devices. If the developer performs analysis on d devices, the developer should93

run the program k × s × d times. If k = 10, s = 2, and d = 5, the developer should run the94

NIST program 100 times. According to Table 1, the NIST program written in C++ requires95

approximately 1 h to estimate the entropy of one noise source. If the developer cannot run96

multiple NIST programs simultaneously, it takes about 100 hours or approximately four days.97

Moreover, to find k noise sources that can be used as inputs of the RNG in the environment, the98

developer should perform entropy estimation for k or more collectible noise sources. Therefore,99

it may take more than 100 hours. The developer of the cryptographic module for the CMVP100

should perform similar work for re-examination or new examination every specific period since101

the module will be placed on the CMVP active list for five years. The evaluator running checks102

based on the documentation submitted by the developer for the CMVP may run the NIST103

program multiple times as well. As this runtime may be burdensome for developers, it can be104

tempting to use an RNG without security analysis. Thus, if the developer’s RNG is vulnerable,105

this vulnerability is likely to affect the overall security of the cryptosystem or cryptographic106

module.107

Graphics processing units (GPUs) are excellent candidates to accelerate the process of108

SP 800-90B, especially the IID test. GPUs were initially designed for accelerating computer109

graphics and image processing, but they have become more flexible, allowing them to be used110

for general computations in recent years. The use of GPUs for performing computations111

handled by CPUs is known as general-purpose computing on GPUs (GPGPUs). New parallel112

computing platforms and programming models, such as the computing unified device architecture113

(CUDA) released by NVIDIA, enable software developers to leverage GPGPUs for various114

applications. GPGPUs are used in cryptography as well as areas including signal processing and115

artificial intelligence. Numerous studies have been conducted on the parallel implementations116

of cryptographic algorithms such as AES, ECC, and RSA (Neves and Araujo, 2011; Li et al.,117
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2012; Pan et al., 2016; Ma et al., 2017; Li et al., 2019) and on the acceleration of cryptanalysis,118

including hash collision attacks using GPUs (Stevens et al., 2017).119

To process the entire IID test in parallel using GPU, approximately 9 GB or more of the120

global memory of the GPU are required. Since the compression test used in the IID test requires121

a different technique of implementation from the other statistical tests, a CUDA version of the122

compression test is needed to implement the IID test in parallel. However, bzip2 used in the123

compression test is not actively under development as a CUDA version since it is unsuitable124

for GPU implementation. Therefore, we propose a GPU-based parallel implementation of the125

IID test without the compression test using multiple optimization techniques. The adaptive126

size of the global memory used in the kernel function can be set so that maximal performance127

improvement can be obtained from the GPU specification in use. Moreover, we propose a128

hybrid CPU/GPU implementation of the IID test that includes the compression test. Our129

GPU-based implementation is approximately 12 times faster than the multi-threaded NIST130

program without the compression test when determining the noise source as the IID. It is131

approximately 25 times faster when determining the noise source as the non-IID. Our hybrid132

CPU/GPU implementation is 3 and 25 times, respectively, faster than the multi-threaded NIST133

program with the compression test when determining the noise source as the IID and the non-IID,134

respectively. Most noise sources are non-IID (Kelsey, 2012). The non-IID noise sources are disk135

timings, interrupt timings, jitter (Müller, 2020), GetTickCount, and so on. Since the proposed136

hybrid CPU/GPU implementation has better performance for the non-IID noise sources, we137

expect it to be highly practical.138

The remainder of this paper is organized as follows. Section 2 introduces the CUDA GPU139

programming model, the OpenMP programming model, and the IID test of SP 800-90B. Section140

3 outlines our GPU-based parallel implementation of the IID test and the hybrid CPU/GPU141

implementation of the IID test. In section 4, the experimental results on the optimization and142

performance of our methods are presented and analyzed. Finally, Section 5 summarizes and143

concludes the paper.144

PRELIMINARIES145

CUDA programming model146

NVIDIA CUDA (NVIDIA, 2020b) is the most widely used programming model for GPUs. CUDA147

uses the single instruction multiple thread (SIMT) model. A kernel is a function that performs the148

same instruction on the GPU in parallel. A thread is the smallest unit operating the instructions149

of the kernel function. Multiple threads are grouped into a CUDA block, and multiple blocks are150

grouped into a grid.151

A CUDA-capable GPU contains numerous CUDA cores, which are fundamental comput-152

ing units and execute the threads. CUDA cores are collected into groups called streaming153

multiprocessors (SMs).154

A kernel is launched from the host (CPU) to run on GPU and generate a collection of threads155

organized into blocks. Each CUDA block is assigned to one of the SMs on the GPU and executes156

independently on GPU. The mapping between blocks and SMs is done by a CUDA scheduler157

(Vaidya, 2018). An SM can concurrently execute the smaller group of threads, which is called a158

warp. All threads in a warp execute the same instruction, and there are 32 threads in a warp on159

most CUDA-capable GPUs. Latency can occur, such as data required for computation have not160

yet been fetched from global memory that the access is slow. To hide the latency, an SM can161

execute context-switching, which transfers control to another warp while waiting for the results.162

The memory of CUDA-capable GPU includes global memory, local memory, shared memory,163

register, constant memory, and texture memory. Table 2 shows the memory types listed from164

top to bottom by access speed from fast to slow, and their principal characteristics.165

A basic frame of the program using the CUDA programming model is as follows: allocate166

memory in the device (GPU) and transfer data from the host to the device (if necessary); launch167

the kernel; transfer data from the device to the host (if required).168
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Memory Location on/off chip Access Scope Lifetime

Register On R/W 1 thread Thread

Local Off R/W 1 thread Thread

Shared On R/W All threads in block Block

Global Off R/W All threads + host Host allocation

Constant Off R All threads + host Host allocation

Texture Off R All threads + host Host allocation

Table 2. Memory of CUDA-capable GPU (NVIDIA, 2020a).

OpenMP programming model169

Open Multi-Processing (OpenMP) (OpenMP, 2018) is an application programming interface170

(API) for parallel programming on the shared memory multiprocessors. It extends C, C++, and171

FORTRAN on many platforms, instruction-set architectures, and operating systems, including172

Linux and Windows with a set of compiler directives, library routines, and environment vari-173

ables. OpenMP facilitates the parallelization of the sequential program. The programmer adds174

parallelization directives to loops or statements in the program.175

OpenMP uses the fork-join parallelism (OpenMP, 2018). OpenMP program begins as a176

single thread of execution, called an initial thread. When the initial thread encounters a parallel177

construct, the thread spawns a team of itself and zero or more additional threads as needed and178

becomes the master of the new team. The statements and functions in the parallel region are179

executed in parallel by each thread in the team. All threads replicate the execution of the same180

code unless a work-sharing directive (such as for dividing the computation among threads) is181

specified within the parallel region. Variables default to shared among all threads in parallel182

region.183

Terms184

A sample is data obtained from one output of the (digitized) noise source and the sample size185

is the size of the (noise) sample in bits. For example, we collect a sample of the noise source186

GetTickCount in Windows by calling the GetTickCount() function once. In this case, the187

sample size is 32 bits. However, as certain estimators of SP 800-90B do not support samples188

larger than 8 bits, it is necessary to reduce the sample size. GetTickCount is the elapsed time (in189

milliseconds) since the system was started. Thus, it is thus easy to conclude that the low-order190

bits in the sample of GetTickCount contain most of the variability. Therefore, it would be191

reasonable to reduce the 32-bit sample to an 8-bit sample by using the lowest 8 bits. The entropy192

estimation of SP 800-90B is performed on input data consisting of one million samples, where193

each sample size is 8 bits. Furthermore, the maximum of the min-entropy per sample is 8.194

IID test for entropy estimation195

The IID test of SP 800-90B consists of permutation testing and five additional chi-square tests.196

Permutation testing identifies evidence against the null hypothesis that the noise source is IID.197

Since the permutation testing is the most time-consuming step in the entire IID test, we only198

focus on the permutation testing in this study.199

Algorithm 1 presents the algorithm of the permutation testing described in SP 800-90B. The200

permutation testing first performs statistical tests on one million samples of the noise source,201

namely the original data. We refer to the results of the statistical tests as the original test202

statistics. Thereafter, permutation testing carries out 10,000 iterations, as follows: In each203

iteration, the original data are shuffled, the statistical tests are performed on the shuffled data,204

and the results are compared with the original test statistics. After 10,000 iterations, the ranking205

of the original test statistics among the shuffled test statistics is computed. If the rank belongs to206

the top 0.05% or bottom 0.05%, the permutation testing determines that the original data (input)207

are not IID. That is, it concludes that the original data are not IID if Equation 1 is satisfied for208
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Algorithm 1 Permutation testing (Sönmez Turan et al., 2018).

Input: S = (s1, ...,sL), where si is the noise sample and L = 1,000,000.
Output: Decision on the IID assumption.

1: for statistical test i do

2: Assign the counters Ci,0 and Ci,1 to zero.
3: Calculate the test statistic TEST IN

i on S.
4: end for

5: for j = 1 to 10,000 do

6: Permute S using the Fisher–Yates shuffle algorithm.
7: Calculate the test statistic TEST Shuffle

i on the shuffled data.
8: if (TEST Shuffle

i > TEST IN
i ) then

9: Increment Ci,0.
10: else if (TEST Shuffle

i = TEST IN
i ) then

11: Increment Ci,1.
12: end if

13: end for

14: if ((Ci,0 +Ci,1 ≤ 5)or(Ci,0 ≥ 9,995)) for any i then

15: Reject the IID assumption.
16: else

17: Assume that the noise source outputs are IID.
18: end if

Algorithm 2 Permutation testing of NIST program written in C++.

Input: S = (s1, ...,sL), where si is the noise sample and L = 1,000,000.
Output: Decision on the IID assumption.

1: for statistical test i do

2: Assign the counters Ci,0 and Ci,1 to zero.
3: Calculate the test statistic TEST IN

i on S.
4: end for

5: for j = 1 to 10,000 do

6: Permute S using the Fisher–Yates shuffle algorithm.
7: for statistical test i do

8: if statusi = true then

9: Calculate the test statistic TEST Shuffle
i on the shuffled data.

10: if (TEST Shuffle
i > TEST IN

i ) then

11: Increment Ci,0.
12: else if (TEST Shuffle

i = TEST IN
i ) then

13: Increment Ci,1.
14: else

15: Increment Ci,2.
16: end if

17: if ((Ci,0 +Ci,1 > 5)and(Ci,1 +Ci,2 > 5)) then

18: statei = false.
19: end if

20: end if

21: end for

22: end for

23: if ((Ci,0 +Ci,1 ≤ 5)or(Ci,0 ≥ 9,995)) for any i then

24: Reject the IID assumption.
25: else

26: Assume that the noise source outputs are IID.
27: end if
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Algorithm 3 Fisher–Yates shuffle (Sönmez Turan et al., 2018).

Input: S = (s1, ...,sL), where si is the noise sample and L = 1,000,000.
Output: Shuffled S = (s1, ...,sL).

1: for i from L downto 1 do

2: Generate a random integer j such that 1 ≤ j ≤ i.
3: Swap sj and si.
4: end for

any i that is the index of the statistical test. For any i, the counter Ci,0 is the number of j in209

step 5 of Algorithm 1 satisfying the shuffled test statistic TEST Shuffle
i > the original test statistic210

TEST IN
i . The counter Ci,1 is the number of j satisfying TEST Shuffle

i = TEST IN
i , whereas the211

counter Ci,2 is the number of j satisfying TEST Shuffle
i < TEST IN

i .212

(Ci,0 +Ci,1 ≤ 5) or (Ci,0 ≥ 9,995) (1)

Equivalently, the permutation testing determines that the original data are IID if Equation 2213

is satisfied for all i that is the index of the statistical test.214

(Ci,0 +Ci,1 > 5) and (Ci,1 +Ci,2 > 5) (2)

The NIST optimized the permutation testing of the NIST program written in C++ using215

Equation 2. Thus, even if each statistical test is not performed 10,000 times completely, the216

permutation testing can determine that the input data are IID. Algorithm 2 is the improved217

version of the permutation testing optimized by the NIST.218

We briefly introduce the shuffle algorithm and the tests used in the permutation testing.219

The shuffle algorithm is the Fisher–Yates shuffle algorithm presented in Algorithm 3. The220

permutation testing uses 11 statistical tests, the names of which are as follows:221

• Excursion test222

• Number of directional runs223

• Length of directional runs224

• Number of increases and decreases225

• Number of runs based on the median226

• Length of runs based on the median227

• Average collision test statistic228

• Maximum collision test statistic229

• Periodicity test230

• Covariance test231

• Compression test*232

The aim of the periodicity test is to measure the number of periodic structures in the input233

data. The aim of the covariance test is to measure the strength of the lagged correlation. Thus,234

the periodicity and covariance tests take a lag parameter as input and each test is repeated235

for five different values of the lag parameter: 1, 2, 8, 16, and 32 (Sönmez Turan et al., 2018).236

Therefore, a total of 19 statistical tests are used in the permutation testing.237

If the input data are binary (that is, the sample size is 1 bit), one of two conversions is238

applied to the input data for some of the statistical tests. The descriptions of each conversion239

and the names of the statistical tests using that conversion are as follows (Sönmez Turan et al.,240

2018):241

Conversion I242

Conversion I divides the input data into 8-bit non-overlapping blocks and counts the number243

of 1s in each block. If the size of the final block is less than 8 bits, zeroes are appended. The244

numbers and lengths of directional runs, numbers of increases and decreases, periodicity test,245

and covariance test apply Conversion I to the input data.246
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Conversion II247

Conversion II divides the input data into 8-bit non-overlapping blocks and calculates the integer248

value of each block. If the size of the final block is less than 8 bits, zeroes are appended. The249

average collision test statistic and maximum collision test statistic apply Conversion II to the250

input data.251

For example, let the binary input data be (0,1,1,0,0,1,1,0,1,0,1,1). For Conversion I, the252

first 8-bit block includes four 1s and the final block, which is not complete, includes three 1s.253

Thus, the output data of Conversion I are (4,3). For Conversion II, the integer value of first254

block is 102 and the final block becomes (1,0,1,1,0,0,0,0) with an integer value of 88. Thus, the255

output of Conversion II is (102,88).256

PROPOSED IMPLEMENTATIONS257

Target of GPU-based parallel processing258

Steps 5 to 22 of Algorithm 2, with 10,000 iterations, consume most of the processing time of the259

permutation testing. The shuffle algorithm and 19 statistical tests are performed on the data260

with one million samples of the noise source in each iteration. Hence, it is natural to consider261

the GPU-based parallel implementation of 10,000 iterations, which are processed sequentially in262

the permutation testing.263

The implementation of the compression test* differs from those of the other statistical tests264

used in the permutation testing. The compression test* uses bzip2 (Seward, 2019), which265

compresses the input data using the Burrows–Wheeler transform (BWT), the move-to-front266

(MTF) transform, and Huffman coding. There have been studies on the parallel implementation267

of bzip2 using the GPU. In Patel et al. (2012), all three main steps, namely the BWT, the MTF268

transform, and Huffman coding, were implemented in parallel using the GPU. However, the269

performance was 2.78 times slower than that of the CPU implementation. In Shastry et al. (2016),270

only the BWT was computed on the GPU and a performance improvement of 1.4 times that of271

the standard CPU-based algorithm was achieved. However, we couldn’t apply this approach,272

because our parallel test should be implemented on the GPU together with other statistical tests.273

Moreover, the compression test does not play a key role in Algorithm 2. That is, it is infrequent274

for a noise source to be determined as the non-IID only by the compression test results among275

the 19 statistical tests used in the permutation testing. Therefore, we design the GPU-based276

parallel implementation of the permutation testing consisting of the shuffle algorithm and 18277

statistical tests, without the compression algorithm. Moreover, we design the hybrid CPU/GPU278

implementation of the permutation testing consisting of our GPU-based parallel implementation279

and a maximum of 10,000 compression tests using OpenMP.280

Overview of GPU-based parallel permutation testing281

Approximately 9.3 GB (= 10,000 × one million bytes of data) of the global memory of the GPU282

is required for the CPU to invoke a CUDA kernel to process 10,000 iterations of the permutation283

testing in parallel on the GPU. Some GPUs do not have more than 9 GB of global memory.284

Therefore, we propose the GPU-based parallel implementation of the permutation testing, which285

processes N iterations in parallel on the GPU according to the user’s GPU specification and286

repeats this process R = ⌈10,000/N⌉ times.287

Figure 2 presents the workflow of the CPU and GPU. The host refers to a general CPU that288

executes the program sequentially, whereas the device refers to a parallel processor such as a289

GPU. In steps 1 to 3 of Figure 2, the host performs 18 statistical tests on one million bytes of290

the input data (without shuffling) and holds the results. In step 4, the host calls a function that291

allocates the device memory required to process N iterations in parallel on the device. The use292

and size of the variables are listed in Table 3. In step 5, the input data (No. 1 in Table 3), and293

the results of the statistical tests in steps 1 to 3 (No. 4 in Table 3) are copied from the host294

to the device. In step 6, the host launches a CUDA kernel CurandInit, which initializes the N295

seeds used in the curand() function. The curand() function that generates random numbers296

using seeds on the device is invoked by the CUDA kernel Shuffling. When the host receives297

the completion of the kernel CurandInit, the host proceeds to steps 7 to 13. 10,000 iterations298
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Figure 2. CPU/GPU workflow of GPU-based parallel implementation of permutation testing.
(A) Code running on the host/CPU. (B) Code running on the device/GPU.

No. Use of variable Size of variable (bytes)

1 Original data (input) 1,000,000

2 N shuffled data N ×1,000,000

3 N seeds used by curand() function N × sizeof(curandState) = N ×48

4 18 Original test statistics 18 × sizeof(double) = 144

5 Counter Ci,0,Ci,1,Ci,2 for 1 ≤ i ≤ 18 18× sizeof(int) ×3 = 216

6
N shuffled data after Conversion II
(Only used if the input is binary)

N ×125,000

Table 3. Use and size of variables allocated to GPU.

are divided into R rounds and each round processes N iterations in parallel on the device. To299

process N iterations, the host launches the CUDA kernel Shuffling (step 8) and then launches300

the CUDA kernel Statistical test (step 9) as soon as the host receives the completion of the301

kernel Shuffling. When the host receives the completion of the kernel Statistical test, in302

step 10, the counters Ci,0, Ci,1, and Ci,2 for i ∈ {1,2, . . . ,18}, which indicate the indices of the303

statistical tests, are copied from the device to the host. Following the operations in steps 17 to304

19 of Algorithm 2, which correspond to those in steps 12 and 13 of Figure 2, the host moves on305

to step 14 if Equation 2 is satisfied for all i. Finally, in step 14, the host determines whether or306

not the input data are IID.307

When the input data are binary, two conversions should be considered when designing the308
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CUDA kernels. Therefore, we describe the CUDA kernels designed to process N iterations in309

parallel on the GPU depending on whether the input data are binary. The descriptions of the310

CUDA kernels Shuffling and Statistical test for non-binary noise sample are as follows:311

CUDA kernel Shuffling312

The kernel Shuffling generates N shuffled data by permuting one million bytes of the original313

data N times in parallel. Thus, each of N CUDA threads permutes the original data using the314

Fisher–Yates shuffle algorithm and then stores the shuffled data in the global memory of the315

device. As the shuffle algorithm uses the curand() function, each thread uses its unique seed316

that is initialized by the kernel CurandInit with its index, respectively.317

CUDA kernel Statistical test318

The kernel Statistical test performs 18 statistical tests on each of N shuffled data, and319

compares the shuffled and original test statistics. The size of each shuffled data is one million320

bytes and N shuffled data are stored in the global memory of the device. In this section, we321

present two methods that can easily be designed to handle this process in parallel on the GPU322

and propose an optimized method.323

Parallelization method 1 One CUDA thread performs 18 statistical tests sequentially on324

one shuffled dataset. This method is illustrated in Figure 3. If this method is applied to325

the kernel Statistical test, B′ = (N/T ) CUDA blocks are used when the number of326

CUDA threads is T . However, because each thread runs 18 tests in sequence, room for327

improvement is apparent in this method.328

Figure 3. General parallel method 1 of kernel Statistical test.

Parallelization method 2 In this method, each block performs its designated statistical test329

out of 18 tests on one shuffled dataset shared by 18 blocks. Thus, for one shuffled set,330

18 statistical tests are run in parallel, and this method is a parallelization of the serial331

part in method 1 above. This method is illustrated in Figure 4, which indicates the kernel332

Statistical test with B′ = ((N/T )×18) CUDA blocks and T threads in a block.333

Proposed optimization This method optimizes parallelization method 2 through two steps.334

(Step 1) To hide the latency in accessing the slow global memory of the GPU, we analyzed335

the runtime of 18 statistical tests from an algorithmic perspective. We merged several336

statistical tests with similar access patterns to the global memory into a single test.337

Therefore, 9 merged statistical tests replace 18 statistical tests. (Step 2) When analyzed338

the execution time of nine merged tests, the execution time of one longest test was similar339

to the sum of the execution times of the remaining eight tests. We configured each thread340

of a block to runs the longest test and each thread of the other block to run eight merged341

tests so that the workload between SMs is balanced. This method is depicted in Figure 5,342
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where the kernel Statistical test uses B′ = ((N/T )×2) CUDA blocks, with T threads343

in each block.344

Figure 4. General parallel method 2 of kernel Statistical test.

Figure 5. Proposed optimization method of kernel Statistical test.
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With slight modifications to the kernels Shuffling and Statistical test, which are345

designed for non-binary samples, as described above, we can parallelize the permutation testing346

when the input data are binary. If the noise sample size is 1 bit, one of two conversions is applied347

to certain statistical tests. The data after Conversion I and data after Conversion II can be stored348

separately in the global memory. Since the data after Conversion I are the result of calculating349

the Hamming weight of the data following Conversion II, we designed to minimize the use of350

global memory as follows: In the kernel Shuffling, N CUDA threads first generate N shuffled351

data in parallel. Thereafter, each thread proceeds to Conversion II for its own shuffled data and352

stores the results (No. 6 in Table 3) in the global memory of the GPU. The kernel Statistical353

test runs nine merged tests. The merged tests that required Conversion I calculate the Hamming354

weight of the data after Conversion II. As in the optimized method for non-binary data, the355

thread in the block executes at least one test so that the execution time of each block is similar.356

Therefore, B′ = (N/T )× 4 CUDA blocks are used when the number of CUDA threads is T .357

Overview of hybrid CPU/GPU implementation of permutation testing358

We implemented the GPU-based permutation testing, which comprised 18 statistical tests without359

the compression algorithm and is parallel on the GPU. This section presents a hybrid CPU/GPU360

implementation of permutation testing that includes the compression algorithm.361

Figure 6. Proposed hybrid CPU/GPU program of permutation testing.
(A) Process on the host/CPU. (B) Process on the device/GPU.

As shown in Figure 6, we designed the hybrid implementation to perform 10,000 shuffling362

and compression tests using OpenMP according to the result of our GPU-based permutation363

testing. The noise source is determined as the non-IID if at least one test does not satisfy364

Equation 2, as shown in Algorithm 2. Therefore, if our GPU-based program determined that the365

input noise source is non-IID, our hybrid program finally determines that the input is non-IID,366

without compression tests. If our GPU-based program determined that the input is IID, the367
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noise source might be determined to be IID or be determined to be non-IID only by the result368

of the compression test. Therefore, our hybrid program performs at most 10,000 shuffling369

and compression tests in parallel using OpenMP. If the results of the compression tests satisfy370

Equation 2, the noise source is finally determined as the IID; otherwise, it is determined as the371

non-IID.372

EXPERIMENTS AND PERFORMANCE EVALUATION373

In this section, we analyze the performance of the proposed methods and compare its performance374

with the NIST program written in C++. The performance was evaluated using two hardware375

configurations (Table 4).376

Name Device A Device B

CPU model Intel(R) Core (TM) i7-8086K Intel(R) Core (TM) i7-7700

CPU frequency 4.00 GHz 3.60 GHz

CPU cores 6 4

CPU threads 12 8

Accelerator type NVIDIA GPU NVIDIA GPU

Models TITAN Xp GeForce GTX 1060

Multiprocessors (SMs) 30 10

CUDA cores/SM 128 128

CUDA capability major 6.1 6.1

Global memory 12,288 MB 6,144 MB

GPU Max clock rate 1,582 MHz 1,709 MHz

Memory clock rate 5,750 MHz 4,004 MHz

Registers/block 65,536 65,536

Threads/SM 2,048 2,048

Threads/block 1,024 1,024

Warp size 32 32

CUDA driver version 10.1 10.1

Table 4. Configurations of experimental platforms.

There are two noise sources used in experiments. The first noise source is truerand pro-377

vided by the NIST. The second noise source, GetTickCount, could be collected through the378

GetTickCount() function in the Windows environment. The sample size of each noise source is379

1, 4, or 8 bits. As a result of confirming whether the input data are IID by the IID test, truerand380

was determined as the IID noise source; however, GetTickCount was determined as the non-IID381

noise source.382

The experimental result is the average of the results repeated 20 times. The difference between383

the results of the experiments repeated 20 times was within 5%. Since the GPU Boost technology,384

which controls the clock speed according to extra power availability, is used in NIVIDA GPU,385

the results are with the GPU Boost applied, unless otherwise noted.386

GPU optimization concepts387

We conducted experiments on the optimization concepts considered while GPU-based parallelizing388

the permutation testing. The experimental data used in this section consisted of one million389

samples collected from the noise source GetTickCount, where the sample size was 8 bits. In the390

experiments, we set T , the number of threads per block used in the CUDA kernel, to 256, a391
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multiple of the warp size (= 32). Since T is set to 256, we set N to 2,048, which is the multiple392

T , and used about 2 GB (= N ×1,000,000 bytes) of the global memory of the GPU.393

Coalesced memory access394

We used the memory coalescing technique (Figure 7) to transfer data from slow global memory395

to the registers efficiently. Table 5 displays the performance of our parallel implementation of396

the permutation testing before and after using this technique. Permutation testing used the397

kernel Statistical test with our optimization method. As a result, we improved performance398

by 1.5 times. All experiments after this section use the memory coalescing technology.399

Figure 7. Memory coalescing technique.

Before using memory
coalescing technique (s)

After using memory
coalescing technique (s)

Device A 27.2 19.0

Device B 54.1 33.9

Table 5. Performance of proposed GPU-based parallel implementation of permutation testing
depending on whether memory coalescing technique was used (the number of CUDA blocks =
16, the number of threads per block = 256).

Merging statistical tests400

Our optimization method consists of a step in which tests are merged (Step 1) and a step in401

which at least one test is allocated in the CUDA block so that the working time of each thread402

is similar (Step 2). Therefore, we confirmed the validity of our merged tests.403

We first designed new CUDA kernels for experimentation, where each of the N threads404

performed one statistical test on one shuffled data. We measured the execution time of each test405

kernel. Each test kernel used eight CUDA blocks since we set the number of threads per block T406

to 256. The experimental results showing the execution time of each statistical test on the GPU407

are shown in Table 5.408

From Table 6, it takes approximately four seconds if one thread sequentially performs 18409

statistical tests. However, if one thread performs nine merged tests, it can be expected that it410
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No.
Name of

statistical test
Execution
time (ms)

No.
Name of merged
statistical test

Execution
time (ms)

1 Excursion test 214 1′ Excursion test 214

2
Number of directional

runs
75 2′

Directional runs and
number of inc/dec

90

3 Length of directional runs 81

4
Numbers of increases

and decreases
38

5
Number of runs based on

median
103 3′ Runs based on median 143

6
Length of runs based on

median
128

7
Average collision

test statistic
1,257 4′ Collision test statistic 1,258

8
Maximum collision

test statistic
1,238

9 Periodicity test (lag = 1) 50 5′ Per/Cov test (lag = 1) 129

10 Covariance test (lag = 1) 71

11 Periodicity test (lag = 2) 94 6′ Per/Cov test (lag = 2) 137

12 Covariance test (lag = 2) 113

13 Periodicity test (lag = 8) 93 7′ Per/Cov test (lag = 8) 134

14 Covariance test (lag = 8) 111

15 Periodicity test (lag = 16) 93 8′ Per/Cov test (lag = 16) 134

16 Covariance test (lag = 16) 111

17 Periodicity test (lag = 32) 93 9′ Per/Cov test (lag = 32) 134

18 Covariance test (lag = 32) 111

Table 6. Left: execution time of each statistical test on GPU; right: execution time of each
merged statistical test on GPU (Device A, number of CUDA blocks = 8, number of threads per
block = 256).

Number of
CUDA blocks

Execution time (s)

Parallelization method 2 (18 tests) + Step 2 32 2.24

Our method (9 merged tests + Step 2) 16 1.51

Table 7. Performance of parallelization method 2 applied Step 2 and our method (Device A, the
number of threads per block = 256).

will take about 2.3 seconds. We improved the performance for all 18 statistical tests by about411

1.7 times by combining the tests.412

We measured the execution time of the parallelization method 2 applied Step 2, and our413

method. Referring to the results of Table 6, we designed each CUDA block of method 2 which414

Step 2 was applied to proceed with each of tests 1 ∼ 6, test 7, test 8, and tests 9 ∼ 18; each block415
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can complete its work in a similar time. The kernel Statistical test applying this method416

uses 32 (= (N/T ) × 4) blocks; however, applying our proposed method uses 16 (= (N/T ) × 2)417

blocks. Table 7 presents the execution time of a kernel Statistical test with each method418

applied. As a result, our method is about 1.5 times faster than the parallelization method 2419

applied Step 2.420

Parallelism methods421

We experimentally verified whether the proposed optimization method is better than other422

methods. We first confirmed the difference in the operation time of each CUDA thread in the423

kernel Statistical test, where each parallelization method is applied by drawing a figure.424

Figure 8 displays the operation times of the CUDA threads, assuming that the GPU had three425

SMs and considering the results of Table 6. It is the task of the GPU scheduler to allocate the426

CUDA blocks to the SMs; however, these were assigned arbitrarily for visualization in Figure427

8. As indicated in Table 6, the statistical tests had different execution times. Therefore, we428

expressed the different lengths of the threads in the CUDA blocks running each statistical test,429

as illustrated in Figure 8 (left). In the proposed method, several statistical tests were merged430

for optimization. The execution time of the merged statistical test (Table 6 (right)) was equal431

to or slightly longer than each execution time of the original statistical tests prior to merging432

(Table 6 (left)). Suppose that Test 1&2 is a merged function of Test 1 and Test 2. The lengths433

of the threads in the block running Test 1&2 were slightly longer than those of the threads in434

the block running Test 1 or Test 2, as indicated in Figure 8 (right). As illustrated in Figure 8,435

we expected that our optimization outperformed parallelization methods 1 and 2.436

Figure 8. Operation times of CUDA threads in kernel Statistical test when applying each
method on device.

We measured the execution time of a kernel Statistical test according to the parallel437

method. Table 8 shows the execution times of each kernel measured on both devices. If the438

occupancy of the kernel in our parallelization method is calculated, it reaches 100%. It is the439

occupancy per SM. Since our method uses a small number of blocks, there may be idle SMs on a440

high-performance GPU with many SMs. However, if the host calls the test kernel for each noise441

source simultaneously using a multi-stream technique, we can use almost full GPU capability.442
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Execution time (s)
Method

Number of
CUDA blocks

Device A Device B

Parallelization method 1 8 4.53 6.39

Parallelization method 2 144 2.77 6.33

Our optimization (Step 1) 72 1.62 2.94

Our optimization (Step 1&2) 16 1.51 2.76

Table 8. Execution time of kernel Statistical test according to parallel method (number of
threads per block = 256).

Since 18 statistical tests were running in parallel, the parallelization method 2 was improved443

by 1.6 times over method 1 in Device A; however, there was no improvement in the performance in444

Device B. In Device B, the number of SMs was 10, and the number of active blocks was calculated445

by eight. Thus, it is analyzed as the result derived since the number of blocks generated by the446

kernel (= 144) is more than the number of blocks active in the device simultaneously (= 80). Our447

method (Step 1) is about 1.7 and 2.1 times, respectively, faster than the parallelization method448

2 in Device A and Device B. It is analyzed as the results due to the merged statistical tests that449

improved the performance, as confirmed in the previous section. Since the work of each CUDA450

block was adequately balanced, it is analyzed that our method (Step 1&2) was slightly improved451

over our method (Step 1). Furthermore, our method is 3 times and about 2.3 times, respectively,452

faster than the parallelization method 1 in Device A and Device B.453

Next, we analyzed how each method affected the performance of GPU-based implementation454

of permutation testing. As shown in Algorithm 2, the permutation testing has 10,000 iterations.455

Since implemented N iterations in parallel, the kernel CurandInit is called once, and the kernel456

Shuffling and Statistical test are called ⌈10,000/N⌉ times. Since we set N to 2,048 and did457

not use Equation 2 in this experiment, the permutation testing consists of one CurandInit, five458

Shuffling and five Statistical test. Figure 9 shows the execution time of this permutation459

testing according to the parallelization method. The permutation testing applied our method460

shows an improvement of about 1.8 times over the permutation testing applied method 1. Thus,461

our optimization method outperformed parallelization methods 1 and 2.462

Figure 9. Execution time of the GPU-based parallel implementation of permutation testing
according to parallel method (number of threads per block = 256).
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Performance evaluation of GPU-based permutation testing according to the parameter463

Parameter N is the number of iterations of the permutation testing to be processed in parallel.464

We measured the performance of the GPU-based parallel implementation of the permutation465

testing according to the value of the parameter N .466

As shown in Figure 2, the kernel CurandInit is called once. The kernel Shuffling and467

Statistical test are called at most ⌈10,000/N⌉ times. The calling process repeated is as468

follows: After the kernel Shuffling and the kernel Statistical test are sequentially run once,469

if the results do not satisfy Equation 2, each kernel is called again. If each kernel has been called470

⌈10,000/N⌉ times or the results satisfy Equation 2, the call to each kernel is aborted.471

If the noise source is IID, there is little evidence against the null hypothesis that the noise472

source is IID in the permutation testing. The probability of satisfying Equation 2 increases,473

and the number of the calls of the kernel decreases. On the other hand, if the noise source is474

Non-IID, the probability of satisfying Equation 2 decreases, and the number of the calls increases,475

contrary to the IID noise source case. Therefore, we used truerand and GetTickCount, which476

were determined as the IID and the non-IID, respectively, by permutation testing. The sample477

size of each noise source is 8 bits.478

Permutation testing performs 10,000 iterations, so we set N to be a factor of 10,000 and T to479

250. Since the size of the global memory in Device A is 12 GB, we set N to 1,000, 2,000, 2,500,480

5,000, and 10,000. In Device B, the size of the global memory is 6 GB, and so we set N to 1,000,481

2,000, and 2,500. Table 9 presents the execution time of the GPU-based parallel implementation482

of the permutation testing and the usage of global memory (calculated by referring to Table 3),483

according to the value N .484

Parameter N 1,000 2,000 2,500 5,000 10,000

Global memory (GB) 0.93 1.86 2.33 4.66 9.31

Execution time (s)

truerand 2.69 3.78 4.53 9.20 19.76
Device A

GetTickCount 26.92 18.81 18.19 18.43 19.83

truerand 3.59 6.80 8.58 − −
Device B

GetTickCount 35.75 33.97 34.49 − −

Table 9. Execution time of the GPU-based parallel permutation testing according to the value
of the parameter N .

When truerand was used as input data, each of the kernel Shuffling and Statistical test485

was called once, and then the noise source was determined as the IID through the test results.486

Therefore, in an environment (e.g., Hardware RNG) where the noise sources are likely to be IID,487

it is analyzed that it is appropriate even if the user sets N to 1,000. In GetTickCount, each488

kernel was called ⌈10,000/N⌉ times and then was determined as the non-IID. The execution time489

multiplied by ⌈10,000/N⌉, when truerand was the input, gives a similar result to the execution490

time when GetTickCount was the input. As shown in Table 9, in the case of GetTickCount,491

as N increases, the execution time decreases and then increases again. Each thread used the492

global memory of 1 million bytes. Therefore, we analyzed it as a result of the latency derived493

by increasing access to global memory as the number of switching by the warp unit increases.494

It is appropriate to select N by considering all of the global memory usages, execution time495

determined as an IID noise source, and execution time determined as a non-IID noise source in a496

general environment. As a result of the experiment, it is appropriate to set N to 2,500 when497

using Device A and to select N to 2,000 when using Device B.498

18/23PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:3:0:NEW 20 Jan 2021)

Manuscript to be reviewedComputer Science



Performance evaluation of GPU-based permutation testing with NIST program according499

to noise source500

For each noise source, we measured the performances of our GPU-based program and the NIST501

program. Two noise sources, truerand and GetTickCount, were used in the experiment and502

the sample size of each noise source is one of 1, 4, and 8 bits. We set N to 2,500 and 2,000,503

respectively, when using Device A and Device B, reflecting the result of the previous experiment.504

We set T to 250.505

The NIST program, written in C++, is compatible with OpenMP and can make 10,000506

iterations work in a multi-threaded environment. In this experiment, the NIST program running507

on the CPU used 12 CPU threads in Device A and eight CPU threads in Device B (Table508

4). Thus, we compared our performance with permutation testing in the single-threaded and509

multi-threaded NIST programs. Since our GPU-based parallel implementation of the permutation510

testing was designed without the compression algorithm, we measured the performance of the511

NIST program without the compression test.512

Table 10 presents the execution times of the NIST program on the CPU and the proposed513

program on the GPUs, measured for each noise source. For truerand, the performance of the514

proposed program was approximately 17.6 times better than that of the single-threaded NIST515

program. It was about 12.5 times better than the performance of the multi-threaded NIST516

program. In the case of GetTickCount, the performance of our program was improved by517

approximately 35.1 times and about 26.1 times over the single-threaded and the multi-threaded518

NIST programs.519

Execution time (s)

Name of noise source truerand GetTickCount

Sample size (bit) 1 4 8 1 4 8

NIST program
(CPU single-thread)

43.42 77.52 24.94 434.42 485.58 638.89

Device A NIST program
(CPU multi-thread)

37.53 54.91 23.66 331.76 339.79 347.68

Proposed program
(GPU)

3.17 4.39 4.53 12.72 17.63 18.19

NIST program
(CPU multi-thread)

41.35 50.15 23.18 361.23 347.15 353.52

Device B Proposed program
(GPU)

4.60 5.91 6.80 23.01 29.58 33.97

Table 10. Performances of our GPU-based program and NIST program written in C++
according to noise source (without the compression test).

In Table 10, the minimum performance improvement of the proposed program for truerand520

was not higher than that of the program for GetTickCount. As shown in Algorithm 2, the521

number of iterations (up to 10,000) in permutation testing varies depending on whether Equation522

2 is satisfied. The NIST program on the CPU was executed as one statistical test unit. If the523

accumulated results of the statistical test satisfied Equation 2, that test was no longer performed524

in the iterations. On the other hand, our program on the GPU was executed as an N unit of 18525

statistical tests, and if the results of all tests satisfied Equation 2, it was not repeated. Namely,526

the kernel Shuffling and Statistical test were not called again. If the noise source was527

likely to be determined as the IID from the permutation testing, there is a high probability528

that all of the statistical tests satisfy Equation 2. The NIST program operating as one test529

unit repeatedly performed each test less than N times and then determined truerand as the IID;530

however, in the case of GetTickCount, both the NIST program and our program performed531

10,000 iterations and determined GetTickCount as the non-IID. Therefore, it is analyzed that532
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the difference in performance improvement of our program by noise source is reasonable.533

NVIDIA GPU Boost technology boosts the CUDA core frequency from 1,582 to 1,873 MHz534

in Device A. The execution time of our GPU-based program without GPU Boost is presented in535

Table 11. Without GPU Boost, the performance decreased by up to 0.96 times compared to the536

case with GPU Boost. It is analyzed that the difference in performance with or without GPU537

Boost is not significant. The performance of our GPU-based program without GPU Boost is538

approximately 5 to 34 times better than the single-threaded NIST program and about 5 to 25539

times better than the multi-threaded NIST program.540

Execution time (s)

Name of noise source With GPU Boost Without GPU Boost

truerand-1bit 3.17 3.21

truerand-4bit 4.39 4.57

truerand-8bit 4.53 4.66

GetTickCount-1bit 12.72 12.87

GetTickCount-4bit 17.63 18.28

GetTickCount-8bit 18.19 18.62

Table 11. Execution time of the GPU-based parallel implementation of permutation testing
with/without GPU Boost (Device A).

Performance evaluation of our hybrid CPU/GPU program541

We measured the performance of the proposed hybrid CPU/GPU program and the NIST program542

using truerand and GetTickCount, whose sample size is 8 bits. Both programs included the543

compression test. Figure 10 presents the performance of each program. A base-10 logarithmic544

scale is used for the Y-axis.545

Figure 10. Execution time of our hybrid program and NIST program.

Since the NIST program performs the compression tests, it takes longer than the runtime546

of the NIST program without the compression test written in Table 10. In particular, when547
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determining GetTickCount to be non-IID, the compression test runs almost 10,000 times, and548

so the NIST program, in this case, takes much longer than the runtime written in Table 10.549

Our hybrid CPU/GPU program performs the compression tests using OpenMP only when550

our GPU-based program determined the noise source (e.g., truerand) as the IID. As shown551

in Figure 10, it is reasonable that the execution time of our hybrid program for truerand is552

longer than that of our GPU-based program presented in Table 10. Since GetTickCount was553

determined as the non-IID by our GPU-based program, the compression test does not run in our554

hybrid program. Therefore, our hybrid program has the same execution time as our GPU-based555

program in Table 10.556

Compared to the single-threaded NIST program, the proposed hybrid CPU/GPU program557

had an improved performance of approximately 4.9 to 192.9 times. Compared with the multi-558

threaded NIST program, the performance improved about 3.8 to 29.7 times. The NIST program559

always performed up to 10,000 compression tests using OpenMP; however, our hybrid program560

performed the compression tests using OpenMP only if the noise source was determined as the561

IID by all 18 statistical tests in our GPU-based program. Therefore, our hybrid program is562

efficient when determining the noise source as the non-IID than when determining the noise563

source as the IID.564

When the NIST program applies our implementation method, it first performs the shuffling565

and 18 statistical tests (at most 10,000 times). If it determined that the noise source was non-IID566

by these results, it does not run the shuffling and the compression tests. When the input is567

non-IID, the NIST program (with the compression test) had the same runtime presented in Table568

10. Otherwise, the NIST program has the same runtime as the original program. Therefore,569

our hybrid CPU/GPU program sped the process about 3 times over the multi-threaded NIST570

program applied our method for IID noise sources (8-bit sample size). Our program had an571

improved performance of approximately 25 for the non-IID input.572

CONCLUSIONS573

The security of modern cryptography is heavily reliant on sensitive security parameters such574

as encryption keys. RNGs should provide cryptosystems with ideal random bits, which are575

independent, unbiased, and, most importantly, unpredictable. To use a secure RNG, it is576

necessary to estimate its input entropy as precisely as possible. The NIST offers two programs for577

entropy estimations, as outlined in SP 800-90B. However, much time is required to manipulate578

several noise sources for an RNG.579

We proposed GPU-based parallel implementation of the permutation testing, which required580

the longest execution time in the IID test of SP 800-90B. Our GPU-based implementation581

excluded the compression test that is unsuitable for CUDA version implementation. Our GPU-582

based method was designed to use massive parallelism of the GPU by balancing the execution583

time for statistical tests, as well as optimizing the use of the global memory for data shuffling.584

We experimentally compared our GPU optimization with the NIST program excluded the585

compression test. Our GPU-based program was approximately 3 to 34 times faster than the586

single-threaded NIST program. Moreover, our proposal improved the performance by about587

3 to 25 times over the multi-threaded NIST program. We proposed the hybrid CPU/GPU588

implementation of the permutation testing. It consists of our GPU-based program and the589

compression tests that run using OpenMP. Experimental results show that the performance590

of our hybrid program is approximately 3 to 25 times better than that of the multi-threaded591

NIST program (with compression test). Most noise sources are non-IID, and our program has592

better performance when determining the noise source as the non-IID. It is expected that the593

time required for analyzing the RNG security will be significantly reduced for developers and594

evaluators by using the proposed approach, thereby improving the validation efficiency in the595

development of cryptographic modules. It is expected that our optimization techniques might be596

adapted to the problems of performing several tests or processes on thousands or more of data,597

each of which is large.598
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