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In cryptosystems and cryptographic modules, insufficient entropy of the noise sources that
serve as the input into random number generator (RNG) may cause serious damage, such
as compromising private keys. Therefore, it is necessary to estimate the entropy of the
noise source as precisely as possible. The National Institute of Standards and Technology
(NIST) published a relevant standard document known as Special Publication (SP) 800-90B,
which describes the method for estimating the entropy of the noise source that is the input
into an RNG. The principles and statistical tests in SP 800-90B have been analyzed
theoretically; however, it is hard to find research on the efficient implementation thereof.
The NIST offers two programs for running the entropy estimation process of SP 800-90B,
written in Python and C++. The running time for estimating the entropy is more than one
hour for each noise source. As an RNG tends to use several noise sources, the times of the
NIST estimation are a burden for developers as well as evaluators working for the
Cryptographic Module Validation Program. In this study, we propose a GPU-based parallel
implementation of the most time-consuming part of the entropy estimation, namely the
process of the independent and identically distributed assumption testing. To achieve
maximal GPU performance, we propose a scalable method that adjusts the optimal size of
the global memory allocations depending on GPU capability and balances the workload
between streaming multiprocessors. The experimental results demonstrate that our
method is up to 33 times faster than that of the NIST package.
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ABSTRACT10

In cryptosystems and cryptographic modules, insufficient entropy of the noise sources that serve as the
input into random number generator (RNG) may cause serious damage, such as compromising private keys.
Therefore, it is necessary to estimate the entropy of the noise source as precisely as possible. The National
Institute of Standards and Technology (NIST) published a relevant standard document known as Special
Publication (SP) 800-90B, which describes the method for estimating the entropy of the noise source that is
the input into an RNG. The principles and statistical tests in SP 800-90B have been analyzed theoretically;
however, it is hard to find research on the efficient implementation thereof. The NIST offers two programs
for running the entropy estimation process of SP 800-90B, written in Python and C++. The running time
for estimating the entropy is more than one hour for each noise source. As an RNG tends to use several noise
sources, the times of the NIST estimation are a burden for developers as well as evaluators working for the
Cryptographic Module Validation Program. In this study, we propose a GPU-based parallel implementation
of the most time-consuming part of the entropy estimation, namely the process of the independent and
identically distributed assumption testing. To achieve maximal GPU performance, we propose a scalable
method that adjusts the optimal size of the global memory allocations depending on GPU capability and
balances the workload between streaming multiprocessors. The experimental results demonstrate that our
method is up to 33 times faster than that of the NIST package.
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INTRODUCTION27

A random number generator (RNG) generates the random numbers required to construct28

the cryptographic keys, nonce, salt, and sensitive security parameters used in cryptosystems29

and cryptographic modules. In general, an RNG produces random numbers (output) via a30

deterministic algorithm, depending on the noise sources (input). Hence, if its input is affected31

by the low entropy of the noise sources, the output may be compromised. It is easy to find32

examples that show the importance of entropy in operating systems. Heninger et al. (2012)33

describes they can obtain the RSA/DSA private keys for some TLS/SSH hosts due to insufficient34

entropy of Linux PRNG during the key generation process. Ding et al. (2014) investigated the35

amount of the entropy of Linux PRNG running on Android in boot-time. Kaplan et al. (2014)36

demonstrated an IPv6 Denial of Service attack and a stack canary bypass with the weaknesses of37

insufficient entropy in the boot-time of Android. Also, Kim et al. (2013) presents a technique to38

recover PreMasterSecret (PMS) of the first SSL session in Android by 258 complexity since PMS39

is generated from insufficient entropy of OpenSSL PRNG at boot time. In addition, Ristenpart40

and Yilek (2010); Bernstein et al. (2013); Michaelis et al. (2013); Schneier et al. (2015); Yoo et al.41

(2017) describe the attacks caused by weakness of entropy collectors or wrong estimations of the42

entropy that are exaggerated or too conservative.43

Insufficient entropy of the noise source that is the input into the RNG may cause serious44

damage in cryptosystems and cryptographic modules. Thus, it is necessary to estimate the45

entropy of the noise source as precisely as possible. The United States National Institute of46

Standards and Technology (NIST) Special Publication (SP) 800-90B (Barker and Kelsey, 2012;47
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Sönmez Turan et al., 2016, 2018) is a standard document for estimating the entropy of the48

noise source. This document is currently used in the Cryptographic Module Validation Program49

(CMVP) and has been cited as a recommendation for entropy estimation in an ISO standard50

document ISO/IEC-20543 (2019) for test and analysis methods of random bit generators. The51

principles of entropy estimators in SP 800-90B have been investigated and analyzed theoretically52

(Kang et al., 2017; Zhu et al., 2017, 2019). However, it is difficult to find research on the efficient53

implementation of the entropy estimation process of SP 800-90B. The general flow of the entropy54

estimation process in the final version of SP 800-90B (Sönmez Turan et al., 2018) is summarized55

in Figure 1.56

Figure 1. Flow of entropy estimation process of SP 800-90B.

The NIST provides two programs on GitHub (NIST, 2015) for the entropy estimation process57

of SP 800-90B. The first program is for the entropy estimation process of the second draft of SP58

800-90B (Sönmez Turan et al., 2016), written in Python. The second program is for the entropy59

estimation process of the final version (Sönmez Turan et al., 2018) of SP 800-90B, written in60

C++. Table 1 displays the execution times of two single-threaded NIST programs on the central61

processing unit (CPU). The noise source used as input is GetTickCount, with a sample size of62

8 bits. GetTickCount can be collected through the GetTickCount() function in the Windows63

environment. In Table 1, the process of testing the independent and identically distributed (IID)64

assumption, hereinafter referred to as the IID test, consumes the majority of the total execution65

time in both NIST programs.66

As recommended by the CMVP, the RNG applied in cryptosystems and cryptographic67

modules should use at least one noise source as the input for security. Therefore, the entropy68

of each noise source used as the RNG input should be estimated to analyze the security of the69

RNG. As the noise sources are affected by the environment from which they are collected, the70

entropy of each noise source should be estimated repeatedly to increase the confidence in the71

estimating results. For example, suppose that a cryptographic module developer analyzes the72

security of the RNG in his/her module using the NIST program written in C++. Assume that73

the module supports two operating systems, and 10 noise sources are used as input into the74

RNG in each operating system. Moreover, assume that he/she estimates the entropy of a noise75

source by repeating 5 times to increase the confidence in the results. According to Table 1, the76
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NIST program
written in Python

NIST program
written in C++

Testing IID assumption (IID test) 17 h 1 h 10 min

[IID track] Estimation entropy < 1 s 1 s

[Non-IID track] Estimation entropy 15 min 20 s

Restart tests 2 s 2 min

Total execution time 17 h 16 min 1 h 13 min

Table 1. Execution time of each single-threaded NIST program for entropy estimation process
(noise source: GetTickCount; noise sample size: 8 bits).

NIST program requires approximately 1 h to estimate the entropy of one noise source. Therefore,77

at least 20 h are required to analyze the security of the developer’s RNG. However, since the78

entropy of each noise source should be estimated several times (assumed five times), it may need79

more than 100h that is four days. As this runtime may be burdensome for developers, it can be80

tempting to use an RNG without security analysis. Thus, if the developer’s RNG is vulnerable,81

this vulnerability is likely to affect the overall security of the cryptographic module.82

Graphics processing units (GPUs) are excellent candidates to perform the acceleration of this83

IID test. GPUs were initially designed for accelerating computer graphics and image processing.84

In recent years, GPUs have also become more flexible, even allowing them to be used for general85

computations. The use of GPUs for performing computations handled by CPUs is known86

as general-purpose computing on GPUs (GPGPUs). New parallel computing platforms and87

programming models, such as the computing unified device architecture (CUDA) released by88

NVIDIA, enable software developers to leverage GPGPUs for various applications. GPGPUs89

are used in cryptography as well as areas including signal processing and artificial intelligence.90

Numerous studies have been conducted on the parallel implementations of cryptographic algo-91

rithms such as AES, ECC, and RSA (Neves and Araujo, 2011; Li et al., 2012; Pan et al., 2016;92

Ma et al., 2017; Li et al., 2019) and on the acceleration of cryptanalysis, including hash collision93

attacks using GPUs (Stevens et al., 2017).94

In this study, we propose a parallel implementation of the IID test by using multiple95

optimization techniques. To process the entire IID test in parallel, approximately 9 GB or more96

of the global memory of the GPU are required. We implement the IID test in parallel by setting97

the adaptive sizes of the global memory used in the kernel function so that maximal performance98

improvement can be obtained from the GPU specification in use. Our experiments support the99

finding that our parallel implementation can achieve optimized results with up to 33 times higher100

performance than that of the NIST.101

The remainder of this paper is organized as follows. Section 2 introduces the CUDA GPU102

programming model and the IID test of SP 800-90B. Section 3 outlines our GPU-based parallel103

implementation of the IID test. In section 4, the experimental results on the optimization and104

performance of our method are presented and analyzed. Finally, Section 5 summarizes and105

concludes the paper.106

PRELIMINARIES107

CUDA programming model108

NVIDIA CUDA (NVIDIA, 2020b) is the most widely used programming model for GPUs. CUDA109

uses the single instruction multiple thread (SIMT) model. A kernel is a function that performs the110

same instruction on the GPU in parallel. A thread is the smallest unit operating the instructions111

of the kernel function. Multiple threads are grouped into a CUDA block, and multiple blocks are112

grouped into a grid.113

A CUDA-capable GPU contains numerous CUDA cores, that are fundamental computing114

units and execute the threads. CUDA cores are collected into groups streaming multiprocessors115
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(SMs).116

A kernel is launched from the host (CPU) to run on GPU and generate a collection of threads117

organized into blocks. Each CUDA block is assigned to one of the SMs on the GPU and execute118

independently on GPU. The mapping between blocks and SMs is done by a CUDA scheduler119

(Vaidya, 2018). An SM can concurrently execute the smaller group of threads, which is called a120

warp. All threads in a warp execute the same instruction, and the number of threads in a warp is121

32 on most CUDA-capable GPUs. The latency can occur, such as data required for computation122

have not yet been fetched from global memory that the access is slow. To hide the latency, an123

SM can take place context-switching, which transfers control to another warp while waiting for124

the results.125

The memory of CUDA-capable GPU includes global memory, local memory, shared memory,126

register, constant memory, and texture memory. Table 2 shows the memory types listed from127

top to bottom by access speed from fast to slow, and the principal characteristics.128

Memory Location on/off chip Access Scope Lifetime

Register On R/W 1 thread Thread

Local Off R/W 1 thread Thread

Shared On R/W All threads in block Block

Global Off R/W All threads + host Host allocation

Constant Off R All threads + host Host allocation

Texture Off R All threads + host Host allocation

Table 2. Memory of CUDA-capable GPU (NVIDIA, 2020a).

A basic frame of the program using the CUDA programming model is as follows; allocate129

memory in the device (GPU) and transfer data from the host to the device (if necessary); launch130

the kernel; transfer data from the device to the host (if required).131

IID test for entropy estimation132

The IID test of SP 800-90B consists of permutation testing and five additional chi-square tests.133

The permutation testing is the most time-consuming step in the entire IID test. Therefore, we134

only focus on the permutation testing in this study.135

We define several terms before introducing the permutation testing. A sample is data obtained136

from one output of the (digitized) noise source and the sample size is the size of the (noise)137

sample in bits. For example, we collect a sample of the noise source GetTickCount in Windows138

by calling the GetTickCount() function once. In this case, the sample size is 32 bits. However,139

as certain estimators of SP 800-90B do not support samples larger than 8 bits, it is necessary to140

reduce the sample size. GetTickCount is the elapsed time (in milliseconds) since the system was141

started. Thus, it is thus easy to conclude that the low-order bits in the sample of GetTickCount142

contain most of the variability. Therefore, it would be reasonable to reduce the 32-bit sample to143

an 8-bit sample by using the lowest 8 bits. The tests of SP 800-90B are performed on input data144

consisting of one million samples, where each sample has a reduced size of 8 bits. Furthermore,145

the maximum of the min-entropy per sample is 8.146

Algorithm 1 presents the algorithm of the permutation testing described in SP 800-90B. The147

permutation testing is the step that involves identifying evidence against the null hypothesis148

that the noise source is IID. The permutation testing first performs statistical tests on one149

million samples of the noise source, namely the original data. We refer to the results of the150

statistical tests as the original test statistics. Thereafter, permutation testing is carried out151

10,000 iterations, as follows: In each iteration, the original data are shuffled, the statistical tests152

are performed on the shuffled data, and the results are compared with the original test statistics.153

After 10,000 iterations, the ranking of the original test statistics among the shuffled test statistics154

is computed. If the rank belongs to the top 0.05% or bottom 0.05%, the permutation testing155
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Algorithm 1 Permutation testing (Sönmez Turan et al., 2018).

Input: S = (s1, ...,sL), where si is the noise sample and L = 1,000,000.
Output: Decision on the IID assumption.

1: for statistical test i do

2: Assign the counters Ci,0 and Ci,1 to zero.
3: Calculate the test statistic TEST IN

i on S.
4: end for

5: for j = 1 to 10,000 do

6: Permute S using the Fisher–Yates shuffle algorithm.
7: Calculate the test statistic TEST Shuffle

i on the shuffled data.
8: if (TEST Shuffle

i > TEST IN
i ) then

9: Increment Ci,0.
10: else if (TEST Shuffle

i = TEST IN
i ) then

11: Increment Ci,1.
12: end if

13: end for

14: if ((Ci,0 +Ci,1 ≤ 5)or(Ci,0 ≥ 9,995)) for any i then

15: Reject the IID assumption.
16: else

17: Assume that the noise source outputs are IID.
18: end if

determines that the original data (input) are not IID. That is, it is concluded that the original156

data are not IID if Equation 1 is satisfied for any i that is the index of the statistical test. For157

any i, the counter Ci,0 is the number of j in step 5 of Algorithm 1 satisfying the shuffled test158

statistic TEST Shuffle
i > the original test statistic TEST IN

i . The counter Ci,1 is the number159

of j satisfying TEST Shuffle
i = TEST IN

i , whereas the counter Ci,2 is the number of j satisfying160

TEST Shuffle
i < TEST IN

i .161

(Ci,0 +Ci,1 ≤ 5) or (Ci,0 ≥ 9,995) (1)

Equivalently, the permutation testing determines that the original data are IID if Equation 2162

is satisfied for all i that is the index of the statistical test.163

(Ci,0 +Ci,1 > 5) and (Ci,1 +Ci,2 > 5) (2)

The NIST optimized the permutation testing of the NIST program written in C++ using164

Equation 2. Thus, even if each statistical test is not performed 10,000 times completely, the165

permutation testing can determine that the input data are IID. Algorithm 2 is the improved166

version of the permutation testing optimized by the NIST.167

We briefly introduce the shuffle algorithm and the tests used in the permutation testing.168

The shuffle algorithm is the Fisher–Yates shuffle algorithm presented in Algorithm 3. The169

permutation testing uses 11 statistical tests, the names of which are as follows:170

• Excursion test171

• Number of directional runs172

• Length of directional runs173

• Number of increases and decreases174

• Number of runs based on the median175

• Length of runs based on the median176

• Average collision test statistic177

• Maximum collision test statistic178

• Periodicity test179
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Algorithm 2 Permutation testing of NIST program written in C++.

Input: S = (s1, ...,sL), where si is the noise sample and L = 1,000,000.
Output: Decision on the IID assumption.

1: for statistical test i do

2: Assign the counters Ci,0 and Ci,1 to zero.
3: Calculate the test statistic TEST IN

i on S.
4: end for

5: for j = 1 to 10,000 do

6: Permute S using the Fisher–Yates shuffle algorithm.
7: for statistical test i do

8: if statusi = true then

9: Calculate the test statistic TEST Shuffle
i on the shuffled data.

10: if (TEST Shuffle
i > TEST IN

i ) then

11: Increment Ci,0.
12: else if (TEST Shuffle

i = TEST IN
i ) then

13: Increment Ci,1.
14: else

15: Increment Ci,2.
16: end if

17: if ((Ci,0 +Ci,1 > 5)and(Ci,1 +Ci,2 > 5)) then

18: statei = false.
19: end if

20: end if

21: end for

22: end for

23: if ((Ci,0 +Ci,1 ≤ 5)or(Ci,0 ≥ 9,995)) for any i then

24: Reject the IID assumption.
25: else

26: Assume that the noise source outputs are IID.
27: end if

Algorithm 3 Fisher–Yates shuffle (Sönmez Turan et al., 2018).

Input: S = (s1, ...,sL), where si is the noise sample and L = 1,000,000.
Output: Shuffled S = (s1, ...,sL).

1: for i from L downto 1 do

2: Generate a random integer j such that 1 ≤ j ≤ i.
3: Swap sj and si.
4: end for
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• Covariance test180

• Compression test*181

The aim of the periodicity test is to measure the number of periodic structures in the input182

data. The aim of the covariance test is to measure the strength of the lagged correlation. Thus,183

the periodicity and covariance tests take a lag parameter as input and each test is repeated184

for five different values of the lag parameter: 1, 2, 8, 16, and 32 (Sönmez Turan et al., 2018).185

Therefore, a total of 19 statistical tests are used in the permutation testing.186

If the input data are binary (that is, the sample size is 2), one of two conversions is applied187

to the input data for some of the statistical tests. The descriptions of each conversion and the188

names of the statistical tests using that conversion are as follows (Sönmez Turan et al., 2018):189

Conversion I190

Conversion I divides the input data into 8-bit non-overlapping blocks and counts the number191

of 1s in each block. If the size of the final block is less than 8 bits, zeroes are appended. The192

numbers and lengths of the directional runs, numbers of increases and decreases, periodicity test,193

and covariance test apply Conversion I to the input data.194

Conversion II195

Conversion II divides the input data into 8-bit non-overlapping blocks and calculates the integer196

value of each block. If the size of the final block is less than 8 bits, zeroes are appended. The197

average collision test statistic and maximum collision test statistic apply Conversion II to the198

input data.199

As an example of the conversions, let the binary input data be (0,1,1,0,0,1,1,0,1,0,1,1).200

For Conversion I, the first 8-bit block includes four 1s and the final block, which is not complete,201

includes three 1s. Thus, the output data of Conversion I are (4,3). For Conversion II, the integer202

value of first block is 102 and the final block becomes (1,0,1,1,0,0,0,0) with an integer value of203

88. Thus, the output of Conversion II is (102,88).204

PROPOSED GPU IMPLEMENTATION205

Target of parallel processing206

Steps 5 to 22 of Algorithm 2, with 10,000 iterations, consume most of the processing time of the207

permutation testing. The shuffle algorithm and 19 statistical tests are performed on the data208

with one million samples of the noise source in each iteration. Hence, it is natural to consider209

the GPU-based parallel implementation of 10,000 iterations, which are processed sequentially in210

the permutation testing.211

The implementation of the compression test* differs from those of the other statistical tests212

used in the permutation testing. The compression test* uses bzip2 (Seward, 2019), which213

compresses the input data using the Burrows–Wheeler transform (BWT), the move-to-front214

(MTF) transform, and Huffman coding. Research on the parallel implementation of bzip2 using215

a GPU is still ongoing. In Patel et al. (2012), all three main steps, namely the BWT, the216

MTF transform, and Huffman coding, were implemented in parallel using a GPU. However,217

the performance was 2.78 times slower than that of the CPU implementation. In Shastry et al.218

(2016), only the BWT was computed on a GPU and a performance improvement of 1.4 times that219

of the standard CPU-based algorithm was achieved. However, this approach is not applicable220

in this case, because our parallel test should be implemented in the GPU together with other221

permutation tests. Moreover, the compression test does not play a key role in Algorithm 2. That222

is, it is infrequent for a noise source to be determined as non-IID only by the compression test223

results among the 19 statistical tests used in the permutation testing. Therefore, we design the224

GPU-based parallel implementation of the permutation testing consisting of the shuffle algorithm225

and 18 statistical tests, without the compression algorithm.226

Overview of parallel permutation testing227

Approximately 9.3 GB (= 10,000 × one million bytes of data) of the global memory of the GPU228

is required for the CPU to invoke a CUDA kernel to process 10,000 iterations of the permutation229
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testing in parallel on the GPU. Some GPUs do not have more than 9 GB of global memory.230

Therefore, we propose parallel implementation of the permutation testing, which processes N231

iterations in parallel on the GPU according to the user’s GPU specification and repeats this232

process R = ⌈10,000/N⌉ times.233

Figure 2. CPU/GPU workflow of permutation testing.
(A) Code running on the host/CPU. (B) Code running on the device/GPU.

Figure 2 presents the workflow of the CPU and GPU. The host refers to a general CPU that234

executes the program sequentially, whereas the device refers to a parallel processor such as a235

GPU. In steps 1 to 3 of Figure 2, the host performs 18 statistical tests on one million bytes of236

the input data (without shuffling) and holds the results. In step 4, the host calls a function that237

allocates the device memory required to process N iterations in parallel on the device. The use238

and sizes of the variables are listed in Table 3. In step 5, the input data (No. 1 in Table 3),239

and the results of the statistical tests in steps 1 to 3 (No. 4 in Table 3) are copied from the240

host to the device. In step 6, the host launches a CUDA kernel CurandInit, which initializes241

the N seeds used in the curand() function. The curand() function that generates random242

numbers using seeds on the device is invoked by the CUDA kernel Shuffling. When the host243

receives the completion of the kernel CurandInit, the host proceeds to steps 7 to 13, in which244

N iterations are divided into R rounds and each round processes in parallel on the device. To245

process N iterations, the host launches the CUDA kernel Shuffling (step 8) and then launches246

the CUDA kernel Statistical test (step 9) as soon as the host receives the completion of the247

kernel Shuffling. When the host receives the completion of the kernel Statistical test, in248

step 10, the counters Ci,0, Ci,1, and Ci,2 for i ∈ {1,2, . . . ,18}, which indicate the indices of the249

statistical tests, are copied from the device to the host. Following the operations in steps 17 to250

19 of Algorithm 2, which correspond to those in steps 12 and 13 of Figure 2, the host moves on251

to step 14 if Equation 2 is satisfied for all i. Finally, in step 14, the host determines whether or252

not the input data are IID.253

When the input data is binary, two conversions should be considered when designing the254
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No. Use of variable Size of variable (bytes)

1 Original data (input) 1,000,000

2 N shuffled data N ×1,000,000

3 N seeds used by curand() function N × sizeof(curandState) = N ×48

4 18 Original test statistics N × sizeof(double) = 144

5 Counter Ci,0,Ci,1,Ci,2 for 1 ≤ i ≤ 18 18× sizeof(int) ×3 = 216

6
N shuffled data after Conversion II
(Only used if the input is binary)

N ×125,000

Table 3. Use and sizes of variables allocated to GPU.

CUDA kernels. Therefore, we describe the CUDA kernels designed to process N iterations in255

parallel on the GPU depending on whether the input data is binary. The descriptions of the256

CUDA kernels Shuffling and Statistical test for non-binary noise sample are as follows:257

CUDA kernel Shuffling258

The kernel Shuffling generates N shuffled data by permuting one million bytes of the original259

data N times in parallel. Thus, each of N CUDA threads permutes the original data using the260

Fisher–Yates shuffle algorithm and then stores the shuffled data in the global memory of the261

device. As the shuffle algorithm uses the curand() function, each thread uses its unique seed262

that is initialized by the kernel CurandInit with its index, respectively.263

CUDA kernel Statistical test264

The kernel Statistical test performs 18 statistical tests on each of N shuffled data, and265

compares the shuffled and original test statistics. The size of each shuffled data is one million266

bytes and N shuffled data are stored in the global memory of the device. In this section, we267

present two methods that can easily be designed to handle this process in parallel on the GPU,268

and finally, we propose an optimized method.269

Figure 3. General parallel method 1 of kernel Statistical test.

Parallelization method 1 One CUDA thread performs 18 statistical tests sequentially on270

one shuffled dataset. This method is illustrated in Figure 3. If this method is applied to271

the kernel Statistical test, B′ = (N/T ) CUDA blocks are used when the number of272
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Figure 4. General parallel method 2 of kernel Statistical test.

Figure 5. Proposed optimization method of kernel Statistical test.
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CUDA threads is T . However, because each thread runs 18 tests in sequence, room for273

improvement is apparent in this method.274

Parallelization method 2 In this method, each block performs its designated statistical test275

out of 18 tests on one shuffled dataset shared by 18 blocks. Thus, for one shuffled set,276

18 statistical tests are run in parallel, and this method is a parallelization of the serial277

part in method 1 above. This method is illustrated in Figure 4, which indicates the kernel278

Statistical test with B′ = ((N/T )×18) CUDA blocks and T threads in a block.279

Proposed optimization This method optimizes parallelization method 2 through two steps.280

(Step 1) To hide the latency in accessing the slow global memory of the GPU, we analyzed281

the runtime of 18 statistical tests from an algorithmic perspective. We merged several282

statistical tests with similar access patterns to the global memory into a single test.283

Therefore, 9 merged statistical tests replace 18 statistical tests. (Step 2) We configured284

one thread run at least one statistical test so that all blocks can finish their work within a285

similar time. Considering the execution time of each test, the thread in one block executes286

only the test that requires the longest time. This test is the merged of the average collision287

test statistic and the maximum collision test statistic. The thread in another block runs288

the rest of the tests. This method is depicted in Figure 5, where the kernel Statistical289

test uses B′ = ((N/T )×2) CUDA blocks, with T threads in each block.290

If the noise sample size is 1 bit, one of two conversions is applied to certain statistical tests.291

With slight modifications to the kernels Shuffling and Statistical test, which are designed292

for non-binary samples, as described above, we can parallelize the permutation testing when the293

input data are binary. In the kernel Shuffling, N CUDA threads firstly generate N shuffled294

data in parallel. Thereafter, each thread proceeds to Conversion II for its own shuffled data and295

stores the results (No. 6 in Table 3) in the global memory of the GPU. The kernel Statistical296

test runs nine merged tests. As in the optimized method for non-binary data, the thread in the297

block executes at least one test so that the execution time of each block is similar. Therefore,298

B′ = (N/T )× 4 CUDA blocks are used when the number of CUDA threads is T . The data after299

Conversion I are the result of calculating the Hamming weight of the data following Conversion300

II. Both data after Conversion I and data after Conversion II can be stored separately in the301

global memory. However, we use a method to calculate the Hamming weight of the data after302

Conversion II in the merged statistical tests applied by Conversion I to minimize the use of the303

global memory.304

EXPERIMENTS AND PERFORMANCE EVALUATION305

In this section, we present the performance measurement of the proposed method and compare306

its performance with the NIST program written in C++. The performance was evaluated using307

two hardware configurations (Table 4).308

There are two noise sources used in experiments. The first noise source is truerand pro-309

vided by the NIST. The second noise source, GetTickCount, could be collected through the310

GetTickCount() function in the Windows environment. The sample size of each noise source is311

1, 4, or 8 bits. As a result of confirming whether the input data is IID by repeating the IID test,312

truerand is determined as the IID noise source; however, GetTickCount is determined as the313

non-IID noise source.314

The experimental result is the average of the results repeated 20 times. The difference315

between the results of the experiments repeated 20 times was within 5 %.316

GPU optimization concepts317

We conducted experiments on the optimization concepts considered while parallelizing the318

permutation testing. The experimental data used in this section consisted of one million samples319

collected from the noise source GetTickCount, where the sample size was 8 bits.320

Prior to the experiments, we set the values of the parameters used. To process N iterations321

in parallel on the GPU, we required N × 1,000,000 bytes of the global memory of the GPU.322

Therefore, we set N to 2,048 (using about 2 GB of the global memory). Then we set T , the323
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Name Device A Device B

CPU model Intel(R) Core (TM) i7-8086K Intel(R) Core (TM) i7-7700

CPU frequency 4.00 GHz 3.60 GHz

CPU cores 6 4

CPU threads 12 8

Accelerator type NVIDIA GPU NVIDIA GPU

Models TITAN Xp GeForce GTX 1060

Multiprocessors (MPs) 30 10

CUDA cores/MP 128 128

CUDA capability major 6.1 6.1

Global memory 12,288 MB 6,144 MB

GPU Max clock rate 1,582 MHz 1,709 MHz

Memory clock rate 5,750 MHz 4,004 MHz

Memory bus width 384 bits 192 bits

Registers/block 65,536 65,536

Threads/MP 2,048 2,048

Threads/block 1,024 1,024

Warp size 32 32

CUDA driver version 10.1 10.1

Table 4. Configurations of experimental platforms.

number of threads per block used in the CUDA kernel, to 256, which was a multiple of the warp324

size (= 32).325

Merging statistical tests326

Our optimization method consists of a step in which tests are merged (Step 1) and a step in327

which at least one test is allocated so that the working time of each thread is similar (Step 2).328

Therefore, this section confirms the validity of our merging tests.329

We first designed new CUDA kernels for experimentation, where each of the N threads330

performed one statistical test on one shuffled data. We measured the execution time and the331

number of registers of each test kernel. Since we set the number of threads per block T to 256,332

each test kernel uses 8 CUDA blocks. The experimental results, the execution time of each333

statistical test on the GPU are shown in Table 5. Figure 6 presents the number of registers334

per thread of each statistical test as measured with Nsight. NVIDIA Nsight is a development335

environment that enables the developer to build and debug and examine the state of GPU and336

the memory.337

From Table 5, it is expected that it takes about 4 seconds if one thread sequentially performs338

18 statistical tests. However, if one thread performs 9 merged tests, it can be expected that it339

will take about 2.3 seconds. We improved the performance for all 18 statistical tests by about340

1.7 times by combining the tests.341

Since the number of registers used by each thread is one of the key factors for performance342

improvement (NVIDIA, 2020b), we analyzed whether there is any performance degradation343

due to the number of registers when using the merged tests, as follows; If the merged tests344

are not used, one of the optimizing methods is to apply Step 2 of our proposed technique to345

the parallelization method 2. We analyzed this method and our proposed method in terms of346

occupancy and the number of active blocks. The more threads (blocks) are allocated to the MP,347

the better the performance. Occupancy is calculated as ((number of active blocks × number348
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No.
Name of

statistical test
Execution
time (ms)

No.
Name of merged
statistical test

Execution
time (ms)

1 Excursion test 214 1′ Excursion test 214

2
Number of directional

runs
75 2′

Directional runs and
number of inc/dec

90

3 Length of directional runs 81

4
Numbers of increases

and decreases
38

5
Number of runs based on

median
103 3′ Runs based on median 143

6
Length of runs based on

median
128

7
Average collision

test statistic
1,257 4′ Collision test statistic 1,258

8
Maximum collision

test statistic
1,238

9 Periodicity test (lag = 1) 50 5′ Per/Cov test (lag = 1) 129

10 Covariance test (lag = 1) 71

11 Periodicity test (lag = 2) 94 6′ Per/Cov test (lag = 2) 137

12 Covariance test (lag = 2) 113

13 Periodicity test (lag = 8) 93 7′ Per/Cov test (lag = 8) 134

14 Covariance test (lag = 8) 111

15 Periodicity test (lag = 16) 93 8′ Per/Cov test (lag = 16) 134

16 Covariance test (lag = 16) 111

17 Periodicity test (lag = 32) 93 9′ Per/Cov test (lag = 32) 134

18 Covariance test (lag = 32) 111

Table 5. Left: execution time of each statistical test on GPU; right: execution time of each
merged statistical test on GPU (Device A, number of CUDA blocks = 8, number of threads per
block = 256).

of active warps) / maximum number of warps). As shown in Table 4, both devices have a349

warp size of 32 and a maximum of 2048 threads per block. The maximum number of warps is350

calculated as 64 (= 2048/32). To analyze occupancy, we calculated the number of active blocks.351

The number of active blocks is the minimum of the number of blocks calculated considering352

the amount of shared memory, the number of threads per block, and the number of registers353

(NVIDIA, 2020a). Since shared memory was not used, the number of active blocks calculated by354

the amount of shared memory is the device limit of 32. Since the number of threads per block is355

set to 256, the number of active blocks calculated by the number of threads is 8 (= 2,048/256).356

As shown in Figure 6, the maximum number of registers is 32, which is the same for both357

methods. Since 8,192 (= 256 × 32) registers are used per block, and the number of registers358

that can be used in an SM is 65,536, the number of active blocks calculated by the number359

of registers is 8 (= 65,536/8,192). As a result, the number of active blocks is min(32,8,8) = 8.360

Since the number of active warps is 8 (= 256/8), occupancy of both methods is calculated by361

100 % (= 8×8/64×100). If more than 33 registers need to be used, the number of active blocks362
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Figure 6. Number of registers used by each CUDA thread running each statistical test and each
merged statistical test.

is reduced to 7, resulting in 88 % occupancy. Therefore, there is no performance degradation363

caused by register limitations. If we use 2 more registers, the performance consideration will be364

more complex including the spill-over to local-memory.365

We measured the execution time of the parallelization method 2 applying Step 2, and our366

method. Referring to the results of Table 5, we designed each CUDA block to proceed with each367

of test 1 ∼ 6, test 7, test 8, and test 9 ∼ 18. The kernel Statistical test applying this method368

uses 32 (= (N/T ) × 4) blocks; however, applying our proposed method uses 16 (= (N/T ) × 2)369

blocks. Table 6 presents the execution time of a kernel Statistical test applying each method.370

As a result, our method is about 1.5 times speedup than the parallelization method 2 applying371

Step 2.372

Number of
CUDA blocks

Execution time (s)

Parallelization method 2 (18 tests) + Step 2 32 2.24

Our method (9 merged tests + Step 2) 16 1.51

Table 6. Performance of parallelization method 2 applying Step 2 and our method (Device A,
the number of threads per block = 256).

Parallelism methods373

This section experimentally verifies whether the proposed optimized method 2 is better than374

other methods. We firstly confirmed the difference in the operation time of each CUDA thread375

in the kernel Statistical test, where each parallelization method is applied by drawing a376

figure. Figure 7 displays the operation times of the CUDA threads, assuming that the GPU377

had three SMs and considering the results of Table 5. It is the task of the GPU scheduler to378

allocate the CUDA blocks to the SMs; however, we assigned arbitrarily for visualization as Figure379

7. As indicated in Table 5, the statistical tests had different execution times. Therefore, we380

expressed the different lengths of the threads in the CUDA blocks running each statistical test,381

as illustrated in Figure 7 (left). In the proposed method, several statistical tests were merged for382

optimization. The execution time of the merged statistical test (Table 5 (right)) was equal to or383

slightly longer than each execution time of the original statistical tests prior to merging (Table384

5 (left)). Suppose that we merged Test 1 and Test 2. Then the lengths of the threads in the385

block running Test 1&2 were slightly longer than those of the threads in the block running Test386

1 or Test 2, as indicated in Figure 7 (right). As illustrated in Figure 7, we expected that our387

optimization outperformed parallelization methods 1 and 2.388

We measured the execution time of a kernel Statistical test according to the parallel389
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Figure 7. Operation time of CUDA threads in kernel Statistical test when applying each
method on device.

Method
Number of

CUDA blocks

Execution time (s)

Device A Device B

Parallelization method 1 8 4.53 6.39

Parallelization method 2 144 2.77 6.33

Our optimization (Step 1) 72 1.62 2.94

Our optimization (Step 1&2) 16 1.51 2.76

Table 7. Execution time of kernel Statistical test according to parallel method (number of
threads per block = 256).

method. Table 7 shows the execution times of each kernel measured on both devices. If the390

occupancy of the kernel in our parallelization method is calculated using the calculation process391

described in the previous section, it reaches 100 %. It is the occupancy per SM. Since our method392

uses a small number of blocks, there might be idle SMs on high-performance GPU with many393

SMs. However, if the host calls the test kernel for each noise source simultaneously using a394

multi-stream technique, we can make use of almost full GPU capability.395

Since 18 statistical tests were running in parallel, the parallelization method 2 has been396

improved by 1.6 times than method 1 in Device A; however, there was no improvement in the397

performance in Device B. In Device B, the number of SMs is 10, and the number of active398

blocks is calculated by 8. Thus, it is analyzed as the result that came out because the number of399

blocks generated by the kernel (= 144) is more than the number of blocks active in the device400

simultaneously (= 80). Our method Step 1 is about 1.7 times and 2.1 times speedup than the401

parallelization method 2 since merged statistical tests have improved the performance than402

before, as confirmed in the previous section. Since the work of each CUDA block was adequately403

balanced, it is analyzed that our method Step 1&2 has been slightly improved over our method404

Step 1. Furthermore, our method has been improved by 3 times and about 2.3 times than the405

parallelization method 1.406
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Next, we analyzed how each method affects the performance of permutation testing. As shown407

in Algorithm 2, the permutation testing has 10,000 iterations. Since implemented N iterations408

in parallel, the kernel CurandInit is called once, and the kernel Shuffling and Statistical409

test are called (10,000/N) times. Since we set N to 2,048 and does not use Equation 2 in410

this experiment, the permutation testing consists of one CurandInit, five Shuffling and five411

Statistical test. Figure 8 shows the execution time of this permutation testing according to412

the parallelization method. As shown in Figure 8, the permutation testing applied our method413

has been improved maximum of about 1.8 times than applied method 1. Thus, our optimization414

method outperformed parallelization methods 1 and 2.415

Figure 8. Execution time of permutation testing according to parallel method (number of
threads per block = 256).

Coalesced memory access416

In this study, we used the memory coalescing technique (Figure 9) to transfer data from slow417

global memory to the registers efficiently. Table 8 displays the performance of our parallel418

implementation of the permutation testing before and after using this technique. From this419

section, the permutation testing uses the kernel Statistical test with our optimization method.420

As a result, we obtained an improvement of 1.5 times.421

Figure 9. Memory coalescing technique.
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Before using memory
coalescing technique (s)

After using memory
coalescing technique (s)

Device A 27.2 19.0

Device B 54.1 33.9

Table 8. Performance of proposed parallel implementation of permutation testing depending on
whether memory coalescing technique was used.

Performance evaluation according to the parameter422

We measured the performance of the permutation testing according to the value of the parameter423

N . The parameter N is the number of iterations of the permutation testing to be processed in424

parallel. Through this result, we set the proper value of N .425

The execution time of each kernel CurandInit, Shuffling and Statistical test according426

to the value of N is shown in Figure 10. We use data consisting of one million truerand samples,427

and the sample size is 8 bits. As shown in Figure 10, as the value of N increases, the execution428

time of each kernel increases linearly.429

Figure 10. Execution time of each kernel according to parameter N .
(A) Execution time on Device A. (B) Execution time on Device B.

Execution time (s)

Parameter N 1,024 2,048 3,072 4,096

Device A
truerand-8bit 2.68 3.82 5.46 7.42

GetTickCount-8bit 27.03 19.03 21.68 21.93

Device B
truerand-8bit 3.59 6.80 10.85 14.36

GetTickCount-8bit 35.82 33.92 43.43 43.23

Table 9. Execution time of permutation testing according to the value of the parameter N .

As shown in Algorithm 2, the kernel CurandInit is called once, and the kernel Shuffling430

and Statistical test are called (10,000/N) times. The process repeated (10,000/N) times is431

as follows. After the kernel Shuffling and the kernel Statistical test are sequentially run432

once, if the results do not satisfy Equation 2, two kernels are called again. This call is repeated433

until all 10,000 iterations have been completed. If Equation 2 is satisfied, the calls to the two434

kernels are aborted. The execution time of this permutation testing according to the value of N435

is shown in Table 9. The noise sources, truerand and GetTickCount, are used in the experiment.436

The sample size of each noise source is 8 bits.437
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As a result of permutation testing, truerand is a noise source that is IID. If the noise source438

is IID, there is little evidence against the null hypothesis that the noise source is IID. Therefore,439

the probability of satisfying Equation 2 increases, and the number of kernel calls decreases. In440

the experiment on truerand data, each kernel was called only once. Thus, it was confirmed that441

execution time according to N written in Table 9 has a rate of increase similar to the rate of each442

kernel shown in Figure 10. GetTickCount is a non-IID noise source from a result of permutation443

testing. If the noise source is Non-IID, there is a lot of evidence against the null hypothesis444

that the noise source is IID. Therefore, contrary to the IID noise source case, the probability of445

satisfying Equation 2 decreases, and the number of kernel calls increases. In this experiment, the446

kernel Shuffling and Statistical test are each called (10,000/N) times. As shown in Table447

9, it took the least execution time of the permutation testing when N was 2048. It is analyzed448

that the increase rate of execution time and the number of kernel calls (= 10,000/N) according449

to N affected the results of GetTickCount in Table 9. Therefore, it is appropriate to set N to450

2048 in consideration of both the usage of the global memory and performance.451

Performance evaluation with NIST program according to noise source452

We measured the performances of the proposed parallel implementation of the permutation testing453

using the GPU. Two noise sources, truerand and GetTickCount, were used in the experiment454

and the sample size of each noise source is one of 1, 4, and 8 bits.455

The NIST program, written in C++, is compatible with OpenMP and can make 10,000456

iterations work in a multi-threaded environment. In this experiment, the NIST program running457

on the CPU uses 12 CPU threads in Device A and 8 CPU threads in Device B (Table 4). Thus458

we compared our performances with those of the permutation testing in a single-threaded and459

multi-threaded NIST program. Since our GPU-based parallel implementation of the permutation460

testing is designed without the compression algorithm, we measured the performance of the461

NIST program except for the compression test.462

Table 10 presents the execution times of the NIST program on the CPU and the proposed463

program on the GPUs, measured for each noise source. As indicated in Table 10, for truerand,464

the performance of the proposed program was up to about 21.5 times better than that of the465

single-threaded NIST program and up to about 15.3 times better than of the multi-threaded466

NIST program. In the case of GetTickCount, the performance of our program has been improved467

by about 33.6 times and about 24.4 times than the single-threaded and the multi-threaded NIST468

program.469

Execution time (s)

Name of noise source truerand GetTickCount

Sample size (bit) 1 4 8 1 4 8

NIST program
(CPU single-thread)

43.42 77.52 24.94 434.42 485.58 638.89

Device A
NIST program

(CPU multi-thread)
37.53 54.91 23.66 331.76 339.79 347.68

Proposed program
(GPU)

2.70 3.60 3.82 13.59 18.14 19.03

Device B

NIST program
(CPU multi-thread)

41.35 50.15 23.18 361.23 347.15 353.52

Proposed program
(GPU)

4.64 5.95 6.80 23.19 30.08 33.92

Table 10. Performances of proposed program and NIST program written in C++ according to
noise source.

As shown in Algorithm 2, the kernel CurandInit is called once, and the kernel Shuffling470
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and Statistical test are called 5 (= 10,000/N) times. If the noise source is likely to be471

determined as IID from the permutation testing, there is a high probability of satisfying Equation472

2. From this, the number of kernel calls on the GPU will be fewer. In the NIST program on473

the CPU, as shown in Algorithm 2, if any statistical test satisfied Equation 2, that test was474

no longer performed in the iterations. Thus if a higher probability of meeting Equation 2, the475

number of iterations of each statistical test is fewer. However, if the noise source is less likely476

to be determined as IID from the permutation testing, there is a low probability of satisfying477

Equation 2. It increases the number of kernel calls on the GPU (maximum number = 5) and the478

number of iterations of each statistical test on the CPU (maximum number = 10,000).479

In Table 10, the minimum performance improvement of the proposed program for truerand is480

not higher than that of the program for GetTickCount. As a result of the permutation testing481

on each noise source, truerand is determined as the IID noise source, and GetTickCount is482

determined as the non-IID noise source. Since the number of iterations of the permutation483

testing algorithm for IID noise source is fewer than that for non-IID noise source, the minimum484

performance improvement of the proposed program for truerand is not higher than that of the485

program for GetTickCount.486

CONCLUSIONS487

The security of modern cryptography is heavily reliant on sensitive security parameters such488

as encryption keys. RNGs should provide cryptosystems with ideal random bits, which are489

independent, unbiased, and most importantly, unpredictable. To use a secure RNG, it is necessary490

to estimate its input entropy as precisely as possible. The NIST offers two programs for entropy491

estimations, as outlined in SP 800-90B. However, a long time is required to manipulate several492

noise sources for an RNG.493

This paper has proposed GPU-based parallel implementation of the permutation testing,494

which requires the longest execution time in the IID test of SP 800-90B. The proposed method495

is designed to use massive parallelism of the GPU by balancing the number of registers and the496

execution time for statistical tests, as well as optimizing the use of the global memory for data497

shuffling. We experimentally compared our GPU optimization with the NIST. The proposed498

program was 33 times faster than the single-threaded NIST program. Moreover, our proposal499

improved the performance up to 24 times than the multi-threaded NIST program. It is expected500

that the time required for analyzing the RNG security will be significantly reduced for developers501

and evaluators by using the proposed approach, thereby improving the validation efficiency in502

the development of cryptographic modules. For future work, we will implement the compression503

test excluded in this study in parallel on the GPU.504
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