
Accelerated implementation for testing IID assumption of
NIST SP 800-90B using GPU
Yewon Kim Corresp., 1 , Yongjin Yeom 1, 2

1 Department of Financial Information Security, Kookmin University, Seoul, South Korea
2 Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul, South Korea

Corresponding Author: Yewon Kim
Email address: fdt150@kookmin.ac.kr

It has been established that insufficient entropy of the noise sources that serve as the
input into random number generator (RNG) may cause serious damage, such as
compromising private keys in cryptosystems and cryptographic modules. Therefore, it is
necessary to estimate the entropy of the noise source as precisely as possible. The
National Institute of Standards and Technology (NIST) published a relevant standard
document known as Special Publication (SP) 800-90B, which describes the method for
estimating the entropy of the noise source that is the input into an RNG. The principles and
statistical tests in SP 800-90B have been analyzed theoretically; however, it is challenging
to find research on the efficient implementation thereof. The NIST offers two programs for
running the entropy estimation process of SP 800-90B, written in Python and C++. The
running time for estimating the entropy is more than one hour for each noise source. As an
RNG tends to use several noise sources, the times of the NIST estimation are a burden for
developers as well as evaluators working for the Cryptographic Module Validation Program.
In this study, we propose a GPU-based parallel implementation of the most time-
consuming part of the entropy estimation, namely the process of the independent and
identically distributed assumption testing. To achieve maximal improvement from the user
GPU performance, we propose a scalable method that adjusts the optimal size of the
global memory occupancy in the proposed GPU kernel function according to the GPU
specifications. Moreover, our method improves the performance by merging two statistical
tests without increasing the number of registers used by the kernel. The experimental
results demonstrate that our method is at least 23 times faster than that of the NIST
package.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



Accelerated implementation for testing IID1

assumption of NIST SP 800-90B using GPU2

Yewon Kim1 and Yongjin Yeom1, 2
3

1Department of Financial Information Security, Kookmin University, Seoul, Korea4

2Department of Information Security, Cryptology, and Mathematics, Kookmin University,5

Seoul, Korea6

Corresponding author:7

Yewon Kim1
8

Email address: fdt150@kookmin.ac.kr9

ABSTRACT10

It has been established that insufficient entropy of the noise sources that serve as the input into random
number generator (RNG) may cause serious damage, such as compromising private keys in cryptosystems
and cryptographic modules. Therefore, it is necessary to estimate the entropy of the noise source as precisely
as possible. The National Institute of Standards and Technology (NIST) published a relevant standard
document known as Special Publication (SP) 800-90B, which describes the method for estimating the
entropy of the noise source that is the input into an RNG. The principles and statistical tests in SP 800-90B
have been analyzed theoretically; however, it is challenging to find research on the efficient implementation
thereof. The NIST offers two programs for running the entropy estimation process of SP 800-90B, written
in Python and C++. The running time for estimating the entropy is more than one hour for each noise
source. As an RNG tends to use several noise sources, the times of the NIST estimation are a burden for
developers as well as evaluators working for the Cryptographic Module Validation Program. In this study, we
propose a GPU-based parallel implementation of the most time-consuming part of the entropy estimation,
namely the process of the independent and identically distributed assumption testing. To achieve maximal
improvement from the user GPU performance, we propose a scalable method that adjusts the optimal size
of the global memory occupancy in the proposed GPU kernel function according to the GPU specifications.
Moreover, our method improves the performance by merging two statistical tests without increasing the
number of registers used by the kernel. The experimental results demonstrate that our method is at least
23 times faster than that of the NIST package.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

INTRODUCTION29

A random number generator (RNG) generates the random numbers required to construct30

the cryptographic keys, nonce, salt, and sensitive security parameters used in cryptosystems31

and cryptographic modules. In general, an RNG produces random numbers (output) via a32

deterministic algorithm, depending on the noise sources (input). Hence, if its input is affected33

by the low entropy of the noise sources, the output may be compromised. It is easy to find34

examples which show the importance of the entropy in operating systems. Yilek et al. (2009)35

describes that a pseudo-random number generator (PRNG) of Debian OpenSSL gathers entropy36

insufficiently and thereby the private keys generated by the PRNG are predictable. Heninger37

et al. (2012) describes they can obtain the RSA/DSA private keys for some TLS/SSH hosts due38

to insufficient entropy of Linux PRNG during the key generation process. Ding et al. (2014)39

investigated the amount of the entropy of Linux PRNG running on Android in boot-time and40

Kaplan et al. (2014) demonstrated an IPv6 Denial of Service attack and a stack canary bypass41

with the weaknesses of insufficient entropy in the boot-time of Android. Also, Kim et al. (2013)42

presents a technique to recover PreMasterSecret (PMS) of the first SSL session in Android by43

258 complexity since PMS is generated from insufficient entropy of OpenSSL PRNG at boot time.44

In addition, Yoo et al. (2017); Nguyen and Shparlinski (2002); Bernstein et al. (2013); Michaelis45

et al. (2013) describe the attacks caused by wrong estimations of the entropy, exaggeratedly or46

too conservatively.47

PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



Insufficient entropy of the noise source that is the input into the RNG may cause serious48

damage in cryptosystems and cryptographic modules. Thus, it is necessary to estimate the49

entropy of the noise source as precisely as possible. The United States National Institute of50

Standards and Technology (NIST) Special Publication (SP) 800-90B (Barker and Kelsey, 2012;51

Sönmez Turan et al., 2016, 2018) is a standard document for estimating the entropy of the52

noise source. This document is currently used in the Cryptographic Module Validation Program53

(CMVP) and has been cited as a recommendation for entropy estimation in an ISO standard54

document ISO/IEC-20543 (2019) for test and analysis methods of random bit generators. The55

principles of entropy estimators in SP 800-90B have been investigated and analyzed theoretically56

(Kang et al., 2017; Zhu et al., 2017, 2019). However, it is difficult to find research on the efficient57

implementation of the entropy estimation process of SP 800-90B. The general flow of the entropy58

estimation process in the final version of SP 800-90B (Sönmez Turan et al., 2018) is summarized59

in Figure 1.60

Figure 1. Flow of entropy estimation process of SP 800-90B.

The NIST provides two programs on GitHub (NIST, 2015) for the entropy estimation process61

of SP 800-90B. The first program is for the entropy estimation process of the second draft of SP62

800-90B (Sönmez Turan et al., 2016), written in Python. The second program is for the entropy63

estimation process of the final version (Sönmez Turan et al., 2018) of SP 800-90B, written in64

C++. Table 1 displays the execution times of the two NIST programs for estimating the entropy65

of the noise source. GetTickCount, which can be collected through the GetTickCount() function66

in the Windows environment, has a sample size of 8 bits. In Table 1, the process of testing the67

independent and identically distributed (IID) assumption, hereinafter referred to as the IID test,68

consumes the majority of the total execution time in both NIST programs.69

As recommended by the CMVP, the RNG applied in cryptosystems and cryptographic70

modules should use at least one noise source as the input for security. Therefore, the entropy of71

each noise source used as the RNG input should be estimated to analyze the security of the RNG.72

As the noise sources are affected by the environment from which they are collected, the entropy73

of each noise source should be estimated repeatedly. For example, suppose that a cryptographic74

module developer analyzes the security of the RNG in his/her module using the NIST program75

written in C++. Moreover, assume that the module supports two operating systems and 1076

noise sources are used as input into the RNG in each operating system. According to Table77

2/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



NIST program
written in Python

NIST program
written in C++

Testing IID assumption (IID test) 17 h 1 h 10 min

[IID track] Estimation entropy < 1 s 1 s

[Non-IID track] Estimation entropy 15 min 20 s

Restart tests 2 s 2 min

Total execution time 17 h 16 min 1 h 13 min

Table 1. Execution time of each NIST program for entropy estimation process (noise source:
GetTickCount; noise sample size: 8 bits).

1, the NIST program requires approximately 1 h to estimate the entropy of one noise source.78

Therefore, at least 20 h are required to analyze the security of the developer’s RNG. However,79

because the entropy of each noise source should be estimated several times, over 200 h may be80

necessary, or three days when the number of iterations is set to 10. As this runtime may be81

burdensome for developers, it can be tempting to use an RNG without security analysis. Thus,82

if the developer’s RNG is vulnerable, this vulnerability is likely to affect the overall security of83

the cryptographic module.84

Graphics processing units (GPUs) were initially designed for accelerating computer graphics85

and image processing. In recent years, GPUs have been used for general computations in addition86

to graphics processing. The use of GPUs for performing computations handled by central87

processing units (CPUs) is known as general-purpose computing on GPUs (GPGPUs). New88

parallel computing platforms and programming models, such as the computing unified device89

architecture (CUDA) released by NVIDIA, enable software developers to leverage GPGPUs90

for various applications. GPGPUs are used in cryptography as well as areas including signal91

processing and artificial intelligence. Numerous studies have been conducted on the parallel92

implementations of cryptographic algorithms such as AES, ECC, and PRESENT (Manavski,93

2007; Szerwinski and Güneysu, 2008; Li et al., 2019) and on the acceleration of cryptanalysis,94

including hash collision attacks using GPUs (Stevens et al., 2017).95

In this study, we propose a parallel implementation of the IID test by using multiple96

optimization techniques. To process the entire IID test in parallel, approximately 9 GB or97

more of the global memory of the GPU are required. We implement the IID test in parallel by98

setting the adaptive sizes of the global memory used in the kernel function so that maximal99

performance improvement can be obtained from the GPU specification in use. Furthermore, we100

merge two statistical tests without increasing the number of registers used by the kernel so that101

the proposed method can provide a performance improvement. Our experiments support the102

finding that our parallel implementation can achieve optimized results with over 20 times higher103

performance than that of the NIST.104

The remainder of this paper is organized as follows. Section 2 introduces the IID test of SP105

800-90B. Section 3 outlines our GPU-based parallel implementation of the IID test. In section 4,106

the experimental results on the optimization and performance of our method are presented and107

analyzed. Finally, Section 5 summarizes and concludes the paper.108

IID TEST109

The IID test of SP 800-90B consists of permutation testing and five additional chi-square tests.110

The permutation testing is the most time-consuming step in the entire IID test. Therefore, we111

only focus on the permutation testing in this study.112

We define several terms before introducing the permutation testing. A sample is data obtained113

from one output of the (digitized) noise source and the sample size is the size of the (noise)114

sample in bits. For example, we collect a sample of the noise source GetTickCount in Windows115

by calling the GetTickCount() function once. In this case, the sample size is 32 bits. However,116

3/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



Algorithm 1 Permutation testing (Sönmez Turan et al., 2018).

Input: S = (s1, ...,sL), where si is the noise sample and L = 1,000,000.
Output: Decision on the IID assumption.

1: for statistical test i do

2: Assign the counters Ci,0 and Ci,1 to zero.
3: Calculate the test statistic T IN

i on S.
4: end for

5: for j = 1 to 10,000 do

6: Permute S using the Fisher–Yates shuffle algorithm.
7: Calculate the test statistic T Shuffle

i on the shuffled data.
8: if (T Shuffle

i > T IN
i ) then

9: Increment Ci,0.
10: else if (T Shuffle

i = T IN
i ) then

11: Increment Ci,1.
12: end if

13: end for

14: if ((Ci,0 +Ci,1 ≤ 5)or(Ci,0 ≥ 9,995)) for any i then

15: Reject the IID assumption.
16: else

17: Assume that the noise source outputs are IID.
18: end if

as certain estimators of SP 800-90B do not support samples larger than 8 bits, it is necessary to117

reduce the sample size. GetTickCount is the elapsed time (in milliseconds) since the system was118

started and it is thus easy to conclude that the low-order bits in the sample of GetTickCount119

contain most of the variability. Therefore, it would be reasonable to reduce the 32-bit sample to120

an 8-bit sample by using the lowest 8 bits. The tests of SP 800-90B are performed on input data121

consisting of one million samples, where each sample has a reduced size of 8 bits. Furthermore,122

the maximum of the min-entropy per sample is 8.123

Algorithm 1 presents the algorithm of the permutation testing described in SP 800-90B. The124

permutation testing is the step that involves identifying evidence against the null hypothesis125

that the noise source is IID. The permutation testing first performs statistical tests on one126

million samples of the noise source, namely the original data. We refer to the results of the127

statistical tests as the original test statistics. Thereafter, permutation testing is carried out128

10,000 iterations, as follows: In each iteration, the original data are shuffled, the statistical tests129

are performed on the shuffled data, and the results are compared with the original test statistics.130

After 10,000 iterations, the ranking of the original test statistics among the shuffled test statistics131

is computed. If the rank belongs to the top 0.05% or bottom 0.05%, the permutation testing132

determines that the original data (input) are not IID. That is, it is concluded that the original133

data are not IID if Equation 1 is satisfied for any i that is the index of the statistical test.134

For any i, the counter Ci,0 is the number of j in step 5 of Algorithm 1 satisfying the shuffled135

test statistic T Shuffle
i > of the original test statistic T IN

i . The counter Ci,1 is the number of j136

satisfying T Shuffle
i = T IN

i , whereas the counter Ci,2 is the number of j satisfying T Shuffle
i < T IN

i .137

(Ci,0 +Ci,1 ≤ 5) or (Ci,0 ≥ 9,995) (1)

Equivalently, the permutation testing determines that the original data are IID if Equation 2138

is satisfied for all i that is the index of the statistical test.139

(Ci,0 +Ci,1 > 5) and (Ci,1 +Ci,2 > 5) (2)

The NIST optimized the permutation testing of the NIST program written in C++ using140

Equation 2. Thus, even if each statistical test is not performed 10,0000 times completely, the141

4/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



permutation testing can determine that the input data are IID. Algorithm 2 is the improved142

version of the permutation testing optimized by the NIST.143

Algorithm 2 Permutation testing of NIST program written in C++.

Input: S = (s1, ...,sL), where si is the noise sample and L = 1,000,000.
Output: Decision on the IID assumption.

1: for statistical test i do

2: Assign the counters Ci,0 and Ci,1 to zero.
3: Calculate the test statistic T IN

i on S.
4: end for

5: for j = 1 to 10,000 do

6: Permute S using the Fisher–Yates shuffle algorithm.
7: for statistical test i do

8: if statusi = true then

9: Calculate the test statistic T Shuffle
i on the shuffled data.

10: if (T Shuffle
i > T IN

i ) then

11: Increment Ci,0.
12: else if (T Shuffle

i = T IN
i ) then

13: Increment Ci,1.
14: else

15: Increment Ci,2.
16: end if

17: if ((Ci,0 +Ci,1 > 5)and(Ci,1 +Ci,2 > 5)) then

18: statei = false.
19: end if

20: end if

21: end for

22: end for

23: if ((Ci,0 +Ci,1 ≤ 5)or(Ci,0 ≥ 9,995)) for any i then

24: Reject the IID assumption.
25: else

26: Assume that the noise source outputs are IID.
27: end if

Algorithm 3 Fisher–Yates shuffle (Sönmez Turan et al., 2018).

Input: S = (s1, ...,sL), where si is the noise sample and L = 1,000,000.
Output: Shuffled S = (s1, ...,sL).

1: for i from L downto 1 do

2: Generate a random integer j such that 1 ≤ j ≤ i.
3: Swap sj and si.
4: end for

We briefly introduce the shuffle algorithm and the tests used in the permutation testing.144

The shuffle algorithm is the Fisher–Yates shuffle algorithm presented in Algorithm 3. The145

permutation testing uses 11 statistical tests, the names of which are as follows:146

• Excursion test147

• Number of directional runs148

• Length of directional runs149

• Number of increases and decreases150

• Number of runs based on the median151

• Length of runs based on the median152

• Average collision test statistic153

• Maximum collision test statistic154

5/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



• Periodicity test155

• Covariance test156

• Compression test*157

The aim of the periodicity test is to measure the number of periodic structures in the input158

data. The aim of the covariance test is to measure the strength of the lagged correlation. Thus,159

the periodicity and covariance tests take a lag parameter as input and each test is repeated160

for five different values of the lag parameter: 1, 2, 8, 16, and 32 (Sönmez Turan et al., 2018).161

Therefore, a total of 19 statistical tests are used in the permutation testing.162

If the input data are binary (that is, the sample size is 2), one of two conversions is applied163

to the input data for some of the statistical tests. The descriptions of each conversion and the164

names of the statistical tests using that conversion are as follows (Sönmez Turan et al., 2018):165

Conversion I166

Conversion I divides the input data into 8-bit non-overlapping blocks and counts the number167

of 1s in each block. If the size of the final block is less than 8 bits, zeroes are appended. The168

numbers and lengths of the directional runs, numbers of increases and decreases, periodicity test,169

and covariance test apply Conversion I to the input data.170

Conversion II171

Conversion II divides the input data into 8-bit non-overlapping blocks and calculates the integer172

value of each block. If the size of the final block is less than 8 bits, zeroes are appended. The173

average collision test statistic and maximum collision test statistic apply Conversion II to the174

input data.175

As an example of the conversions, let the binary input data be (0,1,1,0,0,1,1,0,1,0,1,1).176

For Conversion I, the first 8-bit block includes four 1s and the final block, which is not complete,177

includes three 1s. Thus, the output data of Conversion I are (4,3). For Conversion II, the integer178

value of first block is 102 and the final block becomes (1,0,1,1,0,0,0,0) with an integer value of179

88. Thus, the output of Conversion II is (102,88).180

PROPOSED GPU IMPLEMENTATION181

Target of parallel processing182

Steps 5 to 22 of Algorithm 2, with 10,000 iterations, consume most of the processing time of the183

permutation testing. The shuffle algorithm and 19 statistical tests are performed on the data184

with one million samples of the noise source in each iteration. Hence, it is natural to consider185

the GPU-based parallel implementation of 10,000 iterations, which are processed sequentially in186

the permutation testing.187

The implementation of the compression test* differs from those of the other statistical tests188

used in the permutation testing. The compression test* uses bzip2 (Seward, 2019), which189

compresses the input data using the Burrows–Wheeler transform (BWT), the move-to-front190

(MTF) transform, and Huffman coding. Research on the parallel implementation of bzip2 using191

a GPU is ongoing. In Patel et al. (2012), all three main steps, namely the BWT, MTF transform,192

and Huffman coding, were implemented in parallel using a GPU, but the performance was 2.78193

times slower than that of the CPU implementation. In Shastry et al. (2016), only the BWT194

was computed on a GPU and a performance improvement of 1.4 times that of the standard195

CPU-based algorithm was achieved. However, this approach is not applicable in this case,196

because our parallel test should be implemented in the GPU together with other permutation197

tests. Moreover, it is extremely rare for a noise source to be determined as non-IID only by the198

compression test results among the 19 statistical tests used in the permutation testing. Therefore,199

we design the GPU-based parallel implementation of the permutation testing consisting of the200

shuffle algorithm and 18 statistical tests, without the compression algorithm.201

Overview of parallel permutation testing202

Approximately 9.3 GB (= 10,000 × one million bytes of data) of the global memory of the GPU203

is required for the CPU to invoke a CUDA kernel to process 10,000 iterations of the permutation204

6/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



testing in parallel on the GPU. Considering the total amount of the global memory of the GPU,205

which depends on the hardware specifications, we do not allocate more than 2 GB at once.206

Therefore, we propose parallel implementation of the permutation testing, which processes N207

iterations in parallel on the GPU according to the user’s GPU specification and repeats this208

process R = ⌈10,000/N⌉ times.209

Figure 2. CPU/GPU workflow of permutation testing.

No. Use of variable Size of variable (bytes)

1 Original data (input) 1,000,000

2 N shuffled data N ×1,000,000

3 N seeds used by curand() function N × sizeof(curandState) = N ×48

4 18 Original test statistics N × sizeof(double) = 144

5 Counter Ci,0,Ci,1,Ci,2 for 1 ≤ i ≤ 18 18× sizeof(int) ×3 = 216

6
N shuffled data after Conversion II
(Only used if the input is binary)

N ×125,000

Table 2. Use and sizes of variables allocated to GPU.

Figure 2 presents the workflow of the CPU and GPU. The host refers to a general CPU that210

executes the program sequentially, whereas the device refers to a parallel processor such as a211

GPU. In steps 1 to 3 of Figure 2, the host performs 18 statistical tests on one million bytes of212

7/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



the input data (without shuffling). In step 4, the host calls a function that allocates the device213

memory required to process N iterations in parallel on the device. The usage and sizes of the214

variables are listed in Table 2. In step 5, the input data (No. 1 in Table 2), and the results of215

the statistical tests in steps 1 to 3 (No. 4 in Table 2) are copied from the host to the device. In216

step 6, the host launches a CUDA kernel CurandInit, which initializes the N seeds used in the217

curand() function. The curand() function that generates random numbers using seeds on the218

device is used in the CUDA kernel Shuffling. When the host receives the completion of the219

kernel CurandInit, the host proceeds to steps 7 to 13, in which N iterations are processed in220

parallel on the device, and this process is repeated R times. To process N iterations, the host221

launches the CUDA kernel Shuffling (step 8) and then launches the CUDA kernel Statistical222

test (step 9) as soon as the host receives the completion of the kernel Shuffling. When the223

host receives the completion of the kernel Statistical test, in step 10, the counters Ci,0,224

Ci,1, and Ci,2 for i ∈ {1,2, . . . ,18}, which indicate the indices of the statistical tests, are copied225

from the device to the host. Following the operations in steps 17 to 19 of Algorithm 2, which226

correspond to those in steps 12 and 13 of Figure 2, the host moves on to step 14 if Equation 2 is227

satisfied for all i. Finally, in step 14, the host determines whether or not the input data are IID.228

The descriptions of the CUDA kernels Shuffling and Statistical test designed for229

processing N iterations in parallel on the GPU are as follows:230

CUDA kernel Shuffling231

The kernel Shuffling generates N shuffled data by permuting one million bytes of the original232

data N times in parallel. Thus, each of N CUDA threads permutes the original data using the233

Fisher–Yates shuffle algorithm and then stores the shuffled data in the global memory of the234

device. As the shuffle algorithm uses the curand() function, each thread uses its unique seed235

that is initialized by the kernel CurandInit with its index, respectively.236

CUDA kernel Statistical test237

The kernel Statistical test performs 18 statistical tests on each of N shuffled data, and238

compares the shuffled and original test statistics. The size of each shuffled data is one million239

bytes and N shuffled data are stored in the global memory of the device. In this section, we240

present two methods that can easily be designed to handle this process in parallel on the GPU,241

and finally, we propose an optimized method.242

Figure 3. General parallel method 1 of kernel Statistical test.

Parallelization method 1 One CUDA thread performs 18 statistical tests sequentially on243

one shuffled dataset. This method is illustrated in Figure 3. If this method is applied to244

the kernel Statistical test, B′ = (N/T ) CUDA blocks are used when the number of245

CUDA threads is T . However, because each thread runs 18 tests in sequence, room for246

improvement is apparent in this method.247

8/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



Figure 4. General parallel method 2 of kernel Statistical test.

Figure 5. Optimized parallel method of kernel Statistical test.

9/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



Parallelization method 2 In this method, each block performs its designated statistical test248

out of 18 tests on one shuffled dataset shared by 18 blocks. Thus, for one shuffled set,249

18 statistical tests are run in parallel, and this method is a parallelization of the serial250

part in method 1 above. This method is illustrated in Figure 4, which indicates the kernel251

Statistical test with B′ = ((N/T )×18) CUDA blocks and T threads in a block.252

Optimized parallelization This method optimizes parallelization method 2. To hide the253

latency in accessing the slow global memory of the GPU, we analyze the runtime of 18254

statistical tests from an algorithmic perspective and merge several statistical tests with255

similar access to the global memory into a single test. Therefore, 9 merged statistical256

tests replace 18 statistical tests. This method is depicted in Figure 5, where the kernel257

Statistical test uses B′ = ((N/T )×9) CUDA blocks, with T threads in each block.258

If the noise sample size is 1 bit, one of two conversions is applied to certain statistical tests.259

With slight modifications to the kernels Shuffling and Statistical test, which are designed260

for 8-bit samples, as described above, we can parallelize the permutation testing when the input261

data are binary. In the kernel Shuffling, N CUDA threads firstly generate N shuffled data in262

parallel. As no conversions are applied to the excursion test and runs based on the median test,263

each thread performs these two tests sequentially on the shuffled data designated for processing.264

In the runs based on the median test, two statistical tests, namely the number of runs based265

on the median and the length of the runs based on the median, are merged. Thereafter, each266

thread proceeds to Conversion II for its own shuffled data and stores the results (No. 6 in Table267

2) in the global memory of the GPU. The kernel Statistical test runs seven merged tests268

in parallel, with the exception of two tests that are already performed in the kernel Shuffling.269

Therefore, B′ = (N/T )×7 CUDA blocks are used when the number of CUDA threads is T . The270

data after Conversion I are the result of calculating the Hamming weight of the data following271

Conversion II. Instead of storing the data after Conversion II as well as the data after Conversion272

I separately in the global memory, to minimize the use of the global memory, we use a method273

to calculate the Hamming weight of the data after Conversion II in the merged statistical tests274

applied by Conversion I.275

EXPERIMENTS AND PERFORMANCE EVALUATION276

In this section, we present the performance measurement of the proposed method and compare277

its performance with the NIST program written in C++. The performance was evaluated using278

two hardware configurations (Table 3).279

Prior to the experiment, we set the values of the parameters used. To process N iterations in280

parallel on the GPU, we required N ×1,000,000 bytes of the global memory of the GPU. Both281

devices used in the experiment had a global memory of more than 2 GB; however, to minimize282

the size of the global memory used in our proposed method by considering a common device with283

a specification lower than that used in the experiment, we set N to 2,048 (≈ 2 GB/1,000,000284

bytes). Then we set T , the number of threads per block used in the CUDA kernel, to 256, which285

was a multiple of the warp size (= 32). As N and T were determined, B (the number of blocks286

in the kernel Shuffling), was set to 8(= N/T ). In the same manner, B′ (the number of blocks287

in the kernel Statistical test), was set to 72(= N/T ×9).288

GPU optimization concepts289

We conducted experiments on the optimization concepts considered while parallelizing the290

permutation testing. The input data of the permutation testing used in the experiment were291

data consisting of one million samples collected from the noise source GetTickCount, where the292

sample size was 8 bits.293

Parallelism and merging statistical tests294

To verify that the proposed optimized parallel method was optimal compared to parallelization295

methods 1 and 2, we conducted an experiment and measured the execution times, as indicated296

in Table 4, which presents the performance of the kernel Statistical test for each method. It297

10/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



Name Device A Device B

CPU model Intel(R) Core (TM) i7-8086K Intel(R) Core (TM) i7-7700

CPU frequency 4.00 GHz 3.60 GHz

CPU cores 6 4

Accelerator type NVIDIA GPU NVIDIA GPU

Models TITAN Xp GeForce GTX 1060

Multiprocessors (MPs) 30 10

CUDA cores/MP 128 128

CUDA capability major 6.1 6.1

Global memory 12,288 MB 6,144 MB

Memory clock rate 5,750 MHz 4,004 MHz

Memory bus width 384 bits 192 bits

Registers/block 65,536 65,536

Threads/MP 2,048 2,048

Threads/block 1,024 1,024

Warp size 32 32

CUDA driver version 10.1 10.1

Table 3. Configurations of experimental platforms.

Method
Execution time (s)

Device A Device B

Parallelization method 1 19.83 27.81

Parallelization method 2 13.55 30.89

Our optimization 9.38 13.53

Table 4. Execution time of kernel Statistical test according to parallel method (number of
CUDA blocks = 8; number of threads per block = 256).

can be observed from the table that our optimization technique was effective on both Device A298

and Device B.299

When the operation time of each CUDA thread in the kernel where each parallel method was300

applied is represented graphically, it can be confirmed that the difference in the execution times301

between each method presented in Table 4 is reasonable. Figure 6 displays the operation times302

of the CUDA threads with each parallelization method on the GPU, assuming that the GPU303

had four MPs. The task of the GPU scheduler was to allocate the CUDA blocks to the MPs,304

however, we allocated arbitrarily for visualization as Figure 6. When each statistical test was305

run in parallel on the GPU (Device A) for N shuffled data, the 18 statistical tests had different306

execution times, as indicated in Table 5(left). Therefore, we expressed the different lengths of307

the threads in the CUDA blocks running each statistical test, as illustrated in Figure 6 (left and308

center). In the proposed method, several statistical tests were merged for optimization so that309

the execution time of the merged statistical test (Table 5(right)) was equal to or slightly longer310

than each execution time of the original statistical tests prior to merging (Table 5 (left)). Thus,311

the lengths of the threads in the block running Test 1&2 were slightly longer than those of the312

threads in the block running Test 1 or Test 2, as indicated in Figure 6(right). As illustrated in313

Figure 6, we confirmed that our optimization outperformed parallelization methods 1 and 2.314

11/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



Figure 6. Operation time of CUDA threads in kernel Statistical test when applying each
method on device.

Figure 7. Number of registers used by each CUDA thread running each statistical test and each
merged statistical test.

As more threads and thread blocks are likely to reside on an MP when a kernel uses fewer315

registers, which may improve the performance, the number of registers used by each thread is316

one of the key factors for performance improvement(NVIDIA, 2019). To provide an analysis in317

terms of the number of registers with which the optimized method performance was superior318

to the others, we firstly measured the number of registers used by each thread running each319

statistical test and each merged test in the kernel Statistical test, respectively. Figure 7320

presents the measured numbers of registers per thread. In Figure 7, the numbers 1 to 18 on the321

x-axis represent the tests indicated on the left side of Table 5, whereas the numbers 1′ to 9′
322

represent the tests on the right. According to Figure 7, the maximum number of registers in the323

merged statistical tests was equal to the maximum number of registers in the statistical tests.324

Therefore, we can confirm that the statistical tests we merged did not degrade the performance325

by using the same maximum number of registers as the tests before being merged. The maximum326

number of registers in the kernel to which each method was applied was 34 in all cases and327

12/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



No.
Name of

statistical test
Execution
time (s)

No.
Name of merged
statistical test

Execution
time (s)

1 Excursion test 0.20 1′ Excursion test 0.20

2
Number of directional

runs
0.04 2′

Directional runs and
number of inc/dec

0.04

3 Length of directional runs 0.04

4
Numbers of increases

and decreases
0.04

5
Number of runs based on

median
0.10 3′ Runs based on median 0.11

6
Length of runs based on

median
0.10

7
Average collision

test statistic
9.09 4′ Collision test statistic 9.32

8
Maximum collision

test statistic
9.09

9 Periodicity test (lag = 1) 0.06 5′ Per/Cov test (lag = 1) 0.11

10 Covariance test (lag = 1) 0.08

11 Periodicity test (lag = 2) 0.05 6′ Per/Cov test (lag = 2) 0.11

12 Covariance test (lag = 2) 0.07

13 Periodicity test (lag = 8) 0.06 7′ Per/Cov test (lag = 8) 0.11

14 Covariance test (lag = 8) 0.08

15 Periodicity test (lag = 16) 0.06 8′ Per/Cov test (lag = 16) 0.11

16 Covariance test (lag = 16) 0.08

17 Periodicity test (lag = 32) 0.06 9′ Per/Cov test (lag = 32) 0.11

18 Covariance test (lag = 32) 0.08

Table 5. Left: execution time of each statistical test on GPU; right: execution time of each
merged statistical test on GPU (Device A, number of CUDA blocks = 8, number of threads per
block = 256).

each block had 256 threads. Therefore, up to 7 blocks could reside on the MPs as they required328

7×256×34 registers, which was almost 65,536: the maximum number of registers available on an329

MP. The CUDA kernel Statistical test used 8, 144, and 72 CUDA blocks for parallelization330

methods 1 and 2, and our method, respectively. In Device A, which had 30 MPs (Table 3), the331

numbers of active blocks per MP were 1, 3 ∼ 4, and 2 ∼ 3 for the three methods, respectively.332

These numbers of active blocks per MP were less than the maximum number of blocks per MP,333

which was 7. By analyzing the number of registers per MP and the operation time of each334

block for each method, as indicated in Figure 6, we could confirm that the optimized method335

on Device A was superior. In Device B, which had 10 MPs (Table 3), the numbers of active336

blocks were 1 and 7 for parallelization method 1 and our method, respectively. When method337

2 was applied in the kernel Statistical test, the number of active blocks was greater than338

7. However, the maximum number of blocks per MP was 7, which explains why method 2 was339

slower than method 1, as indicated in Table 4. Thus, we also found that the optimized method340

performed better on Device B with fewer MPs.341

13/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



Coalesced memory access342

In this study, we used the memory coalescing technique (Figure 8) to transfer data from slow343

global memory to the registers efficiently. Table 6 displays the performance of our parallel344

implementation of the permutation testing before and after using this technique. As a result, we345

obtained an improvement of 1.1 times.346

Figure 8. Memory coalescing technique.

Before using memory
coalescing technique (s)

After using memory
coalescing technique (s)

Device A 67 60

Device B 190 176

Table 6. Performance of proposed parallel implementation of permutation testing depending on
whether memory coalescing technique was used.

Performance evaluation with NIST program according to noise source347

We measured the performances of the proposed parallel implementation of the permutation348

testing using the GPU for both the IID and non-IID noise sources. Moreover, we compared these349

performances with those of the permutation testing in the NIST program written in C++.350

Two noise sources were used in the experiment. The first noise source, truerand, was provided351

by the NIST. This noise source was IID and the estimated min-entropy was 7.2 bits when the352

noise sample size was 8 bits. The second noise source, GetTickCount, could be collected through353

the GetTickCount() function in the Windows environment, and its estimated min-entropy was354

1.6 bits when the noise sample size was 8 bits.355

Table 7 presents the execution times of the NIST program on the CPU and the proposed356

program on the GPUs, measured for each noise source. Each execution time in Table 7 was the357

average time required for 50 executions. In the case of truerand (the IID noise source), it was358

unlikely that each of the 18 statistical tests would run all 10,000 iterations in the permutation359

testing of Algorithm 2, where Equation 2 was used. In the NIST program, if any statistical test360

satisfied Equation 2, that test was no longer performed in the iterations. However, because the361

proposed program processed N iterations of the 18 statistical tests in parallel on the GPU, it362

verified whether Equation 2 was satisfied using the results of N iterations, and if this was the363

14/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



case, it did not proceed with N iterations any further. Therefore, when the noise source was364

IID, the performance of the proposed program was up to 10 times better than that of the NIST365

program, as indicated in Table 7. However, if the noise source was non-IID, it was more likely366

that the 18 statistical tests would run all 10,000 iterations. Thus, in the case of non-IID, from367

Table 7, the proposed program was up to 23 times faster than the NIST program.368

Name of
noise source

Sample
size

NIST program
written in C++ (s)

Proposed program (s)

Device A Device B

truerand

1 37 4 6

4 60 6 13

8 23 12 19

GetTickCount

1 428 19 30

4 467 25 39

8 605 60 91

Table 7. Performances of proposed program and NIST program written in C++ according to
noise source.

CONCLUSIONS369

The security of modern cryptography is heavily reliant on sensitive security parameters such370

as encryption keys. RNGs should provide cryptosystems with ideal random bits, which are371

independent, unbiased, and most importantly, unpredictable. To use a secure RNG, it is necessary372

to estimate its input entropy as precisely as possible. The NIST offers two programs for entropy373

estimations, as outlined in SP 800-90B. However, a long time is required to manipulate several374

noise sources for an RNG.375

This paper has proposed GPU-based parallel implementation of the permutation testing,376

which requires the longest execution time in the IID test of SP 800-90B. The proposed method377

is designed to use massive parallelism of the GPU by balancing the number of registers and the378

execution time for statistical tests, as well as optimizing the use of the global memory for data379

shuffling. We experimentally compared our GPU optimization with the NIST. When applied to380

an IID noise source, the proposed program was 10 times faster than the NIST program written381

in C++. Moreover, for a non-IID noise source, our proposal improved the performance up to 23382

times. It is expected that the time required for analyzing the RNG security will be significantly383

reduced for developers and evaluators by using the proposed approach, thereby improving the384

validation efficiency in the development of cryptographic modules. For future work, we will385

implement the compression test excluded in this study in parallel on the GPU.386

REFERENCES387

Barker, E. and Kelsey, J. (2012). Recommendation for the entropy sources used for random bit388

generation. National Institute of Standards and Technology. NIST Special Publication (SP)389

800-90B (Draft).390

Bernstein, D. J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange, T., and391

Van Someren, N. (2013). Factoring RSA keys from certified smart cards: Coppersmith in the392

wild. In International Conference on the Theory and Application of Cryptology and Information393

Security, pages 341–360. Springer.394

Ding, Y., Peng, Z., Zhou, Y., and Zhang, C. (2014). Android low entropy demystified. In 2014395

IEEE International Conference on Communications (ICC), pages 659–664. IEEE.396

Heninger, N., Durumeric, Z., Wustrow, E., and Halderman, J. A. (2012). Mining your Ps and397

Qs: Detection of widespread weak keys in network devices. In Presented as part of the 21st398

USENIX Security Symposium (USENIX Security 12), pages 205–220.399

15/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science



ISO/IEC-20543 (2019). Information technology — Security techniques — Test and analysis400

methods for random bit generators within ISO/IEC 19790 and ISO/IEC 15408.401

Kang, J.-S., Park, H., and Yeom, Y. (2017). On the Additional Chi-square Tests for the IID402

Assumption of NIST SP 800-90B. In 2017 15th Annual Conference on Privacy, Security and403

Trust (PST), pages 375–3757. IEEE.404

Kaplan, D., Kedmi, S., Hay, R., and Dayan, A. (2014). Attacking the Linux PRNG On Android:405

Weaknesses in Seeding of Entropic Pools and Low Boot-Time Entropy. In 8th USENIX406

Workshop on Offensive Technologies (WOOT 14).407

Kim, S. H., Han, D., and Lee, D. H. (2013). Predictability of Android OpenSSL’s pseudo random408

number generator. In Proceedings of the 2013 ACM SIGSAC conference on Computer &409

communications security, pages 659–668.410

Li, P., Zhou, S., Ren, B., Tang, S., Li, T., Xu, C., and Chen, J. (2019). Efficient implementation411

of lightweight block ciphers on volta and pascal architecture. Journal of Information Security412

and Applications., 47:235–245.413

Manavski, S. A. (2007). CUDA compatible GPU as an efficient hardware accelerator for AES cryp-414

tography. In 2007 IEEE International Conference on Signal Processing and Communications.,415

pages 65–68. IEEE.416

Michaelis, K., Meyer, C., and Schwenk, J. (2013). Randomly failed! the state of randomness417

in current java implementations. In Cryptographers’ Track at the RSA Conference, pages418

129–144. Springer.419

Nguyen, P. Q. and Shparlinski, I. E. (2002). The Insecurity of the Digital Signature Algorithm420

with Partially Known Nonces. Journal of Cryptology, 15(3).421

NIST (2015). EntropyAssessment. Available at https://github.com/usnistgov/SP800-422

90B EntropyAssessment (accessed February 2020).423

NVIDIA (2019). CUDA C++ PROGRAMMING GUIDE. NVIDIA, Nov.424

Patel, R. A., Zhang, Y., Mak, J., Davidson, A., and Owens, J. D. (2012). Parallel lossless data425

compression on the GPU. IEEE.426

Seward, J. (2019). bzip2 and libbzip2, version 1.0.8: A program and library for data compression.427

Avaliable at https://sourceware.org/bzip2/.428

Shastry, K., Pandey, A., Agrawal, A., and Sarveswara, R. (2016). Compression acceleration429

using GPGPU. In 2016 IEEE 23rd International Conference on High Performance Computing430

Workshops (HiPCW), pages 70–78. IEEE.431

Stevens, M., Bursztein, E., Karpman, P., Albertini, A., and Markov, Y. (2017). The first collision432

for full SHA-1. In Annual International Cryptology Conference., pages 570–596. Springer.433

Szerwinski, R. and Güneysu, T. (2008). Exploiting the power of GPUs for asymmetric cryptog-434

raphy. In International Workshop on Cryptographic Hardware and Embedded Systems., pages435

79–99. Springer.436

Sönmez Turan, M., Barker, E., Kelsey, J., McKay, K., Baish, M., and Boyle, M. (2016).437

Recommendation for the entropy sources used for random bit generation. National Institute438

of Standards and Technology. NIST Special Publication (SP) 800-90B (2nd Draft).439

Sönmez Turan, M., Barker, E., Kelsey, J., McKay, K., Baish, M., and Boyle, M. (2018).440

Recommendation for the entropy sources used for random bit generation. National Institute441

of Standards and Technology. NIST Special Publication (SP) 800-90B.442

Yilek, S., Rescorla, E., Shacham, H., Enright, B., and Savage, S. (2009). When private keys are443

public: Results from the 2008 Debian OpenSSL vulnerability. In Proceedings of the 9th ACM444

SIGCOMM conference on Internet measurement, pages 15–27.445

Yoo, T., Kang, J.-S., and Yeom, Y. (2017). Recoverable random numbers in an internet of things446

operating system. Entropy, 19(3):113.447

Zhu, S., Ma, Y., Chen, T., Lin, J., and Jing, J. (2017). Analysis and improvement of entropy448

estimators in NIST SP 800-90B for non-IID entropy sources. IACR Transactions on Symmetric449

Cryptology, pages 151–168.450

Zhu, S., Ma, Y., Li, X., Yang, J., Lin, J., and Jing, J. (2019). On the analysis and improvement451

of min-entropy estimation on time-varying data. IEEE Transactions on Information Forensics452

and Security.453

16/16PeerJ Comput. Sci. reviewing PDF | (CS-2020:05:48653:0:1:NEW 23 May 2020)

Manuscript to be reviewedComputer Science


