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ABSTRACT8

Classifiers are often tested on relatively small data sets, which should lead to uncertain performance

metrics. Nevertheless, these metrics are usually taken at face value. We present an approach to quantify

the uncertainty of classification performance metrics, based on a probability model of the confusion matrix.

Application of our approach to classifiers from the scientific literature and a classification competition

shows that uncertainties can be surprisingly large and limit performance evaluation. In fact, some

published classifiers are likely to be misleading. The application of our approach is simple and requires

only the confusion matrix. It is agnostic of the underlying classifier. Our method can also be used for the

estimation of sample sizes that achieve a desired precision of a performance metric.
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INTRODUCTION17

Classifiers are ubiquitous in science and every aspect of life. They can be based on experiments,18

simulations, mathematical models or even expert judgement. The recent rise of machine learning has19

further increased their importance. But machine learning practitioners are by far not the only ones who20

should be concerned by the quality of classifiers. Classifiers are often used to make decisions with21

far-reaching consequences. In medicine, a therapy might be chosen based on a prediction of treatment22

outcome. In court, a defendant might be considered guilty or not based on forensic tests. Therefore, it is23

crucial to assess how well classifiers work.24

In a binary classification task, results are presented in a 2×2 confusion matrix (CM), comprising the25

numbers of true positive (TP), false negative (FN), true negative (TN) and false positive (FP) predictions.26

CM =

[

TP FN

FP TN

]

(1)

CM contains all necessary information to determine metrics which are used to evaluate the performance27

of a classifier. Popular examples are accuracy (ACC), true positive rate (TPR), and true negative rate28

(TNR)29

ACC =
TP+TN

TP+FN+FP+TN
(2)

TPR =
TP

TP+FN
(3)

TNR =
TN

TN+FP
(4)

These are given as precise numbers, irrespective of the sample sizes (Ns) used for their calculation in30

performance tests. This is problematic especially in fields such as biology or medicine, where data31

collection is often expensive, tedious, or limited by ethical concerns, leading often to small Ns. In32

this study we demonstrate that in those cases the uncertainty of the CM entries cannot be neglected,33
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which in turn makes all performance metrics derived from the CM uncertain, too. In the light of the34

ongoing replication crisis Baker (2016), it is plausible that negligence of the metric uncertainty impedes35

reproducible classification experiments.36

There is a lack of awareness of this problem, especially outside the machine learning community. One37

often encounters discussions of classifier performance lacking any statistical analysis of the validity in38

the literature. If there is a statistical analysis it usually relies on frequentist methods such as confidence39

intervals for the metrics or null hypothesis significance testing (NHST) to determine if a classifier is40

truly better than random guessing. NHST “must be viewed as approximate, heuristic tests, rather than as41

rigorously correct statistical methods” Dietterich (1998).42

Bayesian methods can be valuable alternatives. Benavoli et al. (2017) To properly account for the43

uncertainty, we have to replace the point estimates in the CM and all dependent performance metrics44

by probability distributions. Correct and incorrect classifications are outcomes of a Binomial experi-45

ment. Brodersen et al. (2010a) Therefore, Brodersen et al. model ACC with a beta-binomial distribution46

(BBD)47

ACC ∼ Beta(TP+TN+1,FP+FN+1). (5)

Some of the more complex metrics, such as balanced accuracy, can be described by combining two48

BBDs. Brodersen et al. (2010a)49

Caelen presented a Bayesian interpretation of the CM. Caelen (2017) This elegant approach, based on50

a single Dirichlet-multinomial distribution, allows to replace the count data of the confusion matrix with51

distributions which account for the uncertainty.52

CM ∼ Mult(θ,N) (6)

θ ∼ Dirichlet((1,1,1,1)) (7)

where θ=[θTP,θFN,θTN,θFP] is the confusion probability matrix which represents the probabilities to draw53

each entry of the CM. The major advantage of Caelen’s approach over the one presented by Brodersen54

lies in a complete description of the CM. From there, all metrics can be computed directly, even those55

that cannot simply be described as BBD.56

Caelen calculates metric distributions from confusion matrices that are sampled according to Equa-57

tion 6. Here, we demonstrate that this approach is flawed and derive a correct model. Whereas previous58

studies focused on the statistical methods, we prove that classifier performance in many peer-reviewed59

publications is highly uncertain. We studied a variety of classifiers from the chemical, biological and60

medicinal literature and found cases where it is not clear if the classifier is better than random guessing.61

Additionally, we investigate metric uncertainty in a Kaggle machine learning competition where sample62

size is relatively large but a precise estimate of the metrics is required. In order to help non-statisticians to63

deal with these problems in the future, we derive a rule for sample size determination and offer a free,64

simple to use webtool to determine metric uncertainty.65

METHODS66

Model67

The confusion probability matrix (θ), that is the probabilities to generate entries of a confusion matrix,68

can be derived if prevalence (φ ), TPR and TNR are known. Kruschke (2015a)69

θTP = TPR ·φ (8)

θFN = (1−TPR) ·φ (9)

θTN = TNR · (1−φ) (10)

θFP = (1−TNR) · (1−φ) (11)

The idea that these metrics can also be inferred from data, propagating the uncertainty, is the starting70

point of the present study. Using three BBDs, one for each of φ , TPR and TNR, we can express all entries71
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Figure 1. Three beta-binomial distributions p(·) – prevalence (left), true positive rate (top), true negative

rate (bottom) – define the confusion matrix. Based on them, all entries of the CM can be expressed as

distributions with explicit uncertainty due to limited sample size.

of the CM (Figure 1). Since φ , TPR and TNR are distributions, the entries of θ [θTP,θFN,θTN,θFP] are72

too. Based on θ we calculate all other metrics of interest.73

For the following Bayesian treatment we use the Laplace prior, Beta(α = 1,β = 1), for φ , TPR and74

TNR because its uniform distribution introduces no bias, which makes it suitable for any classification75

problem. It is noteworthy that a flat prior on φ , TPR and TNR leads to non-flat priors on other metrics76

(section S1). We discuss two additional objective priors in the supplementary material. If additional77

knowledge is available, based e.g. on the experimental setup of the classifier, it should be incorporated in78

the prior. Here, we refrain from using informative priors to keep the method generally applicable.79

Our approach is quite similar to Caelen’s but has distinct advantages. First, φ , TPR and TNR are80

common metrics; thus prior selection is easier. Second, our model clearly distinguishes data intrinsic φ81

from the classifier intrinsic measures TPR and TNR. Consequently, our approach allows to “exchange” φ .82

This is useful if the prevalence of the test set differs from the prevalence of the population the classifier will83

be applied to in production. Such a scenario is common in medical tests where φ is very low in the general84

population. To increase the sample size of positive cases in the test set without inflating the number of85

negative ones, φ differs from the general population. Using a Dirichlet-multinomial distribution, it is86

not straightforward to evaluate a classifier for a different φ . If the data set was designed to contain a87

specified fraction of positive and negative instances, φ is known exactly (section S2). This scenario is88

easy to implement in our model but not in Caelen’s.89

Depending on the context, φ may have two meanings. If one is interested in a population, φ describes90

how common fulfillment of the positive criterion is. For an individual, e.g. a patient, φ can be considered91

the prior. If additional information was available for this subject, such as results of previous tests, φ92

would differ from the prevalence in the general population. This prior can be updated with TPR and TNR,93

representing the likelihood, to yield the posterior for the individual.94

Measuring true rather than empirical uncertainty95

Bayesian models allow posterior predictions. In our case, posterior predictions would be synthetic96

confusion matrices V , which can be generated from a multinomial distribution (Equation 6).97

This approach is equivalent to a combination of two/three binomial distributions as shown in Figure 198

but slightly more elegant for posterior predictions. Caelen samples many V to obtain metric distributions,99

which requires a choice of sample size N. Caelen uses the N of the original CM the parameters have been100

inferred from. This is not satisfying because in this way only the empirical distribution of the metrics for a101

given N is generated, not the true distribution of the metrics. Consider the example of CM = (TP, TN, FP,102

FN) = (1, 0, 0, 0), i.e. N = 1. We will consider this classifier’s ACC. Caelen’s approach leads to a discrete103
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distribution of the accuracy allowing only 0 and 1 (Figure 2, top). There was one correct prediction in104

the original CM, therefore it is impossible that the accuracy is 0. In other words, the probability mass at105

ACC=0 should be strictly 0. If one is interested in the true continuous posterior distribution of a metric,106

one must calculate it from θ directly (Figure 2, bottom). We prove in section S4 that Caelen’s approach107

systematically overestimates the variance in metric distributions.108
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Figure 2. Calculating accuracy (ACC) on posterior predictions of the confusion matrix yields a discrete

distribution (A), representing expected observations of the metric at given sample size (N). Posterior

distributions (B) of the metric must be calculated from the inferred entries of the confusion probability

matrix (θ) as outlined in the text.

We still consider Caelen’s way of calculating metrics extremely useful since it allows to tackle the109

problem of reproducibility. Generating synthetic V according to Equation 6 allows us to estimate what110

would happen if multiple researchers applied the same classifier to different data sets of size N and reported111

the corresponding CMs and metrics. Figure 2 shows that they might report completely different values of112

a metric if N is small. Under these circumstances, classification experiments are not reproducible.113

Metric uncertainty equals credible interval length114

If there is little data available, posterior distributions are broad. We define metric uncertainty (MU) as the115

length of the 95% highest posterior density interval (“credible interval”). There is a 95% likelihood that116

the metric is within this credible interval (bottom of Figure 2). In section S5, we prove that the uncertainty117

of φ , TPR, TNR, and other metrics is dependent on 1√
N

.118

Implementation119

Since the beta distribution is the conjugate prior of the binomial distribution, the posterior distribution120

can be derived analytically. There is no need for Markov chain Monte Carlo sampling. This is merely a121

convenience, our approach would work with any prior. To calculate metrics, we sampled 20000 data points.122

Splitting these data points into two arrays of equal length, we use PyMC’s implementation of the Gelman-123

Rubin diagnostics (Rc < 1.01) to verify that the posterior distribution is properly sampled. Gelman and124

Rubin (1992); Brooks and Gelman (1998); Salvatier et al. (2016)125

The implementation of our model in Python can be found on https://github.com/niklastoe/126

classifier_metric_uncertainty.127
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RESULTS AND DISCUSSION128

Classifier examples from the literature129

To assess the uncertainty in classifier performance in the scientific literature, we searched Google130

Images for binary confusion matrices from peer reviewed publications in the area of chemistry, biology131

and medicine with less than 500 samples in the test set. We collected 24 classifiers; confusion matrices132

and the references to the publications are listed in Table S1. Publications are indexed with numbers. If133

more than one classifier is presented in one publication, a character is added. Some of these classifiers134

are based on statistical models of available data. Others are based on simulations. The majority of135

publications describe the development of a new experimental approach followed by a statistical model136

that transforms the experimental outcome into a classification. Classifiers come from diverse fields, e.g.137

chemical detection (adulterants in palm oil or cocaine, mycotoxins in cereals) or prediction of inhibitors138

of amyloid-aggregation or enzymes. The smallest sample size was 8, the largest 350.139

While the resources invested in the development of these classifiers must have been considerable, their140

performance had not been thoroughly evaluated. Specifically, only for a single classifier the uncertainty141

had been quantified by calculating confidence intervals. In some of the literature examples, we also noted142

severe problems unrelated to small N. Due to usage of ACC for imbalanced data sets and mixing of train143

and test data sets for reported metrics, the performance of some classifiers was overrated. These problems144

have been addressed previously. Chicco (2017) In this study, we evaluate classifiers on metrics which are145

invariant to class imbalance and rely exclusively on test data sets.146

Our selection may not in all aspects be representative of published classifiers in any field. However,147

the negligence of metric uncertainty observed in this selection is not exceptional. Our choice of biology,148

chemistry, and medicine as scientific domain was based on our relative familiarity with those fields. While149

in this domain small sample sizes are common (due to costly data collection), this problem is probably150

not limited to this domain.151

Metrics are broadly distributed152

Typically, classifier metrics are reported as single numerical values (often to one or more decimals) without153

indication of uncertainty. However, the true MUs of classifiers in our collection are too large to be ignored154

(Figure 3B). Often, MU is greater than 20 percentage points, sometimes exceeding 60 percentage points.155

In general, MU in all three observed metrics declines as N increases. The decrease is not monotonous156

because MU also depends on the value of the metric (section S5).157

The MUs we show in Figure 3B were obtained from θ. As mentioned above, metrics calculated158

from empirically observed confusion matrices of the same classifier would vary even more. Thus, if an159

independent lab tried to reproduce CM for, say, example 7a, with a much larger sample size, TNR values160

of 90% or 50% would not be surprising, although the value given in the paper is 75%.161

It is possible that we underrate some classifiers. If a metric should have a more informative prior162

than the Laplace prior we used, e.g. due to previous experience or convincing theoretical foundations, the163

posterior could also be more narrowly defined.164

Metric uncertainty limits confidence in high-stakes application of classifiers165

In the following, we discuss in greater detail MU for one classifier where the consequences of misclassifi-166

cation are dramatic and understandable to non-experts. Classifier 7a is a new method to predict cocaine167

purity based on a ”simple, rapid and non-destructive” experiment followed by mathematical analysis. The168

authors stress the importance of such a method for forensic experts and criminal investigators. Predictions169

are compared to a destructive and more elaborate experimental reference. Prosecutors in countries such170

as Spain may consider purity as evidence of the intent to traffic a drug, presumably resulting in more171

severe punishments.1 Consequently, a FP would result in a wrongful charge or conviction causing severe172

stress and eventually imprisonment for the accused. A FN on the other hand might lead to an inadequately173

mild sentence. Moreover, one could also consider the scenario of drug checking. In some cities, such as174

Zurich, Switzerland, social services offer to analyze drugs to prevent harm from substance abuse due to175

unexpectedly high purity or toxic cutting agents.2 In this context, a FN could lead to an overdose due to176

the underestimated purity.177

1http://www.emcdda.europa.eu/system/files/publications/3573/Trafficking-penalties.pdf; accessed December 3rd, 2019 1:55 pm

CEST
2https://www.saferparty.ch/worum-gehts.html; accessed on June 9th, 2020 at 3:42 pm CEST
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Figure 3. Analysis of literature examples. Classifiers are sorted by ascending sample size which ranges

from 8 to 350 (A). Metric uncertainty (MU) for prevalence (φ ), true positive rate (TPR), and true negative

rate (TNR) is large and decreases with sample size (B). Since MU is determined by the length of the 95%

highest posterior density interval, the theoretical upper limit is 95% (in which case nothing is known

about the metric). If MU was 0%, the corresponding metric would be known at infinite precision.

Posterior distributions of bookmaker informedness (BM) are broad due to small test sets in the literature

examples (C). Some classifiers have considerable posterior density in the negative region; these classifiers

could be misinformative. Percentages along top margin are rdeceptive values (Equation 14), the probability

that a classifier is worse than random guessing.
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Table 1. Confusion matrix of the cocaine purity classifier 7a. r stands for reference, m for model

r=high r=low

m=high 26 2

m=low 0 6
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Figure 4. Metric uncertainty for cocaine purity classifier 7a. Posterior distributions for (A) true positive

rate (TPR) and (B) true negative rate (TNR).

The confusion matrix in Table 1 is transcribed from the original publication. We do not know whether178

their method was used for drug checking or in court (at least the authors received the samples from the179

local police department). If it was, could it be trusted by a forensic expert, judge, or member of the jury?180

The posterior distribution of the TPR (Figure 4) answers this question probabilistically. The point estimate181

from CM would be TPR=100% but due to small N, the uncertainty is large. The credible interval spans182

from 89% to almost 100% although not a single FN has been observed in the test set.183

Now consider TNR. Since there are only eight low purity cocaine samples, the uncertainty is much184

larger. While the point estimate would be TNR=75%, the credible interval is 43%-95%. It is possible,185

although unlikely, that the classifier would generate more FP than TN. This would translate into more186

wrongful convictions than correct acquittals for possessing cocaine with high purity if this method was187

used as main evidence in court.188

Our approach would hopefully lead to more cautious use of little tested classifiers. Imagine two189

scenarios. In the first, a judge is told that the forensic method has a TPR of 100% and a TNR of 75%. In190

the second, she is told that it has an estimated TPR of 89-100% and an estimated TNR of 43-95%. In the191

latter, the judge would be more hesitant to base her verdict on the classifier.192

We do not know if φ in the test set is representative of the prevalence of drug samples in criminal193

cases. Therefore, we cannot reasonably estimate the distribution of probabilities of wrongfully harsh/lax194

sentences. For a meaningful assessment of evidence, both φ and MU should be taken into account. Our195

approach facilitates such an analysis.196

Some published classifiers might be deceptive197

As classification problems vary greatly so does the relevance of different metrics, depending on whether198

FN or FP are more or less acceptable. Often, classifier development requires a tradeoff between FN or FP.199

In this respect, bookmaker informedness (BM) is of interest because it combines both in a single metric200
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without weighting and measures the probability of an informed prediction. Powers (2011)201

BM = TPR+TNR−100% (12)

If BM=100%, prediction is perfect and the classifier is fully informed. BM=0% means that the202

classifier is no better than random guessing and BM=-100% shows total disagreement, i.e. the predictor is203

wrong every single time. Figure 3C shows the posterior distributions of BM for the collected examples204

from literature. Due to small N, they are broad. Therefore, it is uncertain how much better the classifiers205

are compared to random guessing. Several classifiers have considerable probability density in the negative206

region, i.e. it is possible that they are weakly deceptive.207

We define the probabilities that a given classifier is informative or deceptive208

rinformative =
∫ 100%

0%
p(BM|D)dθ (13)

rdeceptive =
∫ 0%

−100%
p(BM|D)dθ. (14)

We determined rdeceptive for all literature examples (Figure 3C, top). Four classifiers have a consider-209

able chance to be deceptive. We note that three of them were published alongside alternative classifiers210

that the respective authors considered preferable (5b, 6a, 14b). The probability that the classifier 8 is211

deceptive is approximately 15% so we recommend to reevaluate it with a larger test set.212

The split of the BM posterior into rinformative and rdeceptive in Equation 13 and Equation 14 is a coarse-213

graining device to ease conversation. A classifier with a very low absolute BM is neither informative nor214

deceptive but uninformative.215

For finite N, rdeceptive will be always greater than zero. What value of rdeceptive can be tolerated will of216

course depend on the application scenario, and should be carefully considered by developers and users of217

classifiers.218

Large N, small difference in performance in metaanalysis of classifiers in machine learn-219

ing220

Our approach can also be used for meta-analyses of classifier ensembles, an application that is of221

considerable interest in machine learning. Dietterich (1998); Benavoli et al. (2017); Calvo et al. (2019)222

Kaggle, a popular online community for machine learning challenges, provides a suitable environment223

for such meta-analyses. On Kaggle, participants build classifiers and submit their results online to be224

evaluated and compared to those of others. The best results are rewarded with cash prizes. The metric for225

evaluation depends on the individual challenge. Often, the competition is fierce and submitted results226

close, e.g. accuracy sometimes differs by less than one per mille. With hundreds to tens of thousands of227

data points, test sets tend to be larger than in our literature collection above, but are still finite. Classifier228

metrics therefore retain some uncertainty, and statistical flukes could produce apparent differences in229

classifier performances that decide a competition.230

We studied the Recursion Cellular Image Classification competition in greater detail.3 Participants are231

tasked to properly classify biological signals in cellular images, disentangling them from experimental232

noise. Submissions were ranked based on multiclass accuracy. Micro-averaged multiclass accuracy can233

be modeled according to Equation 5. We evaluated private leaderboards, i.e. rankings provided by Kaggle234

with information on the participants and accuracies of their classifiers. These private leaderboards were235

also used to award prizes. Kaggle did not publish the exact size of the private test set but the overall test236

set contains 19899 images and the private leaderboards were calculated on approximately 76% of it so we237

assumed N=15123. Based on N and the published point estimates of ACC we could calculate TP+TN238

and FP+FN for every submitted classifier and compute a posterior distribution for ACC according to239

Equation 5 (Figure 5A).240

These posterior distributions overlap. Using a Monte Carlo approach, we generated synthetic leader-241

boards from samples of the posterior distributions. Counting how often every submission occurred at242

3https://www.kaggle.com/c/recursion-cellular-image-classification/overview; accessed on

January 31st, 2020 at 9:25 am CEST
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Figure 5. Accuracy (ACC) posterior distribution for top ten submissions on Kaggle leaderboard (A).

Distributions are narrow but the classifiers perform similarly. Therefore, after consideration of the

uncertainty in ACC, the leaderboard positions of the submissions are uncertain (B). If the cash prizes

were awarded based on the probabilistic leaderboard, submissions outside of the top three would receive

money (annotation). These estimates, too, are uncertain by a few percentage points.

any leaderboard position yielded a probabilistic leaderboard (Figure 5B). We observed that the winning243

submission has a 93% chance of being truly better than any other submission. For leaderboard position 4244

and worse, rank uncertainty becomes considerable and ranking validity is limited by the sample size.245

At the end of this competition, the top 3 submission were awarded $10.000, $2.000 and $1.000,246

respectively. This implies that it is certain that the submissions listed in the top 3 positions are indeed the247

best classifiers. As we have demonstrated, it is not certain which submissions are the best. If one would248

weigh the awarded prizes based on the probability of a submission to be in each rank, other participants249

would have been awarded small cash prizes (Figure 5, top annotation).250

Our approach is complementary to the Bayesian Plackett-Luce model, which considers multiple251

rankings for individual problems. Calvo et al. (2019) That model is agnostic about the performance252

metric since it is based only on the leaderboard position in every scenario. Consequently, it neglects the253

magnitude of the performance difference. Our approach on the other hand requires a generative model for254

the performance metric but works for individual problems and quantifies the performance gap between255

classifiers.256

Sample size determination257

Since uncertainty in any commonly used metric decreases with increasing sample size N, we can employ258

our approach of uncertainty quantification also to determine in advance values of N so that a classifier259

fulfills predefined MU criteria.260

For those metrics which can be described as BBD (Equation 5), such as ACC, TPR, TNR and φ , we261

tested N values spanning six orders of magnitude (Figure 6), following Kruschke’s protocol for sample262

size determination. Kruschke (2015b) The shown results were obtained for a generating mode ω=0.8 and263

concentration k = 10. We found that different ω yielded almost indistinguishable results at low k.264

The probability to achieve a MU more narrow than the given width in an empirical study, i.e. statistical265

power, is 95%. The interpretation is as follows: If N=100, the likelihood that MU ≤ 19 percentage points266

is 95%. In order to decrease MU further, N must be increased substantially.267

Based on the standard deviation of a beta distribution and the central limit theorem we derive

MU /
2√
N

(15)

for N > 20 in section S5. It yields the correct order of magnitude which tells us if a classification study is268
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shows the same data on a non-logarithmic scale.

feasible at the desired level of MU. This general rule ignores prior knowledge about the classifier. The269

posterior of the metric derived from exploratory classification experiments should be considered.270

We found several papers presenting metrics with one or even two decimals. Classifier evaluations271

should be considered like any other experiment, and only significant digits should be given in their272

discussion. Inequation 15 predicts that metric uncertainty would only drop below 0.1%, which is273

necessary to present a metric with a decimal, if the test data set included several million data points.274

Curating such a large test set is out of the question for the publications in our examples. On Kaggle275

leaderboards, ACC is presented as percentage with three decimals. Reducing metric uncertainty below276

0.001% would require tens of billions of data points.277

CONCLUSIONS278

In this work, we have presented a Bayesian model that quantifies the metric uncertainty of classifiers due279

to finite test sets. It is completely agnostic about the underlying classifier. Unlike previous work, our280

method cleanly separates data intrinsic φ from classifier intrinsic TPR and TNR, which facilitates transfer281

to different data sets. Nevertheless, our approach allows to evaluate metric uncertainty of all metrics that282

are based on the CM.283

Our study of published examples suggests that MU is a neglected problem in classifier development.284

We found classifier metrics that were typically highly uncertain, often by tens of percentage points. The285

respective articles do not address this uncertainty, regularly presenting insignificant figures. Therefore,286

their audience is unintentionally mislead into believing that classifier metrics are known precisely although287

this is clearly not the case.288

We could show that some classifiers carry a non-negligible risk of being deceptive. Moreover,289

empirical uncertainties, determined by repeating a classification experiment, would be even larger than290

the true uncertainty of a metric due to small N. Thus, many published classification metric point estimates291

are unlikely to be reproducible.292

Poorly understood classifiers potentially harm individuals and society. Our example on cocaine purity293

analysis has shown that the number of miscarriages of justice due to an insufficiently tested classifier could294

be alarmingly high. Similarly, the likelihood of misdiagnoses and subsequent wrongfully administered295

therapies based on a medical classifier remain obscure unless we account for sample size. In basic science,296

uncertain classifiers can misguide further research and thus waste resources. During the identification of297

molecules with therapeutic potential, a poor classifier would discard the most promising ones or lead the298
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researchers to a dead-end. Since time and funding are finite, this would decrease progress resulting in299

economic as well as medical damages.300

The example of the Kaggle challenge shed light on the problem of uncertain performance in classifier301

meta-analysis. There, sample size is usually large but performance differences are minute. Consequently,302

classifier or algorithm rankings are uncertain.303

We can interpret the frequent failure to account for metric uncertainty in classification as another facet304

of the current replication crisis, one root cause of which is neglect of uncertainty. Gelman and Carlin305

(2017); Wasserstein et al. (2019) Classifier evaluation should be considered like any other experiment. It306

is obvious that a physical quantity cannot be measured exactly, and neither can a classifier metric. Thus,307

its uncertainty should be estimated and properly communicated.308

For easy access to the method proposed here, we provide a free open-source software at https:309

//github.com/niklastoe/classifier_metric_uncertainty. The software can be used310

without programming in an interactive web interface. The only required input is the confusion matrix, i.e.311

information that is usually available for published classifiers. The software then computes uncertainty312

for any of the commonly used classifier metrics. Moreover, sample sizes that are required to achieve a313

given exactness of a metric can be estimated according to Inequation 15. We hope this contributes to314

more realistic expectations, more thoughtful allocation of resources and ultimately reliable performance315

assessments of classifiers.316

Our approach can be extended to similar problems. Multiclass classification can be modeled by c+1317

multinomial distributions (where c is the number of classes), analogously to Figure 1. Another extension318

of our approach is the computation of error bars of the popular receiver operating characteristic (ROC)319

curve, which is basically a vector of CMs. It would be more difficult to use our approach to compute320

the uncertainty of the area under the ROC curve (AUC), another popular classifier metric. However, the321

AUC, too, will be uncertain for finite N. A further extension is the inclusion of classification scores in a322

distributional model Brodersen et al. (2010b), because the scores contain additional information that leads323

to a better understanding of MU.324

Our approach only captures the uncertainty arising from finite N. Other sources of uncertainty such325

as over- or underfitting, data and publication bias etc. need to be considered separately. For instance,326

comparison of metric posterior distributions calculated separately for the training and test data could327

help to assess overfitting. Without such additional analyses, the posterior distributions obtained with our328

method are probably often too optimistic.329
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