
 

January 14, 2022

Retraction Notice
Retraction Notice: Iqbal U, Shoukat IA, Elahi I, Kanwal A, Farrukh B, A.
Alqahtani M, Rauf A, Alqurni JS. 2021. Optimal sequence for chain matrix
multiplication using evolutionary algorithm. PeerJ Computer Science
7:e395 https://doi.org/10.7717/peerj-cs.395

Following publication of the article (Iqbal et al, 2021), concerns were
raised about substantial overlap between this article and a
postgraduate thesis authored by a researcher at National University of
Computer and Emerging Sciences, Pakistan in December 2019.

The corresponding author claims the published article differs from the
postgraduate thesis in source code, methodology, implemented
algorithm and results; containing an acceptable level of apparently
coincidental text overlap.

Following evaluation by a member of the Editorial Board, it was
determined that a high proportion of the text in the published article
was inappropriately re-used without citation or permission from the
author of the thesis. The plagiarism committee at National University of
Computer and Emerging Sciences confirmed this text overlap.

In light of the high level of text overlap that questions the reliability of
the published work, PeerJ staff retract this article.

PeerJ Editorial Office. 2022. Retraction: Optimal sequence for chain
matrix multiplication using evolutionary algorithm. PeerJ Computer
Science 10:e395/retraction
https://doi.org/10.7717/peerj-cs.395/retraction

https://doi.org/10.7717/peerj-cs.395
https://doi.org/10.7717%2Fpeerj-cs.395
https://doi.org/10.7717/peerj-cs.395/retraction


Optimal sequence for chain matrix
multiplication using evolutionary
algorithm

Umer Iqbal1, Ijaz Ali Shoukat1, Ihsan Elahi1, Afshan Kanwal2,
Bakhtawar Farrukh1, Mohammed A. Alqahtani3, Abdul Rauf1 and
Jehad Saad Alqurni4

1 Riphah College of Computing, Riphah International University Faisalabad Campus,

Faisalabad, Pakistan
2Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal Campus,

Sahiwal, Pakistan
3 Department of Computer Information Systems, College of Computer Science and Information

Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
4 Department of Educational Technology, College of Education, Imam Abdulrahman Bin Faisal

University, Dammam, Saudi Arabia

ABSTRACT

The Chain Matrix Multiplication Problem (CMMP) is an optimization problem

that helps to find the optimal way of parenthesization for Chain Matrix

Multiplication (CMM). This problem arises in various scientific applications such as

in electronics, robotics, mathematical programing, and cryptography. For CMMP

the researchers have proposed various techniques such as dynamic approach,

arithmetic approach, and sequential multiplication. However, these techniques are

deficient for providing optimal results for CMMP in terms of computational time

and significant amount of scalar multiplication. In this article, we proposed a new

model to minimize the Chain Matrix Multiplication (CMM) operations based on

group counseling optimizer (GCO). Our experimental results and their analysis show

that the proposed GCO model has achieved significant reduction of time with

efficient speed when compared with sequential chain matrix multiplication

approach. The proposed model provides good performance and reduces the

multiplication operations varying from 45% to 96% when compared with sequential

multiplication. Moreover, we evaluate our results with the best known dynamic

programing and arithmetic multiplication approaches, which clearly demonstrate

that proposed model outperforms in terms of computational time and space

complexity.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation

Keywords Chain matrix multiplication, Evolutionary algorithm

INTRODUCTION
Optimization means to find the optimal and diverse solution for a complex problem

(Bengio, Lodi & Prouvost, 2020). There are many complex problems exist in the real life,

it is difficult to solve these problems by divination. In these problems, the resources are

limited, which lead to many constraints. Optimization plays an important role to solve

these problems, because optimization uses the resources in efficient way. These complex

problems have many scenarios where an objective can be transformed into an optimization

How to cite this article Iqbal U, Shoukat IA, Elahi I, Kanwal A, Farrukh B, A. Alqahtani M, Rauf A, Alqurni JS. 2021. Optimal sequence for

chain matrix multiplication using evolutionary algorithm. PeerJ Comput. Sci. 7:e395 DOI 10.7717/peerj-cs.395

Submitted 12 November 2020

Accepted 24 January 2021

Published 26 February 2021

Corresponding author

Umer Iqbal,

umeriqbal@riphahfsd.edu.pk

Academic editor

Muhammad Asif

Additional Information and

Declarations can be found on

page 16

DOI 10.7717/peerj-cs.395

Copyright

2021 Iqbal et al.

Distributed under

Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.395
mailto:umeriqbal@�riphahfsd.�edu.�pk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.395
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


problem. Optimization problems are classified into two types: single-objective

optimization problem and multi-objective optimization problem. For optimization

problems the researchers proposed many evolutionary algorithms like Genetic Algorithm

(GA) (Deb et al., 2002;Waheeb & Ghazali, 2019), Dynamic Evolution (DE) (Storn & Price,

1997), Evolutionary Strategies (ES) (Huning, 1976), Ant Colony Optimization (ACO)

(Dorigo, Maniezzo & Colorni, 1996), Genetic Programming (GP) (Mugambi & Hunter,

2003), Evolutionary Programming (EP) (Coello, Pulido & Lechuga, 2004), Particle Swarm

Optimization (PSO) (Huang, Suganthan & Liang, 2006), Group Counseling Optimizer

(GCO) (Eita & Fahmy, 2010), Multi-Objective Group Counseling Optimizer (MOGCO)

(Ali & Khan, 2013) and Constraint Group Counseling Optimizer (CGCO) (Eita,

Shoukry & Iba, 2014). These evolutionary algorithms have been effectively used to solve

science and engineering optimization problems such as feature selection (Zhou, Liu &

Chen, 2011), intrusion detection (Gómez et al., 2013), optimal security hardening (Dewri

et al., 2012), and dynamic risk management (Poolsappasit, Dewri & Ray, 2011), etc.

However, no one paid attention to applying these algorithms in the field of chain matric

multiplication with the exception of the Genetic Algorithm (GA). But GA belongs to the

population based branch of evolutionary algorithms.

There are the two types of evolutionary algorithms: first is the population based

evolutionary algorithms and, second is the evolution based evolutionary algorithms.

The evolution based algorithms are faster that the population based algorithms (Ali &

Khan, 2013), because the population based algorithms maintain the record of all

individuals from start to end of the process, but the evolution based algorithms update

the individuals table after each iteration and maintain the record of best one individual

from both child and parent. The GCO, CGCO and MMOGCO are the evolution based

algorithms. This is why these algorithms are fast in terms of computational time as

compare to other evolutionary algorithm (Ali & Khan, 2013). In this work, we have

selected the GCO algorithm for the proposed model because this algorithm uses for both

dominated and non-dominated data set, and used for single objective optimization

problems. The CGCO used for only dominate data sets, this is not useful for non-dominate

data sets. The MOGCO uses for the multi-objective optimization problems.

Evolutionary algorithms build solutions that are more fit according to the desired

properties of design problems. Commonly these algorithms used to generate the high level

solutions of optimization and search problems likely mutation, crossover and selection.

Further, these algorithms used a method of randomly selection solution known as the

initiatory population and form the new population using different operations. The general

outline of evolutionary algorithms (Dewri et al., 2012) is shown in the Fig. 1.

Matrix Multiplications (MM) and Chain Matrix Multiplication (CMM) are two

different types of operations. Matrix Multiplication is a binary operation in mathematics,

in which we produce a matrix from two/more matrices (O’Connor & Robertson, 2019).

“The rule of matrix multiplication, in which the number of columns in the first matrix

must be equal to the number of rows in the second matrix” (Srivastava et al., 2020).

The result of these two matrices known as matrix product. MM was initially designed

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 2/19

http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


to represent the composition of linear maps. Therefore, MM is a basic tool of linear

algebra, and as such has several applications in different areas of applied mathematics

and also in mathematics, physics, and engineering. The computation of matrix products is

a fundamental operation in all computation applications of linear algebra. MM is a

binary operation in which we produce the result from two matrices in a new matrix

(Mishra et al., 2020), whereas, CMM is a sequence of matrices in which we find the most

efficient way to multiply a sequence of matrices, to decide which order to accomplish the

multiplications. We only defined the number of operations to multiply the matrices.

Moreover, the matrices have the cost which is determined in the form of rows and

columns (p × q). The matrix multiplication is totally depends on this cost. The

multiplication is possible if and only if the number of columns of first matrix is equal to the

number of rows of second matrix. Chain Matrix multiplication is an associative operation,

the chain matrix multiplication order does not affect the final result but it can affect

the total number of performed operations as shown in Figs. 2 and 3.

In this article, we have proposed an efficient Group Counseling Optimization (GCO)

algorithm based model. The main contributions made by this article are as follows:

� The proposed model implemented the GCO algorithm to for CMM problems. It finds

out the optimal sequence for CMM.

� The comparison of proposed model has done with the existing techniques such as

dynamic programing approach, arithmetic multiplication approach and sequential

approach based on space complexity, time complexity and number of multiplication

operations.

The rest of the article is organized as follows. “Related Work” summarizes the related

work and reviews the literature on evolutionary algorithms and techniques used for the

CMMP. In “Proposed Model”, we explain the proposed model in detail. “Experimental

Design” discusses the experimental design. “Tool and Technology”, discuss the tool

and technologies. “Results and Discussions” presents experimental results and comparison

of proposed model with existing techniques for CMMP. “Concluding Remarks” concludes

this research work.

Figure 1 Outline of evolutionary algorithms. Full-size DOI: 10.7717/peerj-cs.395/fig-1

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 3/19

http://dx.doi.org/10.7717/peerj-cs.395/fig-1
http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


RELATED WORK
Chain Matrix multiplication is an associative operation, the chain matrix multiplication

order does not affect the final result but it can affect the total number of performed

operations. Different architectures and techniques were proposed to solve this problem,

which is shown in Fig. 4 and the summary of literature review discussed in Table 1.

There as multiple approaches used for CMMP like: dynamic programing approach

(Ben Charrada, Ezouaoui & Mahjoub, 2011), sequential approach (Kung, 1982, 1980),

greedy approach (Lakhotia et al., 2015) and arithmetic approach (Hafeez et al., 2007).

According to the literature, the dynamic programing approach and arithmetic approach

for the CMMP provides the optimal results but the problem is that these approaches

are time consuming and required the more space. According to the literature it is also

stated that the greedy approach provides optimal sequence for the CMM in some case but

mostly provided the sequence for CMM which one perform the more multiplication

operations, because the greedy approach stuck at local optima. That’s why greedy

approach only used for the small data set where the local optima is the global optima.

The sequential multiplication is well known approach used for the CMMP, but the

sequential approach failed to provides the optimal sequence for CMM and it is also time

consuming approach and required more space.

The product of chain matrix multiplication can be acquired by using the standard tree

method that was proposed by Zuo & Lastovetsky (2007). The product of A1, A2, A3…, A8

Figure 2 Multiplying right two matrices first. Full-size DOI: 10.7717/peerj-cs.395/fig-2

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 4/19

http://dx.doi.org/10.7717/peerj-cs.395/fig-2
http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


can be obtained by using binary tree method. Input matrices A1, A2, A3…, A8 are input

from the leaves and tree will compute the final result A12345678 at the root. Direct

communications are enabled between these four servers by directly transferring output

A12 from node 1 to node 2, output A56 from node 3 to node 4, output A1234 from

node 2 to node 4. The binary tree built such that the root are at the bottom level and leaves

at the top level. Each particular node corresponds to a matrix product and the leaves

corresponds the product of two successive matrices of the chain matrix. The root

corresponds the final results of the given sequence of matrices. The main issue of this

approach is that the execution time increases for large grid matrix multiplications.

MapReduce is a programing technique and a programing model which was designed

for distributed computing (Seo et al., 2010). This technique consists of two important

tasks that is Map and Reduce. Map function takes the set of data and converts it into

individuals elements and broken down into tuples. Reduce task proceeds the output from

the map function as input then associations those tuples into a small set of tuples. For the

large matrix multiplication, Myung and Jaeseok proposed an implementation based

MapReduce framework (Myung & Lee, 2012). They expanded a binary multiplication

problem to n-ary multiplication for joining the several matrices operation and represented

a matrix which is consists of records (row, col, and val). The main issue of mapreduce

technique is that size of matrix does not fit in the memory and difficult to optimize the

multi-way join operation in MapKey if the same number assigned to more attributes.

Figure 3 Multiplying left two matrices first. Full-size DOI: 10.7717/peerj-cs.395/fig-3

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 5/19

http://dx.doi.org/10.7717/peerj-cs.395/fig-3
http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


A Dynamic Programming Algorithm approach was proposed to solve the large

complex problems in Nishida, Ito & Nakano (2011) which is work like divide and conquer

principle. In dynamic programing a recursive function is defined to get the optimized

parentheses which give the minimum number of multiplications. In this approach, the

original chain splitting into sub-chain of length such that the product (Ai…Ak) (Ak + 1…

Aj). A function (Tithi et al., 2015) w (i, k, j) is used which proceeds the cost of parenthesis

combination of (Ai…Ak) and (Ak…Aj). This algorithm allocates a cost to all products

and then stores the best solution together with its cost. It will compute the matrices

will all possible ways of multiplication with each other and store them in a table, and gives

the optimal sequence at the end. The main issue of this approach is that the problem size is

held fixed

Graphics Processing Units (GPUs) built approach was proposed and tested using C++

AMP on NVIDIA GPUs (Shyamala, Kiran & Rajeshwari, 2017). In this approach two

types of functions are used in C++ AMP, A Pre-Processing function which is used for

the multiplication number calculation with minimum number of multiplication

operations of matrices is chooses for GPU computing. A Matrix Multiplication Parallel

function is used to observes for keyword (restrict (amp)) to be executed to get the code on

GPU. The drawback of this approach is that it has limited sized matrices numbers

concurrently runs with different values (e.g., 3 × 4). The proposed work is implemented

with an integrated graphics card.

Figure 4 Taxonomy of matrix multiplication. Full-size DOI: 10.7717/peerj-cs.395/fig-4

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 6/19

http://dx.doi.org/10.7717/peerj-cs.395/fig-4
http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


Using the greedy approach a solution was proposed to determine the minimum

number of multiplication operations (Lakhotia et al., 2015). In this study, they modify the

greedy approach with divide and conquer approach and the main idea behind this

modification is to solve the multiplication problems in a top down fashion. They take an

input in array order p[0….n], and divide the p array into n sub-array. Each sub-array

consists at least one or at most 2 elements. This process was done in a greedy way, at

each step only one least element is selected among all elements in the array p. So that,

the cost of multiplication kept minimum at each single step. This approach ensures

that the result is optimal with minimum cost consists and the output was a fully

parenthesized of matrices. This algorithm did not chosen the correct least value when the

dimensions of matrices are same.

Many algorithms and methods are proposed for better performance using Strassen’s

implementation. Strassen’s algorithm known as Dynamic General Fast Matrix

Multiplication (DGEFMM) algorithm which was used for any size of matrix with

Table 1 Summary of literature review.

SR# Title Techniques Limitations References

1 Genetic Algorithm Genetic Algorithm, Random Selection,

Performance Matrices

The Genetic Algorithm is the population

base algorithm

Mirjalili (2019)

2 Constrained Group Counseling

Optimization

Performance Matrices, Single-Objective

Functions, Single-Objective

Optimization Problems, Group

Counseling Optimizer, Random

Selection

Used the Dominate Data Set, Social

Problems of Human

Eita & Fahmy

(2010)

3 Experiments with a software

component enabling NetSolve with

direct communications in a non-

intrusive and incremental way

Expression based approach, Binary Tree

Method

The main issue of this approach is that the

execution time increases for large grid

matrix multiplications

Zuo & Lastovetsky

(2007)

4 Accelerating the dynamic

programing for the matrix chain

product on the GPU

Dynamic Programming Approach It is time consuming because time varies

with n3 here n is number of matrices

Nishida, Ito &

Nakano (2011)

5 Hama: An efficient matrix

computation with the map reduce

framework

Map Reduce, Binary Tree The main issue of map reduce technique is

that size of matrix does not fit in the

memory and difficult to optimize the

multi-way join operation in Map Key if

the same number assigned to more

attributes

Seo et al. (2010)

6 Matrix-Chain Multiplication Using

Greedy and Divide-Conquer

approach

Greedy Approach, Genetic Algorithm The greedy approach stuck at the local

optimal and consider it global optimal

Lakhotia et al.

(2015)

7 A Chain-Multiplier for Large Scale

Matrix Multiplication

Systolic Approach, Dynamic

Programming

The main issue of this approach is that

there are limited hardware resources

Wei et al. (2017)

8 Matrix chain multiplication via

multi-way join algorithms in Map

Reduce

Map Reduce framework Size of matrix does not fit in the memory Myung & Lee

(2012)

9 Theoretical and Experimental Study

of a Parallel Algorithm Solving the

Matrix Chain Product Problem

Three phase methodology based on

dynamic programing

Short matrix length the execution time is

much larger

Mabrouk, Hasni

& Mahjoub

(2017)

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 7/19

http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


minimum number of scalar multiplication using minimum storage (Benson & Ballard,

2015). Matrix multiplication operations are more expensive than the matrix addition, this

tradeoff is known as faster algorithms. Fast Strassen’s algorithm follows the same block

structure as recursive multiplication with seven matrix multiplications and 18 additions.

A hardware accelerator systolic suitable architecture “(point to point multiplication

operation is used between all interrelated processing elements)” for large scale matrix

multiplication was proposed (Zuo et al., 2017), it is very suitable for hardware design and

requires lower bandwidth than systolic structure. The drawback of this approach is

problematic to complete the whole matrix operations at a time due to limited hardware

resources. It is essential to divide the matrix into small portions, and multiply each of the

small chunks with the others chunks. The chain multiplier is able to handle the block

matrix multiplication well. The main issue of this approach is that there are limited

hardware resources.

For CMMP Mabrouk, Hasni & Mahjoub (2017) proposed Dynamic Programming

based three phase approach. The Dynamic Programing provides the optimal sequence

(parenthesization) for chain matrix multiplication problems, but it is time consuming

because time varies with n3 here n is number of matrices.

Henrik Barthel and Marcin were designed a new approach (Barthels, Copik &

Bientinesi, 2018) based on expressions. These expressions consists of the products of

vectors and matrices. These expressions are mapped onto a computational kernel set of K.

Additionally; the mapping of expression has to minimize a user-selected expense

metric “(such as number of flops or execution time).” The output is then a sequence of

kernel calls that computes the original expression. The main issue of this approach is that

the type of pattern matching CLAK kernel uses is expensive.

PROPOSED MODEL
The proposed model based on the Group Counseling Optimizer (GCO) (Eita & Fahmy,

2014) algorithm in which we generate the parenthesis for the CMM to minimize the CMM

operations (scalar products). The flow chart of proposed model is shown in Fig. 5. In Fig. 6

the Pop is the population, Gen is the generations, P and G also donated to population

and generations respectively. The product of population and generations is the fitness

evolution value like: If population is 100 and generations are 50 then the fitness evolution

value is 5,000.

The model firstly takes the input file which contains the number of matrices, rows

and columns. The model reads the data from the file and stores it in the string form.

After that, model assigns the name to each matrix like M1, M2, and M3 and so on. After

assigning the name to each matrix, proposed model check that the criteria for matrix

multiplication. If multiplication is not possible, then model shows the error message,

otherwise the model assign the random structuring sequence to the matrices as shown in

the Table 2.

Table 2 shows that, the population has the 4 individuals Each individual in the

population is called chromosome and chromosome is the combination of gens as shown in

Fig. 6.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 8/19

http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


After initialization of population, the model calculates the fitness value of each

chromosome and stores it as shown in Table 3.

After calculating and storing the fitness value of chromosomes, the model stores the

chromosomes at their best position as shown in the Table 4.

After storing the chromosomes at their best position, the model starts the process of

reproduction of new chromosomes. In this process, the model firstly generate the multiple

random structures for the matrices, then select the best structure from the generated

structures on the bases of fitness value (scalar products) and store it in the column of

corresponding parent chromosome as shown in the Table 5.

Figure 5 Flow chart of proposed model. Full-size DOI: 10.7717/peerj-cs.395/fig-5

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 9/19

http://dx.doi.org/10.7717/peerj-cs.395/fig-5
http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


After reproduction of chromosomes, the model checks that which one is best from

parent and child chromosomes, then select the best one chromosome and store in the

generation table in the ascending order as shown in the Table 6.

After achieving the first generation the model use it for generating further generations.

The generations are generated until the break point. After achieve the last generation,

the model select the best solution from the last generation. The best solution is selected on

Figure 6 Chromosomes. Full-size DOI: 10.7717/peerj-cs.395/fig-6

Table 2 Initialization of population.

No. of matrices Sequence of dimensions Parenthesis

5 9,7,10,90,12,40 (M1(M2((M3 M4)M5)))

5 9,7,10,90,12,40 ((M1M2)(M3(M4 M5)))

5 9,7,10,90,12,40 (M1((M2 M3)(M4 M5)))

5 9,7,10,90,12,40 (((M1 M2)M3)(M4 M5))

Table 3 Chromosomes fitness value.

No. of matrix Sequence of dimensions Random structuring sequence Scalar product

5 9,7,10,90,12,40 (M1(M2((M3 M4)M5))) 20,920

5 9,7,10,90,12,40 ((M1M2)(M3(M4 M5))) 83,430

5 9,7,10,90,12,40 (M1((M2 M3)(M4 M5))) 77,220

5 9,7,10,90,12,40 (((M1 M2)M3)(M4 M5)) 84,330

Table 4 Chromosomes best position.

No. of matrix Sequence of dimensions Random structuring sequence Scalar product

5 9,7,10,90,12,40 (M1(M2((M3 M4)M5))) 20,920

5 9,7,10,90,12,40 (M1((M2 M3)(M4 M5))) 77,220

5 9,7,10,90,12,40 ((M1M2)(M3(M4 M5))) 83,430

5 9,7,10,90,12,40 (((M1 M2)M3)(M4 M5)) 84,330

Table 5 Reproduction of chromosomes.

No. of matrix Sequence of dimensions Parent

(Parenthesis)

Scalar multiplications Child

(Parenthesis)

Scalar multiplications

5 9,7,10,90,12,40 (M1(M2((M3M4)M5))) 20,920 ((((M1M2)M3)M4)M5) 22,770

5 9,7,10,90,12,40 (M1((M2M3)(M4M5))) 77,220 (M1(M2(M3(M4M5)))) 84,520

5 9,7,10,90,12,40 ((M1M2)(M3(M4M5))) 83,430 (M1(((M2M3)M4)M5)) 19,740

5 9,7,10,90,12,40 (((M1M2)M3)(M4M5)) 84,330 ((M1(M2(M3M4)))M5) 16,716

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 10/19

http://dx.doi.org/10.7717/peerj-cs.395/fig-6
http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


the bases of scalar products, the chromosome which one has the minimum value of scalar

products select as an optimal solution.

The fitness function decides that how fit a solution from the all generated solutions.

The fitness function gives the score to each individuals. The selection probability of an

individual is based on its fitness cost. High fitter chromosomes has high chances of survival

to next generation, whereas, the worst fit chromosomes has low chances of survival.

The fitness of the individuals is computed according to the following function:

Xn

i¼1

Xi ¼ X1 þ X2 þ X3 . . .Xn (1)

Where; Xi ¼ ðM1:M2Þ (2)

And Xiþ1 ¼ M1:ðM2:M3Þ or ðM1:M2Þ:M3 (3)

The fitness function applied to compute the cost of all individuals and compared with

the whole population. Furthermore, then sort the population according to its fitness score.

The minimum score known as the best individual in the population and has high

probability to survive the next generation and sorting them from best to worst order. With

the use of stack implementation compute the cost (fitness) of each matrix string.

For example:

We have three number of matrix: ((M1 M2) M3)

M1 = 5 × 10

M2 = 10 × 15

M3 = 15 × 20

So, the fitness of above individuals:

X1 ¼ M1M2 ¼ 5� 10� 15 ¼ 750 (4)

X2 ¼ X1:M3 ¼ 5� 15� 20 ¼ 1; 500 (5)

Total Fitness:

X1 þ X2 ¼ 750þ 1; 500 ¼ 2; 250 (6)

Performance of this work in the form of cost which increase the overall efficiency of Chain

Matrix Multiplications. In optimization, the cost is the continuous process of getting

Table 6 First generation.

No. of matrix Sequence of dimensions Parenthesis Scalar products

5 9,7,10,90,12,40 ((M1(M2(M3M4)))M5) 16,716

5 9,7,10,90,12,40 (M1(((M2M3)M4)M5)) 19,740

5 9,7,10,90,12,40 (M1(M2((M3M4)M5))) 20,920

5 9,7,10,90,12,40 (M1((M2M3)(M4M5))) 77,220

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 11/19

http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


the best results with no impact on the system and guaranteeing the system satisfaction

scores are sustained. In chain matrix multiplication, the goal is to find the most efficient

way to multiply the matrices. The multiplication order that minimizes the total number of

required operations to reduce the overall cost of CMM.

EXPERIMENTAL DESIGN
The evaluation of the proposed version of CMM compared with the existing approaches

for CMM like dynamic programing approach for CMM, arithmetic approach for CMM,

sequential multiplication approach for CMM. Results of the proposed model of CMM

compared with the existing CMM approaches and represented the results. The behavior

of some existing approaches has shown to observe how much performance is incremented

and how it underutilizes the desires bandwidth. The behavior of existing approaches

has been discussed in “Related Work”.

The data set is collected from different articles published by Ben Charrada, Ezouaoui &

Mahjoub (2011), Hafeez et al. (2007) and Kung (1982, 1980). The senility analysis

performed on this data. There are the following parameters of data set.

� Name of Matrices

� No. of Matrices

� No. of Rows of Matrices

� No. of Columns of Matrices

Rules of Matrix Multiplications, rules of Chain Matric Multiplication and sequence of

Chain Matrix Multiplications (Shyamala, Kiran & Rajeshwari, 2017; Mabrouk, Hasni &

Mahjoub, 2017; Barthels, Copik & Bientinesi, 2018; Srivastava et al., 2020), computational

time (Coello, Pulido & Lechuga, 2004) and space complexity (Coello, Pulido & Lechuga,

2004) are also used in this research work.

TOOL AND TECHNOLOGY
The experiments for the proposed computational model were implemented using

MATLAB R2013b running on Microsoft Windows 10 64-bit OS. The PC was built with 8

GM Random Access Memory (RAM) and an Intel Core i5 2.30 GHz Central Processing

Unit (CPU).

RESULTS AND DISCUSSIONS
The results of proposed model for optimal solution of CMM problems (CMMP) are

demonstrated. The proposed model compared with the dynamic programing approach,

sequential multiplication approach and arithmetic multiplication approach for the

CMMP. So far we have demonstrated a GCO based model that computes the optimal

cost for chain matrix multiplications. Table 7 summarizes the main results of time

complexity and space complexity of different algorithms. In the Table 7 “n” is the number

of matrices. The results show that proposed model outperform as compare to other

techniques in terms of time complexity and space complexity.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 12/19

http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


In the comparative tables, the dimension column has the values as: 10, 20, 30, 40, 50,

60. It’s mean that the first matrix has the dimensions (rows & columns) 10 & 20, the

second matrix has the dimensions 20 & 30, the third matrix has dimensions 30 & 40 and

so on.

Table 7 Time and space complexity of different approaches.

Dynamic approach Sequential multiplication Arithmetic approach GCO

Time complexity (n3) (n2) (n3) (n2)

Space complexity (n2) (n2) (n2) (n)

Table 8 Comparison of proposed model with sequential multiplication.

No. of

matrix

Sequence of dimensions Optimal parenthesis Sequential

multiplication

GCO

multiplication

Improvement

9 94,67,56,17,80,68,10,78,7,5 (M1*(M2*(M3*(M4*(M5*(M6*((M7*M8)

*M9)))))))

1,273,230 98,220 92%

12 42,54,49,22,62,46,93,97,82,59,24,86,56 (((M1*(M2*M3))*((((((M4*M5)*M6)*M7)

*M8)*M9)*M10))*(M11*M12))

1,777,734 970,214 45%

15 27,98,89,40,36,82,6,11,3,23,15,91,87,35,3,43 ((M1*(M2*(M3*(M4*(M5*(M6*((M7*M8)*

((M9*M10)*(M11*(M12*

(M13*M14)))))))))))*M15)

816,480 101,322 88%

18 94,30,63,79,52,10,6,13,93,97,3,8,67,40,

38,6,89,61,71

((M1*(M2*(M3*(M4*(M5*(M6*(M7*(M8*

(M9*M10)))))))))*(((((((M11*M12)*M13)

*M14)*M15)*M16)*M17)*M18))

3,518,984 139,845 96%

21 57,92,76,77,28,13,47,27,3,67,89,4,93,16,

24,4,14,83,89,92,33,19

((M1*(M2*(M3*(M4*(M5*(M6*

(M7*M8)))))))*((((((((((((M9*M10)*M11)

*M12)*M13)*M14)*M15)*M16)*M17)

*M18)*M19)*M20)*M21))

2,658,537 158,058 94%

24 79,68,62,22,98,35,62,99,21,39,91,79,81,31,

11,4,87,90,90,72,57,92,3 6,72,59

((M1*(M2*(M3*(M4*(M5*(M6*(M7*(M8*

(M9*(M10*(M11*(M12*(M13*

(M14*M15))))))))))))))*((((((((M16*M17)

*M18)*M19)*M20)*M21)*M22)*M23)

*M24))

6,688,377 377,216 95%

30 50,44,56,33,44,5,9,10,12,22,32,26,41,28,19,

29,41,23,18,25,22,34,33,13,33,11,43,21,

24,56,71

((M1*(M2*(M3*(M4*M5))))*

((((((((((((((((((((((((M6*M7)*M8)*M9)

*M10)*M11)*M12)*M13)*M14)*M15)

*M16)*M17)*M18)*M19)*M20)*M21)

*M22)*M23)*M24)*M25)*M26)*M27)

*M28)*M29)*M30))

1,258,650 153,290 88%

50 56,34,33,46,39,50,65,32,10,15,30,24,25,13,

7,11,19,30,15,3,20,31,50,9,10,16,44,22,10,

16,44,22,10,19,30,40,45,23,22,14,30,

11,22,24,32,15,19,29,34,5,9,23,29,34,9

((M1*(M2*(M3*(M4*(M5*(M6*(M7*(M8*

(M9*(M10*(M11*(M12*(M13*(M14*(M15*

(M16*(M17*(M18*M19))))))))))))))))))*

((((((((((((((((((((((((((((((((((M20*M21)

*M22)*M23)*M24)*M25)*M26)*M27)

*M28)*M29)*M30)*M31)*M32)*M33)

*M34)*M35)*M36)*M37)*M38)*M39)

*M40)*M41)*M42)*M43)*M44)*M45)

*M46)*M47)*M48)*M49)*M50)*M51)

*M52)*M53)*M54))

1,969,800 112,434 93%

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 13/19

http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


The proposed model results are compared with sequential multiplication with

matrix size varying from 0 to 50 as shown in Table 8. It is obvious that, there is significant

amount of sequential multiplication reduction is proportional to the number of matrices

and the sequence of dimensions that apply on the chain matrix multiplication. When

we apply our proposed GCO model on the same data set, it is evidently demonstrated

that there is 45–96% improvement comparatively sequential multiplication approach for

up to 50 number of matrices respectively, where dimension size varying from 1 to 100.

Table 8 also shows the relative improvement results with the optimal structure of

parenthesization obtained by GCO proposed model. We get the results of sequential

multiplication from the published articles (Kung, 1982, 1980) and compared the results

Table 9 Comparison of proposed model with dynamic programing.

No. of

matrix

Sequence of dimensions Optimal parenthesis DP

Multiplications

GCO

Multiplications

Variation

10 5,10,21,78,12,15,20,

18,6,22,25

(((((((((M1*M2)*M3)*M4)*M5)*M6)*M7)*M8)

*M9)*M10)

22,070 22,070 0%

20 3,15,28,21,19,10,25,16,

29,5,28,31,11,14,9,17,

4,21,19,3,34

(((((((((((((((((M1*M2)*M3)*M4)*M5)*M6)*M7)

*M8)*M9)*M10)*M11)*M12)*M13)*M14)

*M15)*M16)*(M17*(M18*M19)))*M20)

15,909 15,909 0%

30 8,31,10,14,11,15,28,12,2,20,

25,16,19,9,40,21,8,19,28,34,37,

40,28,30,29,45,13,20,33,44,58

((M1*(M2*(M3*(M4*(M5*(M6*(M7*M8)))))))*

(((((((((((((((((((((M9*M10)*M11)*M12)*M13)

*M14)*M15)*M16)*M17)*M18)*M19)*M20)

*M21)*M22)*M23)*M24)*M25)*M26)*M27)

*M28)*M29)*M30))

37,996 37,996 0%

40 8,31,10,14,11,15,28,12,2,20,

25,16,19,9,40,21,8,19,28,34,

37,3,15,28,21,19,10,25,16,

29,5,28,31,11,14,9,17,42,

21,19,53

((M1*(M2*(M3*(M4*(M5*(M6*(M7*M8)))))))*

(((((((((((((((((((((((((((((((M9*M10)*M11)

*M12)*M13)*M14)*M15)*M16)*M17)*M18)

*M19)*M20)*M21)*M22)*M23)*M24)*M25)

*M26)*M27)*M28)*M29)*M30)*M31)*M32)

*M33)*M34)*M35)*M36)*M37)*M38)*M39)

*M40))

31,260 31,260 0%

50 5,6,2,13,24,5,16,18,13,4,11,31,15,

13,14,10,15,13,18,19,14,15,13,23,

44,12,9,26,6,14,32,19,22,32,2,21,11,

12,25,19,20,33,22,32,77,21,34,44,

26,43,32

(((M1*M2)*(((((((M3*M4)*M5)*M6)*M7)*M8)

*M9)*(M10*(M11*(M12*(M13*(M14*(M15*

(M16*(M17*(M18*(M19*(M20*(M21*(M22*

(M23*(M24*(M25*(M26*(M27*(M28*(M29*

(M30*(M31*(M32*

(M33*M34))))))))))))))))))))))))))*

(((((((((((((((M35*M36)*M37)*M38)*M39)

*M40)*M41)*M42)*M43)*M44)*M45)*M46)

*M47)*M48)*M49)*M50))

44,778 44,778 0%

58 6,2,13,24,5,16,18,13,4,11,31,15,13,

14,10,15,13,18,19,14,15,13,23,

44,12,9,26,6,4,2,22,32,32,

2,21,11,12,25,19,20,33,22,32,21,

34,44,26,43,32,33,22,32,21,34,

44,26,43,32,78

((M1*((((((((M2*M3)*M4)*M5)*M6)*M7)*M8)*

(M9*(M10*(M11*(M12*(M13*(M14*(M15*

(M16*(M17*(M18*(M19*(M20*(M21*(M22*

(M23*(M24*(M25*(M26*(M27*

(M28*M29)))))))))))))))))))))*(M30*(M31*

(M32*M33)))))*((((((((((((((((((((((((M34*M35)

*M36)*M37)*M38)*M39)*M40)*M41)*M42)

*M43)*M44)*M45)*M46)*M47)*M48)*M49)

*M50)*M51)*M52)*M53)*M54)*M55)*M56)

*M57)*M58))

60,600 60,600 0%

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 14/19

http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


with proposed model after apply the proposed model on the same data set. Moreover,

the proposed model is better than the sequential multiplication in the terms of

computational time and space as shown in Table 7.

To check and investigate the performance of our new proposed model, we compare

it with dynamic programing. The comparison between proposed model and Dynamic

Programming demonstrated in Table 9, in this table the results show that the both

proposed model and dynamic approach provides the same results. Because the dynamic

approach always provides the optimal result of problems, so we can say that the proposed

model provided the optimal results. We get the results of dynamic approach from the

published article (Ben Charrada, Ezouaoui & Mahjoub, 2011), which also explain that

the dynamic approach provides the optimal result for the used data set, we get the same

data set and apply the proposed model on the data that’s why Table 9 proves that the

proposed model provides the optimal result. Table 7 describes that the results of proposed

model outperforms as compare to dynamic programing in terms of computational time

and space. So we can say that the proposed model provides the optimal result and it is

better than the dynamic approach in terms of computational time and space complexity.

To check and investigate the performance of proposed model, we also compare it

with arithmetic approach. The comparison between proposed model and Arithmetic

Approach demonstrated in Table 10, the results of arithmetic multiplication get form the

published article (Hafeez et al., 2007), which describes that the results are optimal for

the used data set, we get the same data set and apply the proposed model. The results in the

Table 10 show that both the arithmetic multiplication and proposed model generated the

Table 10 Comparison of proposed model with arithmetic multiplications.

No. of

matrix

Sequence of dimensions Optimal parenthesis Arithmetic

multiplications

GCO

multiplications

Variation

(%)

3 9,95,21,78 ((M1*M2)*M3) 32,697 32,697 0

6 30,10,71,58,9,25,22 (M1*((M2*(M3*M4))*(M5*M6))) 56,982 56,982 0

9 94,67,56,17,80,68,10,78,7,5 (M1*(M2*(M3*(M4*(M5*(M6*((M7*M8)

*M9)))))))

98,220 98,220 0

12 42,54,49,22,62,46,93,97,82,59,24,86,56 (((M1*(M2*M3))*((((((M4*M5)*M6)*M7)*M8)

*M9)*M10))*(M11*M12))

970,214 970,214 0

15 27,98,89,40,36,82,6,11,3,23,15,91,

87,35,3,43

((M1*(M2*(M3*(M4*(M5*(M6*((M7*M8)*

((M9*M10)*(M11*(M12*(M13*M14)))))))))))

*M15)

101,322 101,322 0

18 94,30,63,79,52,10,6,13,93,97,3,8,

67,40,38,6,89,61,71

((M1*(M2*(M3*(M4*(M5*(M6*(M7*(M8*

(M9*M10)))))))))*(((((((M11*M12)*M13)*M14)

*M15)*M16)*M17)*M18))

139,845 139,845 0

21 57,92,76,77,28,13,47,27,3,67,89,14,

93,16,24,34,14,83,8 9,92,33,19

((M1*(M2*(M3*(M4*(M5*(M6*(M7*M8)))))))*

((((((((((((M9*M10)*M11)*M12)*M13)*M14)

*M15)*M16)*M17)*M18)*M19)*M20)*M21))

166,938 166,938 0

24 79,68,62,22,98,35,62,99,21,39,91,79,81,

31,11,4,87,90,90,72,57,92,36,72,59

((M1*(M2*(M3*(M4*(M5*(M6*(M7*(M8*(M9*

(M10*(M11*(M12*(M13*(M14*M15))))))))))))))*

((((((((M16*M17)*M18)*M19)*M20)*M21)*M22)

*M23)*M24))

377,216 377,216 0

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 15/19

http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


same results, this proves that the proposed model provides the optimal results. But the

proposed model perform better than the arithmetic multiplication approach in terms of

computational time and space complexity as shown in the Table 7.

The Table 11 shows the console output of the resultant matrix execution time, where

dimension size of the matrices varies from 1 to 100.

CONCLUDING REMARKS
This research concludes that the GCO can enhance the power of simple dynamic

programing problems by reducing its space and time complexity at a great extent.

Moreover, the use of GCO algorithm also reduces the arithmetic multiplication operations

for CMMP. The experimental results shows that our enhanced CMM version based on

GCO provide good performance and reduce the time for matrix multiplication from 45%

to 96% when compared with sequential multiplication. Moreover, we evaluate our results

with the best known dynamic programing arithmetic multiplication approach which

clearly demonstrate that proposed model outperforms in terms of computational time and

space complexity. We have also identified that when we minimize the required operation

for CMM operation, the number of resources increases and it requires higher data

throughput bandwidth. Fine grain nature of matrix multiplication problem through

dynamic programing; the 50 matrix chain product problem was solved on one processor.

One of the major drawback of DP approach is that it requires number of processors

equal to the number of matrices in parallel computing is a difficult task to fulfill in most of

the cases. The proposed model compared with other existing approach of multiplication

and shows that our proposed approach has better optimal solution.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Table 11 Execution time of proposed model.

No. of

matrix

Optimal structure (Parenthesis) Optimal

multiplication

Time of

execution (S)

50 ((M1*(M2*(M3*(M4*(M5*(M6*(M7*(M8*(M9*(M10*(M11*(M12*(M13*(M14*(M15*(M16*(M17*

(M18*(M19*(M20*(M21*(M22*(M23*(M24*(M25*(M26*(M27*(M28*(M29*(M30*(M31*(M32*

(M33*(M34*(M35*(M36*M37))))))))))))))))))))))))))))))))))))*((((((((((((M38*M39)*M40)*M41)

*M42)*M43)*M44)*M45)*M46)*M47)*M48)*M49)*M50))

458,949 3.15

40 ((M1*(M2*(M3*(M4*(M5*(M6*(M7*(M8*(M9*(M10*(M11*(M12*(M13*(M14*(M15*(M16*(M17*

(M18*(M19*(M20*(M21*(M22*(M23*(M24*(M25*(M26*(M27*(M28*(M29*(M30*(M31*(M32*

(M33*(M34*(M35*(M36*M37))))))))))))))))))))))))))))))))))))*((M38*M39)*M40))

428,912 2.55

30 ((M1*(M2*(M3*(M4*(M5*(M6*(M7*(M8*(M9*(M10*(M11*(M12*(M13*(M14*(M15*(M16*(M17*

(M18*M19))))))))))))))))))*((((((((((M20*M21)*M22)*M23)*M24)*M25)*M26)*M27)*M28)*M29)

*M30))

345,560 2.06

20 ((M1*(M2*(M3*(M4*(M5*(M6*(M7*(M8*(M9*(M10*(M11*(M12*(M13*(M14*(M15*(M16*(M17*

(M18*M19))))))))))))))))))*M20)

236,664 1.75

10 (((((((((M1*M2)*M3)*M4)*M5)*M6)*M7)*M8)*M9)*M10) 256,527 1.02

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 16/19

http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


Competing Interests

The authors declare that they have no competing interests.

Author Contributions

� Umer Iqbal conceived and designed the experiments, performed the experiments,

performed the computation work, prepared figures and/or tables, and approved the final

draft.

� Ijaz Ali Shoukat analyzed the data, performed the computation work, authored or

reviewed drafts of the paper, and approved the final draft.

� Ihsan Elahi conceived and designed the experiments, performed the experiments,

prepared figures and/or tables, and approved the final draft.

� Afshan Kanwal conceived and designed the experiments, performed the experiments,

prepared figures and/or tables, and approved the final draft.

� Bakhtawar Farrukh conceived and designed the experiments, performed the

experiments, performed the computation work, authored or reviewed drafts of the

paper, and approved the final draft.

� Mohammed A. Alqahtani performed the experiments, prepared figures and/or tables,

and approved the final draft.

� Abdul Rauf analyzed the data, authored or reviewed drafts of the paper, and approved

the final draft.

� Jehad Saad Alqurni analyzed the data, authored or reviewed drafts of the paper, and

approved the final draft.

Data Availability

The following information was supplied regarding data availability:

Source codes are available in the Supplemental Files.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/

peerj-cs.395#supplemental-information.

REFERENCES
Ali H, Khan FA. 2013. Group counseling optimization for multi-objective functions. In: 2013 IEEE

Congress on Evolutionary Computation. Piscataway: IEEE.

Barthels H, Copik M, Bientinesi P. 2018. The generalized matrix chain algorithm. In: Proceedings

of the 2018 International Symposium on Code Generation and Optimization. 138–148.

Ben Charrada F, Ezouaoui S, Mahjoub Z. 2011. Greedy algorithms for optimal computing

ofmatrix chain products involving square dense and triangular matrices. RAIRO-Operations

Research-Recherche Opérationnelle 45(1):1–16 DOI 10.1051/ro/2011100.

Bengio Y, Lodi A, Prouvost A. 2020. Machine learning for combinatorial optimization: a

methodological tour d’horizon. European Journal of Operational Research 290(2):405–421

DOI 10.1016/j.ejor.2020.07.063.

Benson AR, Ballard G. 2015. A framework for practical parallel fast matrix multiplication.

ACM SIGPLAN Notices 50(8):42–53 DOI 10.1145/2858788.2688513.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 17/19

http://dx.doi.org/10.7717/peerj-cs.395#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.395#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.395#supplemental-information
http://dx.doi.org/10.1051/ro/2011100
http://dx.doi.org/10.1016/j.ejor.2020.07.063
http://dx.doi.org/10.1145/2858788.2688513
http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/


Coello CAC, Pulido GT, Lechuga MS. 2004. Handling multiple objectives with particle swarm

optimization. IEEE Transactions on Evolutionary Computation 8(3):256–279

DOI 10.1109/TEVC.2004.826067.

Deb K, Pratap A, Agarwal S, Meyarivan TAMT. 2002. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2):182–197

DOI 10.1109/4235.996017.

Dewri R, Ray I, Poolsappasit N, Whitley D. 2012. Optimal security hardening on attack tree

models of networks: a cost-benefit analysis. International Journal of Information Security

11(3):167–188 DOI 10.1007/s10207-012-0160-y.

Dorigo M, Maniezzo V, Colorni A. 1996. Ant system: optimization by a colony of cooperating

agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 26(1):29–41

DOI 10.1109/3477.484436.

Eita MA, Fahmy MM. 2010. Group counseling optimization: a novel approach. In: Bramer M,

Ellis R, Petridis M, eds. Research and Development in Intelligent Systems XXVI. London:

Springer, 195–208.

Eita MA, Fahmy MM. 2014. Group counseling optimization. Applied Soft Computing 22:585–604.

Eita M, Shoukry A, Iba H. 2014. Constrained group counseling optimization. In: Artificial Life

Conference Proceedings 14. Cambridge: MIT Press.

Gómez J, Gil C, Baños R, Márquez AL, Montoya FG, Montoya MG. 2013. A Pareto-based

multi-objective evolutionary algorithm for automatic rule generation in network intrusion

detection systems. Soft Computing 17(2):255–263 DOI 10.1007/s00500-012-0890-9.

Hafeez M, Younus DM, Rehman A, Mohsin A. 2007.Optimal solution to matrix parenthesization

problem employing parallel processing approach. In: Proceedings of the 8th WSEAS

International Conference on Evolutionary Computing. 19–21.

Huang VL, Suganthan PN, Liang JJ. 2006. Comprehensive learning particle swarm optimizer for

solving multiobjective optimization problems. International Journal of Intelligent Systems

21(2):209–226.

Huning A. 1976. Evolutionsstrategie. optimierung technischer systeme nach prinzipien der

biologischen evolution. Stuttgart-Bad Cannstatt: Frommann-Holzboog.

Kung HT. 1980. Special-purpose devices for signal and image processing: an opportunity in very

large scale integration (VLSI). In: Real-time Signal Processing III. Vol. 241. International Society

for Optics and Photonics, 76–84.

Kung HT. 1982. Why systolic architectures? IEEE Computer 15(1):37–46

DOI 10.1109/MC.1982.1653825.

Lakhotia R, Kumar S, Sood R, Singh H, Nabi J. 2015. Matrix-chain multiplication using greedy

and divide-conquer approach. International Journal of Computer Trends and Technology

23(2):65–72 DOI 10.14445/22312803/IJCTT-V23P115.

Mabrouk BB, Hasni H, Mahjoub Z. 2017. Theoretical and experimental study of a parallel

algorithm solving the matrix chain product problem. In: Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA).

The Steering Committee of The World Congress in Computer Science, Computer Engineering and

Applied Computing (WorldComp). 341–347.

Mirjalili S. 2019. Genetic algorithm. In evolutionary algorithms and neural networks. Cham:

Springer, 43–55.

Mishra PK, Rathee D, Duong DH, Yasuda M. 2020. Fast secure matrix multiplications over

ring-based homomorphic encryption. Information Security Journal: A Global Perspective

1–16(3):1–16 DOI 10.1080/19393555.2020.1836288.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 18/19

http://dx.doi.org/10.1109/TEVC.2004.826067
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/s10207-012-0160-y
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1007/s00500-012-0890-9
http://dx.doi.org/10.1109/MC.1982.1653825
http://dx.doi.org/10.14445/22312803/IJCTT-V23P115
http://dx.doi.org/10.1080/19393555.2020.1836288
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.395


Mugambi EM, Hunter A. 2003. Multi-objective genetic programming optimization of decision

trees for classifying medical data. In: International Conference on Knowledge-Based and

Intelligent Information and Engineering Systems, Berlin: Springer, 293–299.

Myung J, Lee S-G. 2012.Matrix chain multiplication via multi-way join algorithms in MapReduce.

In: Proceedings of the 6th International Conference on Ubiquitous Information Management and

Communication. 1–5.

Nishida K, Ito Y, Nakano K. 2011. Accelerating the dynamic programming for the matrix

chain product on the GPU. In: 2011 Second International Conference on Networking and

Computing. Piscataway: IEEE, 320–326.

O’Connor JJ, Robertson EF. 2019. The MacTutor history of mathematics archive. Available at

http://www-history.mcs.St-and.ac.uk/ (accessed 9 November 2019).

Poolsappasit N, Dewri R, Ray I. 2011. Dynamic security risk management using bayesian attack

graphs. IEEE Transactions on Dependable and Secure Computing 9(1):61–74

DOI 10.1109/TDSC.2011.34.

Seo S, Yoon EJ, Kim J, Jin S, Kim J-S, Maeng S. 2010.Hama: an efficient matrix computation with

the mapreduce framework. In: 2010 IEEE Second International Conference on Cloud Computing

Technology and Science. Piscataway: IEEE, 721–726.

Shyamala K, Kiran KR, Rajeshwari D. 2017. Design and implementation of GPU-based matrix

chain multiplication using C++ AMP. In: 2017 Second International Conference on Electrical,

Computer and Communication Technologies (ICECCT). Piscataway: IEEE, 1–6.

Srivastava N, Jin H, Liu J, Albonesi D, Zhang Z. 2020. Matraptor: a sparse-sparse matrix

multiplication accelerator based on row-wise product. In: 53rd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). Piscataway: IEEE, 766–780.

Storn R, Price K. 1997. Differential evolution-a simple and efficient heuristic for global

optimization over continuous spaces. Journal of Global Optimization 11(4):341–359

DOI 10.1023/A:1008202821328.

Tithi JJ, Ganapathi P, Talati A, Aggarwal S, Chowdhury R. 2015. High-performance energy-

efficient recursive dynamic programming with matrix-multiplicationlike flexible kernels. In:

2015 IEEE International Parallel and Distributed Processing Symposium. Piscataway: IEEE,

303–312.

Waheeb W, Ghazali R. 2019. A new genetically optimized tensor product functional link neural

network: an application to the daily exchange rate forecasting. Evolutionary Intelligence

12(4):593–608 DOI 10.1007/s12065-019-00261-2.

Zhou LH, Liu YH, Chen GL. 2011. A feature selection algorithm to intrusion detection based on

cloud model and multi-objective particle swarm optimization. In: Fourth International

Symposium on Computational Intelligence and Design (Vol. 2). Piscataway: IEEE, 182–185.

Zuo X, Lastovetsky A. 2007. Experiments with a software component enabling NetSolve with

direct communications in a non-intrusive and incremental way. In: 2007 IEEE International.

Zuo W, Pouchet LN, Ayupov A, Kim T, Lin CW, Shiraishi S, Chen D. 2017. Accurate high-level

modeling and automated hardware/software co-design for effective SoC design space

exploration. In: Proceedings of the 54th Annual Design Automation Conference 2017. 1–6.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.395 19/19

http://www-history.mcs.St-and.ac.uk/
http://dx.doi.org/10.1109/TDSC.2011.34
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1007/s12065-019-00261-2
http://dx.doi.org/10.7717/peerj-cs.395
https://peerj.com/computer-science/

	Optimal sequence for chain matrix multiplication using evolutionary algorithm
	Introduction
	Related work
	Proposed model
	Experimental design
	Tool and technology
	Results and discussions
	Concluding remarks
	References


