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Artificial intelligence techniques have been used in the industry to control complex
systems; among these proposals, adaptive PID (Proportional, Integrative, Derivative)
controllers are intelligent versions of the most used controller in the industry. This work
presents an adaptive neuron PD controller and a multilayer neural PD controller for
position tracking of a mobile manipulator. Both controllers are trained by an extended
Kalman filter (EKF) algorithm. Neural networks trained with the EKF algorithm show faster
learning speeds and convergence times than the training based on backpropagation. The
integrative term in PID controllers eliminates the steady-state error, but it provokes
oscillations and overshoot. Moreover, the cumulative error in the integral action may
produce windup effects such as high settling time, poor performance, and instability. The
proposed neural PD controllers adjust their gains dynamically, which eliminates the
steady-state error. Then, the integrative term is not required, and oscillations and overshot
are highly reduced. Removing the integral part also eliminates the need for anti-windup
methodologies to deal with the windup effects. Mobile manipulators are popular due to
their mobile capability combined with a dexterous manipulation capability, which gives
them the potential for many industrial applications. Applicability of the proposed adaptive
neural controllers is presented by simulating experimental results on a KUKA Youbot
mobile manipulator, presenting different tests and comparisons with the conventional PID
controller.
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ABSTRACT11

Artificial intelligence techniques have been used in the industry to control complex systems; among these

proposals, adaptive PID (Proportional, Integrative, Derivative) controllers are intelligent versions of the

most used controller in the industry. This work presents an adaptive neuron PD controller and a multilayer

neural PD controller for position tracking of a mobile manipulator. Both controllers are trained by an

extended Kalman filter (EKF) algorithm. Neural networks trained with the EKF algorithm show faster

learning speeds and convergence times than the training based on backpropagation. The integrative term

in PID controllers eliminates the steady-state error, but it provokes oscillations and overshoot. Moreover,

the cumulative error in the integral action may produce windup effects such as high settling time, poor

performance, and instability. The proposed neural PD controllers adjust their gains dynamically, which

eliminates the steady-state error. Then, the integrative term is not required, and oscillations and overshot

are highly reduced. Removing the integral part also eliminates the need for anti-windup methodologies to

deal with the windup effects. Mobile manipulators are popular due to their mobile capability combined

with a dexterous manipulation capability, which gives them the potential for many industrial applications.

Applicability of the proposed adaptive neural controllers is presented by simulating experimental results on

a KUKA Youbot ™ mobile manipulator, presenting different tests and comparisons with the conventional

PID controller.
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INTRODUCTION28

Artificial intelligence (AI) has been very present in our society in the past few years; however, its use29

in the industry dates back to decades, Bryson (2019). Due to the recent interest in AI, many works30

have been reported in the literature in many research areas: control, internet of things, natural language31

processing, machine vision, medicine, robotics, security, social application, among others, Bryson (2019);32

Maglogiannis et al. (2020). When facing a control problem, the PID (Proportional Integral, Derivative)33

controllers are commonly used as the first approach. PID controllers still among the most popular34

controllers in the industry, mainly for their simplicity and good results, even if these results can vary due35

to uncertainties in operating conditions and environmental parameters Åström and Hägglund (1995); Ogata36

(2010). The main drawbacks of PID controllers are they are only adequate for a nominal process, they37

have a bad performance under systems uncertainties in operating conditions, and changing environmental38

conditions, Tian et al. (1999). It is well-known that with the knowledge of the system plan model, there39

are techniques to improve the selection of PID parameters; however, most of these techniques are offline40

methodologies, Johnson and Moradi (2006); Visioli (2006); Ogata (2010). Due to the above drawbacks,41

artificial intelligence has been used as a tool to solve these inconveniences.42

In the literature, there are several works for adapting PID parameters, some based on artificial43

intelligence methodologies; among them, neural PID controllers stand out Hernandez-Barragan et al.44

(2020). Neural PID controllers learning capabilities allow them to adapt to unmodeled dynamics,45

communication time-delays, actuator saturation, among others, Ge et al. (2004); Lopez-Franco et al.46
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(2017); Sarangapani (2018); Gomez-Avila (2019). Moreover, they are capable of being trained online,47

which is necessary for the task of adapting while operating. Adaptive neural PID controllers trained with48

the Extended Kalman filter (EKF) algorithm have proved to show faster learning speeds and convergence49

times than adaptive neural PID based on backpropagation, which makes them ideal for experimental and50

real-time tests Hernandez-Barragan et al. (2020). Additionally, training algorithms based on Extended51

Kalman filter (EKF) have been proven reliable for recurrent and feedforward neural networks for control52

applications, which some of them are real-time applications Haykin (2004); Sanchez et al. (2010); Alanis53

et al. (2019); Rios et al. (2020) .54

Besides the already mentioned withdraws of PID controllers, another common problem is a windup55

effect due to the accumulative error action of integral part of the controller. This effect produces saturation56

on actuators and contributes to low-performance, overshoot, high settling time, and instability, losing57

controllability, Visioli (2006); Kumar and Negi (2012); Hernandez-Barragan et al. (2020). Considering58

the previously said, including anti-windup strategies when using PID controllers is something to consider.59

Among proposed anti-windup strategies limiter integrator, back-calculation, and observer approach,60

Visioli (2006); Kumar and Negi (2012); Kheirkhahan (2017); Angel et al. (2019). The integral term is61

important as it allows to eliminate the steady-state error that the proportional term cannot suppress with62

a fixed proportional gain. However, the integral action causes oscillations and overshoot. This work63

proposes an adaptive neural PD controller that not requires the use of an integral part. This approach64

adapts its weights dynamically, eliminating the steady-state error, and oscillations and overshoot are65

highly suppressed. Additionally, the proposed approach does not suffer from windup effects because there66

is no cumulative error of an integral part.67

Mobile manipulator robots combine mobile platforms and robotic arms, extending operational range68

and functionality, allowing mobile manipulators to accomplish tasks that are difficult or non-doable69

for a manipulator or a mobile platform by themselves, Sheng Lin and Goldenberg (2001); Li and Ge70

(2017). Among these applications: construction, health-care, nuclear reactor maintenance, manufacturing,71

military operations, and planetary exploration. Some of those tasks can put human lives at risk, Sheng72

Lin and Goldenberg (2001); Li and Ge (2017). However, these advantages come with complexity and73

difficulty at the time of designing controllers, Li and Ge (2017), which for some tasks, conventional PID74

performances may not be enough for control objectives, and adaptive intelligent techniques stand out75

as plausible solutions. This work proposes adaptive neural PD controllers trained online with extended76

Kalman filter (EKF) based training algorithms for trajectory tracking of mobile robots. The proposal77

includes a single neuron and a multilayer neuron controllers. Without the integral part of a PID controller,78

these adaptive controllers achieve a good performance, reduce overshoot and steady-state errors, having79

better performance than conventional PID controllers. Also, the proposed adaptive neural PD controllers80

are more robust than classic PID.81

The remaining of this paper is organized as follows: Section presents a summary of PID and PD82

controllers and the description of the adaptive neural PD controller use in this work. Section includes the83

implementation of the proposal on mobile manipulators. Section shows the performance of the adaptive84

neural PD controller on simulation and experimental results on a KUKA™1 mobile manipulator.85

ADAPTIVE NEURAL PD CONTROLLERS86

PID controllers consist of applying the sum of three types of control actions, proportional, integral, and87

derivative correctly, Visioli (2006); Temel et al. (2013). Moreover, simpler controllers can be used P, PD,88

and PI, which may be enough for some applications, especially linear ones and under regulated conditions.89

Nevertheless, the PID controller appears as the better of them. Even if there are more robust control90

schemes reported in the literature, the popularity of PID is mainly due to its simple implementation.91

Inspire in the popularity of the PID, several works have been proposed to improve PID controllers, but92

most of those works introduce complex methodologies.93

1KUKA is a registered trademark of KUKA AG
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Figure 1. Control PID scheme.

The primary use of the P controller is to reduce the steady-state error of the system. As the proportional94

gain kP increases, the steady-state error decreases. However, the steady-state error will not be eliminated95

because increasing kP leads to overshoot, smaller amplitude, phase margin, faster dynamics, and more96

sensitivity to noise. This control is recommended when the system is tolerable to a constant steady-state97

error. The use of PI controllers is to eliminate the steady-state error resulting from the P controller.98

However, it harms the speed of response and system stability. This control is used when the speed of99

the system is not an issue. PI controller cannot decrease the rise time and eliminate the oscillations, and100

overshoot is always present. PD controller increases system stability by improving control since it can101

predict the future error of the system response. Derivative controllers respond to changing error signals,102

but they do not respond to constant error signals. Due to this, derivative control D is combined with103

proportional control P. PID controller needs the derivative gain component in addition to the PI controller104

to reduce the overshoot and oscillations occurring in the output response of the system. A control scheme105

of the PID controller is presented in 1. The manual tuning of the proportional KP, integrative KI , and106

derivative KD gains represent an inconvenience of conventional PID controllers. This paper introduces the107

use of neural PID controllers to adjust themselves online during the operation of the system, even with108

changes in the nature of the problem.109

Adaptive neural PD controller110

The proposed adaptive single neuron PD (SNPD) controller is illustrated in Figure 2. The value e111

represents an error (1) between the reference yr and the system output y. The inputs x1 and x2 are defined112

as the proportional (2) and the derivative (3) errors. The weights ω1 and ω2, are adapted online using113

the EKF algorithm. The weight ω1 represents the proportional gain, and ω2 represents the derivative114

gain. The value v is computed as the weighted sum of the inputs of the neuron (4). Finally, the output of115

the neuron ŷ is computed with (5), where the activation function is selected as tanh(·) and α scales its116

amplitude. The activation function reacts in the range [−1,1]. However, the parameter α can be selected117

to adequate the control action, since the output of the neuron is directly considered as the control law118

u(k) = ŷ(k).119

e(k) = yr (k)− y(k) , (1)

x1 (k) = e(k) , (2)

x2 (k) = e(k)− e(k−1) , (3)

v(k) = ω1 (k)x1 (k)+ω2 (k)x2 (k) , (4)

ŷ(k) = α tanh(v(k)) . (5)

ൗ𝑑 𝑑𝑡
𝑥1
𝑥2

𝑒 𝜔1𝜔2 ො𝑦 𝑢
Figure 2. Adaptive single neuron PID controller.
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This work proposed an adaptive neuron PD trained with the EKF algorithm. The EKF provides faster120

learning rates and convergence time than backpropagation, which is crucial for online training.121

Adaptive multilayer PD controller122

The most critical disadvantage of conventional PD controllers is that it is not suitable for nonlinear,123

time-variant systems. The Multilayer network PD (MNPD) scheme is depicted in Figure 3, and it consists124

of a fully connected neural network with one hidden layer with multiples nodes and one node at the output125

layer. The network input is the error and the derivative between a reference value and the system output.126

The neural network is trained online using an extended Kalman filter-based algorithm; the objective is to127

reduce the tracking error by adapting online the output of the network, which is the control signal to the128

system, it is u(k) = ŷ(k).129

Consider a neural network as shown in Figure 3 with 2 input signals and q nodes in the hidden layer.130

ൗ𝑑 𝑑𝑡

𝑥1

𝑥2

ො𝑦 = 𝑢
𝑒 𝜎1

𝜎2

𝜎𝑞
⋮

𝜔11(1)𝜔12(1)

𝜔21(1)𝜔22(1)
𝜔𝑞1(1)𝜔𝑞2(1)

𝜔10(1)

𝜔20(1)

𝜔𝑞0(1)
𝑣1

𝜔11(2)
𝜔12(2)𝜔1𝑞(2)

𝜔10(2)

+1
+1 +1

+1
Figure 3. MLP architecture. In this case, the network has one hidden layer whose weights are denoted

by ω
(1)
i j and the output layer has one node and its weights are represented with ω

(2)
1 j .

The output of the network is given by131

σi(k) = tanh(ni(k)) , i = 1 . . .q, (6)

ni(k) =
2

∑
j=0

ω
(1)
i j (k)x j(k), x0(k) = +1, (7)

v1(k) =
q

∑
k=0

ω
(2)
1 j (k)uk(k), u0(k) = +1, (8)

ŷ(k) = v1(k). (9)

Extended Kalman filter based training algorithm for neural networks132

The most critical disadvantage of conventional PD controllers is that it is not suitable for nonlinear,133

time-variant systems. The Multilayer network PD (MNPD) scheme is depicted in Figure 3, and it consists134

of a fully connected neural network with one hidden layer with multiples nodes and one node at the output135

layer. The network input is the error and the derivative between a reference value and the system output.136

The neural network is trained online using an extended Kalman filter-based algorithm; the objective is to137

reduce the tracking error by adapting online the output of the network, which is the control signal to the138

system; it is u(k) = ŷ(k).139
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K(k) = P(k)H(k)
[

R(k)+H⊤ (k)P(k)H(k)
]−1

, (10)

ω (k+1) = ω (k)+ηK(k)e(k) , (11)

P(k+1) = P(k)−K(k)H⊤ (k)P(k)+Q(k) , (12)

hi j (k) =

[

∂yi (k)

∂ω j (k)

]

. (13)

where ω ∈ R
n is the weight vector, K ∈ R

n×m is the Kalman gain vector with n as the number of weights,140

and m the number of outputs of the neural network; P ∈ R
n×n, Q ∈ R

n×n, and R ∈ R
m×m are covariance141

matrices of weight estimation error, estimation noise, and error noise, respectively; η ∈ R is the Kalman142

filter learning rate, and H ∈ R
n×m is a matrix whose entries hi j are the derivative of the neural network143

output with respect to each weight Eq. (13), yi ∈ R is the i-th output of the neural network and j = 1 · · ·n,144

the error e ∈ R
m is defined as the difference between the desired output and the neural network output,145

Sanchez and Alanis (2006).146

Single neuron EKF training algorithm. The EKF algorithm adjusts the wights ω1 and ω2 for the single147

neuron using an online training. The single neuron scheme is composed by n = 2 weights and m = 1148

neuron output. Then, the dimension of EKF matrices are K ∈ R
2×1, P ∈ R

2×2, Q ∈ R
2×2, R ∈ R

1×1 and149

H ∈ R
2×1. The weight vector is defined as ω ∈ R

2 that includes ω1 and ω2, and the error e ∈ R is given150

by (1). The matrix H can be computed as151

H(k) =

[

∂ ŷ(k)

∂ω1 (k)

∂ ŷ(k)

∂ω2 (k)

]T

=

[

∂ ŷ(k)

∂v(k)

∂v(k)

∂ω1 (k)

∂ ŷ(k)

∂v(k)

∂v(k)

∂ω2 (k)

]T

=

[

α sech2 (v(k))x1 (k)

α sech2 (v(k))x2 (k)

]

. (14)

Multilayer network EKF training algorithm. The EKF algorithm adjusts the wights ω
(1)
i j (k) and ω

(2)
j1 (k)152

for the multilayer network using an online training. The multilayer network scheme is composed by n153

weights and m = 1 neuron output. Then, the dimension of EKF matrices are K ∈ R
n×1, R ∈ R

1×1 and154

H ∈ R
n×1. The error e ∈ R is given by (1). The matrix H can be expressed as155

H(k) =

[

∂ ŷ(k)

∂w
(1)
10 (k)

∂ ŷ(k)

∂w
(1)
11 (k)

· · ·
∂ ŷ(k)

∂w
(2)
1q (k)

]

, (15)

=
[γ (n1(k))x0(k) · · · γ (n1(k))xp(k) γ (n2(k))x0(k) · · ·

γ (nq(k))xp(k) u0(k) u1(k) · · · uq(k)]
, (16)

with156

γ (ni(k)) = w
(2)
1i (k)

(

sech2 (ni(k))
)

, i = 1, . . . ,q, (17)

IMPLEMENTATION TO MOBILE MANIPULATOR TRAJECTORY TRACKING157

This section presents a kinematics model for omnidirectional mobile manipulators. Then, the main158

concepts of differential kinematics are introduced for position control. Finally, the conventional PID and159

the proposed adaptive PD controllers are provided for the trajectory tracking of omnidirectional mobile160

manipulators.161

Mobile manipulator kinematics162

Mobile manipulators are composed of one or more manipulators attached to a mobile platform. Con-163

ventional mobile robots such as unicycles, differential drives, and car-like mobile robots are used to164

increase the workspace of manipulators. However, these platforms have limited movement capabilities165

due to their nonholonomic kinematics constraints, Li et al. (2016). In contrast, omnidirectional mobile166
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platforms improve the movement capabilities, allowing them to move towards any position and reach any167

desired orientation, Zhang et al. (2016); Wu et al. (2017); Kundu et al. (2017). This section introduces a168

kinematic model of a mobile manipulator composed of a robotic manipulator of n Degrees of Freedom169

(DOF) attached to an omnidirectional mobile platform.170

𝑤𝐓𝑏

𝑏𝐓𝑚
𝑚𝐓𝑒

𝑥𝑤
𝑦𝑤𝑧𝑤

𝑤
𝑏 𝑥𝑏

𝑦𝑏𝑧𝑏 𝑚 𝑥𝑚𝑦𝑚𝑧𝑚 𝑒
𝑥𝑒

𝑧𝑒𝑦𝑒

Figure 4. Kinematic chain of mobile manipulators. The transformation wTb is the homogeneous matrix

from the world frame w to the mobile platform base frame b, bTm is the homogeneous matrix from b to

the manipulator base frame m, mTe is the homogeneous matrix from m to the end-effector frame e.

The Kinematics chain of mobile manipulators is described in Figure 4. The homogeneous matrix171

wTb defines the position and orientation of the mobile platform. The transformation bTm is a constant172

homogeneous matrix between the mobile platform frame and the manipulator base. The matrix mTe can173

be computed based on the Denavit-Hartenberg (DH) model of the manipulator, Spong and Vidyasagar174

(2008); Lopez-Franco et al. (2018).175

Considering an omnidirectional mobile platform, the pose of the robot with respect to the world frame176

w is given by 3 DOF, which are the positions xb and yb, and the orientation θb. Then, the matrix wTb can177

be defined as178

wTb =









cos(θb) −sin(θb) 0 xb

sin(θb) cos(θb) 0 yb

0 0 1 0

0 0 0 1









. (18)

The matrix bTm is constant, and it adjusts the distance from the mobile platform base frame b to the179

manipulator base frame m. The values tx, ty and tz are used to adjust the distance in the direction of the180

x-axis, y-axis and z-axis, respectively. If it does not need to adjust the frame orientation, then the matrix181

bTm can be described by182

bTm =









1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1









, (19)

Let consider a joint variable q to represent the platform configuration qb =
[

xb yb θb

]T
and the183

manipulator configuration qm =
[

q1 q2 q3 · · · qn

]T
, where qi is a joint value for the articulation i.184

The joint variable for the mobile manipulator is given by q =
[

qT
b qT

m

]T
.185
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Given the joint variable q, the computation of wTe (q) which is the forward kinematics of the mobile186

manipulator can be obtained as187

wTe (q) =
w Tb (qb)

bTm
mTe (qm) , (20)

where wTe (q) represents the end-effector pose respect to the world frame w. The matrix wTe is expressed188

as189

wTe(q) =









r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1









=

[

R t

0 1

]

, (21)

where the orientation of the end-effector is represented by the matrix R, and its Cartesian position is given190

by the vector t. More information about homogeneous matrices, manipulators kinematics, and forward191

kinematics can be found in, Spong and Vidyasagar (2008); J.Craig (2005); Sciavicco and Siciliano (2008).192

Differential kinematics193

The inverse kinematics consists in the computation of the joint variables q given the end-effector pose194

0Tn. This computation can be solved by minimizing an error function using an iterative process based195

on the differential kinematics, Sciavicco and Siciliano (2008). Differential kinematics aims to find the196

relationship between the joint velocities q̇ and the end-effector velocity ṫ. The following differential197

kinematics equation gives this relationship198

ṫ = J(q) q̇, (22)

where J is the matrix relating the contribution of the joint velocities q̇ to the end-effector velocity ṫ. The199

matrix J is called the geometric Jacobian. This Jacobian matrix can be computed as200

J(q) =















∂ tx

∂q1

∂ tx

∂q2
· · ·

∂ tx

∂qn
∂ ty

∂q1

∂ ty

∂q2
· · ·

∂ ty

∂qn
∂ tz

∂q1

∂ tz

∂q2
· · ·

∂ tz

∂qn















, (23)

where t =
[

tx ty tz
]T

is the end-effector position related to the joint variable q =
[

q1 q2 · · · qn

]T
.201

An inverse kinematics approach consists in minimizing the error between an actual end-effector202

position t and the desired position t∗. This error is defined as e = t∗− t. The error e can be mapped to the203

joint velocities q̇ based on the differential kinematics equation. Equation (22) is rewritten to compute q̇204

given e as205

q̇ = J(q)†
ṫ = J(q)†

e, (24)

where J† is the pseudo-inverse of J.206

A robot system with a Jacobian matrix J ∈ R
3×n where n > 3, the robot is considered redundant.207

Because there are more n DOF than necessary to perform a task with 3 DOF. Commonly, the combination208

of DOF of the mobile platform and the manipulator, represent a redundant robot. In the case of a redundant209

robot, the solution (24) can be generalized into210

q̇ = J(q)†
e+

(

I−J(q)†
J(q)

)

q̇0, (25)
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where the first term minimizes the error e, the matrix
(

I−J†J
)

allows the protection of vector q̇0 in211

the null space of J, and I is the identity matrix. In the case that e = 0, the result of the second term212
(

I−J†J
)

q̇0 can reconfigure the joint variable q without changing the end-effector position t.213

In this work, it is proposed to design the vector q̇0 to avoid singularities based on the manipulability214

measure m(q), which is defined as215

m(q) =

√

det
(

J(q)J(q)T
)

. (26)

Then, vector q̇0 can be computed as216

q̇0 = k0

(

∂m(q)

∂q

)

, (27)

where k0 > 0. By maximizing the manipulability measure, redundancy is exploited to move away217

from singularities. More detailed information about differential kinematics can be found in, Spong and218

Vidyasagar (2008); J.Craig (2005); Sciavicco and Siciliano (2008).219

PID control design220

To solve a position tracking for the mobile manipulator, the controller has to compute the joint velocities221

q̇(k) at step time k, to control the motion of the mobile manipulator from the actual end-effector222

position t(k) to the desired position t(k)∗. This section introduces the use of a discrete PID to control223

the mobile manipulator motion based on the error e(k) = t(k)∗− t(k), which is described as e(k) =224
[

ex (k) ey (k) ez (k)
]T

.225

A discrete PID control Moradi et al. (2001) can be used for each error ex (k), ey (k), and ez (k) as226

follows227

ux (k) = Kx
P ex (k)+Kx

I

k

∑
j=1

ex ( j)+Kx
D [ex (k)− ex (k−1)] , (28)

uy (k) = K
y
P ey (k)+K

y
I

k

∑
j=1

ey ( j)+K
y
D [ ey (k)− ey (k−1)] , (29)

uz (k) = Kz
P ez (k)+Kz

I

k

∑
j=1

ez ( j)+Kz
D [ez (k)− ez (k−1)] , (30)

where Kx
P, Kx

I and Kx
D are the proportional, integrative and derivative gains for error ex, respectively.228

Similarly, the parameters K
y
P, K

y
I and K

y
D are the gains for error ey, and Kz

P, Kz
I and Kz

D are the gains for229

error ez. The control output u(k) =
[

ux (k) uy (k) uz (k)
]T

can be mapped to the joint velocities q̇(k)230

based on (25) to control the system. This is231

q̇(k) = J(q(k))†
u(k)+

(

I−J(q(k))†
J(q(k))

)

q̇0, (31)

Neural PD controllers implementation232

In general, PID controllers are widely used due to their simplicity and performance. However, the233

inconvenience of PID controllers is the manual tuning of the proportional, integrative, and derivative gains.234

This paper presents an adaptive PID approach to overcome this inconvenience. The proposed approach235

can adjust this gains itself online during the tracking task. The implementation of the mobile manipulator236

consists of implementing both schemes presented in sections and , with their respective extended Kalman237

filter-based training algorithm. Figure 5 shows the general scheme for both implementation.238

An adaptive neural PD control module is designed to minimize the error ex, ey and θz. Each239

control output ux, uy and uz, are provided for each control module. These control signals u(k) =240

[

ux (k) uy (k) uz (k)
]T

are mapped to the joint velocities q̇(k) using (25) to control the system.241
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Figure 5. Adaptive Neuronal PD control scheme for the position control of mobile manipulators. The

block called Adaptive Neural, can represent the single neuron scheme or the multilayer network scheme.

RESULTS242

In order to show the effectiveness of the algorithms, the performance of the proposed adaptive single243

neuron PD (SNPD) and multilayer network PD (MNPD) controllers are compared against the conventional244

PD and PID controllers. Trajectories with different degrees of difficulty are considered for simulations,245

and real experiments on the KUKA Youbot ™ mobile manipulator, see Figure 6.246

Figure 6. Omnidirectional mobile manipulator KUKA Youbot ™.

The KUKA Youbot ™ is composed of a manipulator of 5 DOF, and an omnidirectional mobile platform247

of 3 DOF. Respect to the mobile manipulator kinematics, the transformation wTb can be computed with248

the mobile platform pose, which is given by xb, yb and θb, see (18). The constant transformation bTm is249

considered to be250

bTm =









1 0 0 0.140

0 1 0 0

0 0 1 0.151

0 0 0 1









these values were obtained based on the KUKA Youbot ™ technical specifications. Finally, the DH table251

in Table 1, is used to compute the transformation mTe. The joint variable q for the mobile manipulator is252

q =
[

xb yb θb θ1 θ2 θ3 θ4 θ5

]T
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Table 1. DH table for KUKA Youbot ™ manipulator. Values a, α , and d are parameters of the DH

convention.

Joint a (mm) α (rad) d (mm) θ (rad)

1 33 π/2 147 θ1

2 155 0 0 θ2

3 135 0 0 θ3

4 0 π/2 0 θ4

5 0 0 217.5 θ5

where the joint values θ1 −θ5 represent the joint configuration of the manipulator.253

For simulations and real experiments, the weights in the SNPD and MNPD controllers are set randomly254

in every trajectory test. For PD and PID controllers, proportional gains are set as Kx
P = K

y
P = Kz

P = 1.5,255

integrative gains Kx
I = K

y
I = Kz

I = 0.001, and derivative gains Kx
D = K

y
D = Kz

D = 0.5. The gains of the256

PD and PID controllers were heuristically selected. The parameter setting for the EFK are: matrices P257

and Q are initialized as diagonal matrices with Pii = 1 and Qii = 0.1 with i = 1,2, · · · ,n, the parameter258

R = 0.001, the Kalman filter learning rate η = 0.2 and α = 1. The selection of these parameters was259

chosen experimentally.260

The considered trajectories, at step time k are generated as follows:261

Circular trajectory

xr(k) = 0.5,

yr(k) = 0.05cos(0.2 k π) ,

zr(k) = 0.45+0.05sin(0.2 k π) .

Rose curve trajectory

xr(k) = 0.5,

yr(k) = r(k)cos(0.2 k π) ,

zr(k) = 0.45+ r(k)sin(0.2 k π) ,

r(k) = 0.035+0.015cos(0.6 k π) .

Trapezoidal trajectory

xr(k) = 0.5,

yr(k) = 0.1∗ k,

r(k) = 0.45+0.08sin(2 yr(k)π) ,

zr(k) =







0.5 if r(k)> 0.5
0.4 if r(k)< 0.4
r(k) otherwise

.

The desired position for the end-effector is defined as t(k)∗ =
[

xr(k) yr(k) zr(k)
]T

. A circular262

and rose curve trajectories are considered for simulations. A rose curve and trapezoidal trajectories are263

considered for real experiments.264

Simulations265

The first trajectory for simulation is circular. Although conventional controllers present a good response,266

their gains remain constant, and they cannot adapt them to changes in the system. On the other hand, the267

MNPD and SNPD approaches can correctly follow the reference once the weights are adapted.268
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Figure 7. System response and trajectory following results for the circular trajectory.

The trajectory tracking and system response results for the circular trajectory are given in Figure 7.269

As shown in Figure 7 (a), the settling is almost the same for all the approaches. Although MNPD presents270

oscillations while the weights are adapting, the neural algorithms can follow the sinusoidal trajectory271

better than the conventional PID and PD. This can also be seen in Figure 7 (b), where three axes are272

plotted at the same time. The conventional PD reports steady-state errors in the system response for the273
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y-axis and z-axis. The PID control minimizes this error, but overshoot is presented. Figure 7 (b) shows274

that PID passes over the reference caused by the integral part.275
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Figure 8. Velocity control signal results for the circular trajectory.

In 8, the velocity control signals for the circular trajectory are presented. At first steps, adaptive276

weights compute bigger control signals than PD and PID results. However, it is necessary to reach the277

reference with a small tracking error. Conversely, the adaptation ability of both MNPD and SNPD is278

shown.279

Table 2. Simulation results for the circular trajectory. The best results are highlighted in bold.

Measure Method ex ey ez

RMS

MNPD 8.6035×10−4 2.5297×10−3 6.7063×10−3

PD 1.0546×10−3 1.4023×10−2 1.4686×10−2

PID 1.0547×10−3 1.2872×10−2 1.3803×10−2

SNPD 7.8284×10−4 2.1269×10−3 3.5693×10−3

MAD

MNPD 1.3391×10−4 5.5760×10−4 1.3227×10−3

PD 2.9518×10−4 1.2545×10−2 1.2406×10−2

PID 2.1417×10−4 1.1419×10−2 1.1686×10−2

SNPD 1.2753×10−4 6.0505×10−4 6.4863×10−4

The Root Mean Square (RMS) and the Median Absolute Deviation (MAD) for the circular trajectory280

are shown in Table 2. As can be seen, the adaptive approaches present the best results, which are281

highlighted in bold. In this case, the SNPD control scheme reported the smallest RMS results in general.282
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Figure 9. System response and trajectory following results for the rose curve trajectory.

Using the same gains and parameters for the four approaches, a new trajectory is tested, and the283

system response and trajectory following results are shown in Figure 9. Similar results can be seen in the284

system response (Figure 9 (a)); the settling time is the same, and the MNPD present oscillations during285

the adaptations of its weights. However, in Figure 9 (b), it can be seen that the adapting approaches286

outperform the conventional controllers. The PD controller shows the biggest steady-state error, while287
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MNPD and SNPD report the smallest. The PID control improved the performance of PD, but it is needed288

to tune its gains to improve the performance.289
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Figure 10. Velocity control signal results for the rose curve trajectory.

In Figure 10, the velocity control signals for the rose curve trajectory are reported. Similarly to the290

previous trajectory, at the beginning of the trajectory, the weights adaptation of the MNPD and the SNPD291

compute bigger control signals than PD and PID results, which are necessary to reach the reference with a292

small tracking error.293

Table 3. Simulation results for the rose curve trajectory. The best results are highlighted in bold.

Measure Method ex ey ez

RMS

MNPD 6.9811×10−4 2.1346×10−3 4.4524×10−3

PD 1.0546×10−3 1.1447×10−2 1.2728×10−2

PID 1.0547×10−3 1.1191×10−2 1.2804×10−2

SNPD 7.7519×10−4 2.1415×10−3 3.5652×10−3

MAD

MNPD 8.7982×10−5 3.6619×10−4 4.9729×10−3

PD 2.9520×10−4 9.9740×10−3 1.0730×10−2

PID 2.1404×10−4 9.1301×10−3 9.9235×10−3

SNPD 1.2586×10−4 5.8940×10−4 6.4607×10−4

Table 3 shown the RMS and MAD results for the rose curve trajectory. The adaptive scheme has294

demonstrated to have better results than conventional PID and PD controllers. In this case, the MNPD295

controller shows the smallest RMS results in general.296

Experiments297

For real-time experiments, two trajectories were tested. The adaptive SNPD and MNPD controllers298

performed similarly in simulations. However, MNPD shows oscillations during the adaptations of its299

weights at the beginning. These oscillations can be eliminated if pre-trained weights are used instead of300

initializing them randomly every time. For this reason, it is considered to compare the SNPD controller to301
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the PID controller since PID performed better than PD. Moreover, the same gains and parameters used for302

simulation were used for real-time experiments. The weights in the SNPD were randomly initialized.303
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Figure 11. System response and trajectory following results for the rose curve trajectory in real

experiments.

In Figure 11, the system response and trajectory following for both approaches are shown. As can be304

seen in Figure 11 (a), the real system is not the same in simulation, and the gains of the conventional PID305
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must be tuned again. Otherwise, it will not be able to follow the trajectory correctly and present a longer306

settling time. In contrast, using the same parameters as in simulation, the SNPD was able to adapt and307

showed shorter settling time. In Figure 11 (b) the response for the rose curve trajectory is shown. As can308

be seen, PID cannot follow the trajectory correctly, and it is confirmed in Table 4.309

Figure 12. Velocity control signal results for the rose curve trajectory in real experiments.

The velocity control signals for the rose curve trajectory are illustrated in Figure 12. Once again,310

adaptive SNPD computes bigger control signals than PID. However, this demonstrates that SNPD is311

adjusting itself to reject perturbation and changes during experimental tests.312

Table 4. Experimental results for the rose curve trajectory. The best results are highlighted in bold.

Measure Method ex ey ez

RMS
SNPD 3.7452×10−3 3.3248×10−3 8.4861×10−3

PID 2.9319×10−3 1.7032×10−2 2.1101×10−2

MAD
SNPD 9.5960×10−4 1.1829×10−3 2.0750×10−3

PID 1.3942×10−3 1.2963×10−2 1.6109×10−2

Table 3 reported the RMS and MAD results for the rose curve trajectory in real experiments. The313

SNPD scheme has demonstrated to have better results than conventional PID with the smallest RMS and314

MAD results in general.315
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Figure 13. System response and trajectory following results for the trapezoidal trajectory in real

experiments.
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A new trajectory is tested, and the system response and trajectory following results are shown in316

Figure 13. As can be seen, the SNPD control presents better than PID for the results for the trapezoidal317

trajectory. Figure 13 (a) shows the system response, where it is exhibited the adaptation ability of the318

SNPD, while PID control requires the tune of its gains. The PID scheme reported bigger tracking error319

that are presented in Figure 13 (b).320

Figure 14. Velocity control signal results for the trapezoidal trajectory.

The velocity control signals results for the trapezoidal trajectory are given in Figure 14 . It is clear321

that bigger control action is required to be able to follow the trajectory with minimum error tracking. This322

is achieved with the online adaptation of SNPD controller.323

Table 5. Experimental results for the trapezoidal trajectory. The best results are highlighted in bold.

Measure Method ex ey ez

RMS
SNPD 3.8064×10−3 3.4122×10−3 8.1596×10−3

PID 3.0025×10−3 5.5684×10−2 1.8825×10−2

MAD
SNPD 8.8564×10−4 1.3090×10−3 2.0708×10−3

PID 1.7514×10−3 3.5206×10−2 1.5032×10−2

Finally, table 5 reported the RMS and MAD results for the trapezoidal trajectory in real experiments.324

The SNPD scheme outperformed the PID controller with the smallest RMS and MAD results in general.325

CONCLUSIONS326

In this work, an adaptive single neuron PD (SNPD) and multilayer network PD (MNPD) controllers327

trained with the EKF algorithm were proposed. The performance of these approaches were considered328

for trajectory tracking of the KUKA Youbot ™ mobile manipulator. Simulation and real experiments329

were performed to compare the classical PD and PID controllers against the proposals. Simulation and330

experiment results reported that PD control presented steady-state errors, while PID control overcomes331

this inconvenience but with overshoot results. In contrast, the adaptive neural PD controllers eliminated332

the steady-state error and highly suppressed the overshoot in general. Moreover, adaptive PD schemes333

show better settling time and high performance with smaller tracking results. The results also showed that334
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even without an integral part, the PD neural controllers trained with extended Kalman filter offer better335

overall performance than a conventional PID. They present a small overshoot, and the offset is reduced.336

Additionally, the experimental results indicate that the SNPD controller shows a superior system response337

under perturbations and changes during the operation that the PID controller. The conventional PID338

controller requires the tuning of its gains to improve the performance. The SNPD controller shows better339

performance than MNPD, mainly due to more weights present in MNPD. It is shown that they present340

similar settling times, and the oscillations present with MNPD can be eliminated if trained weights are341

used instead of initializing them randomly every time. However, it was exposed that this is unnecessary,342

and both approaches exhibit good adaptation to uncertainties in the system. One of the main reasons343

for PI, PD, and PID controllers’ success is their implementation simplicity. Some works have been344

proposed to deal with the drawbacks of the conventional PID, adding in some cases a fair complexity at345

implementation time. The proposed adaptive neural PD controllers are easy to implement, having good346

performances.347
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