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ABSTRACT
Keyword extraction is essential in determining influenced keywords from huge
documents as the research repositories are becoming massive in volume day by
day. The research community is drowning in data and starving for information.
The keywords are the words that describe the theme of the whole document in a
precise way by consisting of just a few words. Furthermore, many state-of-the-art
approaches are available for keyword extraction from a huge collection of documents
and are classified into three types, the statistical approaches, machine learning,
and graph-based methods. The machine learning approaches require a large training
dataset that needs to be developed manually by domain experts, which sometimes
is difficult to produce while determining influenced keywords. However, this
research focused on enhancing state-of-the-art graph-based methods to extract
keywords when the training dataset is unavailable. This research first converted
the handcrafted dataset, collected from impact factor journals into n-grams
combinations, ranging from unigram to pentagram and also enhanced traditional
graph-based approaches. The experiment was conducted on a handcrafted dataset,
and all methods were applied on it. Domain experts performed the user study to
evaluate the results. The results were observed from every method and were evaluated
with the user study using precision, recall and f-measure as evaluation matrices.
The results showed that the proposed method (FNG-IE) performed well and scored
near the machine learning approaches score.

Subjects Emerging Technologies, Natural Language and Speech, Scientific Computing and
Simulation, Programming Languages
Keywords Programming, Keyword extraction, Graph-based keyword extraction

INTRODUCTION
The rate of increase in research data is recorded massive in recent years, and this massive
collection of research data makes the extraction of important information as a difficult
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task. The research community is drowning in data and starving for information (Amin &
Chakraborty, 2018). Therefore, in recent years many approaches were used to extract
important information from massive corpus. Moreover, these approaches extracted
informative data in a precise way by existing of just few words or phrases. These few
words or phrases are called keywords or key phrases that describe the whole document's
theme precisely, keywords also contain important research terms and techniques
(Ashokkumar, Arunkumar & Don, 2018).

The state of the art approaches available for keyword extraction are classified into
statistical approaches, machine learning, and graph-based approaches. The statistical
approaches accept data as an individual term and produce the results based on the
frequency of that term. The term refers to a single word in a document (Li, 2012).
In the state-of-the-art Term Frequency, Inverse Document Frequency (TF-IDF) is the
commonly used statistical approach. It works on calculating the term frequency in a single
document combined with the frequency of that term in all documents. While the machine
learning-based approaches work on the basis of word semantics, the machine learning
model is trained with a handcrafted training dataset from which the semantics are to be
perceived (Bordoloi & Biswas, 2018). Furthermore, the graph-based approaches work on
the basis of graphs, whereas the graph is a combination of nodes connected together
with the help of arcs. The nodes are the words in a document and the arc is built on
the basis of the relationship between nodes (Bordoloi & Biswas, 2018). Furthermore, once
the graph is made then graph-based methods are applied to extract the influenced
keywords from huge document collection. The statistical approach TF-IDF is a frequency-
based approach. It calculates the frequency of terms and then ranks the terms according to
their scores (higher–lower (Zimniewicz, Kurowski & Węglarz, 2018)).

The terms with higher scores are considered as keywords. The TF-IDF works on
randomly collecting the words from a document and ranking them from higher to lower
just based on their frequencies which makes it difficult to produce quality keywords with
better word semantics (Chen et al., 2012). Therefore, the Machine learning approaches
were used to better understand the word semantics and to produce quality keywords.
The machine learning approaches work on the basis of the training dataset which is a pure
handcrafted data set by a domain expert. The training dataset contain the important terms
which are extracted manually by human (domain expert) while going through all the
documents. The raw data (document collection) is then passed through the machine
learning model which further considers some factors to be fulfilled by all terms. The terms
which fulfill the criteria are then processed through the word semantics of the training
dataset. Furthermore, the terms that successfully passes through the model by fulfilling the
word semantics are considered as keywords

The graph-based methods work differently as compared to statistical and machine
learning methods. The graph-based methods do not require any training dataset to process
results and do not work on just random frequency calculation of words (Hashemi,
Dowlatshahi & Nezamabadi-pour, 2020). The graph-based methods work on building
the graph of words, the words are considered as nodes and the nodes are linked with
arcs. The arcs are made on the basis of relationship among nodes (Biswas, 2019).
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The graph-based methods works on sequential processing of graphs, the nodes with a
higher number of connections in a network are considered the keywords. In the state-of-
the-art, the machine learning techniques are used to better determine the influenced
keywords from massive text corpora using handcrafted training dataset produced by
domain experts. However, an effective method for keyword extraction is required to
produce quality results similar to machine learning when the training dataset is not
available (Sahingoz et al., 2019). Therefore, this research focused on proposed graph-based
approaches in order to produce quality results similar to the machine learning approaches
but without using any training dataset. The proposed methodology consisted of some
sequential processes starting from the dataset collection and data preprocessing. The data
was collected from open access journals related to textile research because this research
considered full text articles instead of just abstract and title. The collected articles were
preprocessed in order to get only useful words by removing waste data.

The preprocessed data was further converted to n-gram combinations ranging from
unigrams to pentagrams. The TF-IDF was applied to all n-gram combinations and result
was observed. The machine learning was also applied to the preprocessed data.
Furthermore, to apply graph-based methods all n-grams combinations were converted
into graphs. The words were considered as nodes and based on co-occurrence of words.
The arcs linked the nodes to form graph. The next step is to apply graph-based methods
on graph, the methods are PageRank, Hyper Text Induced Topic Search (HITS) and
proposed method Frequent Node Graph-based Information Retrieval (FNG-IE) method.

The results from all methods were observed and evaluated based on the user study
using precision and recall as evaluation parameters. The user study was performed by
domain experts in which the important terms were extracted from all documents.
The precision and recall score for every method was observed. Moreover, this research
observed that among all n-gram combinations, the bigram performed better. The bigram
result for all methods was considered to be further compared with the TF-IDF and
machine learning approaches result in order to determine the best performing approach.
The precision and recall score for HITS-I and the proposed method Frequent Node
method were observed near to machine learning method results and much better than the
TF-IDF and traditional PageRank Method. However, it was concluded that the proposed
approach is the best alternative to machine learning when the training dataset is not
available.

LITERATURE REVIEW
The literature study is performed considering the keyword extraction techniques used to
extract useful information from huge data collection. The constraints on which the
information is considered important and meaningful, the metadata, and the feature set
used to process metadata to further extract more useful (required keywords) information.
The literature is classified into graph-based, non-graph-based, and machine learning-
based methods of keyword extraction, the type of data, quantity, and quality of data,
possible outcomes, and limitations of proposed methods. The evaluation parameters for
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both (graph-based and non-graph-based) methods. A detailed overview of the literature
review is given in Table 1.

Going through relative literature studies is a vital task to perform research in any
specific field of study. It gives a comprehensive overview of research problems,
methods and results. However, a huge amount of research done in the textile in past years
is difficult to quickly identify the methods, their implementations, and expected outcomes
because a research student has to pass through a bundle of research articles of relevant
research. To overcome this time-consuming process, data mining methods are used to
extract important information. Keyword extraction methods in the data mining process
serve the purpose of important keyword extraction from bulks of data to quickly identify
important keywords (on given constraints) (Onan, Korukoğlu & Bulut, 2016).

Keyword extraction plays an important part in extracting valuable information from
large text corpora, the process varies concerning different text types, but the expected
outcomes are always identical. However, a variety of data types, keyword extraction
techniques were enhanced, merged with other techniques, and transformed into
enhanced ones. The literature study for this research has been clustered regarding
techniques to build a quick understanding of those techniques, implementation, and
results. The techniques are classified as statistical approaches, machine learning
approaches and graph-based approaches.

Table 1 Critical analysis of literature studies.

Ref. Category Methodology Datasets Strengths Weaknesses

Hong & Zhen (2012), Turney (2003),
Khodaei, Shahabi & Li (2012) and Lee
et al. (2013)

Statistical
methods

Documents are preprocessed
and statistical methods are applied to
calculate frequencies, and then
after frequency-based ranking of words
the keywords are prepared
TF-IDF and Frequent Pattern method
is the most common

Newspaper
data
Twitter
benchmark
datasets

Feasible for smaller
sized datasets.
Best performer in
simple structured
datasets where
only frequency
matters

Not feasible
for large
size and
complex
structured
datasets.

Zhang & Tang (2013), Jain & Gupta
(2018), Schluter (2014) and Beliga,
Meštrović & Martinčić-Ipšić (2014)

Machine
learning

Documents sets are cleaned by
preprocessing and are further
processed through machine learning
methods that work on understanding
word semantics
from the training dataset.
The Quality Phrase Mining approach is
state-of-the-art
and most common for this purpose

Essays
collections
Twitter
datasets
Collection of
web data

Does not crash on
large size and
complex
structured datasets

Needs a well
developed
training
dataset

Lahiri, Choudhury & Caragea (2014),
Coppola et al. (2019), Zhang et al.
(2016), Zhou et al. (2019), Abilhoa &
De Castro (2014), Chang, Huang & Lin
(2015), Rousseau & Vazirgiannis
(2015) and Liu, Chen & Song (2002)

Graph-
based

Documents are preprocessed and the
feature set
is converted into a graph with nodes
and edges linkage, then graph-based
methods are applied to it.
HITS, PageRank, CoreRank, and
Centrality measures
are the most common and
state-of-the-art approaches

News datasets
from the web
Accidents
datasets
extraction
from web

Supports larger size
documents.
Works on the basis
of nodes and
edge connectivity
which supports
any type of dataset.
Does not require
training dataset

Limited to
graph-
based
methods
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Statistical approaches
The keyword extraction methods require a set of features to be selected from the collection
of data. The feature set may contain a specific part of speech or combination of two or
more, it may be noun, verb or combination of both. The feature set is further processed
using the keyword extraction method, in terms of statistical approaches, TF-IDF is
most common and validated method (Hong & Zhen, 2012).

The initial step is to collect documents. The documents are kept in one specific format
to be further processed (i.e., text format or PDF), it depends on the type of data and
experiment, which is to be conducted on given constraints. The next step is to calculate
term frequency; the term frequency is calculated by identifying a specific term. Every
document is of different length, so there is a chance of high and low occurrence. The term
frequency is calculated by dividing the total number of times a term occurs in a document
with all (total number of) terms in a specific document.

The term frequency is calculated by dividing the total number of times a term occurs in
a document with all (total number of) terms in a specific document. The next step is to
calculate the inverse document frequency, which is calculated by dividing the total
number of documents by the actual number of documents, including the terms.
Moreover, after calculating these two scores, the next step is to combine the frequencies
to calculate the final score. However, after calculating the scores for all terms, the next and
last step is to rank the terms according to the scores.

The different types of datasets and feature sets need enhancements in the traditional
TF-IDF approach, in the sense of improvement while overcoming the limitations
expressed by Chen et al. (2012) and Turney (2003) that TF-IDF does not work on complex
and huge datasets, another research (Lee et al., 2013) was conducted, considering the
spatial factor of web data. The research proposed method named as SKIF-P based on
spatial TF-IDF in which the traditional technique was improved.

The proposed method was applied to web pages ranking with hybrid index structures to
handle point-based indexing of web documents in an efficient number. The proposed
method's validity was validated with multiple experiments, and improved results showed
that the addition (Spatial-TF-IDF) worked efficiently (Khodaei, Shahabi & Li, 2012).
The deep analysis of previous studies, statistical techniques can only work on datasets
of small size; when it comes to the processing of large-sized and complex datasets,
traditional statistical techniques are deficient in performing results. Also, there exists no
specific and sufficient technique that helps in visualizing the results. So, there was the need
for such techniques that perform on large datasets and give improved results on small
datasets also. Graph-based approaches and the machine learning approaches were used in
comparison with non-graph-based (statistical) approaches.

Machine learning approaches
The statistical keyword extraction techniques are not sufficient in extracting meaningful
keywords from huge and complex structured documents (Turney, 2003); another platform
has significant importance in almost every technology-related field, that is machine
learning. Machine learning also serves to extract keyword extraction from huge amounts of
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data even with complex structures and noisy inputs. Its greatness is that it runs on training
data that verifies the required pattern, and then based on that pattern, it identifies the most
relevant keywords from data collection.

The SVM classifier is a common machine learning-based approach trained with
the pattern that is to be identified from a massive collection of text. The research
(Lee et al., 2013) has used SVM on spoken documents; the first phase was to calculate topic
coherence with term significance measure. The research used both negative and positive
segments to train the SVM. The dataset results showed better results in the precision
score and the second stage effectively processed better keywords.

The KEA algorithm overcame SVM’s deficiency in extracting quality keywords.
The research (Zhang & Tang, 2013) used a KEA algorithm, a combination of statistical
and Naive Bayes classifier approach; it also needs to be trained with a valid set of
arguments that are fundamental to information extracted from massive text collections.
The proposed methods consisted of semantic information and KEA based on Reget's
thesaurus (Zhang & Tang, 2013). It included semantic similarity between terms was used
to construct the lexical chain, and the length of that chain was further used for building the
extraction model.

Quality Phrase Mining is a machine learning-based method that needs a training
dataset to produce results. Its name is used to extract quality words with the highest
understandability and relevancy to the training data. The research (Zhang & Tang, 2013)
has applied QPM with minimal training data and phrasal segmentation to achieve
quality keywords. The research also briefly describes the factors on which the quality words
are extracted from a massive text corpus. The machine learning techniques perform far
better than other techniques because these techniques understand the patterns of data
given as training dataset; based on training data’s features, it estimates the quality of
words from given as an unprocessed dataset. The machine learning techniques perform far
better than other techniques because these techniques understand the patterns of data
given as training dataset; based on training data’s features, to be compared with terms in
raw dataset.

It starts with the preprocessing of datasets that are composed of documents. The next
phase is identifying phrases that are frequently appearing in the document(s), then it
goes to the next step that is the assessment of the quality of phrases. The quality of phrases
is estimated based on some factors such as understandability, informativeness, and
frequent occurrence. The factors vary from research to research because of different
requirements and also due to diverse data types. The words that fulfill all the mentioned
criteria by passing through all the factors responsible for estimating the quality are stored
for the next process (Jain & Gupta, 2018).

The successful phrase segmentation leads to the next step, which is rectifying the
frequency of phrases (if needed), and after this last step, the quality phrases are generated
(Sahingoz et al., 2019). Furthermore, various approaches were determined in the
literature survey; the approaches were carefully analyzed in terms of implication, how they
were applied to various types of datasets, and the results after the implementation.

Tahir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.389 6/24

http://dx.doi.org/10.7717/peerj-cs.389
https://peerj.com/computer-science/


The techniques were classified into three basic classes, the statistical ones, graph-based,
and machine learning. It is concluded that the graph-based techniques performed
relatively best compared to the statistical ones, so this research study considered the
graph-based methods to be applied to determine the research trend by using important
keywords.

Graph-based approaches
The datasets are converted into graphed networks based on the selected feature set as
explained in the “Research Methodology”, the words are considered nodes, and nodes are
combined with the help of edges that are sometimes called arcs; this is called a graph.
The techniques that work on graphs are considered as graph-based techniques. The nodes
in graph-based datasets are made based on words that are selected as features for
further processing, and the edge (or arc) combines two or more nodes to make networks;
the arc is made based on constraints that combines the nodes, the common constraints in
previous studies are co-occurrence, ranking value.

The graph is composed of nodes and arcs combination; therefore, it supports large and
complex datasets to be processed because a graph has a definite pattern. The research
(Schluter, 2014) proposed a technique based on centrality measures; it was claimed that by
identifying each node’s centrality score and then ranking them based on the highest score,
the node could be said as the most important node (node refers to a featured word).
The HITS algorithm was used for processing the selected featured graph network. HITS
algorithm consists of two scores, hubs and authorities, hubs are the outdegree of a specific
node (number of out links pointing to other nodes), and authorities are the in-degree of a
specific node (number of links pointing a specific node).

Improvement of understandability of keywords in previously proposed research
(Schluter, 2014) based on traditional methods, the research’s (Beliga, Meštrović &
Martinčić-Ipšić, 2014) proposed a graphed method that produced better results. According
to the previous studies, the research used a graph-based method in the research, this is
different and comparatively improved. Instead of traditional HITS and PageRank, this
research used a new parameter for the extraction of keywords. The parameter used in the
research is the selectivity of nodes. The research defines the selectivity as the average
weight on links of a single edge node. The research (Beliga, Meštrović & Martinčić-Ipšić,
2014) proposed the study on the HINA dataset to get results. The increase in F1 and F2
score by approx. A total of 3 percent concerning previous performance proves the
improvement of the proposed method.

The graph network comprises nodes, and edges are used to combine nodes based
on given constraints as given in the “Research Methodology”. The recent graph-based
research was improved in the research (Lahiri, Choudhury & Caragea, 2014) by making a
few enhancements in choosing the feature set and using another parameter than the
previous one. The research used centrality measures to extract keywords instead of
previous PageRank and HITS. The experiment was performed on some benchmark
datasets. The proposed method performed well and improved the results as compared to
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the previous ones. Still, in some places, it was not better performing at all, however, the
average result of F-measure was relatively improved as compared to other approaches.

G ¼ V ; E (1)

It works on calculating the popularity by determining the visitor nodes to a specific
node. To understand how the PageRank score is computed using nodes and links, let’s
consider a graph given formula in the Eq. (1) with nodes as V and edges as E. The Eq. (2)
below can be used to determine the implementable process of the PageRank algorithm
(Coppola et al., 2019).

PR sð Þ ¼
X

veBs

R vð Þ
Nv

(2)

The PR(s) represents the PageRank of any node s belonging to Nodes V, where Bs is the
collection of all those nodes which are pointing to s, Nv represents the number of the edges
going out of the node s. The Rv is the PageRank of node v. Equation (2) shows the
PageRank concept implemented to graph-based networks (Zhang et al., 2016; Zhou et al.,
2019).

The research was performed in the improvement of PageRank with other traditional
graph-based techniques. The research (Abilhoa & De Castro, 2014) overcomes the
limitation of VSM (Vector Space Model) for keyword extracts such as sparsity and
scalability. The author named his proposed approach as TKG (Twitter Keyword Graph),
which uses centrality measures to extract keywords. It used the tweets' data and the
represents texts of the tweets as nodes of the graph. The research performed three
experiments; in the first experiment, the technique TKG was compared with the literature
techniques, and the second experiment was compared with the traditional techniques
of TF-IDF and KEA (Keyword Extraction Algorithm). In all three experiments, the
proposed approach performed higher robustness as compared to traditional techniques.

To improve keyword extraction results, the research (Chang, Huang & Lin, 2015)
proposed a new parameter towards the enhancement of previously described keyword
extraction. The research used a feature set based on the co-occurrence of words in a
graph. The proposed method used the TF-IDF approach and build three graphs, word
to word, sentence to sentence, and sentence to word, and used co-occurrence importance
of words to perform keyword extraction using centrality measures. The results assured the
improvement of the method.

The previous graph-based techniques were based on centrality measures with different
feature sets for extracting keywords. The research (Rousseau & Vazirgiannis, 2015)
applied the k-core method to represent the document as a graph of words. It retains nodes
from the only central core for representing terms. The proposed approach performs better
in proximity between the keywords and the variability in the number of keywords
extracted through subsets of nodes. The results showed a remarkable improvement in
the curves of precision, recall and F-measure as evaluation parameters.
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Statistical methods perform keyword extraction but are not sufficient for complex
documents or their performance becomes low in dealing with huge datasets. The reason is
that graph-based methods are used, but these methods also face scalability issues. To cope
with scalability and sparsity limitations, the research (Zhang et al., 2018) proposed a
weighted graph-based approach named Keyword from Weighted Graph (KWG). KWG
is an unsupervised approach that uses node edge to rank the nodes and centrality measures
to calculate the node’s neighborhood closeness and importance. The research applied
the proposed scheme on the dataset of the American election and URI attack. The results
were comparatively improved, with reasonable enhancement in the results of graph-based
techniques, there still exists a deficiency in acquiring the means required results.
The literature studies concluded that the statistical approaches lack in providing quality
information from huge data repositories but graph-based approaches are far better than
statistical ones. The machine learning approaches perform better than all but need training
dataset to process data. There exists a need for an approach to produce results such as
machine learning approaches results but without training dataset.

RESEARCH METHODOLOGY
The proposed research methodology consists of five major phases, which further consists
of some steps to be executed sequentially. The first phase consists of data collection.
The second phase consists of a set of techniques used to clean the dataset by removing
useless words or characters. The third phase comprises n-grams generation and building
the network of graphs to prepare data to be used for graph-based techniques. The next,
fourth phase deals with applying all state-of-the-art techniques on previously scheduled
data. The fifth and last phase of methodology comprises of some steps used to validate
results and finalize the results; the quick view of research methodology can be perceived
from Fig. 1.

Data collection and plain text conversion
This research tried many benchmark datasets, but no such dataset fulfilled the
requirement. So, this research focused on creating a dataset on its own by collecting articles
that are closely related to the textile domain and its relevant sub-domains (without
considering any specific domain). This research considered full-text articles and the
articles were collected from open access impact factor journals because subscription-based
journals only provide abstracts and titles without a subscription. Further, only English
language articles were selected to avoid any language barrier. The number of articles was
nearly 1,000, collected from the year 2015–2019 (a span of 5 recent years). The number of
articles were chosen 1,000 for experimentation purpose, can be enhanced in future
perspective of this research. The most common sources were Sage Publications,
Science direct, Springer and MDPI. The collected data was further converted to plain text
that is acceptable for the format of the processing. The initial format of the data was in
portable document format (.pdf) format and after plain text conversion it was converted
into text format (.txt).
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Preprocessing
The data after plain text conversion was further cleaned by performing preprocessing on
it to remove useless words or characters from sentences. The preprocessing step
includes tokenization in which the whole sentence is converted into every single tokens,
the stop words removal, which is responsible of removing useless words (usually
concatenation words or symbols). The stemming deals with the conversion of every word
to its root word, the stemming was chosen over lemmatization because this research added
a constraint in stemming process in which the words ending with “ing” and “ed” were
passed through checkpoint and all other were discarded. At the last the parts of speech
tagging which deals with the selection of specific parts of speech. This research chose the
nouns and verbs to be filtered while performing parts of speech tagging.

N-grams conversion
When applied for extracting useful information from a huge sized corpus, the data
analysis process is always a need for such methods that improve word semantics to
improve the understandability of words. There exist many methods, and one of the most
commonly used methods in literature studies is n-grams. It is a sequence of words
arranged so that a word combines with its adjacent word. The “n” in n-grams means the
number of grams, gram is considered a specific word (Hajek, Barushka & Munk, 2020).

The number of grams represents the final gram set; let’s say if the value of n is 1 so
the gram set on this value be called as a unigram, if the value of n is 2, the gram set will
be called as bigram, and so on (Bisandu, Prasad & Liman, 2018). It can be easily
understood by an example considering the making of bigram of a string (sentence.):
“Textile industry contributes a reasonable revenue to the economy of the country”

Dataset Collec�on Preprocessing

Userstudy

Building Network

TF-IDF

Grams Conversion

Result Evalua�on

HITS PageRank

Plain text 
conversion

Frequent Node 
Method

PDF to TXT Removing waste data

Cleaned data

Upto 5 grams

Determining best 
gram set 

perfomance

Determining best 
technique

Determining top 
influenced 
keywords

Valida�on of results

Machine Learning

Figure 1 Research methodology. Full-size DOI: 10.7717/peerj-cs.389/fig-1
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if converted to bigram, it will look like “Textile industry” “industry contributes”
“contributes a” “a reasonable” “reasonable revenue” “revenue to” “to the” “the economy”
“economy of” “of country”. The n-grams converted words provide more sense than
simple words. This study considered n-grams set ranging from unigram to pentagrams
to achieve higher understandability of words depending on the applied gram set.
The grams set from unigram to pentagrams were made for each year’s data set, for
example: for the dataset of the year 2015, there will be 5 g set and the same way for the year
2016, 2017, 2018 and 2019 respectively.

Statistical approach
According to the research methodology, when n-grams conversion got completed, the
next step was to apply the keyword extraction techniques to choose, rank and determine
the set of keywords. This study has divided the applied technique into three types
according to the nature of techniques such as statistical or non-graph-based techniques,
graph-based approaching, and the last one machine learning approaches. In this phase,
the statistical techniques will be discussed in terms of their practical implementation.
According to the literature studies, TF-IDF was found most commonly implemented
technique for keyword extraction that is why this research incorporated this technique in
order to extract keywords.

Term frequency, inverse document frequency
Among other statistical techniques, the most prominent and common technique was
TF-IDF (Li, 2012). The TF-IDF is an unsupervised approach which is used to find the
frequency of occurrence of any term or in simple a word in a document in ratio to its
frequency in the other documents and by combining the frequencies, the final score
becomes ready. The terms are ranked further according to their scores. This research also
performed TF-IDF on the data filtered out after preprocessing. The final terms ranked in
descending order and the top ones were selected.

Machine learning approach
Implementing machine learning to determine the importance or influenced keywords is
also well known and applied in many studies. Following this research strategy, machine
learning contains the most common and recommended Quality Phrase Mining (QPM)
that works on multiple constraints to filter and rank keyword or key phrases (Zhang &
Tang, 2013).

Quality phrase mining
The quality phrase mining is a machine learning-based approach that comprises of
multiple processes that need to be executed in a particular sequence to get quality
keywords. The major reason for using this technique is that it does not just deal with the
occurrences or frequencies; it deals with understanding word semantic meanings.
This technique required a training data set based on which it will understand the semantics
(of training data) and will filter the provided raw datasets accordingly. The QPM in this
research is applied directly to the dataset; it firstly cleaned the data by removing useless
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words and characters from the dataset. The filtered words were further passed through
four major factors that were completeness, frequency, informative and understandability
in the next process.

The completeness refers to the whole meaning of terms; the frequency means the
repetitive occurrence of words in a document. The informativeness means the terms
should relate to any standard meaning. The understandability deals with that property of
word which is responsible of having a proper meaning. When passed through these four
constraints, the filtered words were claimed to be the best influenced or quality words.
The resultant word passed through these four constraints were at last matched with the
semantics of the words stored in training datasets. The training dataset was provided to
this method, which contained standardized data with the set of semantics expected to
be achieved by the method when processed on the raw dataset. Finally, the words which
were given by this method were considered the quality words and were recorded in a result
file for comparison with other approaches.

To avoid overfitting and underfitting issue, whole dataset was shuffled first, secondly
the 60% of data was used to train the model and the rest 40% for testing purpose.
Furthermore, to avoid annotators biasedness of annotators, this research chose five
annotators directly related to textile field but belonging to different organizations, three out
of five were the graduates and the rest two belonged to the industrial practicing field of
textile. The data acquired from the annotators were collected, shuffled and saved as a single
study and was further divided into training and testing purpose.

Building graphs
The number of n-gram set of each year gives the number of graphs for each year; this
research has made 5 g set for a single year dataset (ranging from unigram to pentagrams).
The gram set result is saved in the form of a list in text files (for each gram set unigram
to pentagram). The graph consists of two main things, the nodes and the arcs. In the
context of this research, the nodes are the words that are saved in the form of gram sets
(unigram–pentagram).

The nodes are combined with arcs’ help, and arcs are made between nodes based on
co-occurrence (Zhou et al., 2019). The graph generation started with the assigning of node
number to the nodes existing in the files (list of gram sets in the files). However, by
carefully keeping in view that no separate number should be assigned to the same node
(word) existing in any other location, if the word existed on any other location it was
assigned that number which was assigned previously. For example: if node number of node
“quality” is “55” and on “l00” location it appears again then it will not be assigned “100” to
“quality” it will be recognized by the previous node number that is “55”. The graph of
words network once made, was further used to perform graph based analysis.

Graph-based approaches
The literature studies consisted of many approaches and were applied according to the
data and the required result. This research selected those approaches that were better in
performance and were most commonly used (according to literature studies) (Coppola
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et al., 2019). The approaches were HITS and PageRank approach; another reason to
select these approaches was the high relevancy of their outcome with the requirement of
this study's expectations which was to determine the influenced node from huge
collections.

Hyper text induced topic search
According to the literature studies, the one of most common graph-based keyword
extraction technique is HITS; it works in such a way that firstly, it recognizes the nodes and
the structure (the way nodes are connected) of arcs and nodes. The “Graph-Based
Approaches” describes the node-edge connectivity in detail. The HITS approach in the
context of this research was altered according to the requirements. Just a single iteration of
authorities was considered for every node. Hubs are the number of nodes that a specific
node is pointing to (outline), and authority is the number of nodes that are pointing
that specific node (In links). The number of hubs of a specific node tells us how often a
node is connected to other nodes. The number of authorities of a specific node tells us
how a node is important in the network as it tells us how many nodes are visited that
specific node (Liu, Chen & Song, 2002).

It accepted the network in the form of an input file of .csv file format; the complete
network gets completed with two input files. One file contains the complete information
about the nodes, such as node number and node name; the second input file contains
the connections/links that form the actual network, such as the source node and the
target node. The structure of nodes files consists of nodes number and names, which
consists of two columns, the first column contained node number and with the heading
of “ID” and the second column contained the name of the node with the heading “Name”,
the brief overview of its structure can be seen in Table 2.

Similarly, the second file that contains the information of arcs or simply the links by
which the network is formed, the connectivity of the source node with the target node.
This file also contained two columns; the first column contained the source node number,
and its heading was “Source” the second column contained the target node number,
and its heading was “Target”. The input files were processed according to their structure; in
the first phase, the arcs file was read. The HITS algorithm’s practical implementation
was performed by accessing the source and target node numbers (for each specific node),
the hubs and authorities were calculated for every node. The calculation was then ranked
in highest to lowest order.

Table 2 Node name file structure.

ID Name

1 Fiber

2 Construct

3 Yarn

4 Nanoparticle
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This research applied just a single iteration by using just determining each node’s
authority scores and ranking it in descending because it has to determine the nodes with
the highest authority values. After all, it described the node, which is more influential
among other nodes (Sanchez et al., 2019).

The second phase was to print the names of nodes from the second file, the node
numbers of highly ranked nodes were matched from the nodes name files, and hence the
knowledgeable results were made when the names of influenced nodes were printed.
The top nodes with the highest scores were printed for further use. Python was the
language used to implement the above methodology, the NumPy, matplotlib, sklearn, and
networkx libraries were used to compute various calculations within the algorithm; these
techniques were validated to be used in many literature studies.

PageRank

The PageRank approach processes likely to HITS algorithm, a commonly used graph-
based method following the literature studies. The PageRank method also works to
determine important nodes. PageRank is defined as a method among all centrality
measures that work on the centrality of nodes pointing to a specific node and centrality
of the nodes that are pointing to those nodes. The process continues till the final
calculation until the whole graph is traversed.

The input files were prepared in the same way as HITS and were accessed in the
same way as HITS accessed the source and target nodes. The Table 2 represents the file
structure for nodes, and Table 3 shows the structure of the input file for arcs.
The PageRank was calculated firstly from the arcs file where there were source and target
nodes, the centrality of all nodes pointing to a specific node, and the centrality of a
node, which is pointed by all other nodes. The output or expected results and the
methodology is similar to HITS to some extent. Still, in practical implementation and
modeling, both are different and as well as different in structure. The produced results of
PageRank were influenced terms ranked in higher to lower scores (shown in “Results”).

FNG-IE approach
The FNG-IE method is based on the concept of statistical method, known as a frequent
pattern method. The working concept of this method relates to the frequent pattern
method but is enhanced in such a way that it works on graph-based dataset. The graph
structure was firstly read by the proposed method and then the node structure was
accessed to be executed. Furthermore, this method calculates the frequency of nodes and
then ranks the nodes according to their scores. Firstly, it identifies the nodes, the source

Table 3 Arcs file structure.

Source Target

1 2

2 3

3 4

4 5
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node, and the target node; it considers the calculation of frequencies for both nodes
and then finds its ratio with the total number of nodes, hence the final score calculated for
each node. Moreover, the node score for each node is then matched with the node name,
which is saved in the nodes file. The node names are printed then as highly influenced
nodes.

The preprocessed terms were converted into graphs, as described in the “Hyper Text
Induced Topic Search”. The two files were made of which one is called as nodes file, and
the second was the arcs file. The nodes file contained the term and the number of its nodes
and the arcs file containing the source node and target node description for each node.
The proposed method is given in the Fig. 2 that reads the linkage mechanism of arcs
from the arcs file, and for each node, it computes the frequency for both target and source
node because just by calculating the frequency of only target nodes does not give the
complete influence of a node in a network. Although the target node is important because
it is being hit by other nodes but the importance of source node cannot be avoided in
such a case when the influence node is required. This research’s absolute target was
determining the influence node, so source node was also considered as source node was
also in repetitive occurrence in many places (within a network).

Moreover, when the frequency is calculated, the next step is to figure out the ratio of a
specific node’s score to the total number of nodes in a network. Moreover, after this

Nodes file Arcs file

Ranking nodes 
with final scores

Compu�ng 
source and 
target node 
frequency

Compu�ng ra�o of 
node frequency 

with total number 
of nodes

Final results as 
influenced 
keywords

Preprocessed
Dataset

Figure 2 FNG-IE methods conceptual overview. Full-size DOI: 10.7717/peerj-cs.389/fig-2
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computation, every node has a final score that is further used to rank the nodes according
to their score (from a higher score to lower score). The final score is stored against
each node, and then the node number is matched with the file containing node number
and the node name; this was done to print the node names because the end results need
to be understandable. These node names are words described in “Hyper Text Induced
Topic Search” and these words after the whole processing are considered to be the
important or influenced keywords.

RESULTS
This research has considered precision, recall and f-measure as evaluation parameters,
these parameters were selected keeping in view the literature studies. Precision is
considered an evaluation parameter in terms of information retrieval, according to the
literature studies. Precision works based on relevant information (or data) and retrieved
information (or data). The Eq. (3) refers to the mathematical overview of Precision.

Precision score ¼ True Positives
True Positives þ False Positives

(3)

The terms true positive refers to the results containing the data present in the actual
document and the predicted document. The False-positive refers to the results which
contain the data which is not present in the actual document but is predicted by the
experimentation (Arora, Kanjilal & Varshney, 2016). The recall is the ratio of true positives
over predicted results and can be determined by the following formula given in the Eq. (4).

Recall score ¼ True Positive
True Positiveþ False Negative

(4)

The recall score indicates the percentage of the total number of relevant results that are
accurately identified by the method. The terms true positive and false negative are
discussed in “Results”. The recall score usually turns less than the precision. Still, this
condition is not obvious in all cases, recall score increases in many cases where
the algorithm performs well and observes the better results (Batalha et al., 2019).
The f-measure is also calculated among other evaluation parameters (precision and recall).
The f-measure is basically the harmonic mean that is calculated from the scores of
precision and recall as shown in Eq. (5).

F �Measure ¼ 2
Precision � Recall
Precisionþ Recall

(5)

This research has considered the calculation of these parameters for result evaluation.
In literature studies, it is closely observed that the most common evaluation parameters are
recall, precision and the F-measure score.

N-gram based result
This research classified the results in the combination of n-grams, from unigram to
pentagrams combination. The statistics of the results are shown in the form of graphs in
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the subsequent Section. The results are arranged in a way that for each n-grams
combination, every statistical and graph-based method was applied and the result was
observed. In the same way, the results are shown after evaluating by the evaluation
parameters discussed in the “Results”. The graphs show the curve of evaluation score
ranging from 0 to 1, having a different score for every different method. The higher
precision, recall and F-measure score on the graph shows the better performance of the
method.

Unigram result
It can be clearly seen from Fig. 3 that on the unigram dataset, the TF-IDF approach
performed relatively less as compared to the graph-based methods. Moreover, in terms of
graph-based methods, the HITS and PageRank performed nearly similar results, but the
FNG-IE method performed better than all other methods as its score of precision and
recall is higher than all other methods.

Bigram result
The bigram converted dataset consisted of two neighboring words (terms) as described in
“N-Grams Conversion” was also processed the same way as the previous “Results” all
the methods were applied to the bigram dataset. The results were evaluated with the
calculation of precision and recall score, and Fig. 4 shows the curves of scores ranging
from 0 to 1. The results show that the TF-IDF as statistical method scores are again less
than that of graph ones and in graph ones, the FNG-IE method performed well as
compared to other graph-based methods. The HITS and the PageRank are again close, but
the HITS is relatively better than the PageRank. The factor to focus on the results of
bigrams is that it scored neighbored the score of the machine learning method, and the
bigram dataset performed well as compared to other n-grams methods.

Trigram result

The trigram converted dataset consisted of three neighboring words (terms) was also
processed the same way as the previous “Results” all selected methods of this research’s
methodology were applied to the trigram dataset. The results were evaluated with the
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Figure 3 Unigram results of all methods. Full-size DOI: 10.7717/peerj-cs.389/fig-3
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calculation of precision and recall score, and Fig. 5 shows the curves of scores ranging from
minimum 0 to the maximum 1. The results show that the TF-IDF as statistical method
scores are again less than that of graph ones, and in graph ones, the FNG-IE method
performed well compared to other graph-based methods. The HITS and the PageRank are
again close, but the HITS is relatively better than the PageRank. The most important thing
to consider here is that the maximum outcome of precision and recall score is near 0.2,
which means that the trigrams are less likely to become influenced keywords.

Four gram result

The dataset of four gram was next processed with all methods as described in “Results”.
The results were recorded in the form of curves that ranges from 0 to 1. The four gram
results were also near to trigram, but the recall score was relatively low that it ranges under
0.1 range. The result means that the four gram method does not produce important
keywords in a huge number. Figure 6 shows the statistics in the form curves, whereas in the
case of pentagrams, where the n-grams set was the combination of five consecutive words
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Figure 4 Bigram results of all methods. Full-size DOI: 10.7717/peerj-cs.389/fig-4
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Figure 5 Trigram results of all methods. Full-size DOI: 10.7717/peerj-cs.389/fig-5
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got the precision and recall core of 0. Furthermore, the graphed display of pentagram was
not effective to display.

Machine learning result
The machine learning method does not relate to all other methods used in this research.
It totally differs in structure, the way of processing, and the display of results also. The very
first thing as compared to other methods is that it does not work on the basis of
n-grams because it accepts the whole document and provides results on quality phrase
mining’s method as described as in Fig. 6; the precision and recall score calculated on the
results from machine learning methods were relatively better than the scores of all other
methods given in Fig. 7.

The machine learning method’s performance was observed better than all n-grams
converted dataset from all the methods chosen by this research. The precision and recall
scores were recorded for all methods in an effective manner.

Overall result comparison
It is also observed that among all n-grams combination, the dataset with bigram performed
the best precision and recalled with all the methods applied. The bigram dataset’s precision
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Figure 6 Four gram results of all methods. Full-size DOI: 10.7717/peerj-cs.389/fig-6
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Figure 7 Machine Learning method result. Full-size DOI: 10.7717/peerj-cs.389/fig-7
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and recall result curves approached almost similar statistics to the machine learning
method. Furthermore, among all other graph-based methods FNG-IE method was
proposed by this research. The standard methods, HITS, and PageRank performed better
than the statistical methods but HITS methods performed better than the traditional
PageRank method after enhancement by this research. The FNG-IE method's statistics
and enhanced HITS can be seen as better performers in graphs of all n-grams
combinations. Furthermore, the bigram among all n-grams performed better than others.
The best performer in all n-grams combinations, the bigram results of all methods were
comparatively measured with the results of the machine learning method. The overall
statistics of this research are given in Fig. 8.

The results showed that the random methods, such as TF-IDF which works on just a
single factor that is frequency, is not capable of dealing with the huge sized dataset.
The statistics of precision and recall scores of TF-IDF can be seen in “Results” and further
in Figs. 3–8 showing overall statistics of all methods of all datasets. Moreover, it proves
that only a single factor is not enough to deal with huge datasets. This is the reason
this research considered n-gram combinations, to make data more informative.
Furthermore, the machine learning method performed better than all methods because it's
processing is based on a training dataset that makes it strong to extract quality words.
However, the proposed method was based on graph connectivity and was enhanced in
such a way that it works without any training dataset and has produced better results than
the traditional PageRank method. The results produced by th proposed methods were
better than the statistical and the traditional graph-based method because it was enhanced
by minimizing the limitations and considering the all-important factors that are essential
in producing good results. The Table 4 shows the comparative statistics of all methods.

Furthermore, selecting only nouns and verbs from the dataset as described in
“Preprocessing” proved the reason behind the better results of the proposed approach.
The selection of nouns and verbs did the job of determining the meaningful and important
words from whole documents. The enhanced methods described in “Graph-Based
Approaches” and were performed on the filtered words in the form of graphs. The results
validated the proposed method as the best performers among all state of the art approaches
used in this research.
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Figure 8 Overall statistics of all applied approaches. Full-size DOI: 10.7717/peerj-cs.389/fig-8
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CONCLUSION
The machine learning methods are state-of-the-art methods in determining the keywords
from a huge collection of the document but require the training dataset. The training
dataset is made by domain experts manually by assessing the collection of documents
thoroughly. In the situations where the training dataset is not available, machine learning
approaches are not applicable. However, The statistical techniques as described above,
are not sufficient to deal with huge datasets, so this research works in a different manner
than machine learning by focusing on enhancing state-of-the-art graph-based approaches
to perform better in situations where the training dataset is not possible to collect.
This research used n-grams combinations of the handcrafted dataset, which was collected
from the journals of the textile domain. Furthermore, the graph-based approaches were
further enhanced by adding constraints according to the required results. The methods
were applied to all n-grams converted datasets, and the best n-grams combination was
determined as bigram because it produced the best results, among others. Moreover,
for evaluation purposes, the user study was conducted with the help of textile domain
experts that were graduates of textile field. The results from all methods were analyzed with
user study using precision, recall and f-measure scores. This research’s proposed approach
is a novel method to extract keywords with comparable quality of machine learning
methods but without any specific training dataset. The proposed method scored 4 percent
behind the machine learning approach and 30 percent ahead of the statistical approach;
this concludes that the proposed approach is the best alternative in situations where a large
training dataset is not available.
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