
From ECG signals to images: a
transformation based approach for deep
learning
Mahwish Naz1, Jamal Hussain Shah1, Muhammad Attique Khan2,
Muhammad Sharif1, Mudassar Raza1 and Robertas Damaševičius3

1 COMSATS University Islamabad, Wah, Pakistan
2 HITEC University, Taxila, Pakistan
3 Department of Applied Informatics, Vytautas Magnus University, Kaunas, Lithuania

ABSTRACT
Provocative heart disease is related to ventricular arrhythmias (VA). Ventricular
tachyarrhythmia is an irregular and fast heart rhythm that emerges from
inappropriate electrical impulses in the ventricles of the heart. Different types of
arrhythmias are associated with different patterns, which can be identified.
An electrocardiogram (ECG) is the major analytical tool used to interpret and record
ECG signals. ECG signals are nonlinear and difficult to interpret and analyze.
We propose a new deep learning approach for the detection of VA. Initially, the ECG
signals are transformed into images that have not been done before. Later, these
images are normalized and utilized to train the AlexNet, VGG-16 and Inception-v3
deep learning models. Transfer learning is performed to train a model and extract the
deep features from different output layers. After that, the features are fused by a
concatenation approach, and the best features are selected using a heuristic entropy
calculation approach. Finally, supervised learning classifiers are utilized for final
feature classification. The results are evaluated on the MIT-BIH dataset and achieved
an accuracy of 97.6% (using Cubic Support Vector Machine as a final stage classifier).

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning
Keywords ECG, Deep features, Image processing, Deep learning, Convolutional neural networks,
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INTRODUCTION
In 2015, according to the United Nations report, the world is facing an aging population.
The number of people aged 60 years or more will rise to 56.00% by 2030 or double by
2050 (Escobar, 2011). One of the main fatalities throughout the world is cardiovascular
ailments. The human cardiovascular system weakens as we grow older and it is more
likely to suffer from arrhythmias. A ventricular arrhythmia is an irregular heartbeat of
ventricular rhythm. If not treated in time, it can cause life in danger. Ventricular
fibrillation (Vfib), atrial fibrillation (Afib) and atrial flutter (Afl) are the recurrent
dangerous arrhythmias that can disturb the aging population (Van Huls Van Taxis, 2019).
Ventricular arrhythmias (VA) reduces ventricular function. It may cause the need for
implanting a fixed cardioverter defibrillator due to the occurrence of VA during long-
standing follow up in patients affected with hypothetical myocarditis (Sharma et al.,
2019b).
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Different types of arrhythmias are associated with different heartbeat patterns. It is
possible to identify these patterns and their types. An electrocardiogram (ECG) is the
prime diagnostic tool that works to interpret ECG signals. ECG is a non-invasive recording
by skin electrodes that is processed by an ECG device. An ECG shows a voltage between
electrode pairs and the muscle activities of the heart that are measured from different
directions (Bosznai, Ender & Sántha, 2009). The ECG is an analytic apparatus that
processes the electrical action and records the actions of the heart. Interpretation of these
subtleties permits determination in a comprehensive scope of heart ailments. These heart
ailments can differ from insignificant to hazardous (Elola et al., 2019). To thoroughly
see how an ECG uncovers essential data about the state of your heart requires a
fundamental comprehension of the life systems and physiology of the heart (Cunningham
et al., 2016; Ionasec et al., 2016; Izci et al., 2019). These different kinds of arrhythmias
can further be categorized into two major categories. The first one is a single irregular
heartbeat, formed arrhythmias, which are called morphological arrhythmias. The second
one forms by a set of irregular arrhythmias (Luz et al., 2016).

Patients who are suffering from cardiac disease need intervention immediately.
For this automated recognition of unusual heartbeats, translation by ECG signals is
fundamental. The manual evaluation of these signals is time-consuming and tedious
(Acharya et al., 2018). According to new research, (Nigussie & Tadele, 2019) heart attacks
and ventricular tachyarrhythmia (VTA) once categorized as “old man’s disease” are
now gradually occurring in younger people, especially in women. These irregular rhythms
can cause damage to the heart muscle from cardiomyopathy. Now, the major issue is that
as we grow older, the human cardiovascular system is more receptive to diseases and
becomes weaker (Krbcová et al., 2016). Vfib and VTA are the major arrhythmias reported
in the elders (Chow, Marine & Fleg, 2012). While cardiologists can recognize distinctive
heartbeat morphologies precisely among various patients, the manual assessment is
repetitive and tedious (Srinivas, Basil & Mohan, 2015). The standard deferral between
the atria and ventricles contraction of the heart is 0.12–0.20 s. This deferral is superbly
coordinated to represent the physical path of the blood from the upper chamber to
the ventricle. Intervals can be longer or shorter than this range show potential issues
(Madhavapeddi, Verrier & Belardinelli, 2018; Rabey, Cohen & Belhassen, 2018; Sharma
et al., 2019a). Figure 1 shows a visualization of the QRS complex.

The most dangerous rhythm is a type of polymorphic ventricular tachycardia (VT)
called Vfib (Ibtehaz, Rahman & Rahman, 2019). There are many techniques for the
detection of VTA. The most common is the modified Karhunen–Loeve transform, which
has been done using a pattern recognition method. Prediction of arrhythmias by applying
pattern recognition techniques on ECG data is an emerging and important task in
biomedical engineering (Mishra, Arora & Vora, 2019). However, it requires continuous
observation of a patient using, for example, wearable sensors (Girčys et al., 2020).
Cardiovascular cycle elements reflect basic physiological changes that could predict
arrhythmias; however, are obscured by high complexity, no stationary and large
inter-individual differences (Sabherwal, Agrawal & Singh, 2019).
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Recently, deep learning shows huge success in the medical domain (Anjum et al., 2020).
It is used for many imaging (Khan et al., 2020a, 2020b; Fernandes, Rajinikanth & Kadry,
2019), disease recognition (Sahlol et al., 2020a, 2020b; Capizzi et al., 2020), analysis of
biomedical signals (Bakiya et al., 2020), Internet-of-Things domain (Huifeng, Kadry & Raj,
2020; Muthu et al., 2020) and epidemic disease spread forecasting (Wieczorek., Siłka &
Woźniak, 2020; Wieczorek et al., 2020) tasks.

This paper introduces a new approach to predict VTA and classify various arrhythmias
using a novel technique. In this technique, we transform ECG signals into binary images.
Our approach differs from other approaches know from the literature as commonly
ECG signals are transformed into series data. As a result, deep learning models such as
convolution al neural network (CNN) does not work properly on ECG signals data because
the minor value of signals data is ignored in the QRS complex thus preventing from
accurate recognition of arrhythmias. It is a big challenge to convert the serial signals data
into images and further proceed for the detection of VTA.

The novelty and contribution of the article are as follows:

� A novel approach to convert ECG signals into 32� 32 binary images.

� A fusion of features from several deep CNNs for VTA recognition.

� The entropy-based feature selection is employed for obtaining the best feature subset.

� The selected features are finally trained using different classifiers, and higher accuracy is
attained as compared to the existing method.

Here are the key advantages that are achieved using our proposed methods:

� No need for complex pre-processing of ECG signals.

� No need for the QRS complex detection.

� Higher accuracy than previous CNN based arrythmia detection techniques.

� Less time consumption for arrythmia detection.

Figure 1 Graphical representation of QRS complex in ECG.
Full-size DOI: 10.7717/peerj-cs.386/fig-1
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RELATED WORK
Recently, several review articles have been written in this domain which explores the
importance of VTA using Deep CNN models. Martis et al. (2014) present three-class
learning to inevitably identify Afl, Ventricular flutter (Vfl), normal sinus rhythm (Nsr) and
VTA ECG signals. They present effective higher-order bands method on 641,855 and 877
(Afib, Nsr and Afl) beats of ECG signals. Formerly, these beats of ECG are exposed to
self-governing constituent analysis for the selection of substantial features. The method
produced an accuracy of 97.65%, a specificity of 98.75%, and a sensitivity of 98.15% using
the k-Nearest Neighbor (KNN) classifier. Acharya et al. (2016) proposed a Computer-
aided diagnosis system to automated perceive and classify similar ECG into four classes.
These classes are Nsr, Afib and Vfib. They used the complete database acquired from
the MIT-BIH arrhythmias database, used entropy features and applied reduction and
feature selection from the ECG signals by utilizing a decision tree classifier. This technique
achieved accuracy, specificity, and sensitivity of 96.30%, 84.10% and 99.30% respectively.
Sufi & Khalil (2010) introduced a data extracting technique with expansion base
grouping on compacted ECG signals acquired from the publicly available database.
They used features that are correlated by the subset selection technique to decrease them
in number. Then the designated features were given to the classifier. The approach
predicted Afib, pre-sustained premature ventricular tightening and Vfib and attained an
accuracy of 97.00% by using the directive-based system. Wang et al. (2001) presented a
unique method for VTA detection. The capability of their technique for clinical utilization
and continuous identification was observed utilizing 180 ECG records including Afib,
Vfib and Ventricular tachycardia (VT). This technique accomplishes a precision of 97%.
Zihlmann, Perekrestenko & Tschannen (2017) presented a convolutional neural system
strategy that combined convolutional layers for feature extraction with long-short term
memory layers for feature aggregation to recognize the different ECG sections.
In their work, they have utilized 5- and 2-s windows of ECG signals without QRS
discovery, achieving and F-score of 82.1%. Acharya et al. (2016) utilize ECG signal
beats; they presented a framework for the automated analysis of certain arrhythmias.
They accomplish an accuracy, sensitivity, and specificity of 92.50%, 98.09% and 93.13%
individually for the 2-s windows of ECG signals.

The findings of the related literature analysis show that it will be better if we can
transform our signals data into images and then merge signal processing with image
processing techniques using deep learning. As a result, CNN works better and gets higher
accuracy using different classifiers.

PROPOSED METHODOLOGY
Data used
The signals of ECG were attained from publicly available arrhythmia databases like
MIT-BIH, CUDB (Creighton University VT Database) and Nsr. The signals, which are
acquired from the MIT-BIH dataset, were recognized and taken out regarding the
annotation file, which is set up by the cardiologists (Moody & Mark, 2001). In this work,
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two lead ECG signals are used. The details of the datasets are given in Table 1. The MIT
Arrhythmias dataset consists of signals and their annotated files. The signals data contains
a series set of data of each patient with a complete set of ECG patterns of 24 h/s of
36 patients. Each patient’s data has approximately 127,232 series points.

Transformation of signals into images
The proposed VTA detection technique consists of two phases. In the first step, the signal
data is transformed into binary images. It is a challenge to convert the serial signals data
into images and then proceed further for the detection of VTA. The following are the
reasons for adopting the computer vision approach.

� To automate the algorithm of VTA detection using deep CNN.

� To eliminate the need for ECG signal pre-processing.

� The 1D CNN is not working well as compared to 2D CNN on signal data (Wu et al.,
2018), therefore there is a need to transform our signals data into images.

� The main problem occurs while findings QRS complex in ECG data. For CNN, there is
no need for finding the QRS complex.

� To increase the accuracy and specificity of the approach.

In the second step, deep features are obtained from images. Finally, these extracted
features are fused, and selection based on entropy is applied. The selected features are later
fed to Support Vector Machine (SVM) and KNN classifiers for classification results.

The following are the phases of transformation signals points into binary images.

Data normalization
Data normalization is an essential step to VTA detection. Before the transformation,
the data must be normalized. Normalization depends on two phases: first, signal data
points are split into equal parts which are divisible into total signals points without any
data loss. In the second phase, these signals are reshaped into 32� 32 binary images.

Each patient has 24hrs of recorded ECG data, in which we have 127,356 data values.
After carefully examining the last value of signals which is repetitive from S to T peak,
we subtract the last 380 data values of every patient’s signals data, which are not playing
any role in the arrythmia detection, thus obtaining data 126,976 values. To perform
transformation, first, we split each data series into 124 segments. Then, every person’s data

Table 1 Publicly available databases.

Database Taken from

VT (1406072)
Vfib

MIT-BIH Ventricular (VT)
MIT-BIH Ventricular Fibrillation(Vfib)

Nsr (127685)
Vfl

MIT-BIH Arrhythmias (mit db)
MIT-BIH Arrhythmias (mit db)

Vfib (148654)
VT

Creighton university Ventricular Tachyarrhythmia’s (cudb)
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contain 124� 1024 sequences. Second, we reshape each 1,024-sized segment into an image
of 32� 32 size. The result is 124 images for each patient.

Mathematically, we can describe the transformation as an inverse of the vectorization
operation, which converts the matrix into a column vector. Specifically, the vectorization
of a m � n matrix A, denoted vecm;n Að Þ, is the mn � 1 column vector obtained by
stacking the columns of A as follows:

vecm;n Að Þ ¼ a1;1;…; am;1; a1;2;…; am;2;…; a1;n;…; am;n
� �T

.

Then we define the proposed transformation formally as follows:

vec�1
124;1024 : R1�126;976 ! R124;1024;

vec�1
32;32 : R1�1024 ! R32;32;

S0 ¼ vec�1
32;32 vec�1

124;1024 Sð Þ
� �

:

where S is one patient’s signal data, and S0 is the patient’s data converted to the square
matrix, which can be represented as 2D image.

Figure 2 illustrated the splitting of an image, which describes each step-in detail on how
to transform the ECG signal to a binary image.

Figure 2 Transforming ECG signal into 124 segments of 1024 values: (A) raw ECG signal,
(B) digitized ECG signal, (C) ECG signal segment transformed to image.

Full-size DOI: 10.7717/peerj-cs.386/fig-2
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After splitting and reshaping successfully, we save the new dataset. The new dataset
contains normal and abnormal images of serial data of signals for multiple patients.
The sample images of our new dataset and the detail of transformation are described in
Fig. 3.

Pre-trained CNN features
Deep CNN models have been successfully used for solving numerous tasks in
computer vision. CNN takes an input image, forwards it to different layers, for instance,
convolutional, nonlinear, fully connected, and pooling to get an output. In computer
visualization, transfer learning (TL) is typically expressed using pre-trained models.
Because of the high computational cost of training such models from scratch, the pre-
trained models can be used.

For feature extraction, we adopt three pre-trained deep CNN models (VGG19, AlexNet
and Inception-v3) for deep feature extraction. These models were selected because of
their high robustness and proven efficiency in biomedical data ana applications.
The purpose of adopting these three models is to process different size images and get
depth features. To complete this process, we first resize the 32� 32 image into different
sizes 224� 224� 3 for AlexNet and VVG19 and 299� 299� 3 for Inception-v3. Besides,
we convert the binary image Ibinary into three-colour space using the following manner as
input for pre-trained models.

Figure 3 Transformation from one-dimensional signal to a two-dimensional image.
Full-size DOI: 10.7717/peerj-cs.386/fig-3
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Igrayscale ¼ Ibinary � 255
� �

Icolor ¼ concat Igrayscale; Igrayscale; Igrayscale
� �

The proposed feature extraction using transfer learning (TL) is illustrated in Fig. 4.
TL is described as the potential of a machine to use knowledge and skills learned while
solving one set of problems (source) to a different set of problems (target). The purpose of
the TL is to improve the performance of a new dataset based on the existing model and to
acquire useful features and classification. It can be described mathematically as:

Ds ¼ Is1; I
s
2; I

s
3;…; Isn

� 	! IT1 ; I
T
2 ; I

T
3 ;…; ITn

� 	
Where I represents an image, S and T represent labels of training data of source and target
domain.

The training on images is done by using DCNN pre-trained models and get 1 × 4,096
features from AlexNet using FC7 layer and 1 × 4,096 features from VGG19 using FC7
layer and 1 × 2,048 features from Inception-v3 using avg-pool known as f1; f2; f3,
respectively.

Feature fusion is performed by concatenating features from three neural networks.
We adopted an approach similar to the one proposed in Ma, Mu & Sha (2019).
The concatenation is performed as follows:

Fv ¼ f1; f2; f3½ �
Therefore, the concatenation process is enriching feature diversity to make the classifier

perform better. Afterward, these features are fused, concatenated up, and finally get 10,240
features from these models. Here, FC represents a fully connected layer and follows the
same structures of the connected feed-forward network, and it can be defined as:

Fv ¼ sig
Xn
i¼1

xi � wT
i þ b

 !

Figure 4 The transfer learning model for feature extraction.
Full-size DOI: 10.7717/peerj-cs.386/fig-4
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where xi is known as an input vector of i-th class, w and b represent the weight and bias of
constant value.

After fusion, features are fed further for classification. By the reduction of the features,
the execution time is decreased with increased performance. Here, the entropy-based
feature reduction method is used, which can diminish the number of features based on
entropy value. We compute the entropy of fused features using the following equation:

EE Fvð Þ ¼ pi
Pn

i Fv,

where (Fv 2 f1; f2 and f3), and pi is the probability of the extracted feature space, which is
defined by Pi ¼ pr X ¼ ið Þ and denotes the size of all feature spaces, which gives a new
reduced feature 1� 5; 120 feature vector which is 50% of the total features and fed these
features to the classifier.

The overall model of the proposed fast VTA detection is depicted in Fig. 5.

RESULTS AND ANALYSIS
For performance measure, the following metrics are determined, where true positive
represents correctly recognized VTA, false positive shows incorrectly recognized VTA and
false negative determines inaccurately rejected VTA. Results of the proposed method are
computed using five different experiments. In the first experiment, DCNN features are
extracted using the AlexNet model by performed activations on the Fully Connected layer
FC7. The data division approach of 50:50 is adopted for training and testing to validate the

Figure 5 Proposed model for VTA detection. Full-size DOI: 10.7717/peerj-cs.386/fig-5
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proposed technique. Also, the 10-fold cross-validation is adopted on all experimental
results. During this experiment, the best testing classification accuracy for AlexNet is
recorded at accuracy 91.2%, FNR 8.0%, sensitivity of 91.9%, and specificity 90.5% while
using Cubic SVM as final stage classifier. Results after classification on Cubic SVM are
crosschecked with nine other classifiers, as it is shown in Table 2.

In the second experiment, the deep CNN features are extracted using the VGG19 model
by performed activations on the Fully Connected layer FC7. Similarly, with AlexNet, a data
division approach of 50:50 is adopted for training and testing to validate the proposed
technique. Moreover, the 10-fold cross-validation is adopted on all experimental results.
During this experiment, the best testing classification accuracy for VGG19 was recorded at
92.1%, FNR 7%, sensitivity of 93.0% and specificity 92.0% using quadratic SVM as a
classifier. The results after classification with quadratic SVM are crosschecked with eight
other classifiers as it is depicted in Table 3.

Furthermore, the next experiment on DCNN features extracted using the InceptionV3
model by performing activations on the Avg-Pool layer. For this purpose, the same data
division approach of 50:50 is adopted for training and testing to validate the proposed
technique. The 10-fold cross-validation is adopted on all experimental results. During this
experiment, the best testing classification accuracy for InceptionV3 was recorded at
91.5%, FNR 7.7%, sensitivity of 92.2% and specificity 90.9% with Quadratic SVM. Results
after classification on Quadratic SVM are crosschecked with seven other classifiers in
Table 4.

In the next experiment, fusing the features obtained from AlexNet, VGG19, and
InceptionV3 is performed. These feature vectors are fused to make a standalone feature
vector representing all three pre-trained models. 10-fold cross-validation is adopted on
all experimental results. During this experiment, the best testing classification accuracy
for fused feature vector was recorded at 96.6%, FNR 3.0%, sensitivity of 97.12% and
specificity of 95.99% on Cubic SVM. Results after classification with Cubic SVM are
crosschecked with six other classifiers in Table 5.

Table 2 Classification results on AlexNet DCNN features. Best values are shown in bold.

Classifier Performance measures

Sensitivity (%) Specificity (%) FNR (%) Accuracy (%) F-score

Cubic SVM 91.9 90.5 8.0 91.2 0.913

Linear discriminant 72.6 69.8 27.3 71.2 0.716

Linear SVM 86.1 85.8 12.6 86.4 0.860

Quadratic SVM 91.2 90.1 8.7 90.7 0.907

Fine KNN 89.3 86.9 10.6 88.1 0.882

Medium KNN 92.9 83.8 7.0 88.4 0.889

Cubic KNN 93.1 83.6 6.8 88.4 0.889

Weighted KNN 91.9 85.6 8.0 88.9 0.891

Subspace discriminant 74.1 66.4 25.8 70.3 0.714

Subspace KNN 89.7 87.2 10.2 88.5 0.886
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In another experiment, we performed entropy-based feature selection. We calculated
the entropy of fused features. After entropy calculation, we choose entropy-based
features from it and start from the first 1,000 features and train them. In the second step,
we take the first 2,000 and up to 8,000 features. The entropy of the fused feature vector

Table 3 Classification results on VGG19 DCNN features. Best values are shown in bold.

Classifier Performance measures

Sensitivity (%) Specificity (%) FNR (%) Accuracy (%) F-score

Quadratic SVM 93.0 92.0 7 92.1 0.925

Linear SVM 88.8 88.1 11.11 88.2 0.885

Cubic SVM 92.0 92.0 8 91.9 0.920

Fine KNN 87.5 90.6 12.5 89.2 0.889

Medium KNN 93.0 91.6 7 90.4 0.924

Cubic KNN 93.0 91.6 7 90.4 0.924

Weighted KNN 91.0 91.0 9 90.9 0.910

Subspace discriminant 90.3 90.1 9.6 90.2 0.902

Ensemble subspace KNN 88.3 91.5 11.6 90.0 0.897

Table 4 Classification results on VGG19 DCNN features. Best values are shown in bold.

Classifier Performance measures

Sensitivity (%) Specificity (%) FNR (%) Accuracy (%) F-score

Quadratic SVM 92.2 90.8 7.7 91.5 0.916

Linear SVM 90.8 87.6 9.1 89.2 0.894

Cubic SVM 93.4 91.6 6.6 92.5 0.926

Fine KNN 88.1 90.6 11.8 89.4 0.892

Medium KNN 92.2 89.2 7.7 90.7 0.908

Cubic KNN 92.4 87.7 7.5 90.1 0.903

Weighted KNN 90.8 91.3 9.1 91.1 0.910

Ensemble subspace discriminant 89.4 89.3 10.5 89.4 0.894

Table 5 Classification results after performing the fusion of the AlexNet, VGG19, Inceptionv3
DCNN features. Best values are shown in bold.

Classifier Performance measures

Sensitivity (%) Specificity (%) FNR (%) Accuracy (%) F-score

Cubic SVM 97.12 95.99 3.0 96.6 0.966

Linear SVM 95.53 91.48 4.56 93.5 0.936

Quadratic SVM 96.68 95.51 3.3 96.1 0.961

Fine KNN 93.81 92.4 6.1 93.1 0.932

Medium KNN 97.40 89.15 2.59 93.3 0.935

Cubic KNN 96.86 88.35 3.13 92.6 0.929

Weighted KNN 96.23 91.48 3.76 93.9 0.940
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is calculated, which derived an entropy feature vector. Therefore, the entropy vector is
sorted into ascending order. We get the highest accuracy on selecting 5,120 features, which
are 50% of our data. After that, we take 25% of the data, but the accuracy decreases.

The results after classification on the Cubic SVM are crosschecked with seven other
classifiers in Table 6. We present the confusion matrix of the best accuracy model in Fig. 6.
Besides, we have experimented on the Cubic SVM by selecting the features in ascending
order on 10-fold cross-validation, as it is shown in Table 7.

Comparison with other works
There are most of the traditional approaches and latest techniques like CNN and deep
learning for the diagnosis of VTA. However, from the literature, this can be well known

Table 6 Classification results on the fused Alexnet, VGG19, Inceptionv3 DCNN features after
entropy based selection. Best values are shown in bold.

Classifier Performance measures

Sensitivity (%) Specificity (%) FNR (%) Accuracy (%) F-score

Cubic SVM 98.2 97.5 2.3 97.6 0.979

Linear SVM 95.16 91.7 4.8 93.5 0.935

Quadratic SVM 96.50 95.5 3.4 96.0 0.960

Fine KNN 93.5 94.0 6.4 93.8 0.937

Medium KNN 96.7 90.68 3.1 93.8 0.939

Cubic KNN 96.41 89.6 3.5 93.1 0.932

Weighted KNN 96.31 89.2 3.3 93.1 0.930

Figure 6 Confusion matrix of the best performing model.
Full-size DOI: 10.7717/peerj-cs.386/fig-6
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that these computer-aided diagnostic (CAD) systems have a consistent workflow. For
example, one system achieved an accuracy of 94.07% and 91.5% on the MIT-BIH dataset
(Acharya et al., 2017); moreover, they are also time-consuming. The latest technique,
which included a deep CNN to make the algorithm automated, gained a higher accuracy of
97.6% on a similar dataset (Ullah et al., 2020). Ullah et al. (2020) transformed EEG signals
into 2-D spectrograms through short-time Fourier transform. Then they used the
2-D CNN model consisting of four convolutional layers and four pooling layers for
classification of ECG signals into eight classes, achieving the average accuracy of 99.11%.
Jin et al. (2020) proposed the Domain Adaptive Residual Network (DARN) to detect
Afib from ECG signals, achieving 77.97% accuracy on the MIT-BIH Arrhythmia Database.
Li et al. (2020) suggested CraftNet, a custom deep neural network with tailored
architecture, which achieved an average sensitivity of 89.25% on the MIT-BIH dataset.
Romdhane et al. (2020) suggested another CNN architecture, which achieved 98.41%
average accuracy. Van Steenkiste, Van Loon & Crevecoeur (2020) proposed a deep neural
network with a parallel convolutional neural network architecture, optimized by a Genetic

Table 7 Accuracy of classification on different selected sets of features.

Numbers of features Accuracy (%) Training time (s)

1,000 93.5 29.609

2,000 94.0 33.149

3,000 95.9 66.200

4,000 96.2 85.856

5,000 97.0 109.880

5,120 (50%) 97.6 111.690

2,560 (25%) 95.7 55.151

6,000 96.9 144.810

7,000 96.9 166.360

8,000 96.6 196.040

Table 8 Comparison of results achieved on the MIT-BIH dataset.

Reference Methods Accuracy (%)

Acharya et al. (2017) Custom 9-layer deep CNN 94.03

Ullah et al. (2020) 2D CNN model applied on FFT spectrograms 99.11

Jin et al. (2020) Domain Adaptive Residual Network

Li et al. (2020) Fully-connected neural networks as classifiers on
handcraft features

89.25

Romdhane et al. (2020) Custom 1D CNN 98.41

Van Steenkiste, Van Loon &
Crevecoeur (2020)

Custom CNN optimized by Genetic Algorithm (GA) 97.7

Yang et al. (2021) Ensemble of mixed-kernel extreme learning machine-
based random forest binary classifiers

98.1

This article Deep features from 3 deep networks and Cubic SVM 97.6
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Algorithm (GA), for ECG beat classification, an achieved an accuracy of 97.7% on the
MIT-BIH dataset. Yang et al. (2021) proposed an ensemble multiclass classifier that
combined mixed-kernel-based extreme learning machine (MKELM) as base learner and
random forest as a meta-learner, achieving an overall accuracy of 98.1% in classifying four
types of heartbeats.

The findings of the literature confirm our finding that if we transform our signals data
into images then CNN works better, and we get the highest accuracy using different
classifiers. We summarize the related works in Table 8.

DISCUSSION AND CONCLUSIONS
There are many the traditional approaches and latest techniques like CNN and deep
learning used for the diagnosis of VTA. The main problem occurs when different cofactors
affect like QRS complex and segmentation. If the data is not appropriately segmented, the
accuracy problem occurs in the prediction of VTA. The significant problems that occur
after applying the pattern recognition technique are:

i) the amount of data came out for processing is enormous, it is difficult to manage and
process those large amounts of values;

ii) the limitations of traditional techniques and methods—the previous techniques are
restricted to single feature searching capabilities of signals;

iii) cardiac cycle dynamics reflect underlying physiological changes.

iv) big data is required for training, which takes more time.

From the analysis of related literature, it concludes that there are recent surveys that
involved CNN for the prediction of arrhythmias but the highest accuracy they achieved is
91.2%. CNN models are not working well on signals data as mentioned in the problem
statement. For this problem we need to convert one-dimensional signal data into a
two-dimensional image (matrix). This is a big challenge here to normalize signal data and
transform it into binary image without loss of any information, because ECG signal are
non-stationary.

To overcome the above problems, we introduced a novel approach where the main
contribution is to convert ECG signals into binary images and automate VTA detection
using deep learning and get higher accuracy and less time consumption. The proposed
model is tested on MIT/BIH using pre-trained models, Alex Net, VGG19, and
InceptionV3. Higher accuracy (97.6% using Cubic SVM as a final stage classifier) is
achieved than existing methods, and the execution time is minimized too by making the
algorithm automated using CNN.

Future work
This study leads to a future direction where the aim to make a variant architecture of
the network model for the prediction of different arrhythmias, including ventricular
and atrial. In future work, the framework will be trained and tested on big data. If this
processing of feature fusion and feature selection can be applied to other domains after
selecting the required features, the results might improve performance in terms of
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effectiveness and efficiency. The proposed technique is not only limited to the ECG image
classification. It can be applied to any other domain such as electroencephalography
(EEG), which is directly connected with efficient feature extraction, fusion and selection.
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