
Submitted 16 December 2020
Accepted 16 January 2021
Published 8 March 2021

Corresponding author
Lisu Yu, lisuyu@ncu.edu.cn

Academic editor
Muhammad Asif

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.385

Copyright
2021 Iqbal et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

TKFIM: Top-K frequent itemset mining
technique based on equivalence classes
Saood Iqbal1, Abdul Shahid1, Muhammad Roman1, Zahid Khan2, Shaha
Al-Otaibi3 and Lisu Yu4,5

1 Institute of Computing, Kohat University of Science & Technology, Kohat, Kohat, KPK, Pakistan
2Robotics and Internet of Things Lab, Prince Sultan University, Riyadh, Saudi Arabia
3 Information Systems Department, College of Computer and Information Sciences, Princess Nourah Bint
Abdulrahman University, Riyadh, Saudi Arabia

4 School of Information Engineering, Nanchang University, Jiangxi, China
5 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of
Sciences, Beijing, China

ABSTRACT
Frequently used items mining is a significant subject of data mining studies. In
the last ten years, due to innovative development, the quantity of data has grown
exponentially. For frequent Itemset (FIs) mining applications, it imposes new chal-
lenges. Misconceived information may be found in recent algorithms, including both
threshold and size based algorithms. Threshold value plays a central role in generating
frequent itemsets from the given dataset. Selecting a support threshold value is very
complicated for those unaware of the dataset’s characteristics. The performance of
algorithms for finding FIs without the support threshold is, however, deficient due to
heavy computation. Therefore, we have proposed a method to discover FIs without
the support threshold, called Top-k frequent itemsets mining (TKFIM). It uses class
equivalence and set-theory concepts for mining FIs. The proposed procedure does not
miss any FIs; thus, accurate frequent patterns are mined. Furthermore, the results are
compared with state-of-the-art techniques such as Top-k miner and Build Once and
MineOnce (BOMO). It is found that the proposed TKFIMhas outperformed the results
of these approaches in terms of execution and performance, achieving 92.70, 35.87,
28.53, and 81.27 percent gain on Top-k miner using Chess, Mushroom, and Connect
and T1014D100K datasets, respectively. Similarly, it has achieved a performance gain
of 97.14, 100, 78.10, 99.70 percent on BOMO using Chess, Mushroom, Connect, and
T1014D100K datasets, respectively. Therefore, it is argued that the proposed procedure
may be adopted on a large dataset for better performance.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science
Keywords Frequent Itemsets, Support Threshold, Algorithm Analysis, Top-k Frequent Itemsets,
Artifical Intelligence

INTRODUCTION
Finding FIs is one of the leading research problems used in many critical data mining
tasks like classification (Nguyen et al., 2012), clustering (Wang et al., 2002), sequential
patterns (Fournier-Viger et al., 2017), and association rule mining (ARM) (Agrawal,
Imielinski & Swami, 1993). Besides this, other various applications such as multitask

How to cite this article Iqbal S, Shahid A, Roman M, Khan Z, Al-Otaibi S, Yu L. 2021. TKFIM: Top-K frequent itemset mining tech-
nique based on equivalence classes. PeerJ Comput. Sci. 7:e385 http://doi.org/10.7717/peerj-cs.385

https://peerj.com/computer-science
mailto:lisuyu@ncu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.385
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.385

based association rule mining (Taser, Birant & Birant, 2020), high utility pattern
mining (Krishnamoorthy, 2019), Top-k pattern mining (Nguyen et al., 2018), and frequent
weighted mining (Nam et al., 2020b). FIs mining methods find the set of items that
frequently occurs in a given set of transactions. It shows the association rules which
define how an itemset in a transaction dataset depends on another itemset’s behavior.
The first algorithm used for computing and finding association among FIs is known
as Apriori (Agrawal, Imielinski & Swami, 1993; Agrawal & Srikant, 1994). The Apriori
algorithm generates a large number of candidate itemset. It also performsmultiple scanning
of the transaction table for finding frequent itemsets that result in overhead on input and
output devices. For large database systems, the I/O overhead becomes more demanding
for large memory for storing the data. Later on, Zaki & Gouda (2003) proposed the dEclat,
a diffset algorithm. It employs a vertical representation of the database. The fundamental
concept of a diffset algorithm is that a particular set of transaction IDs (tidsets) can be
used to measure the support of itemsets. The main serious demerit of the Eclat approach
is the size of tidsets, which affect the processing time and are costly to store in memory.
Another algorithm that influenced most of the work in this area is Frequent Pattern
(FP) growth (Han, Pei & Yin, 2000). The FP-Growth method performs at least two scans.
First, process frequent patterns of length-1 and count their support value. Afterward, the
items are sorted in decreasing order of their support. These methods are referred to as
conventional methods.

The conventional FIs methods are based on the minimum support threshold (Fournier-
Viger et al., 2017; Agrawal & Srikant, 1994). In a transaction table, the minimum supported
value, also known asminsup, specifies theminimum frequency of an element in a collection.
All the itemsets whose frequency exceeds or is equal to the threshold value are known as
FIs. However, it is a difficult task to find a reasonable value for a threshold. For example, if
the threshold value is maintained too low, too many FIs can be created, and the necessary
patterns can hardly be found among the massive collection of produced patterns.

Similarly, if the threshold value is set too high, it will generate too few FIs, in which
we may miss some crucial patterns in the transaction table. The selection of the threshold
value also affects the field of the search and the resulting space (Huynh-Thi-Le et al., 2015).
Thus another set of methods emerges; they are referred to as Top-k procedures. It is the
procedure to find out itemsets of highest support to the k support among all the existing
FIs. It refers to the user’s choice of frequent itemsets in the dataset. User choice allows
the user to find Top-most frequent itemsets. Top-most early frequent itemsets procedure
finds the Top-most frequent itemsets by repeating the mining process until the desired
result is obtained. These approaches generally require more execution time and produce
ample result-space, resulting in redundant patterns in the transaction table. N-most is a
Top-most frequent itemset mining technique that processes the top N impressive results
without specifying any user-parameter (Fu, Kwong & Tang, 2000). It makes use of the
Apriori candidate creation procedure and test strategy. It first computes the largest itemset
and then compares the support of candidate itemsets, recursively. In every iteration, it
updates the support threshold of itemsets. The process continues until the user specified
bound on the itemset size. The Top-most mining technique is the Top-k frequent itemsets

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 2/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

mining. Unlike N-most frequent itemsets mining procedure, Top-k finds itemsets of
highest support without specifying the itemset size. Top-k frequent itemsets mining
may be divided into support threshold and without support threshold-based mining
algorithms. These algorithms may also be categorized into algorithms based on Apriori
and FP-growth (Agrawal, Imielinski & Swami, 1993; Han, Pei & Yin, 2000). The Top-k
algorithms (based on Apriori) build 1-itemset and then attach to 2-itemset and so on. In
the end, the results are compared with a user-specified threshold value.

Top-k algorithms based on FP-growth use FP-tree for pattern mining. It splits the
transactions to reduce the search-space. The critical advantage of FP based algorithms
is that they use a tree structure of a transaction database. The disadvantage of using a
tree is its difficulty in being stored in memory, and its building procedure is costly. Han
et al. (2002) proposed TFP (Top-k frequent closed itemsets mining algorithm), which
uses FP-tree without the user’s support threshold. The algorithm constructs the FP-tree
based on the primary support threshold starting with zero. It prunes smaller transactions
using itemsets length constraints. Mining is performed on the final pruned FP-tree. The
algorithms discussed above need to scan the transaction table multiple times to build
the tree. They also consume large search-space and uses expensive strategies to improve
performance. Details of these methods are discussed in the related work section.

Research gap
However, summarizing the limitation of the previous studies that are (1) The absence of
user-specified support threshold parameter can affect the performance of the FIs mining
algorithms, (2) the generation of the exponential number of itemsets and support counting
is difficult to handle in Top-k FIs mining techniques, and finally, (3) effectively trimming
those transactions that are not useful for the next level, which increases the processing time
and degrades performance are the main challenging areas to be handled.

To overcome these limitations, we proposed Top-k Frequent Itemsets Mining (TKFIM)
algorithm finding FIs without a user-specified support threshold. The working of TKFIM
is based on concept equivalence classes of set theory. Each class is an independent group
of itemsets. Further, it uses diffset to count the support of the itemsets. The proposed
procedure applies to a vertical database structure consisting of transaction IDs (tids)
followed by items. Our algorithm adopts a class-based search strategy to quickly find
itemsets of highest support, and it mines the candidates of the current class-based on the
joining process. If the support of an itemset is less than the least support in the Top-k
list, then the current class terminates the generation of candidate itemsets. The next class
joining process is then applied accordingly. The process is repeated until no frequent or
candidate itemsets are found. Finally, the results of the proposed system are compared with
BOMO and Top-k miner on multiple datasets.

The contributions of this paper are listed as follows:
1. It presents FIs based Top-k algorithm that reduces the number of scans and decreases

the run time.
2. It finds all frequent FIs and IFIs, and do not miss any pattern.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 3/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

3. This research provides a comprehensive review of the existing literature in the field of
frequent itemset mining.

4. Based on the critical analysis, this paper highlights the limitations of the state-of-the-art
research studies used for FIs mining.

5. The pruning strategy is used in this paper to reduce the number of candidate frequent
itemsets.

6. Afterwards, a novel approach (i.e., TKFIM) is proposed, designed, implements based
on equivalence classes and diffset theory.

7. The experimental results show that TKFIM has a significant advantage over the existing
algorithms.
Finally, TKFIM results are compared with BOMO and Top-k miner techniques. These

algorithms are evaluated on five different datasets, i.e., Chess, Mushroom, Connect, and
Synthetic dataset. Further, the performance gains on each dataset are recorded. In the first
experiment, on the Chess dataset, the average performance gain of 97.14% and 92.70% was
achieved compared to BOMO and Top-k miner, respectively. Similarly, on the Mushroom
dataset, more than 100% and 35.87% performance gain was achieved concerning BOMO
and Top-k miner. On the third dataset, i.e., Connect 78.10% and 28.53% performance gain
was delivered compared to BOMO and Top-k miner, respectively. In the final experiment
on the Synthetic dataset (T1014D100K), the average performance gain of 99.70% and
81.27%was recorded for BOMO and Top-k miner.

RELATED WORK
In the area of Frequent Itemset Mining, the very first algorithm, i.e., Apriori, was proposed
by Agrawal, Imielinski & Swami (1993). This algorithm uses a bottom-up search method
to process the extraction of frequent itemsets. It handles all itemsets in k-steps where k
represents the size of a given database. In the first step, all the frequent 1-itemsets are
generated. In the second step, all the frequent 1-itemset are joined to compute 2-itemsets,
compare their support with the given specified minsup. All the frequent 2-itemsets are
processed for the subsequent 3-itemsets. The process continues until no itemsets can be
found. Another classical algorithm referred to as Eclat was proposed by Zaki (2000). The
transaction database and minsup are used as the input for this algorithm. It counts the
support of itemsets using tids, which is the length of the itemset.

Eclat algorithm is more efficient than those algorithms which repeatedly scans the
database, but it requires more memory to store the tidsets. dEclat algorithm is a variation
of the Eclat algorithm implemented using a structure called diffsets (Zaki & Gouda, 2003)
rather than tidsets. FP-growth is proposed by Han, Jiawei, and Pei, Jian in 2000 for finding
frequent itemsets without candidate generation (Han, Pei & Yin, 2000). It uses FP-tree for
computing frequent itemsets by scanning it at least twice. In the first scan, it processes
frequent patterns of length-1 and counts their support value. In the second scan, the items
are sorted in decreasing order of their support. It splits the database to build multiple
conditional FP-trees, which considerably reduces the search-space. FP-growth works better
than Apriori because the data in the memory is a tree structure form. All the conventional

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 4/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

algorithms involve an enormous search-space, and it may expand exponentially. The
database also needs to be searched regularly, which requires a lot of runtimes. However,
since the threshold parameters for these algorithms are required, selecting the threshold
value remains a difficult task. If the threshold value remains very high, too many items will
be produced.

On the other hand, it can lead to too few frequent items when support is too high.
Top-most FIs itemset mining algorithms are proposed to solve this issue of traditional FIs
mining methods,

Top-most FIS methods
Top-most FIs refers to the user choice of FIs in the dataset. User choice allows the user
to find Top-most FIs. Top-most early FIs procedure finds Top-most frequent itemsets by
repeating the mining process until the desired result is obtained. The researcher found two
significant problems in early Top-most FIs procedures. First, it takes much more execution
time to find the result. Secondly, it produces large search-space and result-space. Recently, a
novel scheme of Top-most FIs mining called N-most interesting frequent itemsets has been
projected (Fu, Kwong & Tang, 2000). It processes the Top-N impressive results without
specifying any user parameter. It makes use of the Apriori candidate creation procedure
and test strategy. It first computes the largest itemset in the dataset. The N-largest itemsets
mining compares the support of the candidate itemsets recursively and updates the support
threshold at the end of the iteration. The process is iterated and stops at the user-specified
bound on the itemset size. The Top-most FIs mining is divided into two different sets of
mining Processes, including N-most and Top-k itemsets. The details are discussed in the
following sections.

N-most interesting FIS procedures
It combines the N-most interesting frequent k-itemsets for every K where 1<= K <=m and
K is the user-supplied maximum size of the itemsets to be mined. This mining process
comes from the Itemset-iLoop and Itemset-Loop algorithms (Fu, Kwong & Tang, 2000).
The Itemset-Loop is the first technique proposed in N-most interesting frequent itemsets
mining category. Its method of candidate creation is similar to the Apriori candidate
process. Itemset-loop algorithm first computes the set of potential 1-itemset, and then the
new potential 2-itemsets are rooted from 1-itemsets. In the next iteration, new potential
3-itemsets are produced from a 2-itemset. The process is iterated and ends at the user-
specified hop on the itemset sized. Hence it requires loops back in the kth iteration to
generate N-most exciting itemsets. The idea of the Itemset-iLoop method is similar to that
of Itemset-Loop, except it goes back first to check k -1 itemsets.

The underlying principle for both methods is that if a K-itemset is not frequent, all its
subsets are rare. For mining N-most intriguing itemsets, this Apriori standard does not
apply. Cheung & Fu (2004) have introduced a technique based on the principle of Build
Once and Mine Once (BOMO) to address the drawbacks of the most interesting items
in mining. This procedure is based on the free parameter for N-most exciting items. The
BOMO is a technique based on FP-growth that uses the inherent characteristics of the

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 5/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

compact pattern-tree structure. It works without candidate generation to improve results
in frequent itemsets mining problems. Being an FP-growth-based approach, BOMO suffers
from common demerits, such as scanning the database multiple times to evaluate itemsets’
support. FP-tree structure is time-consuming, and visiting nodes to evaluate the support
of itemsets is very in-efficient. Consequently, the size of the database is immense. Thus it
may not be possible to store it in the main memory. As a result, the result set will cause the
failure of the mining operation.

TOP-K FIs mining methods
The Top-k FIsminingmethods can be categorized as support threshold and non-threshold-
based algorithms. Most frequent pattern mining algorithms depend on the right minimum
support threshold parameter. However, as already discussed, it is very tricky in practice
to determine the right value for this parameter. Therefore another category of Top-k
frequent itemsets algorithms is proposed, which are threshold-free. The Top-k FIs mining
techniques are also classified as Apriori and FP-based algorithms.

The Apriori based techniques generate FIs of 1-itemsets, and then produced 2-itemset
by joining them, and similarly 3-itemsets, and so on. On the other hand, FP-growth
based Top-k FIs techniques make use of FP-tree for frequent mining patterns. It divides
the transactions to reduce the scope of the search. The main advantage of FP-growth
based algorithms is that the tree data structure is an unstructured form of the transaction
database. These types of algorithms cannot be stored in memory and, therefore, costly to
build. However, vertical format based techniques are more intuitive and straightforward
as compared to horizontal format developing approaches.

Top-k Frequent closed itemsets, the algorithm called TFP without the minimum
threshold using the FP tree, have been suggested byHan et al. (2002). The algorithm begins
with the FP-tree, the primary threshold being set at zero. The smaller transaction, i.e., a
transaction with length <minimum length, is pruned during the tree’s construction. After
FP-tree construction, it uses a closed node count and a descendant sum method to prune
the relatively unusual patterns by increasing the support threshold. In order to accelerate
the process, the TFP algorithm uses FP-tree accessing strategies such as bottom-up and
top-down.

Mining is performed on the final pruned FP-tree. On the other hand, the TFP algorithm
has many demerits. For the FP-tree, the database must be scanned twice. The TFP is
an FP-growth-inspired method and uses two parameters. This algorithm consumes a
large search-space and uses expensive strategies to improve performance. Amphawan,
Lenca & Surarerks (2009) have focused on finding Top-k periodic-frequent patterns. It
initially considers the highest support patterns and then combines candidates to form the
Top-k periodic-frequent patterns list. Pietracaprina & Vandin (2007) suggested that Top-k
Miner find Top-k frequently closed unlimited items. The algorithm starts primarily with
approximate minimum support having heuristics similar to those references in the above
Top-k closed frequent itemsets mining procedures. This procedure has dynamically raised
the support threshold with no need to restart computation. It uses the priority queue to
stop comparing the support of closed itemsets. Further, it adopts the best-first search to

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 6/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

produce the first highest support closed itemsets. At the point when all the closed itemset
support is processed, it terminates the main loop. At this point, k is assigned a new value,
and the loop repeats to generate the highest support closed itemsets.

A naive approach called the Combination ReducingMethod (CRM) is recently proposed
by Pyun & Yun (2014). This algorithm reduces time and saves memory by applying the
composite pattern concept. The CRM is FP-growth based algorithm that constructs a
conditional FP-tree.

The algorithm starts with an initial support threshold of zero while building the
FP-tree from the dataset. Following this, the algorithm constructs a global FP. During
the development of the FP-tree, a header table is generated simultaneously. The sequence
of selecting the prefix is different from FP-growth. The prefix is the center item in the
header table that is quite suitable for the mining of Top-k frequent patterns. It can raise
the threshold effectively and process patterns quickly. CRM does not consider the pattern
length, so the Top-k patterns are placed without length constraints into the Top-k list.
The current Top-k Composite pattern list and the recovery phase are used to create Top-k
patterns. On the other hand, the CRM algorithm has numerous disadvantages. To build the
FP-tree, it still has to scan the database twice. CRM is an FP growth inspired approach and
uses two parameters. This algorithm requires a large search-space and is expensive using
the recovery phase to improve the performance. The Top-k list includes many redundant
composite patterns when the value of k is put as a large.

Pyun & Yun (2014) also developed a combination reduction method for N-itemsets
(CRMN) followed itemset length constraints. CRMN scans the dataset at least two times,
and initial support is set to zero. In the mining procedure, CRMN first constructs FP
global-tree. It subsequently mines Top-k patterns from FP-global-tree. During this process,
the composite patterns are grouped into k-patterns for each length in the Top-k list if the
present conditional FP tree has one-path. If the tree has a multipath, the algorithm will
detect frequent patterns and insert them into the Top-k list according to its lengths.

Salam & Khayal (2012)proposedTop-most andTop-kmethods based on the association
graph structure. A Symmetric matrix stores the entry of the graph as a data structure. The
algorithm scans the database once and starts with the FP tree with the initial support
threshold of zero during the construction of the All-path Source to Destination (ASD)-
tree (Salam & Khayal, 2012). This method mines search-space and construct an ASD tree
simultaneously. It suffers from serious demerit that it computes all 2-itemsets and scans
each transaction to build an association ratio graph. It computes edge values simultaneously
to detect a maximum cycle. The other drawback in this approach is that it identifies those
itemsets as Top-k itemsets, but originally itemset has low dataset occurrence.

Recently, Saif-Ur-Rehman et al. (2016) suggested a Top-k miner approach to find FIs.
They scan the database once and find a supporting threshold higher than zero for all the
frequent 2-itemsets. They use Candidate itemsets Search Tree (CIS-tree) (Saif-Ur-Rehman
et al., 2016) to mine the desired number of Top-k FIs of highest support.

The technique suffers from various limitations, such as it computes 2-itemsets before
constructing the CIS-tree, which is expensive to build as it consumes much memory.
This algorithm has reduced the search-space but has increased the runtime of the mining

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 7/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

process. Furthermore, the frequent itemsets joining procedure for the construction of
CIS-tree is a time-consuming process. As discussed above, several frequent itemset mining
practices were proposed, but they all face a challenge to reduce the time needed to calculate
and reduce the space needed to perform the algorithm to mine all the frequent patterns
required. The summary of Top-k FIs mining algorithms’ strengths and weaknesses are
shown in Table 1. It suggests that Top-k frequent mining algorithms are needed to be
further improved to produce efficient output.

PROPOSED METHODOLOGY
The objective of this paper is to present algorithms that can find Top-k frequent itemsets
without using the minsup parameter. The proposed algorithm begins by requesting that
the user provide a ‘‘k’’ value, i.e., how many FIs does he required? The system proposed
initially generates a frequent itemset of size one by scanning the database for the first and
last time. Then the system uses equivalence classes to create the next frequent itemset level.
The process repeats; initialize the item k at the next level to the lowest support until no
frequent items or items can be found.

The proposed work has two significant advantages: it does not require a support
threshold, and secondly, the database is scanned once to generate FIs. The detailed working
of the proposed technique is discussed in this section. Before going into exact steps, a few
definitions are essential to understand.

Def-1: Frequent Itemsets: In a given database D, an itemset X is referred to as Frequent
Itemsets if its support is greater or even equal to the support of k itemset in a set of items
I, where I is the set of items in the decreasing support order the support value is calculated
from the user-supplied value of k (Saif-Ur-Rehman et al., 2016).

Def-2: Identical Frequent Itemsets: In the given dataset D, Identical Frequent Itemset
(IFIs) are those frequent itemset S = X1, X2. . .Xm has the same support as of set S where
1<=m<=I and S ⊆ I (Saif-Ur-Rehman et al., 2016).

Def-3: Top-k Frequent Itemsets: A set of all IFIs in S= {X1, X2,.Xm} is called Top-k
frequent itemset if it includes frequent itemset of the highest support to the k th support
itemset in I, where I is a set of all identical frequent itemsets (Yildirim, Birant & Alpyildiz,
2017).

Top-k List Structure
In this sub-section, we describe list (Amphawan, Lenca & Surarerks, 2009) is an efficient
data structure uses in our method to accommodate candidate itemsets. The list is created
dynamically based on the itemset to be generated, which holds all possible k itemsets based
on users supplied value of k.

The items in the list are sorted in support descending order. Using a linked list in the
suggested algorithm effectively reduces processing time and retrieves the itemsets from
memory faster than an expensive I/O operation. The proposed TKFIM algorithm uses
vertical format datasets to generate frequent itemsets. List contains the set of nodes at
different levels. The 1-itemsets, 2-itemsets, or more are generated from the vertical dataset.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 8/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

Table 1 Summary of the Top-K Frequent Itemsets Mining Algorithms.

S.No Algorithm Purpose of algorithm Storage Strengths Limitations

1 Top k closed frequent
patterns (TFP) (Han
et al., 2002)

Generate the top k
closed patterns for
specified value of k

Array Without support
threshold Limit on
candidates’ FIs. Item-
sets mining method
without candidates
production

• Scan the database at least 2-
times.

• It misses certain important
patterns
• Due to Itemsets length restric-
tion.
• Represent the only Itemset
of higher support in the Top-k
while other itemsets of similar
support are not considered as
top- k itemsets.

2 Top-N (Fu, Kwong &
Tang, 2000)

Generate the topmost
patterns for specified
value of N

Array Without support
threshold FIs method

• Approach multiple scans

• Set two parameters.
• Apriori Based
• Forced to reduce Search-Space
•Huge Search Space

3 CRMN (Pyun & Yun,
2014)

To generate Top k
Patterns with Com-
binations reducing
method for N- item-
sets.

FP- tree Without support
threshold. Itemsets
mining method with-
out candidates’ pro-
duction.

•More than 1- inputs parame-
ters

• STP Based Approach
• Forced to reduce Search-Space
• Scan DB multiple times
• Required high computation
time

4 CRM (Pyun & Yun,
2014)

To generate Top k
patterns with Com-
binations reducing
method for N- item-
sets.

FP- tree Without support
threshold. Itemsets
mining method with-
out candidates’ pro-
duction.

• Search-Space focused

•Huge Search Space
• Scan DB multiple times
•Heavy computation time re-
quired

(continued on next page)

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 9/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

Table 1 (continued)

S.No Algorithm Purpose of algorithm Storage Strengths Limitations

5 Top-k maximal FIs
without support
threshold (Salam &
Khayal, 2012)

To find Top-most FIs
based on association
ratio graph structure.

Graph Without support
threshold.

• It computes all 2-itemsets and
scans each transaction to build
all path sources to destination
tree (ASD Tree) simultaneously.
• It identifies those itemsets as
Top-k itemsets originally item-
set has low occurrence in the
dataset.

6 Top-k Miner (Saif-
Ur-Rehman et al.,
2016)

To find Top-k FIs
without support
threshold using CIS
Tree.

CIS Tree Without support
threshold. Reduced
the Search Space

•High computation time re-
quired high memory Consump-
tions.

• The FIs joining procedure is
a time consuming process until
the desired result is obtained.

7 TKFIM [Proposed] Top-k frequent item-
sets Mining without
support threshold
based on Equivalence
classes

Lookup
List

Reduce search space
and run time

• The Top-k-FIs mining first
generates the entire 1-itemsets
with support from the given
dataset which consumes huge
memory at first level.
• Search space focused Tech-
nique

The Top-k list does not store any non-frequent itemset. The Top-k list structure of a node
is given in Fig. 1:

Where the Top-k list structure of a node having first field is used to store itemset, the
second is the support field identified the number of times the itemset occurs in the dataset.
Diffset is the third field which stores the difference set of transaction id of transactions.
The last field’s size points to the level of an itemset.

Detailed working of the algorithm
It is a difficult task to findTop-k frequent itemset in large databases. This section presents the
evolution of a new Top-k mining algorithm to calculate Top-k all IFIs without the support
threshold. The proposed procedure applies to a vertical database structure that consists
of transaction IDs followed by Items. Our technique uses a class-based search strategy for
searching itemsets with the highest values of support, and it mines the candidates of the
current class-based on the join process. The candidate itemsets generation for the current
class will be avoided If an itemset has less support than the least support in the Top-k. The
next class membership process is then applied accordingly and repeated until no frequent
items or candidate items have been identified.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 10/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

Itemsets Support Diffsets Size

Figure 1 Structure of Top-k list.
Full-size DOI: 10.7717/peerjcs.385/fig-1

Algorithm 1
Top-k FIs Mining Algorithm
1: Scan D to generate 1-itemset with support count
2: Create top-k list and 1-itemsset is initialized
3: Order Top-k list in descending order of the support count
4: Smallest k assign to the least support kth itemset in the Top-k list
5: Generate Candidate-Itemsets with support count using diffset
6: Create a list Top-k
7: while k <l en l i st do
8: k 1 + +
9: while k 1 <l en l i st do
10: if pr e f i x A == pr e f i x B then
11: I tems← [I tem A , I tem B]
12: ke y← pr e f i x A + I tems
13: diffset ←t (Item A)− t (Item B)
14: support ← t (Item A) –diffset
15: end if
16: Create an itemset entry and insert it into the Top-k list
17: if support >= smallestk then
18: I temset [key]← support
19: else if support <smallestk then
20: break
21: end if
22: end while
23: k 1 + +
24: k + +
25: end while
26: Repeat step 3, 4 and 5 until no candidate itemsets can be found
27: Return Top-k list of FIs

The pseudocode of our proposed methodology is given in Algorithm 1, and the details
of each step are described below:
1. Scan the Database and transform it into a vertical format.
2. Sort all items in descending support order.
3. Initializing Top-k list to 1-Itemset, where k is the user-provided number of a frequent

itemset.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 11/27

https://peerj.com
https://doi.org/10.7717/peerjcs.385/fig-1
http://dx.doi.org/10.7717/peerj-cs.385

4. Computing 2-itemsets from 1-itemset using diffset till the least support itemset in
Top-k list using equivalence class concept.

5. The process continues until the lowest support of an item on the next stage and no
frequent items or candidates can be found.

6. Then, the Top-k list is returned.
Lemma 1:

In the frequent itemsets mining, the support value of the itemset is used to apply the
anti-monotone property.

Proof:
Suppose that there are n transactions in the database, and data structures are constructed.
There are patterns P in D with m length and pattern P′ in D, which is supper pattern of
P, with m+1 length. In the worst case, both P and P′ are included in T (k <= n). The
anti-monotonic property means that if any P is an invalid pattern, the supper pattern
P′ of P is also an invalid pattern, which must be satisfied in this method. However, in
the general case, the set of transactions containing P′ is a subset of the set of transactions
containing P. Thus, Sup(P′) <= Sup(P) is always established. If the P is an invalid pattern,
sup(P′) <= sup(P) <= misupp is valid. As a result, the itemset count value that satisfies the
anti-monotone property (Nam et al., 2020a).

Running example of TKFIM algorithm
The algorithm is expressed by using database D, as shown in Table 2. It contains ten
transactions having six different items. Consider the number of required results specified
by the user k is four and six. Our task is to find the Top-k itemsets with the highest
support from the given transaction dataset. Table 3 illustrates the generated Top-2, Top-
4 and Top-6 frequent itemsets from the given transaction database D. The first column in
transaction databases represents the tids of itemsets, whereas the second column describes
the itemsets.

Step 1: Generating 1-itemset by scanning the Transaction database
The format of the input dataset is of considerable importance in most of the frequent
itemsets mining algorithm. There are two types of dataset representations. One is a
horizontal data format, and the other is a vertical data format. In a horizontal data format,
a transaction database is similar to a list/array of transactions. Each of the TID contains the
itemsets. The horizontal transaction database format is given in Table 4.

In a vertical data format, each record represents a transaction. This transaction contains
itemsets followed by a distinct transaction identifier. The vertical transaction database
format is shown in Table 5.

Most of the previous work adopts horizontal dataset representation. Our algorithm
has used the vertical layout of the dataset because the horizontal data format has some
drawbacks. We first transform the input horizontal transaction dataset into a vertical
format with only frequent itemsets and their corresponding transaction IDs. This generates
the k-itemsets of size one, as shown in Table 6.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 12/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

Table 2 Transaction Database.

TID Items

1 A,B,D,F
2 A,B,F
3 A,D,F
4 B,C,D,E,F
5 B,C,D,E,F
6 A,B,F
7 A,B,D,F
8 A,B,F
9 A,B,C,D,F
10 A,B,C,E,F

Table 3 Generated Top-2, Top-4 and Top-6 Itemsets.

Top-k FIs Top-2 FIs Top-4 FIs Top-6 FIs

1 F:10 F:10 F:10
2 B:9, BF:9 B:9, FB:9 B:9, FB:9
3 A:8, FA:8 A:8, FA:8
4 BA:7 BA:7
5 D:6, FD:6
6 BD=5, FBD=5

Table 4 Horizontal database format.

TID Items

1 A,B,D,F
2 A,B,F
3 A,D,F
4 B,C,D,E,F
5 B,C,D,E,F
6 A,B,F
7 A,B,D,F
8 A,B,F
9 A,B,C,D,F
10 A,B,C,E,F

Step 2: Sort all items in descending support order
All items are sorted in descending order, as shown in Fig. 2 (Step 2).

Step 3: Computing 2-Itemsets from 1-Itemsets using Diffsets
Pruning process
The candidate’s generation process is based on two constraints. First, it requires the size
of the itemsets to be the same. Secondly, both itemset must have the same prefix, which
means that each item of the itemset is identical except the last. When both itemsets meet

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 13/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

Table 5 Vertical database format.

Itemsets TID

F 1,2,3,4,5,6,7,8,9,10
B 1,2,4,5,6,7,8,9,10
A 1,2,3,6,7,8,9,10
D 1,3,4,5,7,9
C 4,5,9,10
E 4,5,10

Table 6 Converted vertical database format.

Itemsets TID

A 1,2,3,6,7,8,9,10
B 1,2,4,5,6,7,8,9,10
C 4,5,9,10
D 1,3,4,5,7,9
E 4,5,10
F 1,2,3,4,5,6,7,8,9,10

these limitations, k + 1 itemset is generated from k-itemsets with the help of equivalence
classes, i.e., 2-itemsets at the next level are generated by joining every two k-itemset. Top-k
frequently mined itemsets calculate the difference between the Tids lists in both items to
find the support value. This will be the support of the newly generated itemsets. If the
new itemset support is higher than the minimum kth support item in the Top-k list, the
newly generated itemset is entered in the Top-k list. Likewise, the kth pattern is removed
from the list of Top-k list and is designated as infrequent itemsets. After this step, our first
iteration is completed, and as a result, each 2-itemsets is generated in the same manner as
like itemset ‘FB’. We get the 2-Itemsets, as shown in Fig. 2, Step 4).

Pruning Process in Step 3
As shown in Fig. 2 (Step 1), we compute 2-itemsets from 1-itemsets using difference sets in
the given running example. Item ‘F’ and ‘B’ are combined and append together to generate
the itemsets ‘FB’ is a Top-k frequent itemset.

The difference set of ‘FB’ and support is calculated, which is 9. The support of ‘FB’ is
greater than the minimum support inferred as support of the kth itemset in the Top-k list.
Which can be used as support to prune the itemset, then the itemset ‘FB’ is inserted into
the Top-k list, and as a result, each 2-itemset are generated in the same manner as like
itemset ‘FB,’ as shown in Fig. 2 (Step 3).

Step 4: Remove Infrequent Itemsets by counting k value
The 1-itemset node E and C are removed by counting the k value in the Top-k list. The
2-itemset nodes are removed because their frequency is less than the minimum kth support
item in the Top-k list.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 14/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

Figure 2 Generation of Top-k list structure.
Full-size DOI: 10.7717/peerjcs.385/fig-2

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 15/27

https://peerj.com
https://doi.org/10.7717/peerjcs.385/fig-2
http://dx.doi.org/10.7717/peerj-cs.385

Step 5: Repeating step-2 to step-4
We start the second iteration by sorting the generated 2-itemset given in Fig. 2 (step 6).
We do not need to scan the database any more to link 2-itemset in the Top-k list.

A new entry is created at every occurrence of an item in the Top-k list. The itemsets
are initialized with support and Tids-list. The least support itemset used for the pruning
process becomes the k itemset in the Top-k list. Then, the itemsets in the list are updated.
The Top-k list has been arranged in the order of descent. Finally, all items with less support
than the kth item in the Top-k list are removed from the Top-k list, according to the Top-k
counting procedure, when the user sets the k value.

The itemset generation process is repeated. So in this iteration of the loop, we compute
3-itemsets from the 2-itemsets using diffset till the least support itemset in the Top-k
list. Next level itemsets are generated with the help of equivalence classes. The generated
3-Itemsets are as shown in Fig. 2 (step 7). The process repeats until there are no frequent
itemsets found. After that Top-k list is returned as required by the user.

Step 6: Top-k list is returned
The generated Top-k-List is shown in Fig. 2 (step 8) returned by the TKFIM algorithm.
The procedure of the Top-k frequent itemsets mining (TKFIM) method for the example
mentioned above is shown in Fig. 3.

EXPERIMENTAL RESULTS
In this section, we present the evaluation of the proposed system. First, there are standard
data sets freely available, so they have been used to evaluate the proposed algorithm.
We also compare our algorithms with two recent related methods: the Top-k miner
algorithm, which find the Top-k frequent itemsets by using the Candidate Itemset Search
(CIS-tree) (Saif-Ur-Rehman et al., 2016) and the BOMOalgorithm calculating the common
Top-k itemsets (Cheung & Fu, 2004). The fact that they are newly proposed techniques
and provided better results than their previous ones is the reason for selecting these two
approaches. The techniques calculate frequent element sets by requesting k from the user.
The experimental setup and dataset are provided in the following section.

Experimental setup and datasets
Several experiments were conducted to measure the performance of the algorithm and
compare its results with the methods referred to above. The datasets are available freely
and downloaded from the Frequent Implementation of Items and Mining (FIMI) data
repository (Goethals, 2003). The dataset details are given in Table 7.

The first column of the table shows the dataset name. In the second column, the total
number of transactions in a particular data set is described. Whereas the number of items
in one transaction is displayed in columns such as Avg-length and Items column represents
the total number of unique elements within a dataset. The last column shows the dataset
type. The transaction dataset Chess, Mushroom, Connect, and the T10I4D100 K dataset are
three real transactions. Chess is the first real dataset with 75 items and 3,196 dealings. It is
a dense dataset with long and short itemset. There are 120 items in the Mushroom dataset

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 16/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

TID Items

1 A,B,D,F

2 A,B,F

3 A,D,F

4 B,C,D,E,F

5 B,C,D,E,F

6 A,B,F

7 A,B,D,F

8 A,B,F

9 A,B,C,D,F

10 A,B,C,E,F

1

Scan D

2-Itemsets

Items Diffset Support

FB { 3 } {9}

FA {4,5} {8}

FD {2,6,8,10} {6}

FC {1,2,3,6,7,8} {4}

FE {1,2,3,6,7,8,9} {3}

BA {4,5} {7}

BD {2,6,8,10} {5}

BC {1,2,6,7,8} {4}

BE {1,2,6,7,8,9} {3}

AD {2,6,8,10} {4}

DC {1,3,7} {3}

CE {9} {3}

Items TID’s List

A {1,2, 3,6,7,8,9,10 }

B {1,2,4,5,6,7,8,9,10}

C {4,5,9,10}

D {1,2,3,4,5,7,9}

E {4,5,10}

F {1,2,3,4,5,6,7,8,9,10}

Compute
1-itemsets

3-Itemsets

Items Diffset Support

FBA { 4,5 } {7}

FBD {2,6,8,10} {5}

2

34

Let User Specified Number K= 6
1-Itemsets

Items TID’s List

F {1,2,3,4,5,6,7,8,9,10}

B {1,2,4,5,6,7,8,9,10}

A {1,2, 3,6,7,8,9,10 }

D {1,2,3,4,5,7,9}

C {4,5,9,10}

E {4,5,10}

Figure 3 Generation of frequent item sets.
Full-size DOI: 10.7717/peerjcs.385/fig-3

Table 7 Datasets characteristics.

.Datasets # Transactions Ave-length #Items Type Data set source

Chess 3,196 37 76 Real http://fimi.uantwerpen.be/data/chess.dat
Mushroom 8124 23 120 Real http://fimi.uantwerpen.be/data/mushroom.dat
Connect 67,557 43 130 Real http://fimi.uantwerpen.be/data/connect.dat
T10I4D100K 100,000 10 1,000 Synthetic http://fimi.uantwerpen.be/data/T40I10D100K.dat

and 8124 transactions. The transaction size is an average of 23. This is a sparse dataset
that contains a small number of common items. Over 130 items are built to connect. The
longest average transaction volume 43 is a dense dataset. T10I4D100K is a synthetic dataset
containing 1,000 items and a total transaction count of 100,000 items. This dataset has an
average of 10 transactions. The proposed technology was carried out in the programming
language version 3.8.1 of Python for experimentation. The Core2duo machine with two
gigabytes of memory and Windows 10 operating system is the experimental environment.

Results
We have performed experiments on three real and one synthetic dataset. The first
experiment has been performed on the aforementioned dataset and the results of the
TKFIM as shown in Table 8. The first column of the Table shows the transaction dataset
sequence, the second column contains the data set name, the third column describes the

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 17/27

https://peerj.com
https://doi.org/10.7717/peerjcs.385/fig-3
http://fimi.uantwerpen.be/data/chess.dat
http://fimi.uantwerpen.be/data/mushroom.dat
http://fimi.uantwerpen.be/data/connect.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://dx.doi.org/10.7717/peerj-cs.385

TKFIM data of k= 10, the fourth column shows the transaction datasets of Top-k miners,
and the second column shows the results of the BOMO procedure and the last column
shows the itemsets missing by BOMO. In the first stage, we compare the frequent itemsets
generated by TKFIM with the Top-k miner and BOMO approach. For the Top-10 frequent
itemsets on four datasets, we show the results in Table 8.

In the past, the Top-N and the Top-N support threshold for frequently used item sets
are mining methods, such as FP-growth, Top-N, and CRMN.

These methods fail to provide important support patterns due to the tuning of the
threshold parameters. The BOMO is one of the top pattern mining approaches using
two parameters (Cheung & Fu, 2004). The N-most interesting itemset is the union of the
N-most interesting itemsets with the highest supports for the value of some k.

To demonstrate BOMO with specified parameters k, having considered the same values
for the specified parameter, we compute Top-9 frequent itemsets on all datasets as shown
in Table 8. The BOMO procedure returns the wrong result and misses essential patterns.
The value of the k input parameter is taken up by our proposed TKFIM and mine all Top-k
Items in the dataset and does not miss the highest support pattern in the result set, as it is
clear from Table 8. The proposed system’s performance is now a matter of question, so we
present its result in the next section.

Performance results of TKFIM
In the second phase, we study our proposed TKFIM method’s performance without
support threshold parameter performing sets of experiments on each dataset mentioned
above, shown in Table 7. To conduct experiments, the input value of k, provided by the
user, is set in the range of five to thirty. Figure 4 shows the performance results of all the
approaches mentioned above on the ‘‘chess’’ dataset.

In this figure, each algorithm has its execution time on the vertical side, while each
algorithm performance is shown with different k-values on the horizontal bar. The Top-k
miner performs poorly in a large value of k provided by the user. BOMO produces a
large number of infrequent patterns that increase its run time. In all cases, with a k value
between five and thirty, the BOMO algorithm has shown a poor performance. The blue
bar represents the proposed algorithm TKFIM, the brown bar expresses the Top-k miner
results, and the purple bar describes the BOMO algorithm results. The presented results
illustrate that TKFIM outperforms both the Top-k miner and BOMO procedures. As
shown in the graph, the TKFIM discovers the top five frequent items in 0.03 s, where the
Top-k and BOMO consume the same amount of time to do the same job.

Similarly, we discovered that the top ten frequent itemsets by TKFIM take 0.4 s, whereas
the Top-k and BOMO take six seconds to do the same job. The top thirty frequent itemsets
by TKFIM take 13.21 s, whereas the Top-k consume a hundred seconds, and BOMO takes
1,010 s. Our proposed technique’s performance gain over BOMO and Top-k miner on
Chess dataset are 97.14 and 92.70 percent, respectively.

Figure 5 shows the results of performance on the Mushroom dataset. The algorithm’s
execution time on the vertical side is shown in this figure, where the horizontal bar reflects
every algorithm’s performance for different values of k. The Top-k miner performs well

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 18/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

Table 8 Top-k FIs mined by Top-k miner, BOMO and TKFIM.

S.No Datasets Results of TKFIM
for k= 10

Results of Top-k
Miner For k= 10

Results of BOMO
forN = 3, k=3

Wrong results
itemsets
missed by BOMO

1. Chess 1) 58=3195 1) 58=3195 1) 58= 3195 40= 3170
2) 52=3185 2) 52=3185 2) 52= 3185 58,40= 3169
3) 58,52=3184 3) 58,52=3184 3) 29 = 3181 52,40=3159
4) 29 = 3181 4) 29 = 3181 4) 58,52 = 3184
5) 58,29=3180 5) 58,29=3180 5) 58,29 = 3180
6) 40=3170,
52,29=3170

6) 40=3170,
52,29=3170

6) 52,29= 3170

7) 58,52,29=3169
58,40=3169

7) 58,52,29=3169
58,40=3169

7) 58,52,29=3169

8) 40=3159 8) 40=3159 8) 58,52,40=3158
9) 58,52,40=3158 9) 58,52,40=3158 9) 58,29,40=3154
10)29,40= 3155 10)29,40= 3155

2. Mushroom 1) 85=8124 1) 85=8124 1) 85 = 8124 1) 90 = 7488
2) 86=7924
85,86=7924

2) 86=7924
85,86=7924

2) 86 = 7924 2) 85,90 = 7488

3) 34=7914
34,85=7914

3) 34=7914
34,85=7914

3) 34 = 7914 3) 34 = 7914

4) 34,86=7906
34,85,86=7906

4) 34,86=7906
34,85,86=7906

4) 85,86 = 7924 5)85,86,34,90=7906

5) 90=7488
90,85=7488

5) 90=7488
90,85=7488

5) 85,34 = 7914 6) 86,34,90=7906

6) 90,34=7296
90,85,34=7296

6) 90,34=7296
90,85,34=7296

6) 86,34 =7906 7) 34,90 = 7296

7) 90,86=7288
90,34,86=7288
90,85,85=7288
90,85,34,86=7288

7) 90,86=7288
90,34,86=7288
90,85,85=7288
90,85,34,86=7288

7) 85,86,34 =7906 8) 86,90=7288

8) 36=6812
36,85=6812

8) 36=6812
36,85=6812

8) 34,85,90 = 7296

9) 36,86 = 6620
36,85,86=6620

9) 36,86 = 6620
36,85,86=6620

9) 85,86,90 = 7288

10) 36,34=6602
36, 86, 34=6602
36, 85, 34=6602
36 85 86 34 =6602

10) 36,34=6602
36, 86, 34=6602
36, 85, 34=6602
36 85 86 34 =6602

3. Connect 1) 91 = 67473 1) 91 = 67473 1) 91=67473 1) 75= 67245
2) 109=67469 2) 109=67469 2) 109=67469 2) 91, 75= 67161
3) 127= 67465 3) 127= 67465 3) 127= 67465 3) 109,75=67157
4) 91,109=67385 4) 91,109=67385 4) 91,109 = 67385
5) 91,127=67381 5) 91,127=67381 5) 91, 127=67381
6) 109,127=67377 6) 109,127=67377 6) 109,127=67377
7) 91,109,127=6729 7) 91,109,127=67293 7) 91,109,127=67293

(continued on next page)

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 19/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

Table 8 (continued)

S.No Datasets Results of TKFIM
for k= 10

Results of Top-k
Miner For k= 10

Results of BOMO
forN = 3, k=3

Wrong results
itemsets
missed by BOMO

8) 75=67245 8) 75=67245 8) 91,109,75=67073
9) 91,75=67161 9) 91,75=67161 9) 91,127,75=67069
10) 109,75=67157 10) 109,75=67157

4. T10I4D100K 1) 368 = 28738 1) 368 = 28738 1) 368 = 28738 1) 510 = 20125
2) 529 = 23384 2) 529 = 23384 2) 529 = 23384 2) 419 = 20216
3) 829 = 23121 3) 829 = 23121 3) 829 = 23121 3) 217 = 19326
4) 419 = 20216 4) 510 = 20125 4) 368,529 =7500 4) 489 = 18921
5) 510 = 20125 5) 419 = 20216 5) 368,829 = 6957 5) 682= 17427
6) 217 = 19326 6) 217 = 19326 6) 368,682 =6130 6) 914 = 17343
7) 489 = 18921 7) 489 = 18921 7) 682,368,489 =2420 7) 692= 17203
8) 682= 17427 8) 682= 17427 8) 368,529,692 = 2373
9) 914 = 17343 9) 914 = 17343 9) 368,529,829 = 2288
10) 692= 17203 10) 692= 17203

on smaller values of k provided by the user. However, BOMO poorly and increase its run
time. In all cases of k between four and twenty, the BOMO algorithm has shown a poor
performance.

Further, the blue bar represents the proposed algorithm, the brown bar expresses the
Top-k miner results, and the purple bar describes the BOMO algorithm results. The results
show that the performance for a small amount of k is degraded compared to Top-k miner
because the data set contains only a few short, frequently used items.

The TKFIM discovers the top four common items in 0.74 s, in which the Top-k and
BOMO take a second to do the same task, as shown in the graph. Similarly, TKFIM found
that the top eight frequent itemsets take 1.24 s, and BOMO took four seconds to do the
same job. It also found that TKFIM for finding top-20 frequent itemset takes 30.34 s, while
the Top-k miner takes 130 s and BOMO takes 1,010 s.

The performance gain of our proposed technique over BOMO and Top-k miner on
Mushroom dataset is 100 and 35.87 percent, respectively.

In Fig. 6, the performance results for the Connect dataset are shown. In this figure, each
algorithm has its execution time on the vertical side of this figure, while each algorithm
performance with different k-values is shown on the horizontal bar. The Top-k miner
performs better on small values of k provided by the user. However, BOMO suffered from
increased run time. In all cases of k between 5 and 25,n the BOMO algorithm shown a
poor performance.

Further, the blue bar represents the proposed algorithm, the brown bar expresses the
Top-k miner results, and the purple bar describes the BOMO algorithm results. As shown
in the graph, the TKFIM discovers the top five frequent items in 3.07 s, the Top-k miner
takes nine seconds, and BOMO produces the result of the top five frequent items in 76 s.
Similarly, to find the top 25 frequent itemsets by TKFIM took 60.87 s, Top-k miner took

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 20/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385

0

10

20

30

40

50

60

70

80

90

100

110

120

5 10 15 20 25 30

R
u

n
 T

im
e

(S
ec

on
d

s)

K-Itemsets

Chess

TKFIM

Top-k Miner

BOMO

Figure 4 Performance results of TKFIM on chess datasets.
Full-size DOI: 10.7717/peerjcs.385/fig-4

79 s, and BOMO consumed 597 s. The performance gain of our proposed technique over
BOMO and Top-k miner on Connect dataset is 78.10 and 28.53 percent, respectively.

The results of synthetic dataset T40I10D100K are shown in Fig. 7. The pattern length
is short in synthetic datasets, but it has 1,000 items. In this figure, the execution time
of each method is shown on the vertical side, whereas the horizontal bar represents the
performance of each technique for varying values of k. The Top-k miner performs better
on small amounts of k provided by the user. We performed experiments for k between one
and five.

Further, the blue bar represents the proposed algorithm, the brown bar expresses the
Top-k miner results, and the purple bar describes the BOMO algorithm results. When
frequent patterns of a higher length are discovered, BOMO starts to suffer from a radical
increase in execution time. As shown in the graph, the TKFIM identifies the top one
frequent item in 0.06 s, the Top-k miner takes six seconds, and BOMO produces a result
of the top one frequent items in 76 s. Similarly, to find the top five frequent itemsets,
TKFIM takes 9.18 s, Top-k miner takes 45 s, and BOMO consumes 1,699 s. Our proposed
technique’s performance gain over BOMO and Top-k miner on the T1014D100K dataset
is 99.70 and 81.27 percent, respectively.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 21/27

https://peerj.com
https://doi.org/10.7717/peerjcs.385/fig-4
http://dx.doi.org/10.7717/peerj-cs.385

0

20

40

60

80

100

120

140

160

180

200

4 8 12 16 20

ru
n

 T
im

e
 (

Se
co

n
d

s)

K-Itemsets

Mushroom

TKFIM

Top-k
Miner

BOMO

Figure 5 Performance results of TKFIM onmushroom dataset.
Full-size DOI: 10.7717/peerjcs.385/fig-5

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25

R
u

n
T

im
e

(S
ec

on
ds

)

K-Itemsets

Connect

TKFIM

Top-k Miner

BOMO

Figure 6 Performance results of TKFIM on connect dataset.
Full-size DOI: 10.7717/peerjcs.385/fig-6

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 22/27

https://peerj.com
https://doi.org/10.7717/peerjcs.385/fig-5
https://doi.org/10.7717/peerjcs.385/fig-6
http://dx.doi.org/10.7717/peerj-cs.385

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5

R
u

n
 T

im
e

(S
ec

on
ds

)

K-Itemsets

T40I10D100K

TKFIM

Top-k Miner

BOMO

Figure 7 Performance results of TKFIM on synthetic dataset.
Full-size DOI: 10.7717/peerjcs.385/fig-7

Memory usage of TKFIM
To evaluate the memory consumption of the TKFIM algorithms, we execute our method
for all the datasets. For the Chess dataset, TKFIM consumes a 1MB memory to obtain
the result of top-5, top-10, and top-15 FIs. However, it takes 2 MB memory to produced
top-25 and top-30 itemsets. Similarly, onmushroomdatasets, it consumes 2MB to compute
top-16 FIs and top-20 FIs. In all experiments, the gap of memory consumption increases by
1MB while increasing the value of k. In conclusion, the TKFIM algorithm presents the least
memory for all the experimental datasets for a lesser value of K. The results of the various
dataset are shown in Fig. 8. The memory consumption results of dataset T1014D100K,
Connect, Mushroom, and Chess are shown in Figs. 8A, 8B, 8C, and 8D respecitively. These
results were computed with the help of code which may not very accurate as because
of different factors involment in memory consumpution. However, one thing which is
apperent from these results is that less memory is needed for lesser value of K.

CONCLUSION
Frequent itemset mining is an exciting branch of data mining that focuses on looking
at frequently co-occurring items. The items could be from patterns in any dataset like a
market basket, word usage in documents, clicking behavior of users, gene sequencing, etc.
Due to its wide range of applications, researchers are always trying to produce effective

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 23/27

https://peerj.com
https://doi.org/10.7717/peerjcs.385/fig-7
http://dx.doi.org/10.7717/peerj-cs.385

0

5

10

15

20

25

30

4 8 12 16 20

M
em

or
y

(M
B

s)

K

Mushroom

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5

M
em

or
y

(M
B

s)

K

T10I4D100K

(a)

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25

M
em

or
y

(M
B

s)

K

Chess

(d)

0

20

40

60

80

100

120

140

160

180

200

5 10 15 20 25

M
em

or
y

(M
B

s)

K

Connect

(c)

(b)

Figure 8 Memory usage of TKFIM algorithm.
Full-size DOI: 10.7717/peerjcs.385/fig-8

solutions. This research has also proposed, designed, and developed an algorithm based on
equivalence classes and diffset theory for mining Top-k frequent itemsets. It is found that
the TKFIM has outperformed the results of these approaches in terms of execution and
performance, achieving 92.70, 35.87, 28.53, and 81.27 percent gain on Top-k miner using
Chess, Mushroom, Connect, and T1014D100K datasets, respectively.

Similarly, TKFIM has achieved 97.14, 100, 78.10, and 99.70 percent on BOMO using
Chess,Mushroom, Connect, and T1014D100K datasets, respectively. The proposed TKFIM
technique outperforms its counterpart on every dataset. In the future, we plan to adapt this
work to solve other data mining tasks like sequential pattern mining, temporal FIs mining,
FIs based clustering, and incremental frequent itemsets mining.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The work of Lisu Yu was supported by the State Key Laboratory of Computer Architecture
(ICT, CAS) Open Project under Grant CARCHB202019, and by Nanchang University,
Nanchang, Jiangxi, PR of China. This research was also funded by the Deanship of Scientific
Research at Princess Nourah bint AbdulrahmanUniversity through the Fast-track Research

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 24/27

https://peerj.com
https://doi.org/10.7717/peerjcs.385/fig-8
http://dx.doi.org/10.7717/peerj-cs.385

Funding Program. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
State Key Laboratory of Computer Architecture (ICT, CAS) Open Project:
CARCHB202019.
Nanchang University, Nanchang, Jiangxi, PR of China.
Deanship of Scientific Research at Princess Nourah bint Abdulrahman University.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Saood Iqbal and Abdul Shahid conceived and designed the experiments, performed
the experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Muhammad Roman conceived and designed the experiments, performed the
computation work, prepared figures and/or tables, authored or reviewed drafts of
the paper, and approved the final draft.
• Zahid Khan conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
• Shaha Al-Otaibi performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the paper, and approved the final draft.
• Lisu Yu performed the experiments, authored or reviewed drafts of the paper, arranged
funding, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data set and code are available in the Supplemental Files.
Data was taken from the Frequent Itemset Mining Dataset Repository (http:

//fimi.uantwerpen.be/data/):
- T10I4D100K: http://fimi.uantwerpen.be/data/T40I10D100K.dat
- Chess: http://fimi.uantwerpen.be/data/chess.dat
- Connect: http://fimi.uantwerpen.be/data/connect.dat
- Mushroom: http://fimi.uantwerpen.be/data/mushroom.dat.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.385#supplemental-information.

REFERENCES
Agrawal R, Imielinski T, Swami A. 1993.Mining association rules between sets of items

in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference
on Management of data. New York: ACM, 207–216.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 25/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.385#supplemental-information
http://fimi.uantwerpen.be/data/
http://fimi.uantwerpen.be/data/
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/chess.dat
http://fimi.uantwerpen.be/data/connect.dat
http://fimi.uantwerpen.be/data/mushroom.dat
http://dx.doi.org/10.7717/peerj-cs.385#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.385#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.385

Agrawal R, Srikant R. 1994. Fast algorithms for mining association rules. In: Proc. 20th
int. conf. very large data bases, VLDB, vol. 1215. 487–499.

Amphawan K, Lenca P, Surarerks A. 2009.Mining top-k periodicfrequent pattern from
transactional databases without support threshold. In: International conference on
advances in information technology. Springer, 18–29.

Cheung Y-L, Fu AW-C. 2004.Mining frequent itemsets without support threshold: with
and without item constraints. IEEE Transactions on Knowledge and Data Engineering
16(9):1052–1069 DOI 10.1109/TKDE.2004.44.

Fournier-Viger P, Lin JC-W, Kiran RU, Koh YS, Thomas R. 2017. A survey of sequential
pattern mining. Data Science and Pattern Recognition 1(1):54–77.

Fu AW-C, Kwong RW-W, Tang J. 2000.Mining n-most interesting itemsets. In:
ISMIS’00: Proceedings of the 12th international symposium on foundations of intelligent
systems. Berlin, Heidelberg: Springer-Verlag, 59–67.

Goethals B. 2003. Frequent itemset mining dataset repository. In: Frequent Itemset
Mining Implementations (FIMI’03), 2003. Piscataway: IEEE.

Han J, Pei J, Yin Y. 2000.Mining frequent patterns without candidate generation. ACM
Sigmod Record 29(2):1–12 DOI 10.1145/335191.335372.

Han J, Wang J, Lu Y, Tzvetkov P. 2002.Mining top-k frequent closed patterns without
minimum support. In: 2002 IEEE international conference on data mining, 2002.
proceedings. Piscataway: IEEE, 211–218.

Huynh-Thi-Le Q, Le T, Vo B, Le B. 2015. An efficient and effective algorithm for mining
top-rank-k frequent patterns. Expert Systems with Applications 42(1):156–164
DOI 10.1016/j.eswa.2014.07.045.

Krishnamoorthy S. 2019.Mining top-k high utility itemsets with effective threshold
raising strategies. Expert Systems with Applications 117:148–165
DOI 10.1016/j.eswa.2018.09.051.

NamH, Yun U, Vo B, Truong T, Deng Z-H, Yoon E. 2020a. Efficient approach for
damped window-based high utility pattern mining with list structure. IEEE Access
8:50958–50968 DOI 10.1109/ACCESS.2020.2979289.

NamH, Yun U, Yoon E, Lin JC-W. 2020b. Efficient approach for incremental weighted
erasable pattern mining with list structure. Expert Systems with Applications
143:113087 DOI 10.1016/j.eswa.2019.113087.

Nguyen LT, Vo B, Hong T-P, Thanh HC. 2012. Classification based on association rules:
a lattice-based approach. Expert Systems with Applications 39(13):11357–11366
DOI 10.1016/j.eswa.2012.03.036.

Nguyen LT, Vo B, Nguyen LT, Fournier-Viger P, Selamat A. 2018. Etarm: an efficient
top-k association rule mining algorithm. Applied Intelligence 48(5):1148–1160.

Pietracaprina A, Vandin F. 2007. Efficient incremental mining of top-K frequent closed
itemsets. In: Discovery science, volume 4755 of lecture notes in computer science. Berlin
Heidelberg: Springer, 275–280.

Pyun G, Yun U. 2014.Mining top-k frequent patterns with combination reducing
techniques. Applied Intelligence 41(1):76–98 DOI 10.1007/s10489-013-0506-9.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 26/27

https://peerj.com
http://dx.doi.org/10.1109/TKDE.2004.44
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.1016/j.eswa.2014.07.045
http://dx.doi.org/10.1016/j.eswa.2018.09.051
http://dx.doi.org/10.1109/ACCESS.2020.2979289
http://dx.doi.org/10.1016/j.eswa.2019.113087
http://dx.doi.org/10.1016/j.eswa.2012.03.036
http://dx.doi.org/10.1007/s10489-013-0506-9
http://dx.doi.org/10.7717/peerj-cs.385

Saif-Ur-Rehman , Ashraf J, Habib A, Salam A. 2016. Top-k miner: top-k identical fre-
quent itemsets discovery without user support threshold. Knowledge and Information
Systems 48(3):741–762 DOI 10.1007/s10115-015-0907-7.

Salam A, Khayal MSH. 2012.Mining top- k frequent patterns without mini-
mum support threshold. Knowledge and Information Systems 30(1):57–86
DOI 10.1007/s10115-010-0363-3.

Taser YP, Birant KU, Birant D. 2020.Multitask-based association rule mining.
Turkish Journal of Electrical Engineering & Computer Sciences 28(2):933–955
DOI 10.3906/elk-1905-88.

Wang H,WangW, Yang J, Yu PS. 2002. Clustering by pattern similarity, in large
data sets. In: Proceedings of the 2002 ACM SIGMOD international conference on
Management of data. New York: ACM, 394–405.

Yildirim P, Birant D, Alpyildiz T. 2017. Discovering the relationships between yarn
and fabric properties using association rule mining. Turkish Journal of Electrical
Engineering & Computer Sciences 25(6):4788–4804 DOI 10.3906/elk-1611-16.

Zaki MJ. 2000. Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering 12(3):372–390 DOI 10.1109/69.846291.

Zaki MJ, Gouda K. 2003. Fast vertical mining using diffsets. In: Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data mining. New
York: ACM, 326–335.

Iqbal et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.385 27/27

https://peerj.com
http://dx.doi.org/10.1007/s10115-015-0907-7
http://dx.doi.org/10.1007/s10115-010-0363-3
http://dx.doi.org/10.3906/elk-1905-88
http://dx.doi.org/10.3906/elk-1611-16
http://dx.doi.org/10.1109/69.846291
http://dx.doi.org/10.7717/peerj-cs.385

