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ABSTRACT
Increased interest in the use of word embeddings, such as word representation,
for biomedical named entity recognition (BioNER) has highlighted the need
for evaluations that aid in selecting the best word embedding to be used.
One common criterion for selecting a word embedding is the type of source from
which it is generated; that is, general (e.g., Wikipedia, Common Crawl), or specific
(e.g., biomedical literature). Using specific word embeddings for the BioNER
task has been strongly recommended, considering that they have provided better
coverage and semantic relationships among medical entities. To the best of our
knowledge, most studies have focused on improving BioNER task performance by,
on the one hand, combining several features extracted from the text (for instance,
linguistic, morphological, character embedding, and word embedding itself)
and, on the other, testing several state-of-the-art named entity recognition
algorithms. The latter, however, do not pay great attention to the influence of
the word embeddings, and do not facilitate observing their real impact on the
BioNER task. For this reason, the present study evaluates three well-known NER
algorithms (CRF, BiLSTM, BiLSTM-CRF) with respect to two corpora (DrugBank and
MedLine) using two classic word embeddings, GloVe Common Crawl (of the general
type) and Pyysalo PM + PMC (specific), as unique features. Furthermore, three
contextualized word embeddings (ELMo, Pooled Flair, and Transformer) are
compared in their general and specific versions. The aim is to determine whether
general embeddings can perform better than specialized ones on the BioNER task.
To this end, four experiments were designed. In the first, we set out to identify the
combination of classic word embedding, NER algorithm, and corpus that results
in the best performance. The second evaluated the effect of the size of the corpus on
performance. The third assessed the semantic cohesiveness of the classic word
embeddings and their correlation with respect to several gold standards; while the
fourth evaluates the performance of general and specific contextualized word
embeddings on the BioNER task. Results show that the classic general word
embedding GloVe Common Crawl performed better in the DrugBank corpus,
despite having less word coverage and a lower internal semantic relationship than the
classic specific word embedding, Pyysalo PM + PMC; while in the contextualized
word embeddings the best results are presented in the specific ones. We conclude,
therefore, when using classic word embeddings as features on the BioNER task, the
general ones could be considered a good option. On the other hand, when using
contextualized word embeddings, the specific ones are the best option.
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INTRODUCTION
Word embeddings which are representations of words as numerical vectors (Mikolov et al.,
2013), have become one of the most useful features for several natural language processing
(NLP) tasks (Ghannay et al., 2016), as they have been used for machine translation
(Mikolov et al., 2013; Qi et al., 2018), question answering (Bordes, Chopra &Weston, 2014;
Dimitriadis & Tsoumakas, 2019), and sentiment analysis (Altowayan & Tao, 2016;
Rezaeinia et al., 2019), among others (Mohd, Jan & Shah, 2020). In the specific case of the
named entity recognition (NER) task the use of word embeddings is recommended to
avoid time-consuming feature engineering (Unanue, Borzeshi & Piccardi, 2017). The huge
increase in the use of word embeddings is due to their ability to capture semantic
properties and linguistic relationships between words. They can be trained using either
specialized sources (e.g., articles, books, scientific databases, etc.) or general sources
(e.g., Wikipedia, Twitter). Some examples of specialized word embeddings are Pyysalo
PM + PMC (Moen & Ananiadou, 2013), Chiu win-30 (Yepes & MacKinlay, 2016), and
Aueb dim-400 (McDonald, Brokos & Androutsopoulos, 2018), while some general word
embeddings are Glove Wiki + GW (Mikolov et al., 2013), Glove CC-840 (Mikolov et al.,
2013), and Glove Twitter (Mikolov et al., 2013).

To date, no consensus has been reached as to which kind of word embedding is best for
each NLP task, so selection is based on comparing various experimental setups and
each researcher’s own experience. In the case of biomedical named entity recognition
(BioNER), which intents to identify “chunks of text that refer to specific entities of interest
such as gene, protein, drug and disease names” (Campos, Matos & Oliveira, 2012), several
authors recommend specialized word embeddings (Unanue, Borzeshi & Piccardi, 2017;
Batbaatar & Ryu, 2019), but this raises two questions: can general word embeddings be
recommended for use with BioNER?; and, is it always necessary to train specialized word
embeddings for each BioNER context?

As the analysis developed in this study shows, the state-of-the-art approach supports
specific word embeddings for some NLP tasks, including BioNER, because this type offers
greater coverage of domain-specific words and maintains better quality of the semantic
and syntactic relationships. However, many works in this field have focused on two
aspects: (a) studying the behavior of the word embeddings (general vs. specific) applied to
the BioNER task using only one NER algorithm, and, (b) studying the performance of
the algorithms on the BioNER task by combining the word embeddings with additional
features. For these reasons, the present study was designed to evaluate the classic word
embeddings GloVe Common Crawl and Pyysalo PM + PMC (general and specific,
respectively), and the contextualized word embeddings ElMo, Pooled Flair, and
Transformer (with their general and specific version) as the only feature extractor for
addressing the BioNER task in a drug context, over two corpora, DrugBank and MedLine.
In addition, for classic word embeddings three of the most common NER algorithms:
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conditional random fields (CRF), bidirectional long short-term memory (BiLSTM), and a
combination of the two (BiLSTM-CRF), were used; on the other hand, for contextualized
word embeddings only the BiLSTM-CRF algorithm was used. Adopting this approach
allowed us to test some state-of-the-art hypotheses for choosing between general and
specific classic word embeddings, and to determine that the specific form is not always
better than the general one for performing the BioNER task; also, between general and
specific contextualized word embeddings, the latter seems to be the best option.

Related work
Wang et al. (2018) elaborated intrinsic and extrinsic comparisons using four word
embeddings from clinical notes, biomedical publications, Wikipedia, and Google news.
Their intrinsic evaluation found that the word embeddings generated from the biomedical
literature had better semantic relations than those taken from general texts. However,
upon conducting an extrinsic evaluation that depended on the NLP task, they found
that word embeddings trained from biomedical sources do not necessarily show better
performance than those trained from general sources, since better results were obtained on
the relation extraction (RE) task using the general word embedding from Google news.
One drawback of their study, however, is that the word embeddings were not evaluated on
the NER task.

Segura-Bedmar, Suárez-Paniagua & Martnez (2015) evaluated two word embeddings,
one trained from Wikipedia general texts, the other from PubMed biomedical literature,
in order to improve the performance of the CRF algorithm on the NER task. Surprisingly,
the algorithm trained with the word embedding from Wikipedia obtained the best score.
Though only one algorithm was used, additional features were added, such as part of speech
(POS), context windows, and orthographic features.

A wider comparison of word embeddings was carried out by Batbaatar & Ryu (2019), as
they evaluated five general and nine specific word embeddings to observe their impact
on the BioNER task. In this case, results showed that all the specific word embeddings
obtained the best scores, so they recommended using this approach for BioNER. The
general embeddings used in their work were Glove Wiki + GW, Glove CC-42, Glove
CC-840, Glove Twitter, and Word2Vec, while the specific ones were Pyysalo PM, Pyysalo
PMC, Pyysalo PM + PMC, Pyysalo Wiki PM + PMC, Chiu win-2, Chiu win-30, Chen PM
+ MIMIC III, Aueb dim-200, and Aueb dim-400. However, three aspects considered in
their evaluation impeded observing the real impact of word embeddings on performance:
(a) the use of other features, like character embedding and POS; (b) an automatic
evaluation using the UMLSmetathesaurus (UnifiedMedical Language System) instead of a
manual gold standard; and (c) the use of the BiLSTM-CRF algorithm alone.

A variant of the aforementioned works was developed by Unanue, Borzeshi & Piccardi
(2017), who used different models along with several combinations of characteristics,
including word embeddings, to perform drug-named recognition in the DrugBank and
MedLine corpora. The models used were CRF, BiLSTM, and BiLSTM-CRF, while the word
embeddings were Common Crawl and Common Crawl + MIMIC-III (CC/mimic).
Three important aspects were found: (a) the best model was BiLSTM-CRF; (b) the best
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word embedding was CC/mimic; and (c) the greater the coverage of words in the word
embeddings, the better the performance. However, since CC/mimic cannot be considered
completely specialized because it is the concatenation of Common Crawl (general
embedding) and MIMIC-III (specific embedding), an additional study is necessary to
observe the difference between general vs. specific word embeddings.

The above-mentioned works compared classic word embeddings, which are static
pre-computed vectors, however, novel embeddings techniques, known as contextualized,
generate dynamic vectors based on the context words (Peters et al., 2018a, 2018b; Yamada
et al., 2020), allowing to address the polysemous and context-dependent nature of the
words. As a result, some studies have focused on improving the performance of the NER task
with contextualized embeddings (Akbik, Blythe & Vollgraf, 2018; Akbik, Bergmann &
Vollgraf, 2019) and more recently on the BioNER task (Patel, 2020). The latter, however, has
combined both classical and contextualized embeddings with their respective general and
specific version achieving the best results in multiple biomedical corpora. Also, Jiang,
Sanger & Liu (2019) have studied the effects of combining multiple contextualized
embeddings. But, to the best of our knowledge, there is no study comparing general vs.
specific contextualized embeddings.

In summary, no comparison of general vs. specific classic word embeddings has yet been
elaborated for BioNER that (i) avoids the use of additional features; (ii) uses several
algorithms; and (iii) considers the coverage and semantic relationships of the word
embeddings. Also, a comparison between general and specific contextualized word
embeddings on the BioNER has not yet been presented.

MATERIALS AND METHODS
This section describes the corpora, word embeddings, models, parameter settings, and
metrics used in the experiments described above.

Corpora
To train the models, two semantically annotated corpora were selected: DrugBank and
MedLine. Both were used as the gold standard on the SemEval-2013 DDI Extraction
Task; specifically, task 9.1 for the recognition and classification of pharmacological
substances (Herrero-Zazo et al., 2013). These corpora have been widely used for BioNER
(Segura-Bedmar, Suárez-Paniagua & Martnez, 2015; Chalapathy, Borzeshi & Piccardi,
2016; Unanue, Borzeshi & Piccardi, 2017) because they provide a common framework for
comparing the latest advances in this task. The corpora have been manually annoted
by experts in pharmacovigilance and each contains four entity types: drugs, groups,
brands, and substances not approved for human use (NH). Figure 1 depicts an example of
a DrugBank’s document annotated according to the SemEval-2013 DDI Extraction Task,
where the XML elements identify several parts of the document, such as sentences and
entities of interest with theirs corresponding entity type. In this particular example, we can
observe the sentence “Bromocriptine mesylate may interact with dopamine antagonists,
butyrophenones, and certain other agents.”, which contains three bioentities:
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bromocriptine mesylate, dopamine antagonists, and butyrophenones, labeled as entities with
their corresponding type: drug, group, and group, respectively.

In addition, the corpora are divided into two datasets: training and test. Those datasets are
disjoint (i.e., the documents for training are different from those for testing) and contain files
with the same XML structure. Table 1 describes the statistics related to these corpora.
The first two rows show the number of documents and sentences included in each corpus for
both the training and testing stages. DrugBank, for example, has 730 documents for training
and 54 for testing, while MedLine has 175 and 58 for training and testing, respectively.
The last four rows show the number of biomedical entities contained in each corpus. Here,
DrugBank has 9,715 drug entities for training and 180 for testing, while MedLine has
1,574 and 171, respectively, for training and testing.

Word embeddings
Word embedding maps words into low-dimensional numerical vectors by capturing
syntactic and semantic similarities (Mikolov et al., 2013). The methods used to generate
embeddings include probabilistic models (Globerson et al., 2007), neural networks

Figure 1 Example of an annotated sentence of the DrugBank corpus according to SemEval-2013
DDI Extraction Task. Full-size DOI: 10.7717/peerj-cs.384/fig-1

Table 1 Statistics of the training and test corpora used in the experiments. Obtained from Unanue,
Borzeshi & Piccardi (2017).

DrugBank MedLine

Training Test Training Test

Documents 730 54 175 58

Sentences 6,577 145 1,627 520

Drug 9,715 180 1,574 171

Group 3,832 65 234 90

Brand 1,770 53 36 6

NH 124 6 520 115
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(Mikolov et al., 2013), dimensional reduction on the word co-occurrence matrix (Levy &
Goldberg, 2014), and explainable knowledge (Qureshi & Greene, 2019).

The first word embeddings selected for the experiments were GloVe Common Crawl
(CC) and Pyysalo PMC + PM (Pyy). Both embeddings are considered classic because they
are static and word-level, resulting on one pre-computed embedding per word (Akbik,
Blythe & Vollgraf, 2018). CC has often been used for general domains (Lester et al., 2020;
Ronran & Lee, 2020), while Pyy has shown the best scores for pharmacological substances
(Batbaatar & Ryu, 2019). GloVe Common Crawl is a general word embedding released
in 2014 by the computer science department at Stanford University (Pennington, Socher &
Manning, 2014), trained by the Global Vectors method (GloVe) through 840 billion
general tokens on the web that generated a vocabulary of close to 2.2 million unique concepts
with 300 dimensional vectors. Pyysalo PMC + PM, in contrast, is a specific word embedding
released in 2013 to aid in linguistic tasks related to the field of biomedicine (Moen &
Ananiadou, 2013). It was trained with the word2vec method (Mikolov et al., 2013) through
5.5 billion specific tokens from 14 million PubMed abstracts and 700,000 PubMed
Central articles, generating a vocabulary of close to 4 billion unique concepts with
200 dimensional vectors.

Classic word embeddings can be compared in different ways (Wang et al., 2018) since they
generate static vectors. However, it is important to analyze the most recent general and
specific word embeddings, extracted with state-of-the-art techniques, which generate
context-dependent dynamic vectors. For this reason, a general and specific version of
ELMoEmbeddings, PooledFlairEmbeddings, and TransformerWordEmbeddings were used.

ELMo embeddings were presented by Peters et al. (2018a). They are a contextualized
word representation that models characteristics of word use (e.g., syntax and semantics),
and how these uses vary across linguistic contexts (i.e., to model polysemy). Their vectors
are functions learned from internal states of a deep bidirectional language model
(biLM) pre-trained on a large text corpus. The general and specific embeddings selected
are Original and PubMed, respectively. The Original embedding was trained on the 1
Billion Word Benchmark, while the PubMed embedding was trained with sentences from
abstracts of the PubMed database. Both embeddings had the same parameters, as can be
verified on their web page (https://allennlp.org/elmo).

Unlike ELMo embeddings, which are a word-level representation, Flair embeddings are
a contextualized character-level representation. Flair embeddings, presented by Akbik,
Blythe & Vollgraf (2018), are obtained from the hidden states of a forward-backward
recurrent neural network. They are trained without any explicit notion of words, instead,
they model words as sequences of characters. Also, these embeddings are contextualized by
their surrounding text, meaning that the same word will have different embeddings
depending on its contextual use. The variants of the Flair embeddings used in this study are
the Pooled Flair embeddings (Akbik, Bergmann & Vollgraf, 2019), which consume
more memory resources but perform better. Pooled Flair embeddings evolve over time
obtaining different embeddings of the same words in the same sentence at two different
points in time. The general and specific embeddings selected from Pooled Flair are Mix
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and PubMed, respectively. The Mix embedding is trained with general corpus from the
web, Wikipedia, and subtitles. On the other hand, PubMed embedding is trained with
5% of the PubMed abstracts until 2015.

Finally, Transformer word embeddings, introduced by Peters et al. (2018b), are
generated through an adaptation of the Transformer architecture to bidirectional language
modeling. The Transformer is a feed forward self-attention based architecture widely used
for multiple NLP tasks (Vaswani et al., 2017). The transformer embeddings selected
are BERT and BioBERT (general and specific, respetively). BERT was pre-trained using the
BooksCorpus (800M words) and English Wikipedia (2,500M words) (Devlin et al., 2018).
On the other hand, BioBERT was pre-trained on biomedical domain corpora using
PubMed abstracts and PMC full-text articles (Lee et al., 2020).

Models
The algorithms selected to tag the drug entities were conditional random fields (CRF),
BiLSTM, and BiLSTM-CRF. The CRF algorithm was selected because it is a statistical
algorithm commonly used for BioNER (Settles, 2004; Rais et al., 2014; Segura-Bedmar,
Suárez-Paniagua & Martnez, 2015). CRF has demonstrated better performance on the
NER task than other statistical techniques like the hidden Markov (HMM), support vector
machine (SVM), and maximum entropy Markov models (MEMM) (Campos, Matos &
Oliveira, 2012). In addition, two recurrent neural networks (RNN) were selected: BiLSTM
and BiLSTM-CRF, both of which are state-of-the-art and have achieved some of the best
scores for BioNER (Unanue, Borzeshi & Piccardi, 2017; Batbaatar & Ryu, 2019).

Conditional random field
Conditional random fields is a probabilistic discriminative model presented by Lafferty,
McCallum & Pereira (2001) that belongs to the set of undirected graphic models and works
with conditional probability, pð~yj~xÞ, to predict tag sequences,~y, through observations,
~x, taking into account the data sequence (Lafferty, McCallum & Pereira, 2001).
The equation for the CRF model is:

Pð~yj~xÞ ¼ 1
Zð~xÞ exp

�Xn
j¼1

Xm
i¼1

�ifiðyj�1; yj;~x; jÞ
�

(1)

where f is the set of feature functions with the values of the input vector,~x, the data
predicted position, j, and the tags in positions j� 1 and j. Each set of feature functions has
a weight, �, and the equation is normalized through Zð~x) factor, as follows:

Zð~xÞ ¼
X
y2~y

exp

�Xn
j¼1

Xm
i¼1

�ifiðyj�1; yj;~x; jÞ
�

(2)

The model is trained by estimating the parameters �0s with the maximum likelihood.

ŷ ¼ �argmax~yPð~yj~xÞ (3)

Finally, the Viterbi algorithm Viterbi (1967) is used to decode the optimal output sequence.
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Bidirectional long short-term memory
The long short-term memory presented by Hochreiter & Schmidhuber (1997) is a kind of
artificial RNN used to classify and process sequential data. This RNN solves the long-term
memory problem caused by gradient vanishing using cells with different gates to regulate
the information flow. Eqs. (4)–(7) of the cell are presented below:

it ¼ rðWxixt þWhiht�1 þWcict�1 þ biÞ (4)

ct ¼ ð1� itÞct�1 þ ittanhðWxcxt þWhcht�1 þ bcÞ (5)

ot ¼ rðWxoxt þWhoht�1 þWcoct þ boÞ (6)

ht ¼ ottanhðctÞ (7)

This version does not have a forget gate (f ), but only input (i) and output (o) gates, as in
the work of Lample et al. (2016). The cell vectors are represented by c, the hidden vectors
by h, and the weights and bias by W and b, respectively. The bidirectional version of
this model was selected because it can access both past and future input data (Graves,
Mohamed & Hinton, 2013). In this variation, the hidden vectors are generated in two ways:
left to right h

!
, and right to left h

 
, then the hidden vectors are concatenated to obtain the

final representation: ht ¼ ½ h!þ h
 � (Unanue, Borzeshi & Piccardi, 2017).

Bidirectional LSTM-CRF
Lample et al. (2016) presented an improved version of the LSTM network using a CRF
output layer instead of a softmax output layer. This layer, described previously in the CRF
model section, was used to take into account neighboring tags. The hidden vectors
h ¼ ðh1; h2;…; hnÞ were used as the input for the CRF layer to predict the output label
sequence y ¼ ðy1; y2;…; ynÞ.

Experimental setup
In order to compare general and specific word embeddings on the BioNER task, four
experiments were proposed; the first three experiments correspond to classic word
embeddings while the last experiment corresponds to contextualized ones. The first
experiment was designed to evaluate the performance obtained between general and
specific classic word embeddings using three models; the second, to test the impact on
performance for classic word embeddings when different sizes of training corpus were
used; the third, to observe the influence that intrinsic semantic relationships of the classic
word embeddings have on NER performance; and the fourth, to evaluate the performance
obtained between general and specific contextualized word embeddings.

First experiment: general vs. specific classic word embeddings
This experiment consisted in testing the CRF, BiLSTM, and BiLSTM-CRF models using
classic word embeddings as the only feature. The objective was to identify the classic word
embedding that yielded the best results (general vs. specific) on the BioNER task. First,
each corpus was split into sentences and tokens, then each token was labeled according to
the IOB scheme (Ramshaw & Marcus, 1999) to represent whether or not the word
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belonged to an entity class. Here, the letter B (Beginning) indicates that a word is the initial
part of a named entity, I (Inside) signals that the word is part of the named entity, and
O (Outside) indicates that the word is not a part of a named entity. Table 2 shows a
sentence tagged using IOB format, the first column indicates the sentence’s tokens while
the second column indicates the class of such tokens. In this example, the tokens
Bromocriptine, mesylate, dopamine, antagonists, and butyrophenones correspond to
biomedical entities. The MedLine and DrugBank corpora formatted with the IOB scheme
are available in Data S1.

After formatting the corpora, one vector for each token was retrieved from the word
embedding. These numerical vectors were used directly as features in the BiLSTM and
BiLSTM-CRF models, but first they had to be transformed as dictionaries for the CRF
model. In cases where no token existed in the word embedding, its numerical vector was
generated randomly in the range [−1, 1].

Once the embeddings were obtained from CC and Pyy, the models were set up. The
CRF model was implemented using the CRFsuite from scikit-learn (Pedregosa et al., 2011),
while the healthNER project (Jauregi, 2017) was used for the BiLSTM and BiLSTM-CRF
models. To train and validate the parameters of these neural networks, each training
corpus was divided into two parts: the first, to train the internal parameters of the network
(70%); the second, to validate the hyper-parameters (30%) (Bergstra & Bengio, 2012).
The hyper-parameters, or values assigned manually to the neural networks, included the
number of hidden nodes (100), the dropout rate (0.5), and the learning rate (0.1). The
general parameters for all the models were the dimensions of the word embeddings
(300 for CC, 200 for Pyy) and the number of epochs (100). These settings are shown in
Table 3. Finally, the best model saved during the epochs was tested with unseen data from
the test section of the corpus. The source code testing the CRF, BiLSTM, and BiLSTM-CRF
models is available in Data S2.

Table 2 Sentence tagged using IOB format.

Tokens IOB Format class

Bromocriptine B-Drug

mesylate I-Drug

may O

interact O

with O

dopamine B-Group

antagonists I-Group

butyrophenones B-Group

and O

certain O

other O

agents O

. O
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Second experiment: training set reductions
As Table 1 shows, in the first experiment the number of entities for training in DrugBank
was approximately ten times higher than those used by MedLine, while the number
of entities for testing was similar in both corpora. This situation was observed by
Unanue, Borzeshi & Piccardi (2017) as well, who hypothesized that it could be one of the
reasons MedLine generally achieved lower performance compared to DrugBank.

To evaluate the impact of the size of the training corpus on the BioNER task, multiple
reductions were applied to the DrugBank corpus. Five training sets of different sizes
were generated by removing sentences from the training and validation sections of the
DrugBank corpus. Tokens were removed from the end to the beginning until 75%, 50%,
25%, 12.5%, and 6.25% of the total number of entities for training and validation were
reached. The part of the corpus that corresponded to the test remained the same size.
The source code for corpus reduction and each reduced dataset are available in Data S3.

Subsequently, for each training set, the same processing as in experiment one was
followed using only the model with the best performance in the state-of-the-art
(Unanue, Borzeshi & Piccardi, 2017; Batbaatar & Ryu, 2019); that is, BiLSTM-CRF.

Third experiment: classic word embeddings’ semantic evaluation
As mentioned earlier, specific word embeddings maintain a better intrinsic semantic
relationship than general ones (Wang et al., 2018). Therefore, this experiment was
designed to observe the semantic relationships in the CC and Pyy word embeddings.
For this experiment, Wang et al. (2018) methodology was used. First, four datasets were
selected: Pedersen et al. (2007), Hliaoutakis (2005), MayoSRS (Pakhomov et al., 2011), and
UMNSRS (Pakhomov et al., 2010). Each data set contains pairs of medical words, and
each pair has an associated number that indicates the semantic similarity assigned by a
human expert. Later, the CC and Pyy vectors were extracted for each medical word in the
datasets. In cases where a word was not found in the word embedding, the vector was
generated randomly between [−1, 1]. In the next step, the cosine similarity between each
pair of words ðw1;w2Þ was calculated using Eq. (8), where θ1 and θ2 are vector
representations for the words:

similarity ðw1;w2Þ ¼ u1 � u2
jju1jj jju2jj (8)

Table 3 Parameters for BiLSTM and BiLSTM-CRF models.

Parameters Value

Word embedding dimension 300 (CC)/200 (Pyy)

LSTM hidden layer dimension 100

Epochs 100

Dropout 0.5

Optimization Stochastic gradient descendent

Learning rate 0.1
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Finally, Pearson’s correlation was calculated for the similarity between the datasets
obtained with the word embeddings and those indicated by the human experts. The gold
standard datasets used for measuring the intrinsic semantic relationship and the source
code to perform the comparison with the word embeddings are available in Data S4.

Fourth experiment: general vs. specific contextualized word embeddings
In order to compare the performance of the general vs. specific contextualized word
embeddings on the BioNER task, the Flair framework (Akbik et al., 2019) was selected.
Flair implements the BiLSTM-CRF sequence labeling architecture proposed byHuang, Xu
& Yu (2015), which is similar to the one used in the first and second experiment. However,
this architecture does contain the forget gate, as Eq. (9) shows:

ft ¼ rðWxf xt þWhf ht�1 þWcf ct þ bf Þ (9)

Also, Flair has a text embedding library with simple interfaces that allows to use and
combine different word embeddings, including ELMo embeddings, Flair embeddings,
Transformer embeddings, among others. Its implementation is very simple, allowing to
replicate the models proposed for this experiment. First, three types of contextualized word
embeddings have been selected: ELMo embeddings (Peters et al., 2018a), Pooled Flair
embeddings (Akbik, Bergmann & Vollgraf, 2019), and Transformer embeddings (Peters
et al., 2018b). Then, for each type of word embedding, general and specific versions were
used: for ELMo, the Original and PubMed embeddings; for Pooled Flair, Mix and PubMed
embeddings; and for Transformer, the BERT and BioBERT embeddings. Later, the
models were set up, the number of hidden nodes (100), the dropout rate (0.5), the learning
rate (0.1), and the mini-batch size ∈ {1, 2, 4, 8, 16, 32}. The models were trained using
vanilla SGD with no momentum for 100 epochs, choosing the model with the best
F1-score among the different epochs. As in the first experiment, the corpora for training
and test were DrugBank and MedLine, with the same partitioning. The source code to
test the contextualized word embeddings is available in Data S5.

Evaluation metrics
The performance of the models in experiments one, two and four is reported in terms of
F1-scores, an important measure that represents the harmonic mean of precision and
recall. “Precision is the percentage of named entities found by the learning system that are
correct. Recall is the percentage of named entities present in the corpus that are found by
the system. A named entity is correct only if it is an exact match of the corresponding
entity in the data file” (Sang & De Meulder, 2003).

The “strict” evaluation method proposed by (Segura Bedmar, Martnez & Herrero Zazo,
2013) was used, in which both the entity class and its exact boundaries must match the
expected values of the data set (Nadeau & Sekine, 2007; Unanue, Borzeshi & Piccardi,
2017). Specifically, precision, recall, and F1-score have been using in different named entity
recognition tasks as in MUC-7 (Chinchor & Robinson, 1997) and CoNLL 2003 (Sang &
De Meulder, 2003), since the main objective is to correctly identify a word that represents a
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bioentity while the correctness tagging of the surrounding words, as long as they are
not bioentities, are out of interest.

In the third experiment, Pearson’s correlation coefficient was used to observe the linear
correlation between similarity scores from human judgments and those from word
embeddings. The equation for this coefficient is shown in Eq. (10), where n is the sample
size, xi and yi are the individual sample points, and �x and �y are the sample means.

r ¼
Pn

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � �xÞ2 Pn

i¼1 ðyi � �yÞ2
q (10)

RESULTS
Regarding to the evaluation of classic word embeddings, Table 4 shows the findings
that correspond to the comparison of the three different models “CRF, BiLSTM, and
BiLSTM-CRF’’ using CC (general) and Pyy (specialized) as the unique feature, tested
on the DrugBank and Medline corpora (first experiment). To evaluate the models’
performance, precision, recall, and F1-score metrics were computed.

The most efficient model for drug-named entity recognition is BiLSTM-CRF, at
88.32% and 71.55% for DrugBank andMedLine, respectively. In contrast, the least efficient
model is CRF, at 71.58% for DrugBank and 42.18% for MedLine. This is consistent with
Unanue, Borzeshi & Piccardi (2017), and shows that the CRF model requires more
extensive feature engineering or other kinds of representations for the word embedding
feature (Segura-Bedmar, Suárez-Paniagua & Martnez, 2015); for example, clustering.
It is important to note that the BiLSTM models maintained a balance between precision
and recall regardless of the form of word embedding (CC or Pyy) or the corpus (DrugBank
or Medline). On the one hand, observations of the DrugBank corpus show that the

Table 4 Drug Name Recognition using the CRF, BiLSTM, and BiLSTM-CRF models, along with the
GloVe Common Crawl (CC) and Pyysalo PM + PMC (Pyy) word embeddings for the DrugBank and
MedLine corpora.

Corpus Model Precision Recall F1-score

DrugBank CRF + CC 82.07 66.3 73.34

BiLSTM + CC 85.62 87.3 86.45

BiLSTM-CRF + CC 86.79 89.9 88.32

CRF + Pyy 79.79 64.9 71.58

BiLSTM + Pyy 83.01 84.36 83.68

BiLSTM-CRF + Pyy 84.24 85.34 84.79

Medline CRF + CC 62.3 33.04 42.18

BiLSTM + CC 60.44 61.52 60.98

BiLSTM-CRF + CC 71.54 60.18 65.37

CRF + Pyy 69.29 31.21 43.03

BiLSTM + Pyy 63.36 64.21 63.78

BiLSTM-CRF + Pyy 75.75 67.79 71.55
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differences between precision and recall using CC and Pyy are 1.68 and 1.35 percentage
points (pp), respectively, while for the Medline corpus the differences between CC and Pyy
are 1.08 pp and 0.85 pp. When the BiLSTM model was combined with CRF in the case
of the DrugBank corpus, the difference between precision and recall is a little wider for
CC at 3.11 pp, while for Pyy it is 1.1 pp. For Medline, the differences are considerably
wider: CC at 11.36 pp and Pyy at 7.96 pp. However, these differences are related to the
CRF layer appended to the BiLSTM, not to the corpora, because the wider differences
between precision and recall were found for MedLine, while DrugBank maintained a
balance. Based on the performance differences between the word embeddings in Table 4,
and in order to determine whether these performances are related to the coverage of
the word embeddings, Table 5 shows the percentage of coverage and F1-score obtained
for the best model (BiLSTM-CRF) over both corpora, DrugBank and Medline, for each
classic word embedding. With respect to DrugBank, the model with the specific word
embedding Pyy had the best coverage (Pyy: 96.37% vs. CC: 93.93%), but not the best
performance (Pyy: 84.79% vs. CC: 88.32%). For MedLine, the model with the specific word
embedding Pyy had both the best coverage and the best performance.

Since the DrugBank training set is larger than the MedLine training set (see Table 1),
and considering that training set size could be an important factor in performance
(Unanue, Borzeshi & Piccardi, 2017), Fig. 2 presents the F1-scores obtained for each
reduction over the DrugBank training set (second experiment). A performance loss of
approximately 7 pp is visible when the DrugBank training set is reduced to similar

Figure 2 Loss of DrugBank performance by reducing the size of the training corpus.
Full-size DOI: 10.7717/peerj-cs.384/fig-2
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conditions to those of MedLine, regardless of which of the two classic word embeddings is
selected (dotted line), though the general word embedding CC continued to perform better
than Pyy for DrugBank, despite the size reduction.

However, we still lacked an intrinsic evaluation of classic word embeddings on the
BioNER task in order to observe the degree to which the automatically-created
embeddings correlate with the gold standard. For this reason, we designed the third
experiment, which allowed us to evaluate the affinity of each word embedding with respect
to each biomedical corpus. Table 6 presents the Pearson correlation coefficient for the
semantic similarities using the classic word embeddings and the judgments of human
experts. Overall, the specific word embedding (Pyy) presents a better correlation with the
human judgment for all datasets.

Finally, determining if the performance of general and specialized embeddings on the
BioNER task is influenced by the technique used to generate them, Table 7 shows the
mini-batch size, precision, recall, F1-score of the best performances obtained from testing
the general and specialized version of each contextualized word embedding (ELMO,
Pooled Flair, and Transformer) on the DrugBank and MedLine corpus. It is worth notice
that for all cases the specialized version overcomes the general one. Also, using the
DrugBank corpus, the best results are those presented with a larger mini-batch size (16 or
32), on the contrary, when using MedLine the mini-batch size are smaller (8 and 16). The
complete results of the fourth experiment are available in Data S6.

DISCUSSION
In the following paragraphs, we discuss first, the classic word embeddings, and then
the contextualized ones. For the classic word embeddings, the results are presented for
each corpus, first DrugBank, then MedLine; later, these two corpora are contrasted to
observe and analyze differences in their performance.

Table 6 Pearson correlation coefficient between similarity scores from human judgments and those
from classic word embeddings on four measurement datasets.

Dataset GloVe Common Crawl (CC) Pyysalo PM + PMC (Pyy)

Pedersen’s 0.446 0.575

Hliaoutakis’s 0.292 0.283

MayoSRS 0.290 0.413

UMNSRS 0.363 0.420

Table 5 Comparison between coverage and performance with the BiLSTM-CRF model using the
GloVe Common Crawl and Pyysalo PM + PMC word embeddings.

Word embedding DrugBank MedLine

Coverage F1-score Coverage F1-score

GloVe Common Crawl (CC) 93.93 88.32 96.97 65.37

Pyysalo + PM + PMC (Pyy) 96.37 84.79 99.22 71.55
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With respect to the results tested with the DrugBank corpus using classic word
embeddings, the best findings for each model were achieved using the general word
embedding CC (see Table 4). In terms of F1-scores, the CRF + CC model achieved a
percentage that was a little higher than the CRF + Pyy model. This result is similar to one
presented by Segura-Bedmar, Suárez-Paniagua & Martnez (2015), where in order to
improve the performance of the BioNER task, they achieved 1 pp higher when using
general instead of specific word embeddings. However, they did not present an extensive
comparison between embeddings and also, they appended several additional features to
the word embeddings which make difficult to observe the real behavior of the embeddings.
As Table 4 shows, this behavior was also maintained in the BiLSTM (BiLSTM + CC:
86.45% vs. BiLSTM + Pyy: 83.68%), and the BiLSTM-CRF models as well (BiLSTM-CRF +
CC: 88.32% vs. BiLSTM-CRF + Pyy: 84.79%). According to Unanue, Borzeshi & Piccardi
(2017), the performance difference between these word embeddings could be attributable to
their respective word coverages. With regards to biological domains, it is to be expected
that a specific word embedding will have better word coverage than a general form and,
therefore, better performance. But this behavior was not reflected in the case of DrugBank
(see Table 5), where the specific word embedding had better coverage, but not the best
performance. This experimental finding shows, on the one hand, that word coverage is not a
determining factor in choosing a form of word embedding and, on the other, that specific
word embedding is not always better than the general form, when using classic word
embeddings. Therefore, general word embedding should not be discarded as a possible
feature for biological named entity recognition.

In contrast to our observations of DrugBank, when using classic word embeddings in
MedLine (see Table 4) the specific word embedding Pyy achieved the best scores for the
BiLSTM and BiLSTM-CRF models (BiLSTM + CC: 60.98% vs. BiLSTM + Pyy: 63.78%;
BiLSTM-CRF + CC: 65.37% vs. BiLSTM-CRF + Pyy: 71.55%). This is consistent with the

Table 7 Drug Name Recognition using the BiLSTM-CRF model, along with general and specific
contextualized word embeddings for the DrugBank and MedLine corpora.

Corpus Word embedding mini-batch size Precision Recall F1-score

DrugBank ELMo Original 32 82.29 86.31 84.26

ELMo PubMed 16 87.03 89.58 88.28

Pooled Flair Mix 32 81.9 86.97 84.36

Pooled Flair PubMed 32 84.92 89.9 87.34

Transformer Bert 16 76.28 82.74 79.37

Transformer BioBert 32 82.58 89.58 85.94

MedLine ELMo Original 8 58.8 54.59 56.61

ELMo PubMed 16 67.29 72.26 69.69

Pooled Flair Mix 16 52.78 51.01 51.88

Pooled Flair PubMed 8 64.81 62.64 63.71

Transformer Bert 16 48.44 55.48 51.72

Transformer BioBert 16 60 68.46 63.95
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findings in Batbaatar & Ryu (2019), where all the specific classic word embeddings, in
combination with other characteristics, obtained the best scores for biological domains.

In addition, we performed a comparison of the results for every model×classic-embedding
combination between the corpora. This analysis revealed that DrugBank had the best
scores; for instance, the combination of BiLSTM-CRF with CC embedding over DrugBank
obtained an F1-score of 88.32%, while using MedLine and the same model×classic-
embedding the F1-score obtained fell to 65.37%. In the case of the combination of
BiLSTM-CRF with Pyy embedding over DrugBank, the F1-score was 84.79%, while using
MedLine and the same model × classic-embedding achieved an F1-score of 71.55%.
This highlights a difference of 22.95 pp and 13.24 pp, respectively, even though both corpora
were used to recognize drug names. While these differences could be a consequence of the
size of the training set, as hypothesized by Unanue, Borzeshi & Piccardi (2017), Fig. 2
shows that these results represent only part of the differences in the scores between the
corpora. Thus, the remaining difference could be attributed to at least two other elements;
one involving the source and number of tokens used to train the word embeddings, the
other regarding the origin and content of the corpora. While 840 billion general web
tokens were used to train CC, only 5.5 billion specialized PubMed and PubMed Central
tokens were used for Pyy. The resulting sizes of the vocabularies were 2.2 million for
CC and 4 million for Pyy, showing that the general CC has a shorter, less specialized
vocabulary generated with more extensive training. For this reason, while CC coverage
may be shorter, thanks to its extended training it could perform better, at least with
DrugBank. The MedLine corpus, meanwhile, comes from PubMed abstracts and the Pyy
word embedding from PubMed and PubMed Central. This led to the hypothesis of a
relation between the MedLine corpus and Pyy embedding that is not seen in DrugBank
because it comes from documents in the DrugBank database (Herrero-Zazo et al., 2013).

With the goal of reaching a deeper understanding of the characteristics of these
classic word embeddings, the results of the third experiment (see Table 6) show that the
semantic similarities captured by the specialized word embedding Pyy are more akin to
the judgments of the human experts than those obtained by the general word embedding
CC. Despite the fact that Pyy embedding has better cohesion for biomedical entities,
CC embedding is better for DrugBank, so it is necessary to consider that there may be a
relationship between the corpus selected and the form of word embedding applied.

Unlike classic word embeddings, where general embeddings can perform better than
specific ones, in the contextualized word embeddings the best performances for both
corpora (DrugBank and MedLine) are achieved using specific embeddings. As Table 7
shows, the differences between specific and general embeddings in the Medline corpus
(ELMo: 13.08 pp, Pooled Flair: 11.83 pp, Transformer: 12.23 pp) are greater than those
observed in the DrugBank corpus (ELMo: 4.02 pp, Pooled Flair: 2.98 pp, Transformer:
6.57 pp). As mentioned above, MedLine corpus was obtained from PubMed, so this can
provide an advantage to specific contextualized embeddings since they have been trained in
this type of biomedical text and they can modify the vector of each word dynamically.
However, this property of modifying the vectors dynamically seems counterproductive for
general contextualized embeddings since they were training over colloquial texts.
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On the other hand, comparing the performance of the three contextualized word
embeddings on the BioNER task, it can be observed that the ELMo PubMed obtain the best
scores for both corpus, this is, 88.28% for DrugBank and 69.69% for MedLine. However, to
generalize this statement extensive experimentation on more corpora is required.

Regarding a cross-comparison between classic and contextualized embeddings, the
results of the first experiment might not be directly comparable with the results of the
fourth experiment because they differ in the implementation of the BiLSTM-CRF network,
although the parameters have been set as similar as possible. Despite this fact, the same
conclusions can be reached from the first experiment using the Flair library. Likewise,
the present study has only compared contextualized embeddings with extrinsic evaluation
on the BioNER task. An intrinsic evaluation of contextualized embeddings like the one
carried out with classic embeddings is not possible since each word can have multiple
vectors according to its context.

In summary, regarding to classic word embeddings, although the specific word
embeddings showed the best biomedical word coverage and best semantic relationship
among medical entities, they are not always a better option than general word embeddings.
The latter, therefore, could be considered as a possible automatic feature extractor for
the BioNER task based on the understanding that general embeddings could be used when
it is necessary to extend the model to classify non-biomedical entities as well. However, in
regard to contextualized word embeddings, the best option to use is a specialized one.

CONCLUSIONS
This article presents the results of an evaluation of different word embeddings trained from
general and specific sources. The assessment was performed in four ways; first, by focusing
on the BioNER task and testing the CC and Pyy classic word embeddings (general and
specific, respectively) on the DrugBank and MedLine corpora using the CRF, BiLSTM,
and BiLSTM-CRF algorithms. In the second approach, we concentrated on the corpus size
by applying multiple reductions to the corpora. The third experiment used an intrinsic
evaluation of the classic word embeddings focused on the semantic similarity between pairs
of words from four different datasets: Pedersen, Hliaoutakis, MayoSRS, and UMNSRS. In the
last approach, we compared the performance of general vs. specific contextualized word
embeddings using the BiLSTM-CRF algorithm with three state-of-the-art embeddings:
ELMo, PooledFlair, and Transformer. The following conclusions can be drawn from the
results of the present evaluation. First, the model with the best performance for drug-named
recognition using only word embeddings as features was BiLSTM-CRF, while the model
with the lowest performance was CRF. Second, using classic word embeddings, the best
scores were not always obtained with specific embeddings, since better performance was
observed using the general word embedding CC in the DrugBank corpus for all three
algorithms. This result was apparent even though general word embeddings have less word
coverage than specific ones. Third, the quality of performance decreases as the training
corpus is reduced, as was clear for the DrugBank corpus. However, even in that case, the
performance achieved with the general CC embedding was better than the result obtained
with the specific Pyy embedding. Fourth, classic general word embeddings can be considered
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characteristic for BioNER, even though their semantic similarity between medical words
is of a lower order than that of a classic specific embedding. Fifth, for the selection of
contextualized word embeddings on the BioNER task, it would be better to choose the
specific ones. Finally, among the contextualized embeddings and under the same conditions,
the ELMo embeddings achieved the best results for DrugBank and MedLine, indicating that
these embeddings are a viable feature for BioNER.

As a future direction for research, our plan is to evaluate the re-trained word
embeddings; that is, those generated by joining general and specific word embeddings.
This approach will require an extensive selection of word embeddings, testing different
methods for evaluating the difference between them (such as clustering). In regard to
contextualized word embeddings, it would be important to elucidate a method to evaluate
them intrinsically to determine if this novel word representations are more correlated to
the gold standard. Finally, an experiment will be designed to demonstrate the possible
performance relationship between a particular form of word embedding and the corpus
used to train the models for BioNER.
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